Chapter 4

Difference and average operators

4.1 Derivation

Recall the Taylor series expansion about a point a:
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Suppose we have a regular grid, x; = tAx. It is useful to think of a set of points exactly
half way between the grid points, i.e. Tipl = (z + %) Az. We can Taylor expand about a

midpoint to arrive at function values at adjacent grid points. At x4, T41 — 7, 1= Azx/2
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If we subtract eq. (4.3) from eq. (4.2), we obtain
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Rearranging, we obtain the centred difference estimate of the gradient:
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Likewise, if we add eq. (4.3) to eq. (4.2), we obtain the centred average estimate of y:
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Thus, eq. (4.5) provides a second order accurate estimate of the gradient at x, 11 In

other words, the error is O (Az?), so if we half Az we quarter the error. At no other point
can we construct an estimate with this order of accuracy using just two points - at any
other point we obtain first order accuracy, and to gain higher order accuracy we need to
employ more points.

Likewise, eq. (4.7) provides a second order accurate estimate of the value of y at x, L1
At no other point can we construct an estimate with this order of accuracy using just two
points - at any other point we obtain first order accuracy, and to gain higher order accuracy
we need to employ more points.

We therefore define the following two operators:

()H—l _()7,

6 )y = 5 (48
— ()i + 0
( )7,—}-% - 2 + (4 9)
So
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Wirt = = A, (4.10)
Uis = Yi +21/z‘+1 (4.11)

4.2 Some applications

With these operators, we can construct more complex finite difference operators which
retain the second order accuracy of the operators.
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Suppose, for example, we actually want the gradient at x;. We can obtain a second

order accurate formula by averaging the gradients at T 1 and x; 1 viz:
dy| =
dul, (0y);
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This is just the centred difference estimate of the gradient on a grid with spacing 2Az.
We can construct higher order derivatives. The second derivative at z; is particularly
easy, because we need a the derivatives at half points:
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(i+n)®=(i+n)(i+n)(i+n) = (*+2in+n?)(i+n) = > +2ni* + n*i + *n+2in* +n? =
©® 4 3ni* 4+ 3n*i +n’
Example - y = 23, % =6. (i+2)°%=30+1)3+3(:)>—(1—1)* = > +6i*+12i+8—-3(:*+
3i2+3i+1)+3i3— (¥ —3i*+3i—1) = (1-3+3—-1)i3+(6—9+3)i>+(12—9—3)i+(8—3+1) = 6
Note the emergence of Pascal’s triangle in the difference formulae for derivatives, plus
the alternating signs which ensure the gradients are zero for a uniform field (all ys equal).
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We can extend the averaging operator to derive uncentred difference formulae. Suppose
we want a second order accurate estimate of the first derivative at ¢ using points ¢, 7 + 1,
1+ 2. We can construct a linear fit to values at 7 + % and 7 + %,

Oz = [(z - xz‘%)()i% + (fmg - x)()w%]/@wg - Iz‘+%) (4.15)
Thus
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4.3 Higher Order Estmates

We can introduce more points to the ‘stencil’.
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Consider an arbitrary combination of egs. (4.18), (4.3), (4.2) and (4.17) with multipliers

a, b, c and d respectively:

ayi—1 + by + cyip1 + dyi2 = (a + b+ c+d) Yirl
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+ 0 (Aw5) + ...

We can derive a fourth order accurate estimate of the first derivative by requiring:
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By symmetry, a = —d and b = —c. Thus

Ax

MIOXNORROLE

M SEROERORS
M ORNORRORE

Azt

2

(4.19)

(4.20)

(4.21)
(4.22)

(4.23)

(4.24)

(4.25)
(4.26)

(4.27)

(4.28)

(4.29)



Difference and average operators(c) 2017 University of Reading Prof. Peter Clark

Thusc =1 — 3d and ¢ = —27d, so d = —1/24, ¢ = 27/24. Hence

dy
dx

_ Y1 — 27y; + 2Tyi1 + Yiso
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+ O (Az?) (4.30)
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We can even use the d operator arrive at the same result, when combined with Taylor’s
theorem. From eq. (4.4) we can write (4.5) more completely:
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We can then apply eq. (4.14) to estimate the third derivative:
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