
Chapter 3

Complex Numbers

3.1 The origin of complex numbers

We are all familiar with the idea that some quadratic equations have no (real) solution.
The general solution to ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
(3.1)

this is arrived at by the process of ‘completing the square’, i.e. noting that
(√

ax+ b
2
√
a

)2
=

ax2 + bx + b2

4a
so if we add and subtract b2

4a
to the original equation, it can be written(√

ax+ b
2
√
a

)2
+ c − b2

4a
= 0. Thus

(√
ax+ b

2
√
a

)
= ±

√
b2

4a
− c etc.. Hence, if b2 < 4ac

there is no real solution. Introducing i =
√
−1 then makes the general solution always

valid by providing a solution even when no ‘real’ solution exists.
However, this is not the origin of complex numbers - mathematicians had known for

centuries that some quadratic equations had no solution, and did not see that a a problem
- they know why (the parabola represented by the equation does not intersect the x axis),
so merely saw the ‘discriminant’ as a useful rule to tell us there is no solution.

The problem arises because a similar formula exists for cubic equations. Mathemati-
cians in the 16th century knew that this method required taking (cube) roots of negative
numbers even when real solutions were known to exist. It was shown that, in such cases,
if one merely keeps track of were one needs the root of -1, these terms eventually cancel if
the method is applied to such problems. This lead to the idea of defining imaginary and
complex numbers.

3.2 The algebra of complex numbers

A complex number is generally written z = x+iy where x and y are both real numbers and
i2 = −1. x is the ‘real part’ and iy, or just y, taking the factor i as read, the ‘imaginary
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part’. Note that electrical engineers usually use j instead of i, as i is used for electric
current.

In any mathematical operation, we can always separate the result into the imaginary
and real parts by finding the terms including i (after simplifying products like i × i) and
those not including i.

Addition (and hence subtraction) is simple: if z1 = a+ ib, z2 = c+ id then

z1 + z2 = a+ ib+ c+ id = (a+ c) + i (b+ d) (3.2)

Multiplication just requires carefully keeping track of terms and re-organising the result:

z1 × z2 = (a+ ib)× (c+ id)

=ac+ aid+ ibc+ ibid

= (ac− bd) + i (ad+ bc) (3.3)

Note that if a = d and c = −b we obtain z1z2 = a2 + b2. This is so important, we
give the complex number with the opposite sign imaginary part the special name complex
conjugate and denote the complex conjugate of z as z∗. This, if z = x + iy, z∗ = x − iy
and zz∗ = x2 + y2. The latter is defined as the magnitude of z.

Division is less obvious - it is best always to think in terms of multiplication. Consider
z2
z1

z2
z1

=
(c+ id)

(a+ ib)
(3.4)

=
(c+ id) (a− ib)
(a+ ib) (a− ib)

(3.5)

=
(ac+ bd) + i (ad− bc)

a2 + b2
(3.6)

3.2.1 Relationship with complex numbers and the Argand dia-
gram

We showed in the previous chapter that

exp (ix) = cos x+ i sinx (3.7)

If we plot a point in a 2D Cartesian coordinate system at (x, y) then we note (Fig. 3.1)
that the vector joining the origin to that point makes an angle θ with the x axis and has
length r, with:

x = r cos θ (3.8)

y = r sin θ (3.9)

so
r =

√
(x2 + y2) (3.10)

2



Complex Numbers © 2017 University of Reading Prof. Peter Clark

θ = arctan
y

x
(3.11)

Suppose we identify the point (x, y) with the complex number z = x + iy, then from eq.
(3.7), we can also write

z = r exp (iθ) ≡ reiθ. (3.12)

This is an extremely useful identity, as the next chapter will show. Note that the whole
complex plane is spanned by r ∈ [0,∞) and θ ∈ [0, 2π) or θ ∈ [−π, π). Using the expo-

x

y

�

r

(x,y)

Figure 3.1: The Argand diagram.

nential notation, multiplication and division of complex numbers becomes much simpler.
If z1 = r1e

iθ1 and z2 = r2e
iθ2 then

z1 × z2 = r1e
iθ1
2 eiθ2 = r1r2e

i(θ1+θ2) (3.13)

z2
z1

=
r2e

iθ2

r1eiθ1
=
r2
r1
ei(θ2−θ1) (3.14)

Note that z∗ = re−iθ in general, so zz∗ = reiθre−iθ = r2 as expected.
If we use complex numbers with r = 1, i.e. on the unit circle, then comparing eq. (3.13)

with eq. (3.3) we recover two trigonometric identities for very little work:

cos (θ1 + θ2) + i sin (θ1 + θ2) = (cos θ1 cos θ2 − sin θ1 sin θ2) + i (cos θ1 sin θ2 + sin θ1 cos θ2)
(3.15)
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This illustrates that we can make our lives much easier by freely converting between the
re−iθ and the r cos θ + ir sin θ notation - the former is valuable for multiplication and
division (and, as we shall see, powers and roots), the latter for addition and subtraction.

3.2.2 Powers and roots of complex numbers

Powers are simply expressed using z = re−iθ. Clearly

zα = rαe−iθα (3.16)

Roots are similarly simple. Suppose zn = ceiβ is the nth root of z = reiθ. Then

znn = cneinβ ≡ reiθ (3.17)

Thus c = r
1
n and β = θ/n. However, we can also write z = rei(2mπ+θ) for any integer m, so

we have a set of roots c = r
1
n and β = (2mπ + θ) /n. These roots are unique for all values

of m from 0 to n− 1.
This leads to a number of useful results:
The nth roots of -1 are ei(2m+1)π/n since −1 = ei(2m+1)π. -1 has 2 square roots, i = eiπ/2

and −i = ei3π/2.
The nth roots of i are ei(2m+1/2)π/n since i = ei(2m+1/2)π. i has 2 square roots, eiπ/4 =

1/
√

2 + i/
√

2 and ei5π/4 = −1/
√

2− i/
√

2.
The nth roots of 1 are ei2mπ/n since 1 = ei2mπ. 1 has 2 square roots, ei0 = 1 and

eiπ = −1. 1 has 3 cube roots, 1, ei2π/3 = −1/2 + i
√

3/2 and ei4π/3 = −1/2− i
√

3/2.
Note that when you look at Discrete Fourier Series, the series will be a sum over the n

roots of 1.
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