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Fourier Series are a valuable tool for many applications.

They will help us understand some problems such as waves.

We shall be discussing two closely related series:

The Fourier Series — (virtually) any periodic function can be described using
Fourier Series and many other functions can be made to look periodic.

The Fourier Series is infinite.

The Discrete Fourier Transform — This has a finite number of terms and
deals with ‘sampled’ data. Thus, it has characteristics of a ‘numerical’
scheme.



Fourier Series have very many applications.

One of the most useful features comes from the fact that Fourier Series are
made up of terms like:

exp(ikx) or exp(ia)t)
With i =+/~1. The first derivative of this is given by:

%exp(ikx) =ik exp(ikx) or %exp(ia)t) = ia)exp(ia)t)

so differentiation turns into multiplication.

This is extremely useful for solving some types of PDE and for analysing
solution methods for more general problems.



Fourier showed that any periodic function with period 7 can be written:
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A note on notation; many authors like to separate sines and cosines, and have
a constant term:
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Note the limits!

Using complex exponential makes life MUCH easier and I’ ve never found a
reason not to, so we shall do so here but note where the sums start — my ‘=0
is the constant term, since exp(0)=1, and so:

a,=c;+c_
b, =i(cj —c_].)
j>0



Given two ‘harmonics’, j and k, we can write
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If j = k, we can write:

In general
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and:

Then:

Thus:
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Suppose
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Solving Differential Equations

using Fourier Series
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Thus T p(x)
: NS g
Gives us y(x)= J;O jzl% exp (ijk,x)

j=0

The higher frequency harmonics in the load are ‘low-pass filtered’ — frequencies
in the load j2/L appear in y with amplitude reduced by 1//2k,2.

(This is a general property of the Laplacian operator — it acts as a smoother)



Suppose we have a set of N uniformly spaced data {y, /=0,1...N-1}.
The Inverse Discrete Fourier Transform is given by
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Note that this can be written:

N-1
y, = YW
l JZO Jj

Where W = exp(z‘a)o) and the superscript is a power.



Given two ‘harmonics’, j and k, we can write
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This is the forward Discrete Fourier Transform (DFT)



Fourier Series vs DF

Fourier Series Discrete Fourier Transform
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The DFT very closely resembles the Fourier Series with integrals replaced by sums.

Let us suppose out time period T is split into N intervals each of width Az =7/N

The Fourier Series coefficients can be
calculated by
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2f,exp(—ik%”z .e. the DFT



What about the inverse transforms? They look rather different.
o0 N—l

L2 27
- SeesZ) v n= S ey

Substitute 7 =/Ar = l£ =/ = ﬁt
N T

N 2T —N_IY ex "2—ﬂt
f(t)= Ecjexp(y7t) VS yl_z j P(l] T )

j=—oo
What does negative frequency mean?
First, it is easiest to think of the sums above as sums over angular frequencies

which are a fraction of 2z, i.e.
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Fourier Series vs DF

What does negative frequency mean?
Compare exp(i 9) with exp(— i 49)

exp(i 19) = cos(é’)+ i sin(H)

exp(— i 8) = cos(— 0)+ isin(— 0) = cos(6') —i sin(@)
Also:

exp(i (2.72’ — 0)) = cos(27r — 9)+ isin(2:r — 6?) = cos(@)— i sin(H) = exp(— i :9)

Thus, we can say any frequency w, = Jon greater than 7 is equivalent to a
negative frequency . N N .
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If Nis even we can write
N/2
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Fourier Series vs DF

If Nis even we can write
N-1 2” N/2 2777
y =2Y.6Xp(l]—t)5 Y.exp(y—t)
l J= ’ T j=—;2+1 ’ T j:

e.g. N=6

This is essentially Shannon’ s Sampling Theorem — the maximum frequency
represented is half the sampling frequency.

For example, supposing 7= 1 second, and we sample 44100 times (i.e. 44.1 kHz),
then the maximum frequency we can include is half this, i.e. 22.050 kHz.



Fourier Series vs DF
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Suppose y(¢) actually contains frequencies > Nw, /2 ?

V= Aexp(ima)ol) m>N/2
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Y, is non-zero whenever (m—k)w, =27 , i.e. (m —k)ﬁﬂ =2r=k=m-N



Aliasing

So if y(¢) actually contains frequencies maw, = (N/2+j)w0 it produces an apparent
amplitude at the negative frequency —m'w, = (N /2= j)w, = (N = m)w,.

le\ 1
Aliased spectrum ;< )|
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It is essential that frequencies 2 :: |
higher than Nw, /2 are Y= COS(I?’Ef) >
removed before the signal is
sampled.

ISampIed with Az =0.1

ISampIed with Af =1

= COS 32—ﬂt
d 16

Apparent frequency=16-13=3



The DFT needs a lot of computation as N increases — proportional to N-.
A number of algorithms exist which reduce this to roughly Nog,N.

We shall not cover the details here but they are called ‘Fast Fourier
Transforms’ of FFTs for short. Matlab has an FFT function.

Beware notation! There is an enormous variety. In particular:

1. Choice of summation limits (Matlab counts from 1 and uses (j-1), for obvious
reasons).

2. Normalization. Where does the 1/N go?

3. Sign.



