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Fourier Series and Discrete 
Fourier Series 

Fourier Series are a valuable tool for many applications.  
 
They will help us understand some problems such as waves. 

We shall be discussing two closely related series: 

The Fourier Series – (virtually) any periodic function can be described using 
Fourier Series and many other functions can be made to look periodic. 
 
The Fourier Series is infinite. 

The Discrete Fourier Transform – This has a finite number of terms and 
deals with ‘sampled’ data. Thus, it has characteristics of a ‘numerical’ 
scheme. 



Why Fourier Series 

Fourier Series have very many applications. 

One of the most useful features comes from the fact that Fourier Series are 
made up of terms like: 
 
  
With            . The first derivative of this is given by: 
 
 
 
so differentiation turns into multiplication.  
 
This is extremely useful for solving some types of PDE and for analysing 
solution methods for more general problems. 
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The Fourier Series 

Fourier showed that any periodic function with period T can be written:  
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A note on notation; many authors like to separate sines and cosines, and have 
a constant term:  
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Note the limits! 
Using complex exponential makes life MUCH easier and I’ve never found a 
reason not to, so we shall do so here but note where the sums start – my ‘j=0’ 
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Orthogonality 
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Given two ‘harmonics’, j and k, we can write 

If j = k, we can write: 
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The Fourier Series 
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Solving Differential Equations  
using Fourier Series 
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Solving Differential Equations  
using Fourier Series 

Lj π2

Gives us y x( ) =
ρ j
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The higher frequency harmonics in the load are ‘low-pass filtered’ – frequencies 
in the load             appear in y with amplitude reduced by  1/j2k0

2. 

(This is a general property of the Laplacian operator – it acts as a smoother) 



The Discrete Fourier Transform 

Suppose we have a set of N uniformly spaced data {yl, l=0,1...N-1}.  
The Inverse Discrete Fourier Transform is given by  
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Orthogonality 
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The Discrete Fourier Transform 

If:  

Then:  

and: 
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This is the forward  Discrete Fourier Transform (DFT)  



Fourier Series vs DFT 

Fourier Series Discrete Fourier Transform 

Inverse 
Transform 

Fundamental 
Frequency 

Orthogonality 
Condition 

Forward 
Transform 
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Fourier Series vs DFT 

Let us suppose out time period T is split into N intervals each of width   

The DFT very closely resembles the Fourier Series with integrals replaced by sums. 
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Approximate the integral over the 
time step  
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i.e. the DFT  



Fourier Series vs DFT 

What about the inverse transforms? They look rather different. 
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What does negative frequency mean? 

First, it is easiest to think of the sums above as sums over angular frequencies 
which are a fraction of       , i.e.    π2
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Fourier Series vs DFT 
What does negative frequency mean? 

Compare                   with ( )θiexp ( )θi−exp
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Fourier Series vs DFT 

If N is even we can write 
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e.g. N=6 
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Thus, the DFT is like a truncation of the Fourier Series, including angular 
frequencies up to                        . Note that        is the angular sampling frequency.  
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For example, supposing T = 1 second, and we sample 44100 times (i.e. 44.1 kHz), 
then the maximum frequency we can include is half this, i.e. 22.050 kHz. 

This is essentially Shannon’s Sampling Theorem – the maximum frequency 
represented is half the sampling frequency. 
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Fourier Series vs DFT 
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Aliasing 
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Aliased spectrum 
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It is essential that frequencies 
higher than             are 
removed before the signal is 
sampled. 
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So if y(t) actually contains frequencies                               it produces an apparent 
amplitude at the negative frequency                                                        .  
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The FFT 

The DFT needs a lot of computation as N increases – proportional to N2. 
 
A number of algorithms exist which reduce this to roughly Nlog2N.  
 
We shall not cover the details here but they are called ‘Fast Fourier 
Transforms’ of FFTs for short. Matlab has an FFT function. 

Beware notation! There is an enormous variety. In particular: 
 
1.  Choice of summation limits (Matlab counts from 1 and uses (j-1), for obvious 

reasons). 
2.  Normalization. Where does the 1/N go? 
3.  Sign. 
 
Always read the documentation!!!!! 


