
Chapter 1

Differentiation

1.1 Fundamental definition of the derivative

Suppose you are recording the distance you have travelled on a journey; each distance s
is recorded with the time t at which the distance was reached. So s is a function of time,
s (t). We estimate our speed, v, as follows:

t

s(t)

Figure 1.1: Calculating the rate of change.

v =
s2 − s1

t2 − t1
=

∆s

∆t
=
s (t1 + ∆t)− s (t1)

∆t
(1.1)

Note the three different, but equivalent, expressions. They represent an estimate of the
mean speed over the time range t1 to t2.
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We can make a better estimate of the speed at t1 by moving t2 closer to t1 (Fig. 1.2).

t

s(t)

Figure 1.2: Calculating the rate of change more accurately.

As t2 gets closer and closer to t1, we can say that the estimated speed is a better and
better estimate of the speed exactly at t1. Eventually, the two points are so close together
that the line through them does not cut the curve, but becomes tangential to it at t1 (Fig.
1.3).

Thus, the speed at t1 is the slope of the tangent at t1, which we can calculate by taking
the slope of two points separated by ∆t in the limit that ∆t tends to zero.

We define the gradient at t1 by:

v (t1) =
ds

dt
= lim

δt→0

s (t1 + δt)− s (t1)

δt
(1.2)

This is known as the ‘first deriviative’ or just the ‘derivative’ of s. The choice of letters in
this definition is irrelevant, and you may be more familiar with:

dy

dx
= lim

δx→0

y (x+ δx)− y (x)

δx
(1.3)

Note the slight change of notation: we have used a small increment of δt – conventionally,
we use δ to signify our intention to take the limit to zero, while ∆ signifies a finite increment.
However, this is not a hard and fast rule, and, moreover, some texts use d rather than δ.
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Not all functions are differentiable, and some are not differentiable everywhere. For
example, the function

y =− 1 ; x <= 0

+ 1 ; x > 0 (1.4)

cannot be differentiated at x = 0 - the limit becomes 2/δx. We often say that the derivative
is infinite, which can be useful. Other functions are even less well-behaved - e.g. y = x−1.

We often need to make it clear that a derivative is evaluated at a particular value of
the independent variable, say x = x1. In this case we write, for example

dy

dx

∣∣∣∣
x=x1

(1.5)

or, more succinctly
dy

dx

∣∣∣∣
x1

(1.6)

1.1.1 Approximation of functions

From the definition of the first derivative, a simple rearrangement gives us:

y (x+ δx) = y (x) +
dy

dx
δx+O

(
δx2
)

(1.7)

s(t)

Figure 1.3: Calculating the rate of change at point 1.
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1.2 Calculation of the derivative of analytic functions

Of course, if we just have a graph on paper, we can only estimate this approximately, but
if we have a formula (or ‘analytic function’, we can often derive a formula for the first
derivative. For example, suppose s = kt2 where k is a constant. Then

s (t+ δt) =k (t+ δt)2

=k
(
t2 + 2tδt+ δt2

)
(1.8)

so, in the above definition

ds

dt
= lim

δt→0

s (t+ δt)− s (t)

δt

= lim
δt→0

[
k (t2 + 2tδt+ δt2)− kt2

δt

]
= lim

δt→0

[
2ktδt+ kδt2

δt

]
= lim

δt→0
[2kt+ kδt]

=2kt (1.9)

We thus conclude (setting k = 1) that the first derivative of s = t2 with respect to t is
ds
dt

= 2t.

Similarly, suppose y = mx+ c (a straight line), then

dy

dx
= lim

δx→0

y (x+ δx)− y (x)

δx

= lim
δx→0

[
m (x+ δx) + c− (mx+ c)

δx

]
= lim

δx→0

[
mδx

δx

]
= lim

δx→0
m

=m (1.10)

which is just the gradient of the straight line. Thus (setting m = 1) , the first derivative of
y = x with respect to x is just 1 and the first derivative of a constant is zero, as expected.
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Finally, suppose y = x−1, then

dy

dx
= lim

δx→0

y (x+ δx)− y (x)

δx

= lim
δx→0

[
(x+ δx)−1 − x−1

δx

]

= lim
δx→0

[ x−(x+δx)
(x+δx)x

δx

]

= lim
δx→0

[ −δx
(x2+xδx)

δx

]

= lim
δx→0

[
−1

(x2 + xδx)

]
=
−1

x2
= −x−2 (1.11)

Note that, while the process of taking the limit δx→ 0 may seem difficult, in practice
it is very straightforward.

1.2.1 Derivatives of trigonometric functions

To derive the derivatives of trigonometric functions we need to use some trigonometric
identities:

sin (A+B) = sinA cosB + cosA sinB (1.12)

cos (A+B) = cosA cosB − sinA sinB (1.13)

plus the facts that limx→0 sinx = x and limx→0 cosx = 1

Using these, if y (x) = sin x, then

dy

dx
= lim

δx→0

y (x+ δx)− y (x)

δx

= lim
δx→0

[
sin (x+ δx)− sinx

δx

]
= lim

δx→0

[
sinx cos δx+ cosx sin δx− sinx

δx

]
= lim

δx→0

[
cosxδx

δx

]
= cosx (1.14)
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and if y (x) = cos x, then

dy

dx
= lim

δx→0

y (x+ δx)− y (x)

δx

= lim
δx→0

[
cos (x+ δx)− cosx

δx

]
= lim

δx→0

[
cosx cos δx− sinx sin δx− cosx

δx

]
= lim

δx→0

[
− sinxδx

δx

]
=− sinx (1.15)

1.2.2 Notation

We have derived the derivative, e.g. dy
dx

, given y as a function of x. However, we often cut
corners by not identifying the function explicity, for example by writing:

dx2

dx
= 2x (1.16)

or
d

dx

(
x2 + 4x+ 3

)
= 2x+ 4 (1.17)

1.3 Repeated differentiation

The first derivative is a function itself. So we can write the second derivative as

d

dx

(
dy

dx

)
(1.18)

and so on. This notation is somewhat cumbersome, and a more compact notation is used:

d2y

dx2
≡ d

dx

(
dy

dx

)
(1.19)

Note the position of the superscripts - think of this as the operator d
dx

applied twice. In

general, we write dny
dxn

as the nth derivative.

1.3.1 More notation

Sometimes even dny
dxn

is long-winded, and the first derivative is just written y′, the second
y′′ etc.. Alternatively y(1), y(2),....y(n). When using these notations, it should be made very
clear what is intended.

A special example, because it appears so frequently, is the derivative with respect to
time, which is often writen ẏ. Likewise the second derivative wrt time is written ÿ.
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1.4 Some essential rules

1.4.1 The product rule

Suppose we have the product of two functions, y (x) = u (x) v (x), then, using eq. (1.7)

y (x+ δx) =u (x+ δx) v (x+ δx)

=

[
u (x) +

du

dx
δx+O

(
δx2
)] [

v (x) +
dv

dx
δx+O

(
δx2
)]

=u (x) v (x) + u (x)
dv

dx
δx+ v (x)

dv

dx
δx+O

(
δx2
)

(1.20)

Hence

lim
δx→0

y (x+ δx)− y (x)

δx

= lim
δx→0

[
u (x) v (x) + u (x) dv

dx
δx+ v (x) du

dx
δx+O (δx2)− u (x) v (x)

]
δx

= lim
δx→0

[
u (x) dv

dx
δx+ v (x) du

dx
δx+O (δx2)

]
δx

= lim
δx→0

[
u (x)

dv

dx
+ v (x)

du

dx
+O (δx)

]
=u (x)

dv

dx
+ v (x)

du

dx
(1.21)

Hence the product rule:

duv

dx
= u

dv

dx
+ v

du

dx
(1.22)

An example is y = x3. This can be written as u = x2, v = x, so

dx3

dx
=x2 dx

dx
+ x

dx2

dx
=x2 + x× 2x

=3x2 (1.23)

This suggests a general rule that if y = xn

dy

dx
= nxn−1 (1.24)

Let us assume this is true and examine the derivative of xn+1. This can be written as
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u = xn, u = x, so

dxn+1

dx
=xn

dx

dx
+ x

dxn

dx

=xn + x
dxn

dx
=xn + x× nxn−1

= (n+ 1)xn (1.25)

where we have used our proposed formula in the last but one line. Note that our postulated
formula is true for n = 2 (and n = 1, n = 0 (since x0 = 1) and n = −1) so it is generally
true.

1.4.2 The chain rule

Going back to our original example, suppose we have information about temperature, T ,
as a function of distance along the path, T (s). We are interested in the rate of change of
temperature with time. This is illustrated in Fig. 1.4. The first thing to do is chose our

t

s(t)

s

T(s)

Figure 1.4: The Chain Rule: the derivative of a function of a function.

two times, t1 and t2. From this we can read off corresponding distances, s1 and s2. The
rate of change of distance with time is as above,

∆s

∆t
=
s2 − s1

t2 − t1
=
s (t1 + ∆t)− s (t1)

∆t
(1.26)

We can then use s1 and s2 to read off corresponding temperatures, T1 and T2. The rate of
change of T with s is just

∆T

∆s
=
T2 − T2

s2 − s1

=
T (s1 + ∆s)− T (s1)

∆s
(1.27)
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We want the rate of change of T with t. This is just

∆T

∆t
=
T2 − T2

t2 − t1
(1.28)

However, we cannot write this in the form T (t1+∆t)−T (t1)
∆t

, because T is not a function of t.
We can, however, write

∆T

∆t
=
T2 − T2

s2 − s1

s2 − s1

t2 − t1
=
T (s1 + ∆s)− T (s1)

∆s

∆s

∆t
(1.29)

We can now take the limit as before:

dT

dt
= lim

δt→0

T (s1 + ∆s)− T (s1)

∆s

∆s

∆t
=

dT

ds

ds

dt
(1.30)

Clearly, as ∆t→ 0, so does ∆s.

This leads to the Chain Rule:

d

dx
f (g (x)) =

df

dg

dg

dx
(1.31)

so, in our example:

d

dt
T (s (t)) =

dT

ds

ds

dt
(1.32)

1.4.3 Examples of the chain rule

d

dx
sin2 x = 2 sin x cosx (1.33)

f = g2, g = sinx.

d

dx
secx =

d

dx
(cosx)−1 = − [cosx]−2 (− sinx) = secx tanx (1.34)

f = g−1, g = cosx. Chain rule and product rule:

d

dx
tanx =

d

dx
sinx (cosx)−1

= cosx (cosx)−1 + sinx
[
sinx (cosx)−2]

=1 + tan2 x

= sec2 x (1.35)
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1.4.4 More notation

A notation which is highly frowned on by mathematicians is, nevertheless, often used. It
is useful shorthand if used carefully ! Effectively we multiply by the infinitesimal increment
in our dependent variable. Thus, for example, if

dy

dx
= 2x (1.36)

then we write
dy = 2xdx (1.37)

This is very poor notation as it really has no meaning; in practice we are effectively stating
the chain rule by saying that to obtain a derivative with respect to any variable, say ξ, we
just divide both sides by dξ thus:

dy

dξ
= 2x

dx

dξ
(1.38)

or, combined with the notation discussed above

dx2

dξ
= 2x

dx

dξ
(1.39)

This is also useful when we come to integration.
We use this notation a lot in thermodynamics. For example, if q is the heat absorbed

by unit mass of a fluid, we write:

dq = CvdT + pdα (1.40)

where Cv is the specific heat capacity at constant volume, T is the temperature, p the
pressure and α the specific volume. See the total derivative, Sec. 1.6 below, for further
discussion.

1.5 Partial derivatives

We often deal with functions of more than one variable. In meteorology, for example,
the temperature, T may be a function of three spatial dimensions, and also time, i.e.
T = T (x, y, z, t). The partial derivative is simply the derivative with respect to one
variable. However, to distinguish this from the total derivative, below, it has a special
notation using a lower case d in a special font, ∂ (\partial in LATEX). Thus:

∂T

∂x
= lim

δx→0

T (x+ δx, y, z, t)− T (x, y, z, t)

δx
(1.41)

∂T

∂y
= lim

δy→0

T (x, y + δy, z, t)− T (x, y, z, t)

δy
(1.42)
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etc..
The important point is that all the other variables are held at a fixed value. The rules

above are equally valid so long as care is taken to all the other variables fixed (i.e. treat
them as constants). For example, suppose T = sinx cos y, then

∂T

∂x
= cosx cos y (1.43)

∂T

∂y
= − sinx sin y (1.44)

It is often helpful to remind ourselves what variables are being held constant. This is
particularly true in meteorology, where we often use the same variable to denote a field
representign a physical quantity (e.g. T ) irrespective of what coordinate system we are
using. Thus, we might write T (t, x, y, z) and T (t, λ, φ, p), the former being in terms of 3D
Cartesian coordinates, the latter in terms of longitude, latitude and hydrostatic pressure.
Both represent the same field, though they may be very different functions expressed in
the two coordinate systems. In this case, it is often useful to write partial derivatives as
follows:

∂T

∂x

∣∣∣∣
t,y,z

(1.45)

to make it clear that the derivative is on surfaces of constant y and z and at constant t.

1.6 The total derivative

Suppose we have some function of many variables. Suppose, for example, we have terrain
height h as a function of horizontal position x and y. We may have some path defined, say
in terms of positions x and y as a function of t (say time). Then the Total Derivative is
defined as

dh

dt
= lim

δt→0

h (x (t+ δt) , y (t+ δt))− h (x (t) , y (t))

δt
(1.46)

The numerator of the ratio we are taking the limit of can be expanded using partial
derivatives:

h (x (t+ δt) , y (t+ δt))− h (x (t) , y (t)) =h (x (t) , y (t+ δt)) +
∂h

∂x
δx+O

(
δx2
)
− h (x (t) , y (t))

=h (x (t) , y (t+ δt)) +
∂h

∂x
δx+O

(
δx2
)
− h (x (t) , y (t))

=h (x (t) , y (t)) +
∂h

∂x
δx+O

(
δx2
)

+
∂h

∂y
δy +O

(
δy2
)
− h (x (t) , y (t))

=
∂h

∂x
δx+O

(
δx2
)

+
∂h

∂y
δy +O

(
δy2
)

(1.47)
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where δx = x (t+ δt)− x (t) and δy = y (t+ δt)− y (t).
Thus

dh

dt
= lim

δt→0

∂h
∂x
δx+O (δx2) + ∂h

∂y
δy +O (δy2)

δt
=
∂h

∂x

dx

dt
+
∂h

∂y

dy

dt
(1.48)

H

L

Figure 1.5: Contours of height, h, equally spaced in h (black). The rate of change of h
following a path (red) depends upon the component of the slope, the direction of which is
shown by green arrows, along the path. Initially the slope has no uphill component, so the
rate of change of height along the path is zero. Towards the end, the path is aligned with
the slope so the rate of change of height along the path is large.

1.6.1 The gradient operator

The above suggests that, in Cartesian coordinates, we can separate the total derivative into

two parts. One is a vector which is a function of the field h only,
(
∂h
∂x
, ∂h
∂y

)
. The second is

a function of the path,
(

dx
dt
, dy

dt

)
, which is just the vector velocity, v, along the path.

The first of these is so important, we define the operator grad. In Cartesian coordinates,
gradh is the vector

gradh =

(
∂h

∂x
,
∂h

∂y

)
≡ ∇h (1.49)

where we have defined the operator ∇ ≡
(
∂
∂x
, ∂
∂y

)
(in two dimensions - equivalents may be

defined in more dimensions).
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Note that grad means the vector gradient in any coordinate system. It only equals
the ∇ operator in Cartesian coordinates, and my look very different in another coordinate
system.

With these definitions, using the vector dot product:

dh

dt
= gradh · v = v · gradh = ∇h · v = v · ∇h (1.50)

Furthermore, if we recognise that the velocity is just the rate of change of distance,
with a vector increment dl = (dx, dy), then an infinitesimal change in height along the
path is given by

dh = gradh · dl = ∇h · dl (1.51)

This is illustrated in Fig. 1.5.

1.7 The Lagrangian or Material derivative

In fluid mechanics, the laws of physics are most easily expressed and understood in terms of
the properties of specific (infinitesimally small) elements or parcels of fluid. If such a parcel
has a property, such as temperature, T , we can define a derivative of that temperature with
respect to, say, time T. To make it clear that this derivative is following a fluid parcel, we
give it a special notation, but the definition is precisely as usual:

DT

Dt
= lim

δt→0

Tparcel (t+ δt)− Tparcel (t)
δt

(1.52)

If we label each parcel somehow (e.g. with it’s position at some reference time, t0, i.e.
x0), then knowing the position of each parcel, xparcel (t,x0) tells us the entire fluid flow.
This is known as a Lagrangian formulation of fluid mechanics, and the derivative above is
known as the Lagrangian or material derivative. Using this makes writing down Newton’s
second law very simple:

Du

Dt
=

1

ρ
F (1.53)

where ρ is the density of and F is the nett force on the parcel and

u ≡ D

Dt
xparcel (1.54)

However, in practice, this approach his some difficulties - for example deriving the pres-
sure field. Instead, we use fields of, say, temperature or velocity as functions of spatial
coordinates, i.e. T (t, x, y, z) or T (t,x), u (t, x, y, z) or u (t,x). We call this an Eulerian
representation.

The material derivative is really just the total derivative defined above in the special
case that the path followed is that of the fluid parcels. It can be calculated in terms of
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partial derivatives of the Eulerian fields following the same reasoning, bearing in mind that
the path is a function of t and the fields may also be varying as a function of t. Thus

DT

Dt
=
∂T

∂t
+
∂T

∂x

Dx

Dt
+
∂T

∂y

Dy

Dt
+
∂T

∂x

Dz

Dt
(1.55)

We note that Dx
Dt

is just the x component of the fluid velocity, u, and similarly for the other
components, so the above can be written:

DT

Dt
=
∂T

∂t
+ u · ∇T (1.56)

Note that the two ‘T ’ variables are strictly not the same functions. On the left T is
a function of parcel label and time. On the right, T is a function of fixed space location
and time. We use the same letter to signify that, as physical quantities, the two must be
equal where the parcel position coincides with a given point in space, i.e. Tparcel (t,x0) =
T (t,xparcel (t,x0))
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