
Chapter 5

Vorticity and Deformation

5.1 Derivation
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Figure 5.1: Diagram of the translation and rotation of a fluid element in the xy plane.

Consider Fig 5.1. This shows an element of fluid moving in two dimensions in a general
fluid flow. The mean fluid velocity over the element determines its overall flow. Differences

in velocity at different points on the element determine how its shape changes. If we define

dx(x′, y′) = [u(x′, y′) − u(x, y)] dt (5.1)

dy(x′, y′) = [v(x′, y′) − v(x, y)] dt (5.2)
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so, for example, if the point x′, y′ is moving more slowly along the x axis than the refernce
point, dx is negative.

We can say that the change in x and y relative to the centre, at the midpoint of each
face is, for small dt

dx(x + δx/2, y) = [u(x + δx/2, y) − u(x, y)] dt (5.3)

dy(x + δx/2, y) = [v(x + δx/2, y) − v(x, y)] dt (5.4)

dx(x − δx/2, y) = [u(x − δx/2, y)− u(x, y)] dt (5.5)

dy(x − δx/2, y) = [v(x − δx/2, y) − v(x, y)] dt (5.6)

dx(x, y + δy/2) = [u(x, y + δy/2)− u(x, y)] dt (5.7)

dy(x, y + δy/2) = [v(x, y + δy/2) − v(x, y)] dt (5.8)

dx(x, y − δy/2) = [u(x, y − δy/2) − u(x, y)] dt (5.9)

dy(x, y − δy/2) = [v(x, y − δy/2)− v(x, y)] dt (5.10)
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Figure 5.2: Schematic diagram of enlargement of the ‘infinitesimal’ volume δV located at
x due to flow divergence.

Fig. 5.2 depicts pure divergence of the flow - stretching along the x axis and along the
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y axis. The area changes from α = δxδy to

α (t + dt) = (δx + dx(x + δx/2, y) − dx(x − δx/2, y))

× (δy + dy(x, y + δy/2) − dy(x, y − δy/2))

= (δx + u(x + δx/2, y)dt − u(x − δx/2, y)dt)

× (δy + v(x, y + δy/2)dt− v(x, y − δy/2)dt)

=δxδy + δy (u(x + δx/2, y) − u(x − δx/2, y)) dt

+ δx (v(x, y + δy/2) − v(x, y − δy/2)) dt

+ (u(x + δx/2, y) − u(x − δx/2, y))) (5.11)

× (v(x, y + δy/2) − v(x, y − δy/2)) dt2

If we subtract α = δxδy from both sides and divide by δxδydt we obtain

α (t + dt) − α (t)

αdt
=

(u(x + δx/2, y)− u(x − δx/2, y))

δx
+

(v(x, y + δy/2)− v(x, y − δy/2))

δy
+

(u(x + δx/2, y)− u(x − δx/2, y)) (v(x, y + δy/2) − v(x, y − δy/2))

δxδy
dt

(5.12)

Taking the limit δx → 0, δy → 0 and dt → 0, we obtain:

1

α

Dα

Dt
=

∂u

∂x
+

∂v

∂y
= ∇ · u (5.13)

Fig. 5.3 depicts pure rotation of our volume element about the z axis. Recall that the
length of a arc of a circle radius r corresponding to angle θ in radians is rθ. For small
distances such as dx we can show that the angle subtended at x in Fig. 5.3 is such that
δx
2
δθ = dx.
Thus for a small anti-clockwise rotation δθ we can write:

δθ(x + δx/2, y) =dy(x + δx/2, y)/(δx/2) (5.14)

δθ(x − δx/2, y) = − dy(x − δx/2, y)/(δx/2) (5.15)

δθ(x, y + δy/2) = − dx(x, y + δy/2)/(δy/2) (5.16)

δθ(x, y − δy/2) =dx(x, y − δy/2)/(δy/2) (5.17)

Note the signs: at x− δx/2, y, y will be less that that at x, y, so dy < 0 if v(x− δx/2, y) <
v(x, y), so we need the negative of dy for positive δθ. Likewise at x, y + δy/2, xwill be less
that that at x, y, so dx < 0 if u(x, y + δy/2) < u(x, y), so we need the negative of dx for
positive δθ.

In pure rotation, these will be equal, but in general the fluid may be translating and
deforming at the same time. We can define the rotation of the element by taking the
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Figure 5.3: Schematic diagram of rotation about the z direction on the ‘infinitesimal’
volume δV located at x.

average of these:

δθ(x, y) =
1

4
[dy(x + δx/2, y)/(δx/2) − dy(x − δx/2, y)/(δx/2)

−dx(x, y + δy/2)/(δy/2) + dx(x, y − δy/2)/(δy/2)]

=
1

4

[

v(x + δx/2, y) − v(x − δx/2, y)

(δx/2)
−

u(x, y + δy/2)− u(x, y − δy/2)

(δy/2)

]

dt

=
1

2

[

v(x + δx/2, y) − v(x − δx/2, y)

δx
−

u(x, y + δy/2)− u(x, y − δy/2)

δy

]

dt

Dividing through by dt and taking the limit δx → 0, δy → 0 and dt → 0, we obtain:

Dθ

Dt
=

1

2

(

∂v

∂x
−

∂u

∂y

)

(5.18)

This is the rate of rotation about the z axis - equivalent expressions for rotation about the
x and y axes just by cyclicaly permuting the axes.

We define the x, y and z component of the vorticity as

ωx =
∂w

∂y
−

∂v

∂z
(5.19)

ωy =
∂u

∂z
−

∂w

∂x
(5.20)

ωz =
∂v

∂x
−

∂u

∂y
(5.21)
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Figure 5.4: Schematic diagram of deformation about the z direction on the ‘infinitesimal’
volume δV located at x.

We can also have deformation without a change of area (in 2D) or rotation. In a pure
stretching deformation, without any rotation, the angle of rotation along one axis must be
equal and opposite to that along the orthogonal axis so that the rotation diagnosed above
is zero. Fig. 5.4 depicts pure deformation of our volume element with stretching along the
y = x line and compression along the y = −x. In a sense, the y axis is rotating in the
opposite direction to the x axis. We can define an average deformation angle by :

δθ(x, y) =
1

4
[dy(x + δx/2, y)/(δx/2) − dy(x − δx/2, y)/(δx/2)

+dx(x, y + δy/2)/(δy/2)− dx(x, y − δy/2)/(δy/2)]

=
1

4

[

v(x + δx/2, y) − v(x − δx/2, y)

(δx/2)
+

u(x, y + δy/2) − u(x, y − δy/2)

(δy/2)

]

dt

=
1

2

[

v(x + δx/2, y) − v(x − δx/2, y)

δx
+

u(x, y + δy/2) − u(x, y − δy/2)

δy

]

dt

This is the rate deformation in the xy plane. We call this the rate of strain tensor, exy = eyx.
Dividing through by dt and taking the limit δx → 0, δy → 0 and dt → 0, we obtain:

exy = eyx =
1

2

(

∂u

∂y
+

∂v

∂x

)

(5.22)

We can define the rate of strain tensor, eij = eji, where i, j ∈ {1, 2, 3} correspond to the
directions x, y, z, by

eij = eji =

(

∂ui

∂xj

+
∂uj

∂xi

)

(5.23)
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= +

Figure 5.5: Schematic diagram of shearing along the y axis, showing how it comprises both
deformation and rotation.

We often think os shear as just deforming the fluid. However, Fig 5.5 illustrates that a
shearing motion in the y direction thus actually contains a component of rotation. This is
effectively offset by shearing motion in the x direction along the δxδy surfaces.

Mathematically, we can write:

∂v

∂x
=

1

2

(

∂u

∂y
+

∂v

∂x

)

+
1

2

(

∂v

∂x
−

∂u

∂y

)

= exy +
1

2
ωz (5.24)

Consider the wind near the surface. A positive shear, ∂u
∂z

, is normal due to surface friction.
This contains both strain of the fluid (exz = ezx) and vorticity, ωy.
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