
Numerical Methods

Fourier Series

 Prof. Peter Clark

Fourier Series and Discrete
Fourier Series

Fourier Series are a valuable tool for many applications.

They will help us understand some problems such as waves.

We shall be discussing two closely related series:

The Fourier Series – (virtually) any periodic function can be described using
Fourier Series and many other functions can be made to look periodic.

The Fourier Series is infinite.

The Discrete Fourier Transform – This has a finite number of terms and
deals with ‘sampled’ data. Thus, it has characteristics of a ‘numerical’
scheme.

Why Fourier Series

Fourier Series have very many applications.

One of the most useful features comes from the fact that Fourier Series are
made up of terms like:

With . The first derivative of this is given by:

so differentiation turns into multiplication.

This is extremely useful for solving some types of PDE and for analysing
solution methods for more general problems.

()ikxexp

() ()ikxikikx
dx
d expexp =

()tiωexpor

() ()tiiti
dt
d

ωωω expexp =or

i = −1

The Fourier Series

Fourier showed that any periodic function with period T can be written:

() ()∑
∞

−∞=

=
j

j tijctf 0exp ω
T
π

ω
2

0 =

A note on notation; many authors like to separate sines and cosines, and have
a constant term:

() () ()∑∑
∞

=

∞

=

++=
1

0
1

00 sincos
j

j
j

j tjbtjaatf ωω

Note the limits!
Using complex exponential makes life MUCH easier and I’ve never found a
reason not to, so we shall do so here but note where the sums start – my ‘j=0’
is the constant term, since , and so: () 10exp =

()
0>

−=

+=

−

−

j
ccib
cca

jjj

jjj

Orthogonality

() () ()()

()
()()

()
()

()
()() ()()[]

kj

kjikj
kji

T
T

kji
kji

tkji
kji

dttkjidttiktij
T

TT

≠=

++−−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟
⎠

⎞
⎜
⎝

⎛ −
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−=− ∫∫

if0

2sin12cos1

12exp1

exp1

expexpexp

0

0

0
0

0

0 000 0

ππ
ω

π
ω

ω
ω

ωωω

Given two ‘harmonics’, j and k, we can write

If j = k, we can write:

() () Tdtdttijtij
TT

==− ∫∫ 000 0 1expexp ωω

In general
() () jk

T
Tdttiktij δωω =−∫ 00 0 expexp

δ jk =1; j = k
= 0; j ≠ k

The Fourier Series

If: () ()∑
∞

−∞=

=
j

j tijctf 0exp ω
T
π

ω
2

0 =

Then:

() () jk

T
Tdttiktij δωω =−∫ 00 0 expexpand:

() () () ()

Tc

Tc

dttiktijcdttiktf

k

jk
j

j

j

T

j

T

=

=

−=−

∑

∑ ∫∫
∞

−∞=

∞

−∞=

δ

ωωω 0
0

0
0

0 expexpexp

Thus: () ()dttiktf
T

c
T

k ∫ −=
0

0exp1
ω

Solving Differential Equations
using Fourier Series

If: () ()∑
∞

−∞=

=
j

j xijkx 0expρρ
L

k π2
0 =

Let

with () ()dxxijkx
L

L

j ∫ −=
0

0exp1
ρρ

() ()∑
∞

−∞=

=
j

j xijkcxy 0exp

d 2y
dx2

= ρ(x)Suppose

Then
d 2y
dx2

= cj
d 2

dx2
exp ijk0x()

j=−∞

∞

∑ = − cj j
2k0

2 exp ijk0x()
j=−∞
j≠o

∞

∑ = ρ j exp ijk0x()
j=−∞
j≠o

∞

∑

⇒ cj = −
ρ j

j2k0
2

Solving Differential Equations
using Fourier Series

Lj π2

Gives us y x() =
ρ j

j2k0
2 exp ijk0x()

j=−∞
j≠0

∞

∑

d 2y
dx2

= ρ(x)Thus

The higher frequency harmonics in the load are ‘low-pass filtered’ – frequencies
in the load appear in y with amplitude reduced by 1/j2k0

2.

(This is a general property of the Laplacian operator – it acts as a smoother)

The Discrete Fourier Transform

Suppose we have a set of N uniformly spaced data {yl, l=0,1...N-1}.
The Inverse Discrete Fourier Transform is given by

()∑
−

=

=
1

0
0exp

N

j
jl lijYy ω

N
π

ω
2

0 =

Note that this can be written:

∑
−

=

=
1

0

N

j

lj
jl WYy

Where and the superscript is a power. ()0exp ωiW =

Orthogonality

() () Nlijlij
N

l

N

l
==− ∑∑

−

=

−

=

1

0

1

0
00 1expexp ωω

Given two ‘harmonics’, j and k, we can write

If j = k, we can write:

In general

Now, in general, suppose:
12

1

0

...1 −
−

=

++++==∑ N
N

l

l AAAAE

Multiply by A:
NN

N

l

l AAAAAAE ++++== −
−

=

+∑ 12
1

0

1 ...

Subtract:

A
AEAAEE
N

N

−

−
=⇒−=−
1
11

Thus () ()
()

kj
Nkji

kji
W
WW kj

NkjN

l

lkj ≠=
−−−

−−−
=

−

−
=

−

−−

=

−∑ if0
2)(exp1
2)(exp1

1
1

)(

)(1

0 π
π

() () ()∑∑∑
−

=

−
−

=

−
−

=

==−
1

0

)(
1

0

)(
1

0
00 expexp

N

l

lkj
N

l

lkj
N

l
WWliklij ωω

() () jk

N

l
Nliklij δωω =−∑

−

=

1

0
00 expexp

The Discrete Fourier Transform

If:

Then:

and:

() () ()

NY

NY

liklijYliky

k

N

j
jkj

N

l

N

j
j

N

l
l

=

=

−=−

∑

∑∑∑
−

=

−

=

−

=

−

=

1

0

1

0
0

1

0
0

1

0
0 expexpexp

δ

ωωω

Thus:

()∑
−

=

=
1

0
0exp

N

j
jl lijYy ω N

π
ω

2
0 =

() () jk

N

l
Nliklij δωω =−∑

−

=

1

0
00 expexp

()∑
−

=

−=
1

0
0exp1 N

l
lk liky

N
Y ω

This is the forward Discrete Fourier Transform (DFT)

Fourier Series vs DFT

Fourier Series Discrete Fourier Transform

Inverse
Transform

Fundamental
Frequency

Orthogonality
Condition

Forward
Transform

() ()∑
∞

−∞=

=
j

j tijctf 0exp ω

T
π

ω
2

0 =

() () jk

T
Tdttiktij δωω =−∫ 00 0 expexp

() ()dttiktf
T

c
T

k ∫ −=
0

0exp1
ω

()∑
−

=

=
1

0
0exp

N

j
jl lijYy ω

N
π

ω
2

0 =

() () jk

N

l
Nliklij δωω =−∑

−

=

1

0
00 expexp

()∑
−

=

−=
1

0
0exp1 N

l
lk liky

N
Y ω

Fourier Series vs DFT

Let us suppose out time period T is split into N intervals each of width

The DFT very closely resembles the Fourier Series with integrals replaced by sums.

t

t=0 t=T

NTt =Δ

tΔ

The Fourier Series coefficients can be
calculated by

∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛−≈
1

0

2exp1 N

l
lk l

N
ikf

N
c π

() ()

N
Tl

N
ikf

ttl
T

iktlfdtt
T

iktf

l

tl

tl

⎟
⎠

⎞
⎜
⎝

⎛−=

Δ⎟
⎠

⎞
⎜
⎝

⎛ Δ−Δ≈⎟
⎠

⎞
⎜
⎝

⎛−∫
Δ+

Δ

π

ππ

2exp

2exp2exp
)1(

Approximate the integral over the
time step

Thus:

() ()∑ ∫∫
−

=

Δ+

Δ

⎟
⎠

⎞
⎜
⎝

⎛−=⎟
⎠

⎞
⎜
⎝

⎛−=
1

0

)1(

0

2exp2exp1 N

l

tl

tl

T

k dtt
T

iktfdtt
T

iktf
T

c ππ

i.e. the DFT

Fourier Series vs DFT

What about the inverse transforms? They look rather different.

() ∑
∞

−∞=

⎟
⎠

⎞
⎜
⎝

⎛=
j

j t
T

ijctf π2exp ∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛=
1

0

2exp
N

j
jl l

N
ijYy π

vs

Substitute t
T
Nl

N
Tltlt =⇒=Δ=

∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛=
1

0

2exp
N

j
jl t

T
ijYy π

vs () ∑
∞

−∞=

⎟
⎠

⎞
⎜
⎝

⎛=
j

j t
T

ijctf π2exp

What does negative frequency mean?

First, it is easiest to think of the sums above as sums over angular frequencies
which are a fraction of , i.e. π2

πω 2
N
j

j =

Fourier Series vs DFT
What does negative frequency mean?

Compare with ()θiexp ()θi−exp
() () ()θθθ sincosexp ii +=

() () () () ()θθθθθ sincossincosexp iii −=−+−=− θ−

Also:

()() () () () () ()θθθθπθπθπ iiii −=−=−+−=− expsincos2sin2cos2exp

Thus, we can say any frequency greater than is equivalent to a
negative frequency

πω 2
N
j

j = π

ππππω 2'222'
N
j

N
jN

N
j

j −=
−

−=⎟
⎠

⎞
⎜
⎝

⎛ −−=

If N is even we can write

∑∑
+−=

−

=

⎟
⎠

⎞
⎜
⎝

⎛≡⎟
⎠

⎞
⎜
⎝

⎛=
2/

12/

1

0

2exp2exp
N

Nj
j

N

j
jl t

T
ijYt

T
ijYy ππ

Fourier Series vs DFT

If N is even we can write

∑∑
+−=

−

=

⎟
⎠

⎞
⎜
⎝

⎛≡⎟
⎠

⎞
⎜
⎝

⎛=
2/

12/

1

0

2exp2exp
N

Nj
j

N

j
jl t

T
ijYt

T
ijYy ππ

e.g. N=6

j=0

j=1 j=2

j=3

j=4 j=5
j=-2 j=-1

Thus, the DFT is like a truncation of the Fourier Series, including angular
frequencies up to . Note that is the angular sampling frequency.

tT
N

Δ
=

ππ 2
2
12

2

For example, supposing T = 1 second, and we sample 44100 times (i.e. 44.1 kHz),
then the maximum frequency we can include is half this, i.e. 22.050 kHz.

This is essentially Shannon’s Sampling Theorem – the maximum frequency
represented is half the sampling frequency.

tΔ
π2

Fourier Series vs DFT

t

t=0 t=T
tΔ

)(ty

0ωj

jY

Spectrum

2/Nj =

Suppose y(t) actually contains frequencies ? 2/0ωN>

() () () ()()∑∑∑
−

=

−

=

−

=

−=−=−=
1

0
0

1

0
00

1

0
0 exp1expexp1exp1 N

l

N

l

N

l
lk lkmiA

N
liklimA

N
liky

N
Y ωωωω

() 2/exp 0 NmlimAyl >= ω

Yk is non-zero whenever , i.e. () πω 20 =− km () Nmk
N

km −=⇒=− π
π 22

Aliasing

0ωj

jY

Spectrum
2/Nj =

Aliased spectrum

Sampled with 1.0=Δt

⎟
⎠

⎞
⎜
⎝

⎛= ty
16
213cos π

Sampled with 1=Δt

⎟
⎠

⎞
⎜
⎝

⎛= ty
16
23cos π

Apparent frequency=16-13=3

It is essential that frequencies
higher than are
removed before the signal is
sampled.

2/0ωN

So if y(t) actually contains frequencies it produces an apparent
amplitude at the negative frequency .

() 00 2/ ωω jNm +=
() () 000 2/' ωωω mNjNm −−=−−=−

The FFT

The DFT needs a lot of computation as N increases – proportional to N2.

A number of algorithms exist which reduce this to roughly Nlog2N.

We shall not cover the details here but they are called ‘Fast Fourier
Transforms’ of FFTs for short. Matlab has an FFT function.

Beware notation! There is an enormous variety. In particular:

1.  Choice of summation limits (Matlab counts from 1 and uses (j-1), for obvious

reasons).
2.  Normalization. Where does the 1/N go?
3.  Sign.

Always read the documentation!!!!!

