The compute_cloud_properties module¶
Introduction¶
Thus far code to generate statistical data from trajectories is at a very early stage.
Much work is done by compute_cloud_properties.set_cloud_class()
, which classifies trajectory points, and compute_cloud_properties.cloud_properties()
An example of their use is in process_clouds.py.
Detailed Module Contents¶
The entire module is documented below.
Created on Thu Aug 27 16:32:10 2020
@author: paclk
-
compute_cloud_properties.
set_cloud_class
(traj, thresh=None, version=1)¶ Function to compute trajectory class and mean cloud properties.
- Parameters
thresh – Threshold if LWC to define cloud. Default is traj.thresh.
version – Which version of classification. (Currently only 1).
- Returns
Dictionary containing trajectory class points, key and useful derived data:
Dictionary keys: "class" "key" "first_cloud_base" "min_cloud_base" "cloud_top" "cloud_trigger_time" "cloud_dissipate_time" "version":version
@author: Peter Clark
-
compute_cloud_properties.
cloud_properties
(traj, traj_cl, thresh=None, use_density=False)¶ Function to compute trajectory class and mean cloud properties.
- Parameters
traj – Trajectory object
traj_cl – Dict of Classifications of trajectory points provided by set_cloud_class function.
thresh – Threshold if LWC to define cloud. Default is traj.thresh.
- Returns
dictionary pointing to arrays of mean properties and meta data:
Dictionary keys: "overall_mean" "unclassified" "pre_cloud_bl" "pre_cloud_above_bl" "previous_cloud" "detr_prev" "post_detr_prev" "cloud" "entr_bot" "entr" "detr" "post_detr" "subsequent_cloud" "cloud_properties" "budget_loss" "entrainment" "derived_variable_list"
@author: Peter Clark
-
compute_cloud_properties.
print_cloud_class
(traj, traj_cl, sel_obj, list_classes=True)¶ Function to compute trajectory class and mean cloud properties.
- Parameters
traj – Trajectory object
traj_cl – Dict of Classifications of trajectory points provided by set_cloud_class function.
@author: Peter Clark