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This thesis describes a combined model and laboratory investigation of the generation
and mutual interactions of fluid waves whose characteristic scales differ by an order of
magnitude or more. The principal aims are to study how waves on one scale can generate
waves on another, much shorter scale, and to examine the subsequent nonlinear feedback
of the short waves on the long waves. The underlying motive is to better understand
such interactions in rotating, stratified, planetary fluids such as atmospheres and oceans.

The first part of the thesis describes a laboratory investigation using a rotating, two-layer
annulus, forced by imposing a shear across the interface between the layers. A method is
developed for making measurements of the two-dimensional interface height field which
are very highly-resolved both in space and time. The system’s linear normal modes
fall into two distinct classes: “slow” waves which are relatively long in wavelength and
intrinsic period, and “fast” waves which are much shorter and more quickly-evolving.
Experiments are performed to categorize the flow at a wide range of points in the system’s
parameter space. At very small background rotation rates, the interface is completely
devoid of waves of both types. At higher rates, fast modes only are generated, and
are shown to be consistent with the Kelvin-Helmholtz instability mechanism based on a
critical Richardson number. At rotation rates which are higher still, baroclinic instability
gives rise to the onset of slow modes, with subsequent localized generation of fast modes
superimposed in the troughs of the slow waves.

In order to examine the generation mechanism of these coexisting fast modes, and
to assess the extent of their impact upon the evolution of the slow modes, a quasi-
geostrophic numerical model of the laboratory annulus is developed in the second part
of the thesis. Fast modes are filtered out of the model by construction, as the phase space
trajectory is confined to the slow manifold, but the slow wave dynamics is accurately
captured. Model velocity fields are used to diagnose a number of fast wave radiation
indicators. In contrast to the case of isolated fast waves, the Richardson number is a
poor indicator of the generation of the coexisting fast waves that are observed in the
laboratory, and so it is inferred that these are not Kelvin-Helmholtz waves. The best
indicator is one associated with the spontaneous emission of inertia-gravity waves, a
generalization of geostrophic adjustment radiation.

A comparison is carried out between the equilibrated wavenumbers, phase speeds and
amplitudes of slow waves in the laboratory (which coexist with fast modes), and slow
waves in the model (which exist alone). There are significant differences between these
wave properties, but it is shown that these discrepancies can be attributed to uncer-
tainties in fluid properties, and to model approximations apart from the neglect of fast
modes. The impact of the fast modes on the slow modes is therefore sufficiently small
to evade illumination by this method of inquiry. As a stronger test of the interaction, a
stochastic parameterization of the inertia-gravity waves is included in the model. Consis-
tent with the laboratory/model intercomparison, the parameterized fast waves generally
have only a small impact upon the slow waves. However, sufficiently close to a transi-
tion curve between two different slow modes in the system’s parameter space, it is shown
that the fast modes can exert a dominant influence. In particular, the fast modes can
force spontaneous transitions from one slow mode to another, due to the phenomenon
of stochastic resonance. This finding should be of interest to the meteorological and
climate modelling communities, because of its potential to affect model reliability.
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Chapter 1

Introduction

“We might say that the atmosphere is a musical
instrument on which one can play many tunes. High
notes are sound waves, low notes are long iner-
tial waves, and nature is a musician more of the

Beethoven than of the Chopin type.”

Letter from Jule Charney to Phillip Thompson,
12 February 1947.

1.1 Overview

Like many physical systems, fluids often exhibit the coexistence of motions on a wide
range of space and time scales. Correspondingly, the linear normal modes of the gov-
erning Navier-Stokes equations generally have spatio-temporal structures which fall nat-
urally into distinct classes, when categorized according to the fundamental dynamical
mechanisms which permit their existence. This property of the fluid equations was first
identified by Margules (1893), who derived two species of solutions to Laplace’s tidal
equations. He named his solutions “Wellen erster Art” (waves of the first type) and
“Wellen zweiter Art” (waves of the second type), which we now know as inertia-gravity
and Rossby waves. Important studies of the characteristics of these modes have been

presented by Hough (1898) and Longuet-Higgins (1968).

As a geophysical example of scale-separated fluid motions, the Earth’s atmosphere and

ocean support acoustic waves, which have relatively short wavelengths and are quickly
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A/m /s Cph/m s~
acoustic waves 1 1072 102
inertia-gravity waves 10° 10* 10
Rosshy waves 106 106 1

Table 1.1: Characteristic horizontal wavelengths ()\), intrinsic periods (7) and
phase speeds (cpn) of three different classes of waves observed in the Earth’s atmo-
sphere. These three quantities are related by c,, = A/7. Values are given to
the nearest typical order of magnitude; in reality there is a significant spread in
characteristic scales about these mean values.

propagating; inertia-gravity waves, which are much longer and more slowly evolving; and
Rossby waves, which are longer and slower still. Typical scales associated with these

three linear eigen-modes in the atmosphere are shown in Table 1.1.

The presence of multiple, disparate scales in fluid motions presents a distinct difficulty
for theoretical and numerical modelling, analysis and prediction. Simultaneously and
accurately capturing the evolution of features whose characteristic scales differ by an
order of magnitude or more, requires an exceptionally careful treatment and large com-
putational effort. Moreover, computational resources aside, the primary focus of a study
is usually restricted to just a subset of all the permissible motions. Including the entire
span of scales would be distracting, and moreover, such a comprehensive analysis is not
usually regarded as necessary for achieving reliable results. This is because interactions
between motions on the scales of interest, and motions on dramatically different scales,

are tacitly assumed to be negligible.

For these reasons it has become commonplace to filter from fluid dynamical models,
motions on those scales which are not of primary interest. For example, a study of atmo-
spheric Rossby and inertia-gravity waves is unlikely to be concerned with the acoustic
waves with which they coexist. Since acoustic waves require fluid compressibility, they

can be filtered out of the analysis by imposing an incompressibility approximation.
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Inertia-gravity waves and Rossby waves are still permitted in this filtered model, but
any nonlinear interaction which takes place between these modes and acoustic modes in
the real system, cannot be captured. As another example, Haine & Williams (2002) have
filtered out small-scale convective plumes from a surface ocean front model by imposing
a hydrostatic approximation, and have investigated the effects of the filtering on the

large-scale cross-frontal transfer.

The question which naturally arises is: are nonlinear wave interactions strong enough to
significantly reduce the applicability of a filtered model, in which at least one of the wave
types present in the real system is absent? There must be a matching of space and/or
time scales in order for a significant interaction to occur, as we will quantify shortly.
In the above example, the length, time and speed scales of the filtered (acoustic) and
retained (inertia-gravity and Rossby) modes are so poorly matched, that for all practical
purposes the answer is surely “no”. Though possible in principle — due to the butterfly
effect (Drazin, 1992) — there is no evidence that the sound of a person’s voice can have

any real impact upon tomorrow’s weather!

However, we face a potentially different situation when we consider the filtering out
of inertia-gravity waves, through imposing a balance approximation such as quasi-
geostrophy. The characteristic scale separation factors between inertia-gravity and
Rossby waves are only around 10-100, as compared with 10° in the case of acoustic
and Rossby modes. This makes it feasible that a small, but significant Rossby /inertia-

gravity wave interaction could exist.

The intuitive notion that there must be a reasonable matching of scales for a strong
interaction has been quantified by Benney (1977). He presented a simple, general theory
for interactions between short and long waves, which is outlined here. For a resonant
triad interaction to occur in a fluid system with dispersion relation w(k), the wave

vectors k,, k, and k. are required (e.g. Gill, 1982) to satisfy

ky — ky = ke (1.1)

and

wiky) — wlky) = wlke) . (1.2)
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Equation (1.1) is satisfied by
ko = ks + ik, ky =k, — k, ko =k , (1.3)

where the subscripts [ and s refer to long and short waves, respectively. Equations (1.3)
represent a triad consisting of two short waves (a and b) and one long wave (¢). Using
k, < kg to employ a linear approximation to the dispersion relations, we find that

equation (1.2) holds for this triad if
k] . Vk w(k:s) = w(k:l) s (14)

where Vj, is the gradient operator in wave vector space. A resonant triad interaction
is therefore permitted between long and short waves if the phase velocity of the long
wave is equal to the component of the group velocity of the short wave in the direction
of travel of the long wave. In one dimension, this requirement simplifies to the phase
speed of the long wave being equal to the group speed of the short wave. The physical
interpretation is that the energy of the short modes, which travels at their group speed,
must not drift relative to the phase of the long mode. This means that any energy
transfer from short to long modes is focussed at particular locations fixed relative to the
nodes of the long mode, rather than being input across all long mode phases, and this

requirement evidently allows a resonant reinforcement of the energy transfer.

Figure 1.1 shows typical dispersion curves for the three classes of atmospheric waves
previously mentioned. It is clear that there is no possibility of equality between the
phase speed of a Rossby wave and the group speed of an acoustic wave, as acoustic
waves propagate too quickly. This helps to justify the filtering of acoustic modes from
a Rossby wave model, as previously discussed. But the possibility is open — in prin-
ciple, at least — of equality between the phase speed of a long Rossby wave and the
group speed of a short gravity wave, and therefore of a resonant interaction and energy

exchange.

The above analysis throws a question mark over the conventional wisdom that the
Rossby /inertia-gravity wave interaction is always negligible. Since Rossby waves are
prototypes of the atmospheric disturbances which constitute our weather systems, and
since inertia-gravity waves are actively filtered out of numerical weather prediction mod-

els by the initialization procedure (Section 1.4.1), a non-negligible interaction between
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acoustic
-~ inertia—gravity
- - Rosshy
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X

Figure 1.1: Schematic plot of the dispersion curves for three different zonally-
propagating atmospheric wave modes, showing intrinsic angular frequency w as a
function of zonal (East-West) wave vector k,. The chord slope at k is equal to the

tangent slope at kg, as shown in red.
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the two modes would have possible implications for accurate weather forecasting.

This thesis is a study of the interactions between “fast” and “slow” modes, such as
Rossby and inertia-gravity waves, in fluid flows. We are principally interested in investi-
gating two key aspects of the interaction: firstly, the ability of slow motions to generate
much faster motions; and secondly, the ability of the fast modes, once generated, to
impact upon the evolution of the slow modes. In the present study, we investigate these
issues using a laboratory experiment and accompanying numerical model. The under-
lying motive of the investigation is to understand the interaction properties on a much

larger scale, in planetary atmospheres and oceans.

1.2 Scale-separated interactions in non-fluid systems

Systems which display interactions between multiple scale processes are ubiquitous
across the entire spectrum of the natural sciences. Examples of systems with more
than one timescale (stiff systems), from the fields of classical mechanics, chemistry and
circuit theory, are briefly discussed in the following paragraphs. Though the govern-
ing equations for these systems may be very different from those of fluid systems, we
might expect scale-separated interaction characteristics to be robust enough to with-
stand changes in the detailed phase space topologies. We may therefore be able to infer
some of the qualitative features of scale-separated interactions in fluids, from those in

the other systems.

The swinging spring

This system is also known as the elastic pendulum, since it is like the well-known simple
pendulum except that the rigid rod is replaced with a spring. A point mass m is attached
to a spring with force constant £ in a gravitational field g, so that the equilibrium length
of the spring is [. When constrained to move in a vertical plane, there are two modes of
oscillation, distinguished by the physical mechanism that provides the restoring force.
As with the simple pendulum, there is a rotational linear normal mode with timescale

\/l/g, but now there is also an elastic linear normal mode due to spring stretching and

10
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compression, with timescale \/m/k. For the typical values m = 1 kg, k = 10> N m 1,
g =10m s72 and [ = 1 m, the timescales are 0.3 s and 0.03 s, showing a clear separation

by a factor of ten.

Lynch (2000) has described an explicit analogy between the swinging spring system
and atmospheric flow. He compares the high-frequency elastic modes to inertia-gravity
waves, and the low-frequency rotational modes to Rossby waves. In the swinging spring,
as in the atmosphere, there is nonlinear coupling between the fast and slow modes. The
analogy proves to be useful, even though the swinging spring has a four-dimensional
phase space whereas the atmosphere explores a manifold of dimension much larger than
four in an infinite-dimensional phase space. In both cases, for general initial conditions
both normal modes are excited and persist as the system evolves, but it is possible to
determine initial conditions for which the fast modes remain absent. Lynch derives such
initial conditions for the spring, and uses his analogy to illustrate the concept of atmo-

spheric balance.

Lynch goes on to apply the Kolmogorov-Arnold-Moser (KAM) theorem to the spring
system (Arnold, 1963). KAM theory provides a method for investigating how the phase
space structures of a completely integrable system (e.g. the rigid pendulum) are mod-
ified when the system is slightly perturbed in such a way that integrability no longer
exactly holds (e.g. by replacing the pendulum with a spring and allowing the fast and
slow modes to interact). His conclusion is that if most of the energy is initially in the
slow mode, then only an amount proportional to the ratio of fast to slow timescales
can be transferred to the fast oscillations. This result is rigorously valid only for sys-
tems with four degrees of freedom, though Lynch speculates that the conclusion may be
portable to the inertia-gravity /Rossby wave interaction in fluids with many more than

four independent variables.

Chemical reactions

Chemical processes often exhibit the coexistence of chemical reactions and transport
phenomena with a wide range of timescales. Vora & Daoutidis (2001) have developed

a general method for removing the fast variables from analyses of chemical systems,

11
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something akin to making an assumption of balance in a fluid dynamics model. They
test their method by comparing numerical integrations of some full-order models and

associated reduced models, and find excellent agreement.

In particular, they study the esterification of a carboxylic acid with an alcohol in the
presence of a catalyst. The system has 11 chemical species and 12 elementary reactions,
of which 4 are slow and 8 are fast. Their method allows a reduction in the number of

degrees of freedom from 11 to 7, significantly reducing the computational expense.

Chua’s circuit

The chaotic behaviour of this nonlinear electronic circuit has been widely studied (Madan,
1993). It has two capacitors C] and Cy, an inductor L, and a diode with a nonlinear
current-voltage response. These four components, together with a power supply, are all
placed in parallel. There are two natural timescales in the equations: v/LC; and v/LCs.
In a common set-up, L = 10 mH, C; = 0.08 uF and C5; = 4.4 nF, so that the fast and

slow timescales are 7 pus and 28 us.

Zhu et al. (2002) have shown in a laboratory experiment using Chua’s circuit that the
temporal regularity is enhanced by the introduction of a small amplitude noise source.
This is a phenomenon known as stochastic resonance, which we investigate in fluids in
Chapter 7 when we add a stochastic inertia-gravity wave parameterization to a quasi-

geostrophic numerical model.

1.3 The slow manifold
The incompressible Navier-Stokes equations can be written in the general form

&= f(z), (1.5)

where the dot denotes differentiation with respect to time. The state vector x(t) con-
tains the values of all the dynamical variables (velocity, pressure, etc.) at each spatial
point at time ¢. The number of elements of & corresponds to the number of degrees of

freedom of the fluid, which is formally infinite for the continuous system, but finite for a

12
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discretized or truncated normal mode approximation. The nonlinear vector operator f
represents the dynamics embodied in the Navier-Stokes equations, including boundary
conditions. The phase space trajectory traced out by x(t) describes the evolving state

of the fluid.

Imposing a balance condition, to filter out inertia-gravity waves, corresponds to imposing

a set of constraint equations which can be written in the general form

gx) = 0. (1.6)

Phase space trajectories (t) are now constrained to move on the hyper-surface g(x) = 0,
which reduces the number of degrees of freedom of the system by the number of elements
of the vector operator g. The surface g(x) = 0 is called the fluid dynamical slow man-
ifold, because trajectories which are constrained to evolve on it are completely devoid
of fast inertia-gravity modes.! Slow manifolds can be defined in the same way for the

other scale-separated systems discussed in Section 1.2.

It is more natural to picture the slow manifold in the phase space spanned by the linear
normal mode variables, rather than by the physical variables. The linear normal modes
of equations (1.5) are naturally partitioned into a fast class (inertia-gravity waves) and
a slow class (Rossby waves). Since the spatio-temporal structures 25t and z51°V of the

linear normal modes form a complete set, solutions to equations (1.5) can be always

written

w(t) = 37 af0) w3 ai ) @ (17)

n

This equation represents a transformation between the elements of the state vector x(t)
and the normal mode amplitudes a,(t). The slow manifold is now simply defined as

alst =0V n.

The concept of the slow manifold is intimately related to fast/slow interactions. If the
interaction is negligible then we may constrain model trajectories to the slow manifold

without loss of accuracy, justifying the use of filtered models.

'In turn, solutions of the full incompressible Navier-Stokes equations can also be said to exist on a
slow manifold, namely that manifold of the compressible Navier-Stokes equations which is completely
devoid of the “very fast” acoustic modes.

13
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The existence of a strict invariant slow manifold within the unapproximated equations
of fluid motion, upon which a real flow may evolve without ever exciting inertia-gravity
wave modes, has been debated ever since it was defined by Leith (1980) and Lorenz
(1980). There is no guarantee that a trajectory which starts out on the slow manifold
but which evolves according to the full equations (1.5) will remain on the slow manifold
for all time. This is a potential source of unreliability in any filtered model which makes

the a priori assumption of perpetual slow manifold confinement.

Lorenz (1986) and Lorenz & Krishnamurthy (1987) have investigated the problem by
constructing reduced-dimensional primitive equation models derived from the shallow
water equations, containing three slow and two fast independent variables. They could
not find initial conditions for which the fast motions remained absent during their numer-
ical integrations, and concluded that this model did not possess an invariant slow man-
ifold. Jacobs (1991) examined the same numerical model and discovered that a slow
manifold did in fact exist. Lorenz (1992) argues that there is no mathematical inconsis-
tency between the two conclusions, and that the apparent discrepancy is due to differing

definitions of the slow manifold.

More recently, Yavneh & McWilliams (1994) report a distinct breakdown of the slow
manifold at a critical Rossby number, in a numerical solution of the shallow water equa-
tions, though their breakdown is primarily associated with enhanced dissipation rather
than an initiation of inertia-gravity wave propagation. Warn & Menard (1986) have
argued that, when the slow manifold breaks down, it may simply be perturbed from a
smooth subspace to a quasi-stochastic subspace, but that this “fuzzy manifold” may still
possess many of the most useful properties of the original slow manifold. The questions
of the existence of slow and fuzzy manifolds, and even of how to properly define them,

clearly remain controversial.

1.4 Application to weather forecasting

Inertia-gravity waves exist ubiquitously in the Earth’s atmosphere, and are of particu-
larly large amplitude in the upper troposphere and lower stratosphere. They are observed

in high resolution data from radiosondes, rockets and satellites (e.g. Sato (1994) and ref-

14
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Figure 1.2: Gravity waves in noctilucent clouds photographed over Kiruna, Swe-
den at 23:08 on the night of 10th August 2000. On this occasion, the waves per-
sisted for around 15 minutes before dissipating away. (Photograph by Dr. S. Kirk-
wood, Dr. P. Dalin and Dr. A. Mostrom, Swedish Institute of Space Physics.)

erences therein for radar observations). They are reported to have vertical wavelengths
of around 1-5 km, horizontal wavelengths of around 200-1000 km and intrinsic time

periods of around 10 hours.

Recently, extensive ground-based observations of atmospheric pure gravity waves have
been made by a team at the Swedish Institute of Space Physics. They report that grav-
ity waves of wavelengths in the range 5-50 km are visible from the ground in noctilucent
clouds (NLCs) on around one night in three during the summer months, predominantly
between latitudes 50-70°N and times 22:00-04:00 (Dr. P. Dalin, personal communica-

tion). A typical observation is shown in Figure 1.2.

Observations such as these have been mirrored in high-resolution numerical simula-
tions of the atmosphere (e.g. O’Sullivan & Dunkerton, 1995; Sato et al., 1999) in
which inertia-gravity waves have been generated by the geostrophic adjustment of a
baroclinically-unstable tropospheric jetstream. An example of the inertia-gravity wave

radiation produced during this process is shown in Figure 1.3.

15
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Figure 1.3: Contours of horizontal velocity divergence at 130 mb on day 11 of a
high-resolution (T126, Az = 700 m) numerical simulation by O’Sullivan & Dunker-
ton (1995). The model was initialized with a small-amplitude zonal wavenumber
6 mode, superimposed on a zonally-uniform baroclinically-unstable flow. By day
11, the perturbation has reached its maximum amplitude and begun to decay,
generating the inertia-gravity waves shown.

The normal modes of a system will only appear if there is a mechanism present to excite
them. There are two generation mechanisms for inertia-gravity waves in the free atmo-
sphere (away from topography). Dalin’s waves were generated due to a local wind shear,
whereas O’Sullivan and Dunkerton’s were radiated as excess energy, as a balanced mode
lost and then re-established its balance through the geostrophic adjustment mechanism.
It seems to be unclear which is the dominant of these two mechanisms in the atmosphere,
but in Chapter 6 we will be in a position to determine the dominant mechanism in a lab-

oratory experiment which is in many respects a scaled-down analogue of the atmosphere.

1.4.1 The importance of initialization

Despite the confirmed ubiquitous presence of inertia-gravity waves in the lower, meteo-
rologically significant part of the atmosphere, a considerable portion of the effort that
goes into producing weather forecasts is spent on the initialization process, in which
inertia-gravity waves are filtered out of the observations before they are used as initial

conditions. This is done for a number of reasons.

Firstly, atmospheric observations are often of such dubious quality that any apparent

departures from balance are just as likely to be due to errors in the measurements, or in
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Figure 1.4: Time series of surface pressure at a fixed spatial point from a prim-
itive equations model of the atmosphere, with uninitialized (solid) and initialized
(dashed) starting fields. From Williamson & Temperton (1981).

the process which interpolates these measurements onto a regular grid, as to the pres-
ence of inertia-gravity waves. Secondly, even if inertia-gravity waves are the reason for
departures from balance, typical observations are too sparse to fully resolve them, and
the horizontal spatial resolution of numerical models is at present too low (11 km in the
UK Meteorological Office mesoscale model) to accurately capture their evolution (but
see Section 1.4.3). Furthermore, complete and permanent elimination of the fast modes
permits the use of a significantly longer timestep whilst still satisfying the CFL criterion,
which leads to more efficient integrations. Finally, the key aim of operational meteorol-
ogists is to model the synoptic-scale phenomena that constitute our weather systems,
rather than trouble themselves with small-scale waves whose effects are secondary. For
these reasons, it is desirable to have an initial atmospheric state which has no projection
onto inertia-gravity modes, and so the observations are projected onto the slow manifold

before being used as the initial conditions for the forecast.

An example of the likely consequences of running an uninitialized primitive equations

model is shown in Figure 1.4. Using uninitialized starting conditions, based on raw
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observational data, the time series contains a large and spurious high-frequency inertia-
gravity wave component which dominates the signal. Performing the same run but
using initialized starting conditions, obtained by slightly adjusting the observations in
a prescribed way to take them towards balance, completely removes the high-frequency

component leaving only the slow trend of meteorological interest.

The issue of whether inertia-gravity waves in the atmosphere can affect the develop-
ment of synoptic-scale weather systems is therefore an important and topical problem
in meteorology, since if such an interaction exists it could place a fundamental limit on
the accuracy of forecasting models which do not incorporate it. Operational meteoro-
logical centres include a parameterization of the effects of inertia-gravity waves in their
forecasting models, in particular of their drag on the large-scale flow (Hines, 1997), but

this is certainly an incomplete representation of the full interaction.

1.4.2 History of numerical weather prediction

Atmospheric inertia-gravity waves are not readily excited, since the length scale of the
differential solar forcing between equator and poles is well-matched to typical Rossby
mode wavelengths, but not to inertia-gravity wavelengths. Moreover, inertia-gravity
modes are more efficiently dissipated since viscous effects are highly scale-selective.
Therefore the vast majority of the energy of the atmosphere is in the vortical modes,

and the atmospheric state is close to the slow manifold.

We can capitalize on this when constructing a model for numerical weather prediction.
There would be a large redundancy in a model which captured the dynamics of solu-
tions far from the slow manifold if it was known that the phase space trajectory would
never visit there. To overcome this, we can either filter the fast modes out of the initial
conditions, as described in Section 1.4.1, or alternatively filter the fast mode solutions
out of the equations themselves by projecting the equations onto the slow manifold. We
now briefly review the history of numerical weather prediction, in which both of these
methods have been attempted, in order to illustrate the importance and difficulty of

eliminating unbalanced modes from the forecast.
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People have been fascinated by the weather since time immemorial, and have often
made casual forecasts based on simple local observations such as the colour of the night
sky. The first regular and systematic forecasts were those produced by Admiral Robert
Fitzroy in 1860, which he published in the Times (Lynch, 2001). Forecasting methods
employed then included maintaining a large catalogue of daily weather maps from the
past, in order, and then finding a map which resembled the conditions for the present
day and supposing that the atmosphere would do again what it had done before. Lorenz
(1969) has shown that with this method, known as the method of analogues, it is difficult

to find an acceptably close match even if the catalogue consists of 2000 maps.

Meteorology was finally given a firm scientific basis when when Bjerknes (1904) sug-
gested the then revolutionary idea of solving partial differential equations to calculate the
future weather. Two decades later this method was actually implemented by Richardson
(1922), who performed the world’s first numerical weather forecast. He integrated the
discretized partial differential equations numerically on paper and, according to Liynch
(1993), took two years to obtain his solution. He used the hydrostatic primitive equations
(HPEs) — a slightly approximated form of the Navier-Stokes equations on a sphere, con-
taining both fast and slow modes. He obtained completely unrealistic values (a surface
pressure change of 145 mb in 6 hours) because the initial fields contained a significant
but spurious inertia-gravity wave component, as in Figure 1.4, and not because of errors

in his method.

The world’s first computer forecast was performed by Charney, Fjortoft and Von Neu-
mann three decades later. In order to avoid Richardson’s problem, they filtered the
equations of motion to derive the quasi-geostrophic (Q-G) system (Charney, 1948) and

their forecasts were reasonably successful.

The HPEs were used again a few years later, since they were shown to be more accurate
than the Q-G equations. But in order to avoid Richardson’s error, it was necessary to
initialize the starting fields. Determining the most suitable initialization method formed
a major area of research during the decades which followed. The following initialization

methods have been proposed.

19



Chapter 1. Introduction

Hinkelmann (1951) suggested that the initial state should be modified so as to be
geostrophically balanced, and then Charney (1955) suggested that it should instead sat-
isfy the nonlinear balance equation, a diagnostic relation between the wind field and the
geopotential. Phillips (1960) suggested that an even better initialization would result if
the horizontal divergence of the initial wind were set equal to that implied by Q-G theory.

The technique of dynamic initialization was introduced by Miyakoda & Moyer (1968),
and is discussed in the initialization review article by Lynch (1986). This involves inte-
grating the raw observation data first forwards and then backwards in time, using the
HPEs with enhanced dissipation. This forward /backward cycle is repeated several times
to obtain fields in which the high frequency components have been damped out by the

dissipation, and the fields so obtained are used as the initial conditions for the forecast.

Initialization techniques based on normal mode decompositions are discussed in the
review article by Daley (1980). The technique of linear normal mode initialization
(LNMI) was tested by Williamson (1976). The initial fields are separated into Rossby
and inertia-gravity wave components (that is, projected onto the linear normal modes
as in Section 1.3) and the amplitudes of the latter are set to zero. Unfortunately the
inertia-gravity waves soon re-appear in the forecast: the primitive equations are nonlin-
ear and evidently allow the Rossby components to interact in such a way as to generate

new inertia-gravity waves.

The technique of nonlinear normal mode initialization (NNMI) was suggested indepen-
dently by Machenhauer (1977) and Baer (1977) and Baer & Tribbia (1977). This involves
not setting the initial inertia-gravity wave components to zero, but instead setting their
initial rate-of-change to zero. NNMI takes into account the nonlinear nature of the equa-
tions. It works very well: the forecast is very smooth and the spurious inertia-gravity
waves remain acceptably small throughout the integration. NNMI is the most popular

method of initialization today, and it is used in many forecast centres.

Most recently, the technique of digital filtering has been suggested by Lynch (1991) as a
simpler method than NNMI. It involves carrying out two short HPE model integrations

starting with the raw data, one forwards in time and one backwards. This gives a time
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series (of typically 6 hours) centred on ¢ = 0 for each model variable at each grid-point.
A low-pass filter is then applied to these time-series, and the resulting values at ¢t = 0 are
used as the initial conditions. An optimal filter shape has been chosen and successfully
implemented by Lynch (1996). Interestingly, Lynch (1999) has repeated Richardson’s
manual calculation on a computer, and reproduced the surface pressure tendency of
145 mb in 6 hours. In the same paper, he repeats the analysis after initialization of the
starting fields with a digital filter, and obtains a realistic pressure tendency of 3 mb in

6 hours.

1.4.3 When might inertia-gravity waves be resolved?

The resolution of operational numerical weather prediction models has improved dra-
matically since the first ever computer forecasts were performed. The resolution is now
sufficiently high that medium- to large-wavelength inertia-gravity waves can be partially
resolved. Given a further reduction in the horizontal grid spacing by a factor of 10, with
a corresponding improvement in observations, such waves could be fully resolved and
potentially included explicitly in a forecast, rather than through an implicit parameter-

ization of their effects.

If latitudinal and longitudinal grid spacings were each to drop by a factor of 10, we
would also need to reduce the timestep by a factor of 10 to leave the Courant number
unaffected. This would lead to an increase in computer time for a forecast by a factor
of around 1000, or alternatively, we would need an increase in processing speeds by a
factor of 1000 for the integration to take the same time. Since this factor corresponds
to 10 doublings of clock speeds (2! &~ 10%) and since clock speeds double around every

18 months (Moore’s law), this is expected to be achievable in around 15 years.

When this time comes, it would be useful for meteorologists to have a body of knowl-
edge regarding the anticipated impacts of the inertia-gravity waves on the larger-scale
flow. It is hoped that this thesis will form a small part of that collection of information,
and that the present study will suggest directions for the research that will be needed

between now and then to produce the rest.
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1.5 Dynamical similarity and laboratory experiments

It is well-known (Douglas & Gasiorek, 2000) that, when written in non-dimensional form,
the equations which govern the evolution of seemingly different fluid dynamical systems
can be very similar. The aim of laboratory experiments in geophysical fluid dynamics is
to exploit this dynamical similarity, to make inferences about atmospheric and oceanic

phenomena from observations of the analogous laboratory flows.

As an example appropriate to this study, the shallow water equations (SWEs) applied
to an approximated two-layer atmosphere or ocean, can very closely resemble the SWEs
for a rotating, two-layer laboratory experiment. This statement holds despite the fact
that typical length and time scales for corresponding geophysical and laboratory flows
can differ by very many orders of magnitude. All that matters for dynamical similarity
is equality of the relevant non-dimensional dynamical and geometrical parameters, such

as the Rossby number and aspect ratio.

Dynamical similarity allows us to study geofluids in the laboratory, as suggested by
Figure 1.5. Once we have solved a particular fluid flow problem by making observations
in the laboratory, we have actually solved an infinite number of other fluid flow prob-
lems all of which are dynamically and geometrically similar, including on the planetary
scale. For most of the remainder of this thesis, we study experiments in an isothermal,
rotating, two-layer laboratory apparatus. In the final chapter we return the focus to
geofluids to consider how portable our laboratory conclusions are to the atmosphere and
ocean, mindful of the different non-dimensional parameters and boundary conditions we

encounter in the laboratory.

Figure 1.6 shows a foretaste of the sort of flow we can observe using the present laboratory
apparatus. In the image, baroclinic instability has led to the growth of a slow, large-scale
mode with a dominant azimuthal wavenumber of two. Importantly for our purposes, two
groups of fast, small-scale waves have developed and are superimposed onto the larger-
amplitude baroclinic wave. Note the striking resemblance between small-scale waves in
the laboratory experiment (Figure 1.6), and those in the atmosphere (Figure 1.2) and
a numerical model (Figure 1.3). That waves on such dramatically different scales can

appear so similar in form is testament to the power of the concept of dynamical similarity.
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(a)

Figure 1.5: Diagram showing the analogy between (a) the fluid in a rotating
annulus experiment in the laboratory, and (b) the fluid bounded by two latitude
circles on a rotating planet. From Read et al. (1998).
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Figure 1.6: Sample laboratory experiment image. A large-scale baroclinic wave
is shown to coexist with two groups of small-scale waves. There is a relationship,
to be determined in Chapter 3, between the colour in the image and the height of
the two-layer liquid interface.

1.6 Previous laboratory work

Laboratory investigations of non-rotating fluid flows began in the nineteenth century,
and include the classic investigations of Reynolds (1883). At around the same time, Vet-
tin (1884) became probably the first person to exploit dynamical similarity by carrying
out rotating laboratory experiments as analogues of geophysical systems. He studied
the surface flow in a rotating dishpan of fluid with a lump of ice near the centre, repre-
senting a polar ice cap, and (to the scorn of his contemporaries) he drew meteorological

conclusions from his results.

The main benefits of studying geofluids indirectly in the laboratory are that the system
is under the complete control of the experimenter, that global high-resolution measure-
ments can be systematically taken, and that experiments can be repeated as many times
as required. None of these statements hold when geofluids are studied directly rather

than in the laboratory. A review of the role of laboratory experiments in geophysical
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fluid dynamics is given in Hide (1977).

As suggested by Vettin’s experiment, for the closest resemblance between annulus and
planet in Figure 1.5 we should apply heating and cooling at the outer and inner vertical
sidewalls, respectively, to mimic the differential solar thermal forcing between equator
and pole. The resulting rotating thermal annulus system with continuous fluid stratifica-
tion has been extensively studied since the early 1950s, including the classic experiments

of Hide et al. (1977).

It follows from the thermal (and gradient) wind balance equations for a rapidly-rotating
annulus, that a radial temperature gradient will be accompanied by a vertical shear
in the zonal velocity (such as that associated with the tropospheric jetstream in the
atmosphere). Similar flows to those obtained in the thermal annulus can therefore be
obtained in an isothermal annulus by imposing a velocity shear directly. For studying
geoflows, an alternative to the thermal annulus is therefore the rotating two-layer annu-
lus, with a shear provided across the fluid interface by differentially-rotating top and

bottom horizontal boundaries.

The rotating, two layer annulus has also been studied extensively in the laboratory
(e.g. Carrigan, 1978; King, 1979b; Appleby, 1982), and good agreement has been reached
between the properties of balanced flows in the thermal and two-layer annuli, and of
those in the corresponding theoretical and numerical models (Klein, 1990). During the
two-layer annulus laboratory experiments of Lovegrove (1997), which were designed to
investigate bifurcations between different large-scale modes, it was found under certain
circumstances that fast, small-scale modes could develop. This finding, of secondary
interest to Lovegrove’s study and so not investigated in detail, has formed the starting

point for the current work.

1.7 The current study

Lovegrove’s findings showed that the interaction between balanced large-scale and unbal-
anced small-scale waves could be studied, for the first time, in the laboratory. Previous

investigations had been exclusively based on highly-idealized and truncated numerical
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and theoretical models, whose representation of reality was far from complete.

This thesis is a study of scale-separated interactions in fluids in the laboratory, with
the underlying motive being to better understand such interactions in geofluids such
as the atmosphere and ocean. In the past, there have been laboratory investigations
of large scale interactions (Section 1.6), and analytical investigations of scale-separated
interactions and the slow manifold (Section 1.3). This study is believed to be the first

laboratory investigation of the slow manifold.

1.7.1 Aims of this investigation

The key scientific questions we wish to answer are:

e Under what circumstances do small-scale waves appear in the labora-
tory experiments? We answer by undertaking a new series of experimental

investigations.

e Which mechanism causes the small-scale waves to appear in the lab-
oratory experiments? We answer by computing several radiation diagnostics
associated with the candidate mechanisms. We do this using velocity data from a

numerical model.

e What are the effects of the laboratory small-scale waves on the large-
scale, balanced flow? We answer by comparing model (filtered) and laboratory
(unfiltered) regime diagrams, and by performing model runs both with and without

a stochastic inertia-gravity wave parameterization.

e Having answered these questions for a laboratory experiment, what
can we infer about answers to the analogous questions for geofluids? We
answer by comparing and contrasting the laboratory experiment with the atmo-
sphere and ocean, including a comparison of nondimensional parameters and of

boundary conditions.
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1.7.2 Thesis outline

This thesis is split naturally into two parts. The first part describes the outcome of a lab-
oratory investigation using the rotating, two-layer annulus. The apparatus is described
in Chapter 2, and a method for calibrating interface heights is developed and applied in
Chapter 3. In Chapter 4, the results of an extensive series of experiments are described

and analyzed.

The second part of the thesis describes the outcome of a complementary method for
investigating the rotating annulus, by running a purpose-built numerical model. In
Chapter 5, we derive the model equations and obtain a reliable and fast integration
scheme. In Chapter 6, we describe the results of the model runs, and compare them
with the laboratory results. Then, in Chapter 7, we add a stochastic inertia-gravity

wave parameterization to the model, and investigate its effects upon the large-scale flow.

Finally, in Chapter 8, we summarize the present work, and give our conclusions about
the scale-separated wave-wave interaction in the laboratory by stating answers to the
above four questions. We discuss the applicability of these conclusions to the analogous

interaction in geofluids, and end by describing some possible avenues for future work.
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Description of the laboratory

apparatus

“d-limonene ... can be harmful when vaporized and breathed.”

US Environmental Protection Agency website

“..the primary ingredient of Citrus Burst ®, d-limonene, is plant

derived. It is extremely safe...”

Florida Chemical Company, Inc. website

In this chapter, a description is given of the rotating, two-layer annulus apparatus which
has been used for the laboratory component of this study. The apparatus was built at
the U.K. Meteorological Office in the early 1970s, where it was used in the studies of
King (1979b) and Appleby (1982). The apparatus was later moved to the University of

Oxford, where is was used most recently by Lovegrove (1997).

In the following sections, we describe some modifications which have been made to
the apparatus since the experiments of Lovegrove. These include an upgrade to a
higher-quality video format for image transmission and storage, and the installation
of a higher-resolution frame-grabber in the laboratory computer. We present some new
results regarding the sensitivity of the working fluid properties to temperature fluctu-
ations. Then we develop a simple method for reducing the mutual interfacial tension,

and we discuss some previously unreported but important observed changes as the fluids
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age. Details of the employed flow visualization technique are given, and of the extent to

which the visualization is distorted by refraction and parallax effects.

2.1 The rotating, two-layer annulus

Photos of the rotating, two-layer annulus apparatus are shown in Figures 2.1 and 2.2, and
the annulus is shown schematically in Figure 2.3. The annulus consists of a cylindrical
stainless steel tank of inner radius 125.00 mm and depth 250.00 mm, which has a fixed
glass base and a removable glass lid. A solid steel cylinder, of radius 62.50 mm and
depth 250.00 mm, is glued coaxially (to within an estimated 0.1 mm) to the base of
the tank to form an annulus of gap width 62.50 mm. The annular region is filled to
the brim with equal volumes of two immiscible liquids, to give a two-layer liquid with
a well-defined interface and equal resting layer depths of 125 + 1 mm. Details of the

particular fluids used are given in Section 2.2.

The tank is mounted centrally (to within an estimated 0.1 mm) above a parabolic cor-
rection tank (discussed in Section 2.4) on a circular turntable 1 m above the laboratory
floor, which can be made to rotate under computer control with angular velocity €2. The
annulus lid, which is in contact with the upper liquid, can be made to rotate under com-
puter control with angular velocity AQ relative to the tank. This is possible because
the lid is connected to the tank via a ball race, allowing low-friction relative motion
powered by a servo motor and drive wheel. Both 2 and A2 can take either sign, and
are stable to within 1% over a period of a few hours. The maximum achievable values

are |Qumax| = 6.3 rad s7" and |[AQuax| = 3.1 rad s7'.

There is a central circular hole in the turntable, of radius equal to the tank radius, so
that white light from a bright 500 W tungsten-halogen source lamp on the laboratory
floor may pass vertically into, through and out of the annular gap. The light is received
by a colour charge-coupled device (CCD) video camera, which is on the rotation axis
and co-rotates with the turntable 2 m above it. Communications between the laboratory
frame and the rotating turntable frame (namely the camera power and output signal,
and the servo motor power) are achieved through a commutator slip-ring, hidden from

camera view by the inner cylinder.

29



Chapter 2. Description of the laboratory apparatus

Figure 2.1: The two-layer annulus apparatus and control equipment. From left to
right: the rotating turntable, mounted with the annulus and with a tall metal frame
to support the video camera; an amplifier which powers the turntable rotation and
lid rotation; a television and video recorder to watch and record live images from
the camera; and a computer with a frame-grabber installed to digitize and save
selected images.

Figure 2.2: Close-up view into the annular tank from above.
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Figure 2.3: Schematic cross-section through the two-layer annulus apparatus,
showing the principal components. (Not to scale.)
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()

Figure 2.4: Images captured from a video tape of the two-layer annulus exper-
iment, photographed by the CCD camera. Digitization of the images was done
using (a) the current frame-grabber and S-VHS equipment, and (b) the previous
frame-grabber and regular VHS equipment.

The S-VHS signal' output by the camera can be recorded at 25 frames per second onto
high-quality, S-VHS video tapes, which can be played back for subsequent analysis. The
video signal can be input to a computer with a frame-grabber, to produce colour 24-bit
digitized images measuring 768 pixels by 576 pixels. A sample image is shown in Fig-
ure 2.4(a), showing a wavenumber 2 mode which has grown due to baroclinic instability
and which slowly drifts around the annulus with a period of around one minute. Dif-
ferent colours correspond to different depths of the lower liquid layer, for reasons to be
discussed fully in Section 2.3. For reference, an image of a similar flow, captured using
the older frame-grabber and ordinary VHS equipment used by Lovegrove et al. (2000),
is shown in Figure 2.4(b). The image size is 320 pixels by 240 pixels, and so the use of

the new frame-grabber has multiplied the resolution by a factor of 2.4 in each dimension.

2.2 Fluid properties

We choose to use water as the liquid for one of the layers. The water is first purified
by being passed through a de-ionizing filter, as this slows down mould growth in the
apparatus. The liquid for the other layer must then be hydrophobic, so that the two
layers are mutually immiscible and give a well-defined interface. It should be transparent

and colourless, to allow the passage of light without significant absorption. It should

1S-VHS, or Super-VHS, is a professional master grade version of regular VHS.
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have an optical activity which is non-zero and which varies strongly with wavelength for
visible light, in order for the flow visualization technique to be described in Section 2.3
to work. It would be advantageous if it had a density and viscosity close to that of water
for comparison with theoretical two-layer models, many of which make assumptions of
small stratification and equal viscosities (as discussed in the review article by Klein,
1990).

2 an organic oil which

A liquid which satisfies most of these requirements is limonene
is distilled from orange peel. Unfortunately, its density (840 kg m?) is significantly less
than that of water. The limonene cannot be used as the upper layer, as it is highly
volatile and rapidly evaporates to produce a harmful vapour (WHO, 1998), and the
apparatus is not airtight. For this reason, the limonene is mixed with CFC-1133, a
heavier-than-water, colourless, hydrophobic, optically-inactive solvent, in such propor-
tions that the composite liquid is slightly more dense than water. Water is then used as
the upper layer liquid, thereby preventing harmful vapours from escaping into the lab-

oratory. Some relevant physical properties of the liquids which make up the two layers

are given in Table 2.1. The liquids are the same as those used by Lovegrove.

2.2.1 Thermal expansivities

It is seen from Table 2.1 that the two layers have quite different thermal expansivities.
As the temperature rises, the lower layer becomes less dense more quickly than the
upper layer. According to the values in the table, the ambient laboratory temperature
needs to rise by only around 5 °C before the two layers have equal densities, leading
to a possible Rayleigh-Taylor instability (Acheson, 1990) and layer inversion. In order
to prevent this, the ambient laboratory temperature must be tightly controlled. An air
conditioning system was used to achieve this, and was found to keep the temperature
within 0.1 °C of 20.0 °C over a 24-hour period, as opposed to an observed fluctuation
of 2.0 °C with the system switched off. The air conditioning system was permanently
switched on during the experiments described in this thesis, to keep variations in the

fractional density difference tolerably low, both during and between experiments.

2Limonene is also known by its synonyms carvene and methylcyclohezene.
3The full name is 1,1,2-trichlorotrifluoroethane.

33



Chapter 2. Description of the laboratory apparatus

de-ionized water | limonene/CFC-113
layer 1 layer 2
(upper) (lower)
density, p (kg m™3) 997 + 1 1003 + 1
thermal expansivity, o (1074 K1) 2.07£0.01 13.0+0.1
mutual interfacial tension, S (1072 N m™!) 2.85+0.1 2.85+0.1
kinematic viscosity, v (107% m? s 1) 1.27 4+ 0.02 1.08 &+ 0.02
optical activity, ¢, at 0.59 pm ( ° m™") 0 770 + 10
refractive index, n, at 0.59 pm 1.3328 + 0.0001 1.4466 + 0.0001

Table 2.1: Physical properties of the freshly-prepared working liquids at the
ambient laboratory temperature (20.0 °C) and pressure. The densities and ther-
mal expansivities were measured in the laboratory by the author using a density
meter, which times the period of oscillation of an electromagnetically-excited sam-
ple tube in order to accurately calculate density. The mutual interfacial tension
was measured in the laboratory by the author using a torsion balance, which mea-
sures the force required to pull a thin wire loop through the interface in order to
determine the tension. The sources for the other property values are Lovegrove
(1997), Hart & Kittelman (1986), Lide (1995) and Kaye & Laby (1995).

There is another problem associated with the large temperature sensitivity of the two-
layer liquid, namely that the 500 W lamp directly beneath the annulus is not only an
effective light source but also an effective heat source. During some of the initial exper-
iments performed in this study, this heating was so strong that the liquids exhibited a
spontaneous Rayleigh-Taylor inversion around two hours after the lamp was switched
on. Because it was desired to run experiments which lasted for longer than two hours,
an electric desktop fan was positioned on the laboratory floor to blow air across the
lamp, as shown in Figure 2.3. The aim was to inhibit and destroy convection cells, in
the hope that the majority of the heat transfer from lamp to liquids was via convection
rather than radiation. This strategy worked, and experiments lasting three hours and

longer could be carried out when the fan was switched on.

Lovegrove did not document taking these measures to control the liquid temperature,
as he was probably not aware that the layer thermal expansivities were so different.
There is therefore a possibility of reduced gravity drift in his experiments, which was

not documented until now.
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Figure 2.5: The path of a ray of light which enters the annulus vertically at radius
r, where the interface height is h(r) and the slope is dh/dr.

2.2.2 Refraction

The different refractive indices of the two layers (Table 2.1) will cause refraction to occur
at the fluid interface. The images from the camera will therefore show a distorted version
of the actual interface height shape, which means that the images output by the camera

must be interpreted with caution.

Consider a ray of vertically-travelling light which enters the base of the tank at radius
r, as shown in Figure 2.5. For this simplified analysis, the interface height h(r) is taken

to be a function of r only. The angle of incidence v, is given by

dh
tan v, = T (2.1)

and is related to the angle of refraction 7; by Snell’s Law:
Ny siny; = ngsin~y, . (2.2)

Eliminating 7, between (2.1) and (2.2) gives

no dh/dr

siny; = — .
T T (@b
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The angle through which the ray is deflected at the interface is then v = v, — 5. Light
which entered the base at radius r appears to the camera to have entered at apparent
radius ' = r — ¢, where

e=htanvy . (2.4)

The camera therefore gives a distorted image of the annulus: if we observe a certain
colour at a particular radius on a still from the camera, the radius at which the lower
layer actually has the height corresponding to that colour is offset from the observation

radius by an amount e.

For a worst-case scenario of interfacial slope dh/dr=1, equations (2.1) and (2.3) give
v = 45.0° and y; = 50.1°, so that the deflection angle is v = 5.1°. At a point where
h = 12.5 cm, equation (2.4) gives ¢ = 1.1 cm, which is almost 20% of the annular gap
width. It is important to use a certain amount of caution, then, when using images from

the camera to infer distances in the annulus.

In practice there will also be azimuthal refractive distortion, neglected in this analysis,
which will make no difference to wavelength determination but which will bias the kur-
tosis (peakiness) of the inferred wave shape. There will also be refraction at the glass

lid, neglected here.

If it were necessary, we could compensate for radial refractive distortion by using equa-
tions (2.1), (2.3) and (2.4) to derive the transformation from apparent radius seen by
the camera to actual radius. Such an analysis has not been carried out in this study,
because the calculation to obtain the mapping becomes very involved; the maximum
distortion is only a centimetre; and we are not concerned with locating exactly where

the fast waves appear in the annulus.

2.2.3 Interfacial tension

The interfacial tension between the liquids (Table 2.1) is around four times as large
as the values encountered in the two-layer experiments of King (1979b) and Appleby
(1982), who used different working liquids from the present ones. The classical theoreti-

cal two-layer models first used by Phillips (1951) do not include the effects of interfacial
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volume of washing-up
liquid per unit surface 0 0.32 0.64 0.96
area of water (ml m~2)

interfacial
tension 2854+1.1 53+04 144+04 134+04
(107* Nm™!)

Table 2.2: Dependence of interfacial tension on amount of added washing-up
liquid, as measured in small samples of the working liquids using a torsion balance
in the laboratory. A saturation limit is reached at around 0.6 ml m~2. The
quantity of added surfactant is given as a volume per unit surface area of the
working liquid, rather than per unit volume, as it is assumed that all surfactant
molecules are attracted to the surface rather than existing throughout the entire
liquid volume, up to the saturation point.

tension. Moreover, interfacial tensions are non-existent in the atmosphere and are com-
pletely negligible in the ocean (except for motions on the very smallest of length scales).
Because we would like to keep the laboratory experiment as close as possible to the sim-
ple two-layer models, and to atmospheric and oceanic flows, it is desirable to attempt to
reduce it. We do this by adding a surfactant (surface active agent), a chemical whose
molecules are made up of a water soluble and a water insoluble component, and which

reduces the surface tension of water.

Various surfactants were tested in small (20 ml) samples of the working liquids.* Small
added quantities of Photo-Flo, a surfactant used in the photo-developing industry, had
the unexpected but reproducible effect of increasing the interfacial tension by around
30%. This is not entirely unexpected, as surfactants are defined with respect to a water-
air interface, which is very different from the liquid-liquid interface in the annulus.
Ordinary hand soap was tested but rejected, as it caused a significant cloudiness. The
only surfactant to be successfully tested was ordinary washing-up liquid, and the results

are shown in Table 2.2.

When washing-up liquid was added at 0.64 ml m~2, the interfacial tension was reduced

4In situ measurements of interfacial tension in the annulus are not practicable using a torsion bal-
ance, and furthermore, we do not wish to contaminate the actual working liquids with the candidate
surfactants.
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(a) (b)

Figure 2.6: Digitized experimental images, showing colours corresponding to the
resting interface height shape (a) immediately before the addition of 0.12 ml of
surfactant, and (b) a few seconds after. The dark radial spoke is a shadow due to
the slip-ring connection wires shown in Figure 2.3. When the experiment is running
and the interface height is not flat, this shadow is washed out by the dispersive
effects of interfacial refraction (Section 2.2.2).

by more than an order of magnitude. However, this was found to facilitate the formation
of bubbles of the lower-layer liquid in the upper layer near the interface, an effect which is
undesirable. For all the experiments described in this thesis, washing-up liquid was added
to the water in the annulus at 0.32 ml m~2 (i.e. a total of 0.12 ml), which we presume
to give an interfacial tension of 5.3 x 1073 N m~!. A few seconds after the addition of
the washing-up liquid, the resting interface shape recorded by the camera changed as
shown in Figure 2.6. The interface became noticeably flatter, and the meniscus widths
at the sidewalls were reduced, as expected. However, we will see in Section 2.2.4 that

the interfacial tension will not necessarily remain at this reduced value as the fluids age.

2.2.4 Slow evolution of fluid properties with time

It has been casually observed in this study that the properties of the interface between
the layers in the annulus seem to exhibit a long-term evolution as time passes. Direct
observation into the tank through the lid revealed the slow formation of a skin at the
interface, on timescales of weeks to months. Often this skin was so strong that it resisted
piercing even by a sharpened pencil. This effect, previously unreported, suggests long-
term chemical changes in the liquids, and possible accompanying variations in their
physical properties. The values of the physical properties shown in Table 2.1 were all

measured in freshly-prepared samples.
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This long term interface evolution will be shown to have important consequences in

Section 4.2. Various effects could explain the observed trends in interface properties:

e the pH of the water may be evolving as CO, and/or Oy are exchanged with the

laboratory air;

e the lower-layer liquid may be diffusing into the upper layer — both CFC-113 and
limonene are actually sparingly soluble in water and are therefore expected to
slowly diffuse out over time. CFC-113 has a solubility of 200 mg/litre in water
at 20 °C (WHO, 2002), and limonene has a solubility of 13.8 mg/litre in water at
25 °C (Massaldi & King, 1973). Limonene has a strong, characteristic fruity smell
which was observed to be taken on by the water as the fluids aged, consistent with

the diffusion theory;
e there may be slow lower-layer interactions with the steel cylindrical container;

e the strong glue which fixed the inner cylinder to the base of the tank, and the
black paint on the inner cylinder, were often found to have been corroded when
the liquids were changed. This implies that the lower layer liquid is capable of

slow dissolution of sealant and paint, which would alter its composition;

e there may be slow electro-chemistry with the walls (especially if the pH is chang-
ing);
e there may be chemical interactions with the added surfactant;

e any particulate matter in the laboratory air, such as dust, will tend to accumulate
in the liquids over time as contaminants, and thereafter be possible candidates for

dissolution.

Further work is needed to investigate which of these mechanisms is responsible for the

observations.

2.3 Flow visualization

Previous flow measurement techniques in two-layer annulus experiments have included

the capacitative method of Hart (1972), in which a thin vertical wire is inserted into
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the fluid across the interface. One of the liquids is chosen to be an electrical conduc-
tor, so that changes in interface height cause changes in the voltage drop along the
wire, which can be measured and calibrated. A potential problem is that the wire can
have a significant interaction with the flow (for example, as observed by Frith & Read,
1997). King (1979a) successfully applied a technique which exploited the absorption of
an infra-red light beam by one of the layers, by an amount dependent upon the layer
depth. This method is non-invasive, but like Hart’s method, suffers from only return-
ing measurements of interface height at one spatial location, rather than providing the
global coverage which is desired. Shadowgraphy and Schlieren techniques (Goldstein,
1983) were the first to provide two-dimensional interface height fields, but were inaccu-

rate and impractical.

The current visualization technique was first used by Hart & Kittelman (1986) in an
open-cylinder experiment, and has since been used by Lovegrove in his annulus experi-
ment. It provides non-invasive, global measurements of interface height which are highly-
resolved in both space and time. The method relies on one of the liquid layers being
optically active, in our case the lower layer due to the limonene. In order to understand
how the technique works, we now track the passage of light through the apparatus from
source lamp to video camera, via the two immiscible working liquids in the annular
tank. This exercise is necessary to understand the relationship between the colour field

recorded by the camera, and the interface height field.

As quasi-white light emitted by the source lamp travels vertically upwards through the
apparatus shown in Figure 2.3, it first passes through a diffuser. This is a translucent
plastic circular sheet of thickness 1 cm and radius equal to the tank radius, which is
centrally mounted on the turntable. Its purpose is to diffuse the incoming light such that
it illuminates the base of the tank uniformly. Without the diffuser, the video images
would contain contrasting bright and dim regions, which would make interpretation and

analysis more difficult.

The diffuse light next passes through an entrance polaroid, fixed to the upper side of the
diffuser. This is a thin (1 mm) circular sheet of linearly-polarizing filter, of radius equal

to the tank radius. The direction of its polarization vector determines a vertical plane

40



Chapter 2. Description of the laboratory apparatus

of polarization for the emerging light. Importantly, the entrance polaroid is fixed to the
rotating turntable. This means that the vertical polarization plane of the light entering

the fluids will rotate in the laboratory frame, but is fixed in the camera frame.

The plane-polarized light next encounters the parabolic correction tank, whose purpose

is discussed in Section 2.4.

Next, the light enters the main tank via its glass base, and travels through the optically-
active lower layer liquid, whose effect is to rotate the plane of polarization of the light.
This happens because limonene molecules are chiral, i.e. not superimposable on their
mirror image (March, 1992), which is the cause of the optical activity. The amount
of rotation depends on both the wavelength of the light and the depth of the liquid
traversed (the latter dependency is one of proportionality, for depths greater than the

molecular scale).

The rotation angle per unit depth for pure limonene has been determined experimentally
by Hart & Kittelman (1986), for a range of wavelengths spanning the visible part of the
spectrum. We can derive the rotation for the lower layer limonene/CFC-113 liquid by
assuming that the rotation angle is reduced by a fraction equal to the volume-fraction of
CFC-113 in the composite mix. This assumption is easily verified theoretically by taking
the total rotation angle to be the same whether the constituent liquids are well-mixed
or are separated into distinct layers, and has also been verified experimentally by Hart

& Kittelman (1986). The resulting optical activity curve is shown in Figure 2.7.

Next, the light travels through the optically-inactive upper layer and leaves the tank
via the glass lid, during which its plane of polarization is unchanged. The light then
passes through an analyzing polaroid, which is a second thin sheet of linearly-polarizing
filter fixed in front of the camera lens. This polaroid only allows the transmission of a
certain fraction of the incident light intensity. This fraction varies from 1 if the analyz-
ing polaroid axis and incident light polarization axis are parallel (or anti-parallel), to 0
if they are perpendicular (assuming perfect polaroids). For a given lower layer depth,
therefore, only certain wavelengths will be rotated into close alignment with the analyz-

ing polaroid and be transmitted to the camera. Other wavelengths will be extinguished
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Figure 2.7: Optical rotary dispersion curve for the lower layer liquid of the present
laboratory experiments, following Hart & Kittelman (1986).

by the polaroid. This is the origin of the causal relationship between lower layer depth,

and colour recorded in the video images.

We now give an example which should help to elucidate the ideas of the previous para-
graphs, by deducing qualitatively which colour will be the dominant one received by
the camera for a given lower layer depth. Suppose that white light travels through a
depth 10 ecm of the lower layer (ignoring the parabolic correction tank). Then, from
Figure 2.7, the red light component (A ~ 0.70 um) will be rotated through an angle of
about 60°, the green light (A ~ 0.55 um) through 90° and the blue light (A ~ 0.44 pm)
through 160°. These angles are shown in Figure 2.8(a), where the angle between the
axes of the crossed entrance and analyzing polaroids is taken to be 50°. Most of the red
light will be transmitted through the analyzing polaroid, plus some of the green light but
hardly any of the blue light, and we therefore expect to see a red colour. Figure 2.8(b)
shows the equivalent analysis for a lower layer depth of 15 cm, where we expect to see a
predominantly blue colour. In Chapter 3, we quantify this analysis to derive the math-
ematical relationship between observed colour and height, allowing a calibration of the

experiment.
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Figure 2.8: The polarization axes of red, green and blue light, after travelling
through (a) 10 cm, and (b) 15 cm of the limonene/CFC-113 mixture, as viewed
from above by the video camera. The entrance and analyzing polaroids are shown
as dashed lines.

By rotating the analyzing polaroid attached to the camera lens, the angle between the
axes of the crossed entrance and analyzing polaroids can be adjusted, which varies the
colour observed for a given interface height. For some angles, the relationship between
height and colour is more sensitive than for others, i.e. small changes in height produce
relatively large changes in colour. Before any experiments were performed in this study,
the differential angle was adjusted — by trial and error — to be such that the rela-
tionship was at its most sensitive, so that even very small changes in interface height
produce a significant signal in the colour field. This is important if we are to be able to

register the small-amplitude interfacial short waves.

2.4 The parabolic correction tank

Suppose that the apparatus so far described — without the parabolic correction tank —
were set into rotation with turntable angular velocity €2 # 0 and differential lid rotation
A = 0. After spin-up of both layers to angular velocity 2, a balance is established
between the radial pressure gradient force and the centripetal force in the fluid, and then
the equilibrium height A(r) of the fluid interface above the base of the tank is given (see
also equations 3.6 and 5.22) by

02,2

h(r) = % + constant, , (2.5)
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where r is the distance from the rotation axis and ¢ is the acceleration due to gravity
(not the reduced gravity, as the centripetal effect does not depend upon any density
contrast between the layers). When the turntable is rotating at its maximum rate
of @ = 6.3 rad s !, the associated interface height change across the annulus will be
h(12.5 cm) — h(6.25 cm) ~ 2 cm. The interface is therefore not horizontal and colour
gradients are seen by the camera. If a velocity shear is applied by rotating the lid,
the interface height will be perturbed away from the parabolic shape given by equation
(2.5), as described by equation (5.22). This manifests itself in the experiments of Hart
& Kittelman (1986) as a reddening of their images at large radii.

Deciding that this effect was undesirable, Lovegrove (1997) devised a way of eliminating
this background parabolic distortion from the view seen by the camera. His method
relies on the fact that limonene exists in two different optical isomers: a dextrorotary
isomer (d-limonene) which rotates plane-polarized light in the clockwise sense, and a
laevorotary isomer (/-limonene) which rotates it by an equal angle in the anti-clockwise

sense.

Lovegrove used d-limonene for the lower layer of the main tank, and introduced a second
“parabolic correction” tank containing [-limonene and air, directly beneath it as shown
in Figure 2.3. In equilibrium with A2 = 0 and Q2 # 0, the surface of the [-limonene layer
takes up exactly the same concave upwards parabolic shape as the interface in the main
tank (equation 2.5), even though its domain is cylindrical rather than annular and it is
covered with air rather than water. Clockwise light rotations in the main tank are then
exactly cancelled out by anti-clockwise rotations in the parabolic correction tank, and
so there are no colour gradients in the images output by the camera. When A # 0,
the camera then shows colours which correspond to the deviation of the interface height
away from this basic parabolic shape, avoiding the background colour gradients of Hart

& Kittelman (1986).

Since the d-limonene is diluted with CFC-113 to increase its density, the optical activ-
ities of the composite lower liquid in the main tank and the pure [-limonene in the
parabolic correction tank will not be exact opposites, and the statement above will only

be approximately true. It seems that the reason Lovegrove decided not to dilute the -
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limonene with CFC-113, which would have given liquids with exactly equal and opposite
optical activities, was that the CFC is highly volatile and would have quickly evaporated

without a protective covering of water.

2.5 Parallax effects

The diameter of the inner cylinder in an experimental image (e.g. Figure 2.6) is 310
pixels. We calibrate horizontal distances in the images by equating this to the physical
diameter of 125 mm. This gives the side length of the (square) pixels to be 0.40 mm,

which defines the horizontal resolution of the images.

Importantly, this length calibration takes place in the horizontal plane containing the
annulus lid. Radii that we infer from an image, by converting distances from the annulus
centre in pixels to distances in mm, will therefore correspond to radii at the lid. Because
the camera is a finite distance away from the annulus (200 cm from the base), light paths
from annulus to camera are not exactly vertical, and the radius at the lid r;q will not
be the same as the radius r at the fluid interface. Neglecting refraction, the relationship

between them is given by geometry to be

T 200 cm — 12.5 cm
— = =1.07. 2.6
Tlid 200 cm — 25.0 cm ( )

Therefore, when we observe a colour at a particular point in an image, we must increase
its apparent radius by 7% to obtain the real radius at which the interface height takes

the value corresponding to the observed colour.

At the inner sidewall, r;q takes the value 6.25 cm. From equation (2.6), r is then
6.70 cm, implying that when the interface is flat we will not be able to see the inner
0.45 cm because of a parallax effect. A similar calculation shows that the outer 0.78 cm

of the annular gap will likewise not be visible to the camera.
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2.6 Chapter summary

Descriptions have been given of the rotating, two-layer annulus laboratory apparatus,

fluid properties and flow visualization technique.

Useful information from the laboratory experiment images, e.g. wavelengths and propa-
gation speeds, can be extracted using the flow visualization technique. But the images
contain much more information which has until now remained untapped, namely quan-
titative data about the interface height field, which is encoded in the image colours.
In the next chapter we describe a new method for calibrating interface heights in the

experiment, to allow this information to be extracted for the first time.
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Calibration of the laboratory

experiment

“Mere colour, unspoiled by meaning, and unallied
with definite form, can speak to the soul in a thou-

sand different ways.”

Oscar Wilde

In this chapter, we describe the calibration of the laboratory experiment, allowing the
transformation from raw laboratory images to quantitative maps of interface height.
Three candidate calibration schemes are described, and the one considered likely to be
the most accurate is developed and implemented. The chosen scheme involves solving
layerwise torque balance equations to determine the equilibrium interface height shape
when the apparatus is in motion. This analysis is an extension of previous calculations,

to include new and important physical effects.

The calibration attempt is successful, allowing the amplitudes of the interfacial fast and

slow waves to be accurately measured for the first time with this apparatus.

3.1 Motivation for calibrating the experiment

The unprocessed colour video images from the laboratory experiment (e.g. Figure 1.6)
are of limited use. Though they provide essential quantitative information about the

horizontal structure of the flow (wavelengths and propagation speeds), the information
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regarding the vertical direction (in particular, interfacial wave amplitudes) is only qual-
itative. All we know so far is that changes in interface height correspond to changes in
observed colour, as discussed in Section 2.3. The exact quantitative relationship between
height and colour is not known, and so previous experimenters using this apparatus have
had to estimate interfacial wave amplitudes by visual observation through the annulus
lid. This method is fraught with difficulty, due to the rotating metal structure which
supports the camera, inaccuracies due to refraction at the lid and, most of all, the
inherent unreliability of guesswork. In this chapter, we develop a method for measuring

interface height quantitatively.

The images obtained from the camera are recorded onto video tape, and can be subse-
quently digitized by the frame grabber to produce red R(h), green G(h) and blue B(h)
intensity components, which depend upon the lower layer depth h(r,6,t). The task of
this chapter is to determine the functions R(h), G(h) and B(h), and hence their inverses
so that we can compute A given R, G and B. In the following sections we consider three

possible approaches to this problem.

3.2 Theoretical approach

Suppose that the angle between the axes of the entrance and analyzing polaroids is
«, and that the rotation angle per unit lower layer depth shown in Figure 2.7 is ¢()).
Neglecting the liquid in the parabolic correction tank, if light of wavelength A\ travels
through a lower layer depth of h(r,0,t), then a fraction cos®[ac — hg)(\)] of the incident
intensity will be transmitted through the analyzing polaroid to the camera. Assuming
that the source lamp is perfectly emitting, the intensity spectrum input into the liquids
is the Planck function I(\) at the temperature of the lamp (given as 3200 K by Trundle,
1987). Further assuming no absorption by the apparatus, the intensity spectrum I(\)

received at the camera is given by

10V = Iy(\cos?[a — ho(M)] . (3.1)
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This spectrum is sampled by the camera at three wavelengths (corresponding to red,

green and blue light), to give pixel intensities of

R(h) = A Ij(Aed) cos*[a — hd(Awea)] (3.2)
G(h) = A Iy(Mgreen) €08 [ — hp(Agreen)] (3.3)
B(h) = A IO()\blue) COSQ[Ot - hqﬁ()\blue)] 5 (34)

where A is a constant of proportionality. Equations (3.2)—(3.4) could each be written as
a weighted integral of (3.1) with respect to A, where the weighting functions, or cam-
era response functions, peak in the red, green and blue parts of the spectrum. The
assumption is made here that the response functions are delta-functions, however. The
camera then simply samples the incoming spectrum at three discrete wavelengths rather
than over three narrow bands of finite width. We have succeeded in determining the
functions R(h), G(h) and B(h). Once we have determined R, G and B from an image,
equations (3.2)—(3.4) represent three equations in three unknowns: A, « and h. It is
tedious but straightforward to eliminate A and « to give an implicit, nonlinear equa-
tion for h in terms of R, G and B (Williams, 2000). However, this method is made
unreliable by the assumptions which have been made (source lamp being a perfect black
body at an assumed temperature, camera response functions being delta-functions, zero
absorption in working liquids), none of which is particularly well-justified. We require a
quantitatively accurate calibration scheme which is more reliable than this approximate

theoretical method.

3.3 Direct experimental approach

For accuracy, it is desirable to take an experimental approach to the calibration prob-
lem. There is an obvious and direct experimental method. One can imagine filling up
the initially-empty annular tank with the limonene/CFC mixture, in a series of discrete
steps so that each time the depth rises by, say, 1 mm. A video recording could be made
after each millimetre rise, allowing the colour in each video image to be measured and

calibrated with interface height.

This method would require the limonene layer to be exposed to the laboratory air for a

significant period of time. Because of the harmful vapour released by limonene when not
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covered by the water layer, this method would pose a health risk to the user. A Local
Exhaust Ventilation (LEV) system could be used to reduce emissions into the labora-
tory, but the LEV is an effective extractor only when it is positioned directly above the
annulus and therefore blocking the camera field of view, which would defeat the object.

For these reasons, the direct experimental approach was rejected.

3.4 Indirect experimental approach

We have chosen for the present purposes to use an experimental calibration based on
images taken when the experiment is in operation, that is, when both the turntable
and lid are rotating at different rates. All that is needed is a method for obtaining the
interface height field in just one special case. The method must be independent, in the
sense that it does not rely on the colour information in the images, since that is what
we wish to calibrate. Fortunately, it is possible to derive an analytical expression for
the equilibrium interface height in the special case of no baroclinic instability. In this
case, zonal wave modes are completely absent and the interface is axisymmetric, but the

height can still vary strongly with radius.

We plan to take interface height as a function of radius from the analytical expression,
and colour as a function of radius from a laboratory experiment, and to determine the
relationship between interface height and colour from the two. We derive the required

analytical expression over the following pages.

3.4.1 Equilibrium interface height field

We begin the calculation by deriving an expression for the equilibrium lower layer depth
field h(r), shown in Figure 3.1, in terms of the fluid interior solid-body rotation rates
AQq and A$2y. The pressures in each layer are given by

1
pi = 5/)1-{2?7“2 — p;gz + constant , (3-5)

where 7 = 1 refers to the upper layer and ¢ = 2 to the lower layer. This equation
represents hydrostatic balance in the z-direction, and a balance between the radial pres-

sure gradient force and the acceleration experienced by a fluid parcel executing circular

20



Chapter 3. Calibration of the laboratory experiment

z=2H

z=0
r=a 0 r=b=2a

Figure 3.1: Variable definitions for the torque balance calculation. The boundary
layer widths, labelled in blue, are shown greatly exaggerated. The angular veloci-
ties of the lid, base, sidewalls, interface and fluid interiors, about the rotation axis
and relative to the base frame, are labelled in red.
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motion with angular velocity €2; = Q + AQ; in the laboratory frame.

We may deduce the pressure difference between the annulus base and lid using the
pressure field given by equation (3.5), and we can equate this pressure drop to the same
quantity determined in an independent manner, namely by vertical integration of the

hydrostatic equation. This gives
1
i(pQQg — p12)7? + constant = pygh + p1g(2H — h) — SV?h | (3.6)

where the term in V2h represents the drop in pressure across the interface due to inter-
facial tension S. From this equation we can evaluate h(r). Using the fact that p; ~ po

and neglecting meniscus effects we obtain

Q2 _ QZ 2
h(r) = (227,1)70 + constant , (3.7)
g

where ¢' = g(p2 — p1)/[3(p2 + p1)]. Finally, we determine the arbitrary constant by

applying conservation of volume:

r=b
/ 2nrh(r)dr = (b — a®)H , (3.8)
to obtain
QZ o QZ 2 5.2
nr) = i 4 S 07— 5 (3.9)

2q'
We will need the following three formulae for the torque balance calculation. The values

taken by the interface height at the sidewall boundaries are

3, ( -9 _
h(?" = a,) = H + 5(1,2 (T) = H+ (310)
and
3 /02—
h(?" = b) = H — 5@2 (T) =H_ y (311)

and the interface slope at the outer sidewall is

_ <b(9? - 93)> _ (3.12)

- !
r=b g

@
dr

The substitution b = 2a has been used in equations (3.9)—(3.11).
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3.4.2 Previous approaches

All that remains to be done, to complete our derivation of the interface height field, is
to determine the €2; in terms of Q and A{. In much of Hart’s work, including Hart
(1972), Hart (1973) and Hart (1985), as well as in other studies including Bradford et
al. (1981), these interior rotation rates are derived from the 2-layer quasi-geostrophic
(Q-G) equations with linear, parameterized Ekman velocities, neglecting the influence of
the sidewall boundaries and assuming a horizontal, flat interface. This calculation yields
the simple result AQy = %AQ and AQy = %AQ for the case of exactly equal viscosities
(see equations 5.20 and 5.21). These values can be substituted into equation (3.9) to

obtain an explicit expression for h(r).

The assumptions of geostrophy, non-interacting Stewartson layers and a horizontal inter-
face mean that this method can only be considered a first approximation. Therefore,
King (1979b) extended the Q-G analysis to include a non-horizontal interface, by includ-
ing factors of cos(mean interface gradient) in the Ekman layer terms. This simple exten-
sion made the calculation significantly more difficult, as the formulae for A2; now include
the mean interface slope. Therefore, on substituting into (3.9) an implicit, nonlinear
equation for h(r) is obtained, which must be solved numerically. This approach was
taken in Williams (2001) to calibrate the present experiment, but it gave rotation rates

which seemed too large due to the exclusion of Stewartson layer drag from this analysis.

Stewartson layers and ageostrophy cannot be captured by the simple Q-G approach, and
so King (1979b) went on to take a different approach based on layer torque balance. He
argued that, in equilibrium, the fluid interiors do not experience an angular acceleration,
and so the net external torque on the interiors due to the boundary layers must be zero.
Stewartson layers and ageostrophy are both included, but King resorted to using the

horizontal interface assumption to make the calculation analytically tractable.

In the present problem, we specifically require a non-horizontal interface, as we want the
calibration curve to span as wide a range of interface heights as possible. We therefore
present, in the following section, an extension of King’s torque balance calculation to
include non-horizontal interface effects. A summary of the physical effects included in

the previous and present calculations is shown in Table 3.1.
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Q-G method
used by Hart
and Bradford

Ekman flux
calculation of
King

torque balance
calculation of
King

torque balance
calculation
in this thesis

Ekman layers

v

v

v

Stewartson layers

v

\

sloping interface

v

v

ageostrophy

X

X

v

v

Table 3.1: A comparison of the physical effects taken into account in various
calculations to determine the equilibrium interface height in a rotating, two-layer
annulus. The methods in the first two columns are based on equating geostrophic
Ekman pumping and suction velocities at the top and bottom of each layer. The
methods in the last two columns are based on torque balance equations for each
layer.

3.4.3 Torque balance calculation

For the torque balance calculation we model each fluid layer as an inviscid interior region,
making up the vast majority of the volume of the layer, surrounded on all sides by thin
viscous boundary layers which serve to change the fluid velocity from its interior value to
its no-slip boundary value. In the two-layer annulus, the boundaries are the lid, base and
fluid interface (at which the boundary layers are Ekman (1905) layers), and the inner
and outer cylindrical sidewalls (at which the boundary layers are Stewartson (1957) lay-
ers). We assume that the interior flow in each layer is hydrostatic and columnar, and

in solid-body rotation with the angular velocities (to be determined) shown in Figure 3.1.

We expect, when the imposed lid rotation ASQ is positive, that

0<AQy < AQp < Ay < AQ (3.13)
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where A is the angular velocity of the interface. Qualitatively, the upper layer interior
is being acted upon by a prograde (anti-clockwise) stress due to the Ekman layer at the
lid, and by retrograde (clockwise) stresses due to the Ekman layer above the interface
and both Stewartson layers. The boundary layer at the lid is tending to spin the layer
up, and the remaining three boundary layers are tending to spin it down. In the lower
layer, it is the interfacial boundary layer which gives a positive angular velocity ten-

dency, and the remaining three which give a negative contribution.

The larger the velocity shear across a boundary layer, the larger the stress and the larger
the torque exerted on the fluid interior by the boundary. If there is a non-zero net torque
in either layer, there will be an angular acceleration. We expect the interior rotation
rates to adjust themselves so that, in equilibrium, the net torque is zero and the rotation

rates remain constant with time.

We now quantify the ideas of the previous paragraphs by writing down equations for
the net torques in both layers in terms of the rotation rates, and then solving for the
equilibrium rates by setting the torques equal to zero. To simplify the analysis we assume
equal layer viscosities v and densities p, both of which approximations are very good in
the present context (see Table 2.1). The Ekman and Stewartson layer widths are derived

in e.g. Read (1992b) to be, respectively,

= (3)

e () o9

There are two distinct Stewartson layers at each sidewall in the rotating annulus. The

M

(3.14)

and

N

one used here is that which serves to take the horizontal fluid velocity to zero at the
boundary, and which has a nondimensional width of the Ekman number to the power of
one-quarter. This is the appropriate layer for the present calculation, as it is the region
in which the lateral velocity shear exists. The other Stewartson layer, of width equal
to the Ekman number to the power of one-third, is responsible for returning vertical
Ekman fluxes. This layer is not associated with a horizontal drag force at the sidewalls,
and therefore does not make a contribution to the torque about the rotation axis. For

1

a typical rotation rate of 2 =1 rad s™', we obtain ég = 1 mm and ds = 8 mm.
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Rotation rate of interface

In equilibrium, the interface does not accelerate, and therefore must feel no net torque
due to the thin Ekman layers above and below it. This means that the vertical shear in
horizontal velocity across the upper interfacial Ekman layer must equal that across the

lower one, giving

1

Torque due to Stewartson layers

In general, shear stresses within fluids are given by the tensor S; ; = prou;/0x;, i # j.
So, for example, the stress on the upper layer interior by the vertical boundary r» = b is

bAQ2
—pv 5. L (3.17)

where the minus sign indicates that this stress represents a drag. A mean has been taken
over the thin Stewartson layer, across which a velocity change of bAS); is achieved. The
Stewartson layer has area 2mbH, (equations 3.10 and 3.11) and is a distance b from the
rotation axis, and so it exerts a torque on the fluid of

TStewartson . QWPVAﬂl H+ b3
1 .

ayer=1,r=b — 5S

(3.18)

Similar expressions are obtained for the torques 7T}5tewartson —psStewarison gy q Stewartson

layer=1, r=a> ~layer=2, r= layer=2, r=a

due to the remaining three Stewartson layers.

Torque due to lid and base Ekman layers

The stress on the upper layer interior by the horizontal boundary z = 2H at radius 7 is

T(AQ - AQl)
py———— .

= (3.19)

In this case the stress is dependent upon radius. An area element is rdrdf and the

distance from the axis is r, and so this Ekman layer exerts a torque on the fluid of

2t b
AQ — AQy )
Tkman _ //p”( ; O™ 4 do (3.20)
E

ayer=1, z=2H

=0 r=a
_ 4 4
_ wpv(AQ — AQy) (b a)‘ (3.21)
20r,
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TEkman

layer—2, ,—o on the lower layer interior

A similar expression is obtained for the torque

due to the Ekman layer at the base.

Torque due to interfacial Ekman layers

The stress on the upper layer interior by the interface z = h(r) at radius r is

’I“(AQl — AQ[)
—pv .
5

In this case the area element is \/1 + (dh/dr)?r dr df and the distance from the axis is

(3.22)

r, and so this Ekman layer exerts a torque on the fluid of

2r b
AQ, — AQ;)r dh\ 2
Toman = —/ / P 5 0 \/1+<5> drdd  (3.23)

0=0r=a
2
) : (3.24)
r=b

Tpr(AQ — AQ) (b — o) \/1 . (dh
An approximation has been employed (without which further analytical progress becomes

Q

205 dr

impossible) to replace the surd in the integrand of equation (3.23) with its value at r = b,

since the 7® factor heavily weights the integral towards larger 7.

TEkman

layer—2, »—p, on the lower layer interior

A similar expression is obtained for the torque

due to the Ekman layer at the interface.

Torque balance equations

We now write down expressions for the net torque in each layer, and equate them to

zero in equilibrium to give

Stewartson Stewartson Ekman Ekman _
J—iayerzl, r=a + J—iayerzl, r=>b + 71layer:l, z=2H + 71layer:l, z=h — 0 (325)
and
Stewartson Stewartson Ekman Ekman _
711ayer:2, r=a + 711ayer:2, r=b + T’Iayer:Z, z=0 + T’Iayer:2, z=h — 0. (326)

Equations (3.25)—(3.26) are two nonlinear equations in the two unknowns Ay and AQs.

Rearranging, we may write the equations in matrix form:

2
L (] () (52) () BWORNTIRE
a1+ L vy ) (5) () ()
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X [ig:] = [AOQ} : (3.27)

The matrix equation is nonlinear because H,, H_ and dh/dr|,—, all depend upon AQy
and A, through equations (3.10)—(3.12). If we now make the horizontal interface
assumption, which is H, = H_ = H and dh/dr|,—, = 0, the equations linearize and
we recover the results of King’s torque balance calculation. Additionally neglecting the
Stewartson layers by letting 65 — oo reduces the matrix equation to

e e L =[] 529

for which the solution is

A, gm}
- 3.29
2on) = [isa) (525

which is the simple Q-G result, as expected.

Iterative solutions
We use an iterative approach to solve the full, nonlinear matrix equation (3.27):
1. choose AQy = Ay =0 as a first guess;
2. evaluate H,, H_ and dh/dr|,—, for this AQ;, AQy;
3. evaluate the four matrix elements for this H,, H_, dh/dr|.—y;
4. invert the matrix equation to obtain an improved guess for A€y and AQy;

5. if the original and improved solutions are not equal to within the required precision,

return to step 2 for another iteration.

The iterations were found to converge in almost all cases. The exceptions occurred when
both Q and AS) were very large, when a feature with a period of two iterations persisted
in the equilibrated iteration series. In these cases there is presumably no equilibrium

solution to the torque balance equations.

Figure 3.2 shows the results of the iteration calculation (performed using Matlab), both

with the Stewartson layers switched on and off, for Q = 3 rad s=! and AQ = 1 rad s7'.
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Figure 3.2: Results of the iterative numerical solution of the nonlinear matrix
equation for AQ o, both (a) without and (b) with the Stewartson layer terms.
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AQ; (rad s71) horizontal interface | curved interface
Stewartson layers switched off 0.75 0.61
Stewartson layers switched on 0.54 0.42

(a)

AQ, (rad s7h) horizontal interface | curved interface
Stewartson layers switched off 0.25 0.39
Stewartson layers switched on 0.14 0.23

(b)

Table 3.2: Equilibrated values of (a) AQ; and (b) A€y for the case Q = 3 rad s~ !
and AQ = 1 rad s~!'. The values are based on a torque balance analysis which
always includes Ekman layers, and which can also additionally include Stewartson
layers and/or the increased drag effects of a curved interface.

The fourth decimal place of the solutions is stable after around the 20th iteration. Note
from the above iteration plan that the first improved guess is actually the solution of
the horizontal interface problem, as when A = AQy =0 we have H, = H = H and
dh/dr|.—, = 0, so we have solved this problem for every combination of Stewartson layers

present and absent, and interface horizontal and curved. The findings are summarized

in Table 3.2.

In both layers, and both with and without a non-horizontal interface, the inclusion of
Stewartson layer drag has significantly reduced the layer rotation rates. In the upper
layer, allowing for a non-flat interface also reduces the rotation rate, because a curved
interface has a greater surface area than a flat one, and hence gives a greater drag force.
In the lower layer, the rotation rate is increased when the non-flat interface is included,

as the Ekman layer at the interface provides the only positive torque in this layer.

60



Chapter 3. Calibration of the laboratory experiment

Figure 3.3: Laboratory experiment image used for the calibration, showing the
equilibrated flow in the case AQ = 0.77 rad s~', Q = 1.87 rad s~'. The four
boxes, each measuring 106 pixels by 40 pixels, indicate the areas from which colour
information was extracted.

We conclude that both Stewartson layers and curved interface effects are important for
determining quantitatively accurate layer rotation rates, which justifies the full analysis

given above for the purposes of calibrating the laboratory experiment.

3.5 Implementation of the calibration scheme

We now describe the implementation of the calibration scheme. An image from a labo-
ratory experiment, showing the equilibrated axisymmetric flow which is attained in the
baroclinically-stable case AQ = 0.77 rad s=' and Q = 1.87 rad s™!, is shown in Figure 3.3.
In this case, the converged iterative solution to equation (3.27) with Stewartson layers
and a sloping interface is found to be AQ; = 0.34 rad s~' and AQy, = 0.14 rad s~
Figure 3.4 shows the interface height shape thereby obtained, calculated using equa-
tion (3.9). There are 106 pixels across the annular gap in Figure 3.3, and there will

therefore be 106 points on the calibration curve we obtain.
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Figure 3.4: Lower layer depth h(r) as a function of radius, calculated analytically
for the flow shown in Figure 3.3.
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Figure 3.5: Azimuthally-averaged red, green and blue components as functions of
radius, derived from Figure 3.3. The abscissa is drawn to span the entire annular
gap, even though parallax effects discussed in Section 2.5 prevent the extraction
of data near the sidewalls.
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3.5.1 Choice of colour calibration variable

Now that we know the colour field and the interface height field, we are in a position to
derive a calibration curve. The R, G and B values of the pixels in Figure 3.3 have been
extracted by loading the jpeg image into IDL, from which they are each given as integers
between 0 and 2® — 1 = 255 inclusive (because the colour digitization is 8-bit for each
of the three colour channels). The mean radial dependence of the R, G and B fields is
shown in Figure 3.5, where the parallax effects of Section 2.5 have been included to give
an unbiased measurement of the radius. As indicated in Figure 3.3, averages have been
taken over the azimuthal angles corresponding to “3 o’clock”, “6 o’clock”, “9 o’clock”
and “12 o’clock”, in case the flow is not perfectly axisymmetric. Also as indicated in
the figure, averages have been taken over 40 azimuthally-neighbouring pixels at each of

these four angles, to reduce contamination of the signal by noise.

We can eliminate radius between the curves in Figures 3.4 and 3.5 to obtain the red
R(h), green G(h) and blue B(h) components as functions of interface height h. Then in
the three-dimensional space (R, G, B), the most complete calibration curve we can define
is given parametrically by (R(h),G(h), B(h)). To find h for a given point (R*, G*, B*),
we would simply need to find the point on the 3-D calibration curve which is closest
to the given point. We could do this by, for example, minimizing the cost function
[R(h) — R*]> + [G(h) — G*]*> + [B(h) — B*]* with respect to h. This calculation is quite
computationally-expensive, especially if interface heights are required at the majority of

points on a 768 by 576 spatial grid, 25 times per second.

We would prefer a one-dimensional calibration curve, so that we can use simple linear
interpolation to inexpensively return interface heights. For example, we could choose
to use R(h) as the calibration curve, abandoning G(h) and B(h), though it would seem
wasteful to discard two-thirds of the available colour information. To avoid this redun-

dancy, any function of R(h), G(h) and B(h) could be used.

There are other colour systems apart from the (R, G, B) system, and there is no guaran-
tee that R, G and B are in any way optimized as calibration variables. A commonly-used
alternative is the (H, S, I) system (e.g. Foley & Van Dam, 1982), where H is the hue, S

is the saturation and I is the total intensity. The transformation from (R, G, B) coor-
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Figure 3.6: Azimuthally-averaged hue component as a function of radius.

dinates to (H,S,I) coordinates is outlined in Appendix A. The H, S and [ fields in
Figure 3.3, calculated from the R, G and B fields, are shown in Figures (3.6)—(3.8).

3.5.2 Derivation of calibration curve

In theory, any of the six variables R, G, B, H, S, I could be used to derive a calibration
curve. However, the hue H is the most suitable, for two important reasons. Firstly, hue
is the only colour variable of the six which is a one-to-one function of interface height
over the height range being considered. The other five are many-to-one functions, and
hence are not uniquely invertible. If any one of these five were to be used as the cali-
bration variable, there would often be an ambiguity over which height had given rise to
the observed colour component. This is clearly an undesirable feature of any calibration

scheme.

Secondly, it follows from the definition of hue (equation A.9) that if R, G and B are
all reduced in equal proportions then H will be unaffected. This is because hue is inde-
pendent of the total intensity. The implication is that any local absorption in the fluids

due to contamination by small particles, will be visible in all the colour fields except
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Figure 3.7: Azimuthally-averaged saturation component as a function of radius.
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Figure 3.8: Azimuthally-averaged intensity component as a function of radius.
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Figure 3.9: Calibration curve showing the relationship between the hue compo-
nent and lower-layer depth. A slight smoothing has been applied to the curve, by
taking a moving average, to remove the last remnants of noise.

hue (assuming equal absorption at all wavelengths). This explains why the hue field
in Figure 3.6 is less noisy than the red, green and blue fields in Figure 3.5. A further
source of light absorption in the fluids is a cloudiness that is often found to form in the
liquids whenever the laboratory temperature cools slightly, possibly due to condensation
of trace quantities of lower-layer liquid in the upper layer. Calibration curves using R,
G, B, S, I would therefore be expected to return heights which varied from one day to

the next, unlike a calibration curve using H.

Hue being a monotonic function of depth, coupled with its robustness to absorption
effects, makes it the ideal calibration variable. The hue calibration curve, obtained by
eliminating the radius from Figures 3.4 and 3.6, is shown in Figure 3.9. The curve is
nonlinear, which means that interpretation of the raw experimental images must be done
with caution. The regions of largest colour gradient do not necessarily correspond to

the regions of steepest interface slope.

Strictly, we should calibrate hue against path length rather than interface height. The

two are not exactly the same because of the parabolic correction tank, which is asso-
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Figure 3.10: Family of calibration curves, each derived from different experimen-
tal conditions, as labelled. The curve shown in Figure 3.9 is included, together
with eight others.

ciated with negative path lengths which vary spatially because of the parabolic shape
taken up by the [-limonene. It follows from Section 2.4 that when = 2 rad s™! the
change in [-limonene depth across the gap is only 2 mm. This is sufficiently small that it
is neglected here, i.e. we assume that the [-limonene surface is perfectly horizontal, and
therefore has the same effect as simply altering the orientation of the entrance polaroid

axis.

The method used to obtain the calibration curve in Figure 3.9 from the image in Fig-
ure 3.3 has been carried out eight further times, each time using a laboratory experiment
image corresponding to a different combination of 2 and Af2. The choices for these two
variables were limited because only those combinations which give an axisymmetric,
baroclinically-stable equilibrated flow will do. A calibration curve was derived in each

case, and the nine curves are shown over-plotted in Figure 3.10.

Deriving such a family of calibration curves, for a range of values of 2 and A(), is an
important test of the validity and accuracy of the calibration scheme. If the torque

balance analysis had been an incomplete representation of the shear stresses acting on
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the annulus liquids, or if a mistake had crept into the calculation, we would expect a
significant disagreement between different curves in the family. This is not the case, as
the figure shows that all the curves have the same characteristic S-shape, and that there
is good quantitative agreement between them. This implies that the error in the torque
balance analysis is small, and that the analysis is a good representation of torques in the
annulus. We conclude that the derived calibration curves are reasonably reliable and
accurate. We may now proceed to use the curves to reconstruct interface height fields

from given experimental images, including images in which the flow is not axisymmetric.

There is a spread in interface heights associated with any given hue, when inferred using
the nine curves in Figure 3.10. This spread can be used to define an error in the inferred
heights, which is less than +3 mm across most of the range. It is important to note
that errors in inferred wave amplitudes will be much less than this value, however. This
is because inferred wave amplitudes are determined by the gradients of the calibration
curves, rather than their absolute values, and there is excellent agreement across most
of the range between gradients within the family of curves. In Section 3.6, we study

another, much greater, source of error in inferred wave amplitudes.

3.6 Noise analysis

There is noise in the laboratory experiment images due to a phenomenon known as
pizel jitter, which has contributions from the camera, the video recorder and the frame
grabber. Pixel jitter causes the colour properties of each pixel to vary randomly in time
about some mean value, even when the scene being shot by the camera remains exactly
the same. It is the effects of this, and of the 8-bit colour quantization, which ultimately

limit the vertical resolution of the inferred interface heights.

To estimate the size of the noise, colour information was extracted from a certain fixed
pixel in 25 different frames, each showing the same resting interface in the annulus.
Since there are no interface height changes between the frames, any variance in the
colour properties is due entirely to pixel jitter. The standard deviations in the R, G, B,
H, S and I data are shown in Table 3.3 for two cases: firstly, using images from a video

recording, and secondly, using live images direct from the camera.
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video recording | direct from camera

red, R 3.6 2.5
green, GG 4.2 2.9
blue, B 6.6 4.6
hue, H 9.6° 5.2°
saturation, S 3.4 1.9
intensity, 10.3 9.0

Table 3.3: Noise in each of the six colour components, calculated as the standard
deviation of the pixel jitter in 25 frames.

It is evident from the table that the noise can be reduced by about one third by using
live images rather than video recordings, though video images were used in this thesis
for reasons of convenience. In both cases the noise in the R, G and B signals is greater
than one. This means that the accuracy of the inferred interface heights is ultimately

limited by pixel jitter, rather than the discretization of R, G and B to integers.

A crucial issue is whether or not the signature of the small amplitude, small-scale waves
will be visible through the noise in the hue field. We can investigate this by projecting
the noise in the hue field onto the calibration curve to calculate the expected noise in
the interface height field. For a calibration curve h(H) giving interface height A in terms
of hue H, we have

dh

W(H + exr) ~ h(H) + e (3.30)

where €5 is the noise in the hue field. The predicted pixel jitter noise €, in the inferred
interface height fields is therefore given by

dh
€p X GHd—H R (331)

which is plotted against interface height for the calibration curve of Figure 3.9 in Fig-
ure 3.11, assuming images from a video recording with ey = 9.6° (see Table 3.3). We

assume that ey is independent of interface height.

We can interpret the noise plotted in Figure 3.11 as the error in inferred heights, or

alternatively as the smallest change in height that we can detect. A wave of amplitude
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Figure 3.11: Resolution associated with the hue calibration curve, when used
with images from a video recording.

1 mm could therefore be marginally resolved if it was superimposed on a background
interface height of around 130 mm, but away from this height the resolution deteriorates

rapidly.

If we average over a group of N neighbouring pixels in a frame, the noise decreases by a
factor of v/N. For example, if we averaged over a box measuring 20 pixels by 20 pixels
centred on the pixel of interest, we would have N = 400 and noise reduction by a factor
of 20. This would mean that we could resolve 1 mm amplitude waves at any observed
interface height in the range of Figure 3.11, but the cost of this increase in vertical res-
olution is a decrease in horizontal resolution. 20 pixels corresponds to 8 mm, and so in
this thesis the N = 20 x 20 box averaging is performed only for inferring interface height
features with large horizontal scales (the large-scale waves). Fortunately, the small-scale
waves tend to occur near interface heights of 130 mm, and so for these we choose a box

average of N = 3 x 3 which gives adequate resolution in both the horizontal and vertical.

Another possible way to overcome the effects of pixel jitter would be to average over
a number of frames which are sequential in time. The small-scale waves are so rapidly

evolving that we could not average over more than around five frames (0.2 s) without
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losing resolution, and even then the signal-to-noise gain would be only /5 ~ 2.2, so

time-averaging was not attempted in this study.

3.7 Sample reconstructed height field

An example of an application of the calibration scheme is shown in Figure 3.12. The
annulus rotation rates in this case were Q = 0.46 rad s~! and AQ = 3.70 rad s~ !,
at which there is a rotationally-modified Kelvin-Helmholtz instability but no baroclinic
instability. The equilibrated flow is a Kelvin-Helmholtz mode of azimuthal wavenumber
9. The wave has a particularly large wavelength and amplitude due to the very large lid
rotation. The figure shows the reconstructed 2-D interface height, as well as an azimuthal
cross-section at radius r = 100 mm, in which the angle increases in the anti-clockwise
direction and has its zero at “3 o’clock”. Parallax effects described in Section 2.5 were
taken into account to produce these images, and all other reconstructed interface height
images in this thesis. We deduce that the amplitude of the interface height displacement

is around 10 mm, at this radius.

Because there are still slight remnants of pixel jitter noise present, a filtered version
of the azimuthal cross-section is shown over-plotted on the unfiltered curve. The fil-
tering method used involves projecting the curve onto the Daubechies (1988) Discrete
Wavelet Transform (DWT) functions, setting those coefficients associated with random
noise equal to zero, and then reconstructing the curve from the remaining (non-zero)
basis functions. This is implemented using the IDL routine wtn. The DWT functions
are localized and compact (hence the term wavelet) and therefore optimized for noise
removal, unlike filtering based on the Fast Fourier Transform (FFT) basis functions
(global sine and cosine waves). The reconstructed height fields in this thesis are all

filtered in this way.

Further interface height reconstructions are performed in Section 4.8, after a compre-

hensive series of laboratory experiments has been carried out.
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Figure 3.12: (a) Raw experimental image; (b) reconstructed 2D interface height;
and (c) unfiltered (solid) and filtered (dashed) azimuthal interface height profile.
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3.8 Chapter summary

We have successfully implemented a calibration scheme for interface height in the labo-
ratory experiment. By iterative solution of the nonlinear layer torque balance equations,
we have found that Ekman layers and Stewartson layers both exert a significant drag
force on the layer interiors, and that allowing for sloping interface heights is also impor-
tant for an accurate result. We have identified hue as an optimal colour calibration
variable, and have used a multi-layer torque balance analysis to derive a calibration

curve.

By projecting hue onto the calibration curve we have been able to make accurate recon-
structions of interface height maps, and thereby derive wave amplitudes in the annulus
for the first time. The vertical resolution of the inferred interface heights is limited by
pixel jitter, but it can be better than 1 mm if live images are used and an average is

taken over a number of pixels which are neighbouring in space or time.

In the next chapter, we describe the particular laboratory experiments which have been

carried out in this study, and analyze the results.
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Results of the laboratory

experiments

“Are you ready to kick it into action yet?”

“Oh, I'm ready to kick it alright!”

We begin this chapter by summarizing the experimental results obtained by Lovegrove
(1997) and Lovegrove et al. (2000) using the rotating, two-layer annulus apparatus. We
then describe three new series of experiments which have been carried out in the present
study, mentioning some preliminary experimental difficulties which frustrated progress
during the first year. The new series are designed to extend Lovegrove’s results, both
by exploring a more extreme range of parameters including the hitherto uninvestigated

ageostrophic regime, and by investigating the effects of three particular system changes.

The new experiments prove to be fruitful, as large- and small-scale waves are found to
coexist at a greater number of regions in parameter space than reported by Lovegrove.
The locations of the major transition curves in the present experiments are shown to

compare well with the predictions of simple theory.

With one particular set-up, we find that we can make video recordings of the waves with
a horizontal spatial resolution of better than one fifth of a millimetre, corresponding to

around 100 measurements per small-scale wavelength.
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Figure 4.1: Regime diagram obtained by Lovegrove et al. (2000). The paths of
the four scans are shown. In all cases the direction of the paths was towards higher
Froude number. Categorization of the equilibrated large-scale flow was performed
at each of the 48 points marked with a diamond, allowing the approximate locations
of the transition curves to be inferred (thin curves). The diagram is also divided
into regions according to the dominant azimuthal wavenumber (thick curves).

4.1 Findings of Lovegrove

Lovegrove performed a general survey of the different equilibrated large-scale flow types
achieved in the baroclinically-unstable rotating, two-layer annulus. His results are given
in terms of two dimensionless parameters: the internal Froude number (F') and dissipa-

tion parameter (d), which are defined by

fQLQ
F=im (4.1)
and
149

where I = 6.25 cm is the radial gap width, H = 12.5 c¢m is the layer depth, f = 2Q) is

2

the Coriolis parameter, ¢’ = 2g(pa — p1)/(p1 + p2) = 6 cm s % is the reduced gravity and

7= (v +1,)/2=1.18 x 107 m? s™" is the mean kinematic viscosity.
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Chapter 4. Results of the laboratory experiments

Lovegrove performed four scans in the (d, F) parameter space, in each one keeping
AQ > 0 constant, and increasing {2 > 0 in twelve discrete steps over a six hour period.
This meant that 30 minutes was spent at each of the 48 visited points of parameter
space, sufficiently longer than the spin-up time of around ten minutes, and therefore

allowing a reliable post spin-up flow categorization to be determined.

The results of Lovegrove’s experiments are shown in Figure 4.1. The flow types are
denoted by a number followed by one or more letters. The number refers to the domi-
nant azimuthal wavenumber(s), and the letters refer to how the flow evolves with time:
Ax denotes azisymmetric flow of azimuthal wavenumber zero; S denotes a steady wave
whose amplitude is constant with time; Av denotes an amplitude vacillation wave whose
amplitude periodically grows and decays with time. There are further, more complicated

flow types present in the regime diagram which are not studied in this thesis.

The main focus of Lovegrove’s work was transitions between these different large-scale
flow types, and he found good agreement between the laboratory regime diagram, and
one based on a bifurcation analysis of a theoretical model using spectral amplitude
equations. However, he also reported the presence of small-scale waves during ampli-
tude vacillation (Av) flows only. The small-scale waves would develop near the inner
cylinder during decaying phases of the vacillation, and would be completely absent dur-

ing growth phases.

This was the first time that a systematic small-scale wave presence had been reported
in a rotating, two-layer annulus experiment. Read (1992a) had reported the presence of
weak, high-frequency wave activity in the signal from a thermocouple probe embedded
in a thermally-driven, continuously-stratified rotating annulus flow. The recorded fre-
quency was close to the buoyancy frequency, suggesting that the origin of the signal was
an inertia-gravity wave. However, the inertia-gravity wave could well have been gener-
ated by an interaction between the probe and the flow, and so this cannot be regarded

as evidence of spontaneous emission.
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4.2 Preliminary difficulties with current experiments

Difficulties were encountered in this study, when an attempt was made to reproduce the
results of Lovegrove. In preliminary experiments, the fit between the observed regime
diagram transition curves and those shown in Figure 4.1 was unsatisfactory. In particu-
lar, even though points across the entire regime diagram were sampled, equilibration was
found to be nearly always to a wavenumber two flow. The fluid displayed a reluctance to
undergo transitions to different states with wavenumbers other than two. Furthermore
— in stark contrast with Lovegrove’s findings — all flows were completely devoid of
small-scale waves.! In an attempt to fix this problem, the working liquids were replaced
with fresh preparations on a number of occasions, but the small-scale waves remained

absent.

After almost a year of failed experiments, some time was spent working on a non-
experimental part of the project. Surprisingly, when the experiments were attempted
again after this break, the small-scale waves appeared in abundance. The only change in
the apparatus between the unsuccessful and successful experiments, was that the fluids
were six weeks older. We therefore infer a change in the liquids’ physical and /or chemical
properties over time, as previously suggested in Section 2.2.4. It is not surprising that
such changes might affect small-scale waves more than large-scale ones, since viscous
and interfacial tension effects are both scale-selective. Changes in the liquid properties
could therefore make the difference between presence and absence of small-scale waves,

whilst simultaneously exerting a significant but lesser impact upon the large-scale waves.

Figure 4.2 shows a comparison between the equilibrated flows obtained with fresh and

L and

aged fluids. The experimental details are otherwise identical, with 2 = 2.3 rad s~
AQ = 0.62 rad s~'. A train of short waves is present in the experiment with old fluids,
but with the fresh preparation no short waves are visible, even in the original video
footage. In both cases, an experiment was performed in which A2 was held constant
at the value just given, but €2 was slowly and continuously increased from its starting

2

value at a rate of 4 x 10~* rad s~2, in anticipation of the experiments to be described

in Section 4.3. In the system with short waves present, the flow underwent a transi-

! An undergraduate using the annulus had also previously failed to produce a flow with small-scale
wave activity, during her Masters project.
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Figure 4.2: Raw laboratory images showing the post-transient flow obtained in
experiments which used (a) fresh working liquids, and (b) aged working liquids,
but which were otherwise dynamically identical. During the many weeks which
passed between the two experiments, the source lamp broke and was replaced
with a brighter one, the automatic gain control (AGC) feature of the camera was
switched off, and the orientation of the analyzing polaroid was altered. These
modifications explain the qualitative differences between the two images.

tion to a wavenumber 3 state when ) reached 2.7 rad s™'.

The same transition was
observed in the system without short waves, but it did not occur until €2 had reached
3.4 rad s7!, suggesting that the short waves play a role in encouraging transitions. It was
difficult to study this phenomenon systematically, because the fluid properties change
in an uncontrolled and unknown way. Furthermore, the observation could be due to the
direct impact of the changing fluid properties upon the large-scale, balanced dynamics,
rather than to the impact of the short waves — whose generation is permitted by the
changing fluid properties — on the balanced dynamics. Because of these difficulties,

this phenomenon is not investigated further here, but is studied more carefully using a

numerical model in Chapter 7.

There is a need for further work to determine exactly how the fluid properties change
with age. Discrepancies between the results of this study and those of Lovegrove are
discussed, in the context of evolving fluids, in Section 4.9. To explore the impact of the
uncertain fluid properties, simulations using a numerical model with varying viscosity

and interfacial tension are described in Sections 6.2 and 6.3, respectively.

The rest of this chapter describes the laboratory experiments which were carried out

when the working liquids had been together in the annulus for between two and six
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experiment number | AQ (rad s71)
1 0.62
2 0.69
3 0.77
4 0.85
5 0.95
6 1.06
7 1.19
8 1.31
9 1.46
10 1.61
11 1.80
12 2.03
13 2.24
14 2.51
15 2.73
16 3.14

Table 4.1: The magnitude of the constant differential lid rotation A used in
each of the present experiments, measured by timing the rotation period using a
stopwatch. The error in the measurements is around 1%.

months. At this age, direct observation of the liquids and interface suggested that the

fluid properties had become relatively stable.

4.3 Description of current experiments

In the current study, four series of laboratory experiments have been performed, each
using a slightly different configuration of the two-layer annulus. Each series involves
many scans across (d, F') parameter space, though the range of parameters covered is
much greater here than in Lovegrove’s experiments. Also, we are interested here not
so much in determining the precise large-scale flow type, but primarily in locating the

regions of existence and coexistence of large-scale and small-scale waves.

All experiments had © > 0 so that, when viewed from above, the turntable rotation was

anti-clockwise in the laboratory frame. In the first series, denoted PAI (prograde, annu-
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lus, increasing), the lid rotation was prograde (A2 > 0), the geometry was annular, and
the runs were performed with increasing Q (and therefore increasing Froude number).
This series corresponds to the experiments of Lovegrove. In the second series, denoted
RAT (retrograde, annulus, increasing), the lid rotation was retrograde (AQ < 0), the
geometry was annular, and the runs were performed with increasing Froude number.
This is an interesting case to study as there is an asymmetry between the large-scale
dynamics of prograde and retrograde flow, as we will see in Section 4.5. In the third
series, denoted PAD (prograde, annulus, decreasing), the lid rotation was again prograde
and the geometry annular, but the runs were performed with decreasing Froude number,
which allows us to investigate the effects of hysteresis. In the fourth series, denoted PEI
(prograde, eccentric, increasing), the lid rotation was prograde and the Froude number
was increasing, but the inner cylinder was displaced horizontally to give an eccentric
annular geometry. The purpose of reversing the lid rotation and the direction of the
parameter space scan, and of modifying the geometry, is to see whether any of these

system changes affects the production of small-scale waves.

Each of the four series consisted of 16 experiments, in which the differential lid rotation
AQ was held constant at the magnitude shown in Table 4.1. In each experiment, last-
ing three hours, the voltage supplied to the turntable motor was linearly increased or
decreased with time under computer control. This caused the turntable rotation rate
Q to vary slowly as shown in Figure 4.3. The angular acceleration/deceleration dQ/d¢
produced was closely constant at 4 x 10~* rad s~2. By holding AQ constant and gradu-
ally increasing ), a curve is traced out in the (d, F') parameter space. In contrast with
Lovegrove’s experiments, in which 48 discrete points in parameter space were sampled,

in the present experiments we perform continuous scans.

We now look, in turn, at the results from each of the four series of laboratory experiments.

4.4 Experimental results: PAI series

During a typical experimental run in the prograde, annulus, increasing PAI series, the
flow types observed fell into the following four distinct classes, when categorized accord-

ing to the presence and absence of large- and small-scale waves. The flow types are
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Figure 4.3: Measured temporal variation of the turntable rotation 2 used in
the laboratory experiments. In the PAI, RAT and PEI experiments the computer-
generated voltage, input to an amplifier which supplies power to the turntable
motor, was linearly increased from zero to 3 V over three hours, to give the dotted
curve. In the PAD experiments, the voltage was linearly decreased over three hours,
to give the dashed curve. The curves were derived by making measurements of the
rotation period every 10 minutes, by electronically timing successive breakings of
a light beam by a tab fixed to the turntable at its circumference.
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(d) 93 min 00 sec

(e) 93 min 30 sec (f) 94 min 15 sec

(g) 95 min 00 sec (h) 142 min

Figure 4.4: Images from experiment number PAI5, at the indicated times.
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illustrated in Figure 4.4 by representative images from experiment number PAT5.

e Axisymmetric flow regime, A X. Absence of both large-scale and small-scale

waves, e.g. Figure 4.4(a) and (c).

e Kelvin-Helmholtz regime, KH. Absence of large-scale waves with global pres-

ence of small-scale waves, e.g. Figure 4.4(b) [and also Figure 3.12(a)].

e Mixed Regular Wave regime, MRW. Presence of regular large-scale waves
together with local presence of small-scale waves, e.g. Figures 4.4(d)—(g) which

show a large-scale amplitude vacillation cycle.

e Mixed Irregular Wave regime, MIW. Presence of irregular large-scale waves

together with local presence of small-scale waves, e.g. Figure 4.4(h).

In general, during a three hour run, the order in which the flow types were encountered
was AX, KH, AX, MRW, MIW, so that there were four transitions in total. The KH
regime is so-called in anticipation of evidence to be presented in Section 4.4.1 that the
small-scale waves in that regime are, indeed, Kelvin-Helmholtz waves. For practical
purposes, wavenumbers below five were counted as large-scale waves, and all others as
small-scale waves, though typically the spectral gap was much larger than permitted by

this definition.

In all flow regimes, the large- and small-scale waves described are superimposed onto
a background parabolic interface shape given by equation (3.9), as radial pressure gra-
dients are established to provide the required centripetal acceleration. The transition
between the AX and KH regimes marks the onset of a rotationally-modified Kelvin-
Helmholtz instability which gives rise to the observed global small-scale waves, as we
will show shortly. The return to the AX regime marks an instability boundary, at which
the turntable rotation is sufficiently large to re-stabilize the system against these waves.
The start of the MRW regime corresponds to the onset of baroclinic instability which
gives rise to the observed large-scale waves, with coexisting localized trains of small-scale
waves. The transition to the MIW regime marks the point at which the forcing is so
strong that the spatio-temporal regularity of the large-scale waves breaks down to leave

a chaotic flow.
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Figure 4.5: Close-up of the small-scale waves radiated during the decay phase
of a 2Av large-scale flow in a laboratory experiment with AQ = 1.46 rad s~ ! and
Q) = 1.94 rad s~ !, corresponding to experiment PAI9 at a time of 90 minutes.
The annular gap width (62.5 mm) measures 334 pixels in the image, and so the
horizontal resolution in this close-up view is 0.19 mm. The small-scale wavelength
is around 20 mm, so the waves are very well resolved.

Small-scale waves were observed during almost every baroclinically-unstable flow (the
MRW and MIR regimes) in the present experiments, including flows in which the large-
scale wave amplitude was constant in time. This is in contrast with Lovegrove’s experi-
ments, in which small-scale waves were reported to appear only during amplitude vacil-

lation flows. Possible reasons for this apparent inconsistency are give in Section 4.9.

As a one-off, a special experiment was performed in which the camera zoom lens was used
to zoom in to the annulus as far as possible. The camera was also shifted horizontally
by around 10 cm, so that the field of view was centred not on the rotation axis but on
the annular gap. This removes the parallax effect discussed in Section 2.5, which blocks
from view a significant portion of the interface height adjacent to the inner cylinder,
which is exactly where the small-scale waves tend to appear. A close-up of the radiated
small-scale wave field so obtained is shown in Figure 4.5. Only an azimuthally-restricted
part of the flow can be seen, but the advantage is that the horizontal structure of the

wave-train can be seen at exceptionally high resolution (0.19 mm — see figure caption).
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For each of the 16 experiments in the PAI series, the times of transitions between the
four flow classes (in minutes since the start of the experiment) were recorded. A€ is
known from Table 4.1 and €2 can be determined from the transition time using Fig-
ure 4.3, allowing the Froude number (F') and dissipation parameter (d) corresponding
to each transition to be calculated using equations (4.1) and (4.2). The results thereby
obtained are summarized in the regime diagrams of Figure 4.6. Contours of constant
Rossby number Ro = AQ/(292) are shown in Figure 4.6(b) for reference, showing that
we have investigated flows in which this parameter varies by three orders of magnitude,
encompassing the geostrophic Ro < 1 and ageostrophic Ro > 1 regimes. No attempt
was made during this study to reproduce Lovegrove’s detailed sub-classification within
the MRW regime. The full Froude number span was not always achieved, as some of the
higher-numbered experiments were terminated before the full three hours had elapsed.

This was because the fluid interface had become so steep that it began to intersect the lid.

As regards the large-scale waves, there is good agreement between the location of
the marginal baroclinic instability curve in the present and Lovegrove experiments.
The Phillips model (e.g. Pedlosky, 1987) predicts a Froude number for this curve of
Fiitical = m2/2 ~ 4.9, independent of the shear (i.e. the dissipation parameter). This
is in reasonable agreement with the Froude numbers for the transitions to the MRW
regime in Figure 4.6. There seems to be a weak dependence on shear in the laboratory
which is not captured by the model, possibly because the model is for a channel rather

than an annulus, and because of ageostrophic effects not captured by the model.

The small-scale modes of main interest have different characteristic properties when they
appear in the MRW and MIW regimes rather than in the KH regime. This can be seen
by comparing Figures 4.4(b)&(h), for example. In the MRW and MIW regimes, the
short waves are generally smaller in amplitude and wavelength, and are radially and
azimuthally confined unlike in the KH regime. This suggests that different generation
mechanisms may be responsible in the two cases, a possibility which we investigate in

Sections 4.4.1 and 4.4.2.
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Figure 4.6: Experimental regime diagrams for the PAI series, plotted using two
different sets of axis scales and limits. In (a) the axes are identical to those in
Lovegrove’s regime diagram, Figure 4.1, which focuses exclusively on the MRW
regime. In (b) the full span of the present experimental paths is shown. Each
multi-coloured line corresponds to one 3-hour experiment, with experiment number

1 furthest to the right and experiment number 16 furthest to the left.
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4.4.1 Analysis of small-scale waves in the KH regime

We now show that the KH regime small-scale waves are Kelvin-Helmholtz modes gener-
ated by a shear instability, as anticipated by the label. The transfer of energy from the
large-scale basic flow to the small-scale growing waves is achieved in this case through a
wave-mean flow interaction, unlike the wave-wave triad interaction mechanism discussed
in Section 1.1. Kelvin-Helmholtz modes are expected to be generated whenever the ver-
tical shear in horizontal velocity exceeds a particular value. This criterion is expressed
in non-dimensional terms as the Richardson number dropping below some critical value,
usually taken to be % or 1 depending upon the exact definition of the Richardson number

(Acheson, 1990).

The gradient Richardson number for a continuously stratified flow is defined by

. —(g/p)(0p/0z)
Ri=—Guazr

where p(z) and u(z) are the density and horizontal velocity profiles, respectively. For an

(4.3)

axisymmetric two-layer annulus flow, with solid-body rotation rates in layers 1 and 2 of
AQ; and A€, relative to the turntable, the bulk Richardson number, vertically-averaged
over the interfacial Ekman layers — both of width /v /Q from equation (3.14) — is, at

radius 7,

2 !
Riz_9VV/2 (4.4)
r2 (AQl — AQQ)2

The Richardson number criterion stated above strictly only applies to non-rotating sys-
tems. The applicability of non-rotating Kelvin-Helmholtz instability theory to rotating
systems has been investigated by James (1977). He derives an implicit fourth order
polynomial dispersion relation for a rotating, two-layer channel, and numerically solves
it to plot Kelvin-Helmholtz growth rate curves for both the rotating and non-rotating

cases. A comparison of the curves leads him to conclude that

“the Kelvin-Helmholtz instability is but little affected by rotation ... broadly,
this [rotating case] instability is adequately described by the non-rotating
theory.”

This statement holds because the laboratory small-scale waves evolve on timescales of

much less than the rotation period. We conclude that we may proceed to apply the
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Figure 4.7: Variation of angular velocity difference across the fluid interface
with turntable angular velocity €2, for various fixed values of the differential lid
rotation AS). The curves are obtained from solutions of the annulus torque balance
equations (3.27) derived in Chapter 3. For combinations where both Q and AQ
were large, the iterative solution described in that chapter failed to converge, and
so these points are missing from the figure.

non-rotating criterion to the rotating annulus system.

To a first approximation, AQ; and A€, are both proportional to the differential lid
rotation AS2 and independent of the turntable rotation 2. We developed, in Chapter 3,
an iterative method for calculating AQ; and AQy (and hence the shear AQy; — AQy) for
given AQ and 2. We can use the same torque balance analysis here, too, to improve on
the first approximation for the shear. The results of this calculation for each combina-
tion of 7 different values of AQ2 and 16 different values of 2, are shown in Figure 4.7.
Both Stewartson layers and curved interface effects are included in the torque balance
calculation, for accuracy. It can be seen that the shear actually shows a significant
variation with turntable rotation for fixed differential lid rotation. This variation is
unreported in the annulus literature, and is due to two effects. Firstly, as the turntable
angular velocity is increased the fluid interface becomes more curved, resulting in a

greater area over which interface drag forces act. Secondly, the Stewartson and Ekman
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Figure 4.8: Variation of mid-radius Richardson number averaged over the inter-
facial Ekman layers, with turntable angular velocity, for various fixed values of the
differential lid rotation. Dashed lines corresponding to critical Richardson numbers
of 1/4 and 1 are also drawn.

layer thicknesses shrink according to different powers of Q according to equations (3.14)
and (3.15), resulting in a shift in the balance of drag forces due to these boundary layers.
As anticipated by Table 3.2, the shear is around half that which would be obtained by
the simpler calculation, with an assumed-horizontal interface and neglected Stewartson

layers.

For each of the points plotted in Figure 4.7 we can calculate the Richardson number
using equation (4.4). The results of this calculation at mid-radius = 9.4 ¢cm are shown
in Figure 4.8. Because of the characteristic shapes of the velocity shear curves we can see
that, as €2 is increased with AQ held constant, we encounter Richardson numbers first
greater than the critical values required for Kelvin-Helmholtz instability, then less than,
and then greater than again. This is exactly what we observed during the transitions
to and from the AX and KH regimes in the experiments of Section 4.4, with the onset
of Kelvin-Helmholtz instability being followed shortly after by a re-stabilization, as seen

in Figure 4.6(b).
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Figure 4.9: Regime diagram showing the predicted regions of Kelvin-Helmholtz
stability and instability in the (d, F') plane. Instability is expected wherever the
Richardson number drops below a critical value, which is shown in this plot as 0.25
and 1.

To further test the ability of this simple model to predict Kelvin-Helmholtz instability
in the laboratory, we evaluate the dissipation parameter d and Froude number F' at each
of the points in Figure 4.8, and plot a point in (d, F) space according to whether the
Richardson number is sub- or super-critical. The results are shown in Figure 4.9. There
is good qualitative agreement between regions of Kelvin-Helmholtz instability in this
figure and in the experimental regime diagram of Figure 4.6(b). The AX and KH flow
types are both reproduced by this simple analysis for the two shown values of critical
Richardson number. Their detailed shapes are not reproduced exactly, probably due to

the neglect of interfacial tension in the analysis.

We are now in a position to explain the shape of the AX and KH regions in Fig-
ure 4.6(b). The initial AX regime is missing from experiments 7-16 because the shear is
so large that the system is Kelvin-Helmholtz unstable even at the start of these exper-

iments. Similarly, the larger Froude number AX regime is missing from experiments
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12-16 because the shear is so large that the system does not re-stabilize with respect to

the Kelvin-Helmholtz mechanism before baroclinic instability occurs.

4.4.2 Analysis of small-scale waves in the MRW and MIW
regimes

We will conduct an investigation of the production of the MRW small-scale waves in
Chapter 6, using velocity fields from a numerical model. However, there is a simple
analysis that does not require velocity data, which can be done now. The analysis is
based on the ship wave problem studied by Lighthill (1978), in which an object moving
in a straight line at speed V in a fluid generates a wake of deep water surface gravity
waves. It is shown in that analysis, using geometrical arguments based on the phase
speed being twice the group speed, that waves at the edge of the wake will have a wave-
length of A\ = (47/3)(V?/g), and that their crests will meet each other at an angle of
a=90°+sin"' (1) ~ 109°.

This suggests a model for the MRW and MIW small-scale wave generation in the lab-
oratory experiments, in which the entire large-scale wave is taken to be the extended
moving object which causes inertia-gravity wave generation. The Lighthill theory is non-
rotating, but as in Section 4.4.1 we assume that the laboratory small-scale waves are not
strongly influenced by rotation. Since the speed at which the the large-scale wave travels
around the annulus is proportional to A€2, the model would suggest a small-scale wave
crest intersection angle which does not vary between experiments, and a wavelength

which increases with increasing experiment number.

A comparison between Figures 4.4(h) and 4.5, from mixed wave flows in experiments
PAT5 and PAI9 respectively, reveals that these predictions are consistent with observa-
tions. The wave crest angle is around 90° in each case, reasonably close to the predicted
angle. The drift period of the large-scale wave in Figure 4.5 was measured to be 33 s
using a stop-watch. Converting to an angular phase speed and then to a velocity at mid-
radius, r = 9.4 cm, gives V = 1.78 cm s~ . With this velocity, and using the reduced
gravity in place of g, the Lighthill theory predicts A = 23 mm, in excellent agreement

with the observed wavelength given Lighthill’s assumptions of no rotation and a point
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generating object. The same analysis for the flow in Figure 4.4(h), for which the drift

period is 45 s, gives A = 12 mm, which is also in good agreement with observations.

The small-scale waves in the Lighthill theory are not Kelvin-Helmholtz waves generated
by a shear instability, but inertia-gravity waves generated by the motion of an object in
the fluid. This gives our first indication that the observed laboratory small-scale waves
in the MRW and MIW regimes may not be Kelvin-Helmholtz waves like those in the

KH regime. This possibility is explored more fully in Sections 4.7 and 6.6.

4.5 Experimental results: RAI series

The same four regime types encountered in the PAI series were also observed in the ret-
rograde, annulus, increasing RAI series, as illustrated in Figure 4.10 by representative
images from experiment number RAI5. Note that the background radial colour gradi-
ents are different from those in Figure 4.4, because the equilibrium parabolic interface
height h(r) is now oppositely oriented in the z-direction. For prograde lid rotations in
the PAI series we had h ~ —r2, but for the present retrograde series we have h ~ +r?2

(see equation 5.22).

Figures 4.10(a), (b) and (c¢) show images from the AX, KH and AX regimes, respectively.
Figures 4.10(d)—(g), each separated by 10 s, show a steady (non-vacillating) azimuthal
wavenumber 1 flow (1S in Lovegrove’s notation) corresponding to the MRW regime.
The large-scale wave drifts around the annulus with a period of around 40 s. Small-scale
waves are barely visible in these images, but can be seen in the original video recordings
— they are easier to detect when a moving sequence of images is watched, rather than
a single snapshot. They have amplitudes which are smaller than in the corresponding
PAT experiments. Figure 4.10(h) shows an irregular large-scale wave corresponding to
the MIW regime, with small-scale waves which are again barely detectable. The bottom
part of the inner cylinder has been refracted into the field of view in this image, causing

the dark feature at mid-radius and making the image difficult to interpret.

Figure 4.11 shows the regime diagram for the RAT series. It is broadly the same as the
diagram for the PAT series shown in Figure 4.6(b), except that the shapes of the AX
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(g) 120 min 20 sec (h) 179 min

Figure 4.10: Images from experiment number RAI5, at the indicated times.
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Figure 4.11: Experimental regime diagram for the RAI series.

dissipation parameted,

Each multi-

coloured line corresponds to one 3-hour experiment, with experiment number 1
furthest to the right and experiment number 16 furthest to the left. The dissi-
pation parameter, which is negative according to equation (4.2) since AQ < 0, is
plotted with its sign reversed for comparison with the other regime diagrams.
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and KH regions have been modified slightly.

The most likely explanation for the reduced small-scale wave amplitudes in this series,
compared with the PAI series, is that interfacial tension effects are larger in the present
case. The quasi-geostrophic equilibrium parabolic interface height shape will shortly
be shown to be given by equation (5.22). There are two contributions: the external
centripetal effect Q%r?/(2g) is always positive, whereas the internal centripetal effect
—QAQr?/(2g') is positive for retrograde QAQ < 0 flow and negative for prograde
QAQ > 0 flow. In the current series of experiments, then, the external and internal
centripetal effects combine constructively to give an interface of larger curvature than in
the PAT series, where there was partial cancellation between the two terms. This seems
to have reinforced the effects of interfacial tension — which are proportional to curvature
— to such an extent that the growth of small-scales waves has been suppressed in this

case.

4.6 Experimental results: PAD series

Figure 4.12 shows the equivalent regime diagram for the prograde, annulus, decreasing
PAD series. Individual frames from a typical experiment are not shown in this case, as
they are almost identical to those from the PAI series except that their order is reversed

in time. The small-scale wave amplitudes seemed to be generally the same as for the

PAT series.

The regime diagram is almost exactly the same as the diagram for the PAT series shown
in Figure 4.6(b), except that the AX regime at larger Froude numbers has vanished.
The boundary between the AX and KH region is very well predicted by Figure 4.9 with
a critical Richardson number of 1. The only dynamical difference between the large
Froude number KH regions in the PAI and PAD series is the direction of approach in
parameter space. Sensitivity to direction of approach is a manifestation of intransitiv-
ity and is a consequence of hysteresis in the system. Intransitivity has been observed
before in experimental studies of the rotating annulus (e.g. Hide & Mason, 1975). The
implication is that for a given (d, F') there are many possible equilibrated flows, and the

particular one which is observed depends to an extent upon the system’s memory of its
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coloured line corresponds to one 3-hour experiment, with experiment number 1
furthest to the right and experiment number 16 furthest to the left.

previous state.

4.7 Experimental results: PEI series

For the prograde, eccentric, increasing PEI configuration, we displace the inner cylinder

horizontally so that it is no longer aligned with the rotation axis. The concentric annulus

thus becomes an eccentric annulus, with a distorted geometry in which the annular gap

width and Froude number vary with azimuth. Streamlines become more tightly packed

in the region of smallest gap width, enhancing the shear there and allowing an inves-

tigation into whether there are preferential azimuthal angles for short wave generation

now that the azimuthal symmetry is broken.

Because of time constraints, the full set of 16 PEI experiments could not be carried out,

and so a regime diagram could not be drawn. Representative stills from experiment

PEI3 are shown in Figure 4.13, however. The same four flow types previously described
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(a) 5 min

(¢) 70 min (d) 95 min

(e) 115 min (f) 131 min

(g) 132 min

Figure 4.13: Images from experiment number PEI3, at the indicated times.
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were observed. The AX flow type is shown in (a) and (c), and the KH regime in (b).
The MRW regime is shown in (d)—(g), with (d) showing a 2S flow, (e) showing a 3S flow,
and (f) and (g) showing times of maximum and minimum amplitude in the cycle of a
4Av flow. The MIW regime is shown in (h). Unlike in the KH regime of this preliminary
experiment, in the mixed wave regimes there was no evidence of preferential short wave
emission regions correlated with regions of large shear (i.e. regions near “9 o’clock”).
This adds weight to the conclusion from Section 4.4.2 that the short waves in the MRW

and MIW regimes are not generated by a shear instability.

4.8 Calculation of wave amplitudes

We now use the calibration scheme of Chapter 3 to determine the amplitudes of waves
in the MRW regime of the PAT experiments (Section 4.4), following the example of Sec-
tion 3.7. Figures (4.14)—(4.16) show the amplitude calculation for large-scale, baroclinic
waves of azimuthal wavenumbers 1, 2 and 3. The wave amplitudes in the middle of
the annular gap (at 7 = 94 mm) are found to be around 25 mm, 8 mm and 7 mm,
respectively. The azimuthal profiles show that the waves are not perfectly regular, and
so the wave amplitudes read-off by eye and quoted here are approximate. This spatial
irregularity can be seen in the raw images, and suggests the presence of azimuthal modes
other than the dominant one. For example, the presence of a sub-dominant wavenumber
1 mode can be seen in the raw image of Figure 4.15(a). The amplitudes determined here

will be compared with amplitudes from a numerical simulation in Section 6.1.2.

Figure 4.17 shows a similar analysis for the image shown in Figure 1.6, consisting of
large-scale waves superimposed with two trains of small-scale waves. The amplitude of
the small-scale waves near the inner cylindrical boundary (at » = 70 mm) is around
3 mm. This is around a third of the mid-radius baroclinic wave amplitude, implying
that these small-scale waves are significantly larger, relative to the large-scale mode,
than those reported by Read (1992a). The small-scale wave amplitude decreases quite

rapidly with increasing radius, dropping below 1 mm at mid-radius (not shown).
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Figure 4.14: Large-scale baroclinic wave with azimuthal wavenumber 1. (a) Raw
experimental image, and (b) reconstructed mid-radius azimuthal profile of interface
height.

99



Chapter 4. Results of the laboratory experiments

145

140

135

130

125

&
&
<
o
n
2
kS)
O
o
=
S}
—
&
&
N
=
i
=
®
<
v
O
O
2
o
®
)
=
©
D
(.
)
+
=

120 | | !

90 180 270
azimuthal angle (degrees)

(@Y}
(o))
O

(b)

Figure 4.15: Large-scale baroclinic wave with azimuthal wavenumber 2. (a) Raw
experimental image, and (b) reconstructed mid-radius azimuthal profile of interface
height.
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Figure 4.16: Large-scale baroclinic wave with azimuthal wavenumber 3. (a) Raw
experimental image, and (b) reconstructed mid-radius azimuthal profile of interface
height.

101



Chapter 4. Results of the laboratory experiments

£ 150
£ | |
(@]
I~
. ’ .
i}
2 . |
° L |
IR -
E |- _
e | l
= L J
(@]
= | |
L
o 50 =
@]
2 + |
g | il
c
. | |
6 |- —
R 0 ! ! !

0 90 180 270 360

azimuthal angle (degrees)

Figure 4.17: Reconstructed azimuthal profile of interface height near the inner
cylindrical boundary of Figure 1.6.

4.9 Discussion

The small-scale waves in the current experiments are more ubiquitous than those in
Lovegrove’s experiments. In particular, whereas Lovegrove reported small-scale wave
generation only during amplitude vacillating large-scale modes, we have observed them
in almost all non-vacillating large-scale flows, though their amplitudes are generally
smaller when the large-scale amplitude is constant. The large-scale flow types during
which small-scale waves were observed to be generated in Lovegrove’s experiments, are

therefore a subset of those in the present experiments.

This apparent discrepancy can be explained in either (or both) of two ways. We could
assume that small-scale waves were actually just as ubiquitous in Lovegrove’s experi-
ments as in the present ones, but that his flow visualization had sufficient resolution
to capture only those with the largest amplitude. This could be due to his lower-grade
video signal or frame-grabber (Figure 2.4), or to a non-optimized crossed polaroid angle
(Section 2.3). Alternatively it may have been that the differences in fluid properties,
which evolve in time as inferred in Sections 2.2.4 and 4.2, have had a significant impact

upon the small-scale wave production mechanism. It is not clear which of these two
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explanations is responsible, though it seems more likely to be the latter.

4.10 Chapter summary

The wave modes occurring in the rotating two-layer annulus equations fall into two
distinct classes, both of which we have observed in the present series of laboratory
experiments. We have identified those regions of the principal 2-D parameter space
in which the large-scale and small-scale modes exist and coexist, and labelled them
appropriately. Kelvin-Helmholtz shear instability theory, based on a critical Richardson
number, appears to explain the locations of the AX — KH and KH — AX transition
curves, and baroclinic instability theory based on a critical Froude number successfully

accounts for the locations of the AX — MRW and KH — M RW transition curves.

The mechanism by which the MRW and MIW small-scale waves are generated remains
to be explained, though we have shown that the waves are robust to various system
changes, appearing in four different experimental configurations, and are therefore not
just a feature peculiar to the particular configuration used by Lovegrove. The gener-
ation mechanism responsible will be investigated in detail using a numerical model in

Chapter 6.

This chapter marks the end of the first part of the thesis. Though we have been able
to derive wavelengths and amplitudes in the experiment, there is no practicable way
to measure velocity fields. These are needed to investigate the production of short,
fast waves in baroclinically-unstable flow regimes. Motivated by this, in the following
chapters we develop and run a numerical model of the laboratory experiment, which will
allow us to derive high-resolution velocity data for this purpose. It will also give interface

heights and azimuthal wavenumbers for comparison with those in the laboratory annulus.
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Description of the numerical model

“quagmire (noun) 1. an area of soft wet ground
which you sink into if you try and walk on it

2. a difficult and dangerous situation.”

Cambridge Advanced Learner’s Dictionary,

2003.

In this chapter, we describe the design and construction of a new numerical model for
simulating fluid flows in rotating annulus laboratory experiments. Having discussed a
variety of candidate model types, each with different dynamical assumptions, we decide
to use a multi-layer quasi-geostrophic model. A model with a full representation of the
annular geometry is preferable to a Cartesian channel model, for a number of important

reasons which are discussed.

The two-layer continuous quasi-geostrophic equations in cylindrical coordinates are derived,
and are decomposed into vertical and azimuthal normal mode form to simplify their solu-
tion. Suitable sidewall boundary conditions are derived by considering integral properties
of the governing equations. Then the equations are carefully discretized in such a way as
to preserve discrete analogues of the integral properties. Suitable numerical parameter
values and initial conditions are given, and the model code units are tested to ensure

that they are free from errors.

The model has become known as QUAGMIRE, the QUAsi-Geostrophic annulus Model

for Investigating Rotating fluids Ezperiments.
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5.1 Motivation for running numerical simulations

In this, the second part of the thesis, we embark upon an investigation of the rotating,
two-layer annulus using a numerical model. This computational approach is complemen-
tary to the laboratory investigation undertaken in the previous chapters, and is intended
to enhance and extend our understanding of the dynamical mechanisms at play. The key
aims are to determine the fluid velocity fields (unavailable from the laboratory experi-
ments) in order to investigate sources of the observed small-scale wave emission in the
MRW regime, and to run simulations both with and without a representation of the fast

waves in order to investigate their impacts on the large-scale flow.

One possible numerical approach would be to carry out a direct numerical simulation
(DNS) of the Navier-Stokes equations for the system, and to examine the model’s ability
to simulate the production of short waves as observed in the laboratory. DNS codes have
been developed for the rotating continuously-stratified thermal annulus (e.g. White,
1986; Hignett et al., 1985) but these would require significant modification in order to
be applicable to the discrete-layer isothermal system. Furthermore, DNS codes are com-
putationally expensive, and could be used to examine not more than a few case studies

at the resolution required to simulate the fast, small-scale waves.

As an alternative to a DNS for the numerical simulations, it was decided to use a bal-
anced model, in which small-scale waves are filtered out by construction (Section 1.1).
Because of the filtering of unbalanced modes, balanced models have fewer dynamical
degrees of freedom and therefore run much more quickly than DNS models, allowing

large numbers of simulations to be performed.

A key additional benefit is that a comparison of the laboratory and numerical results
allows us to assess the ability of a filtered model to simulate a system in which motions
occur on a wider spectrum of scales than that permitted by the filtering. This is equiv-
alent to an assessment of the impact of the small-scale waves upon the large-scale bal-
anced flow. If there are found to be discrepancies between model and laboratory system
behaviour, and if the only significant difference between model and laboratory is the
presence of small-scale waves in the laboratory, then we can infer that those discrepan-

cies are likely to be due to the presence of the small-scale waves.
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5.2 Review of filtered models

The relative merits of three candidate filtered models and two candidate geometries are

now discussed.

5.2.1 Candidate filtered models

Three commonly-used filtered models for simulating rapidly-rotating, two-layer flows are
those based on the quasi-geostrophic equations, the balance equations and the slow equa-
tions. These three equation sets can each be derived from the shallow water equations,
which in turn are derived from the Navier-Stokes equations under the assumptions of
hydrostatic balance and columnar flow. Discussions of these and other filtered models

are given by McWilliams & Gent (1980) and by McIntyre & Norton (2000).

The main assumptions made in the derivation of the quasi-geostrophic equations, first
used by Charney et al. (1950), are that the potential vorticity is advected only by the
geostrophic component of the flow, and that the amplitudes of perturbations to the
fluid surfaces are much smaller than the mean fluid depths. A list of the complete set

of approximations is given in Section 5.3.

The balance equations (Charney, 1955) are derived by performing a horizontal veloc-
ity decomposition into rotational and divergent components, and then truncating with
respect to the divergent component. The balance that they describe is more compli-
cated, but also more accurate, than geostrophic balance, and efficient procedures have
been developed to integrate them (Daley, 1982). However, it has been pointed out by
Moura (1976) that, in their most general form, the balance equations have spurious
non-physical wave solutions with phase speeds much larger than those of inertia-gravity

waves.

The slow equations (Lynch, 1989) are derived in a similar way to the balance equations,

except that the velocity truncation is performed in a more systematic manner (based

106



Chapter 5. Description of the numerical model

on normal mode initialization, discussed in Section 1.4), which results in the vanishing
of the spurious solutions. Numerical integrations of the slow equations show excellent

agreement with initialized numerical integrations of the shallow water equations.

Of these three candidate models, the quasi-geostrophic (Q-G) model was selected to sim-
ulate flows in the annulus. This is because only one scalar function of horizontal position
is needed per layer to uniquely define the state of the system using a Q-G model (stream-
function), whereas three are needed per layer using a balance or slow equations model
(streamfunction, velocity potential and geopotential). With three times fewer indepen-
dent variables, the computational advantages gained from using a Q-G model were felt

to outweigh the disadvantages of its slightly lower formal accuracy.

5.2.2 Candidate geometries

A number of numerical Q-G models have been developed for systems consisting of super-
posed immiscible fluid layers in a rectangular channel (e.g. Brugge et al., 1987). Before
constructing a new numerical model, we first considered whether any of these Cartesian
models could meet our requirements. For the following reasons, it was decided that they

could not.

Firstly, the channel equations with periodic boundary conditions are a good approxi-
mation to the annulus equations only if the ratio of the width of the annular gap to
its mean radius is much smaller than unity (King, 1979b). With this geometry, the
curvature becomes negligible, and we would be justified in using a channel model to
simulate the flow in the annulus. For the present laboratory apparatus, though, the

ratio is 6.25 ¢cm/9.375 cm ~ 0.7, which is only slightly smaller than 1.

Secondly, channel models have additional, shift-reflect symmetries (Cattaneo & Hart,
1990) not present in annulus models. This is the case because, though the annulus and
periodic channel are topologically similar, the geometry of their boundaries is fundamen-
tally different. For example, there is a reflect symmetry in the channel in the plane which
is equidistant from the sidewall boundaries, but there is no analogous symmetry in the

annulus. Kwon & Mak (1988) show that the existence of such additional symmetries
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in the periodic channel leads to certain large-scale wave-wave interaction coefficients
being identically zero. Importantly, an annular model would allow the complete set of
large-scale wave-wave interactions that take place in the laboratory experiments, to be

included in the model, which is important for quantitative agreement.

Furthermore, a model in cylindrical coordinates would be more general, and potentially
applicable to laboratory experiments other than the present one. For example, it would
keep open the possibility of running simulations in an open cylinder with no inner side-
wall, as well as in an annulus, though it would then be necessary to include an inner
sidewall of small nominal radius in the model, to avoid the singularity at r = 0. We
would need to assume that the flow is insensitive to the inclusion of this additional

boundary.

There are background potential vorticity (PV) gradients present in both the channel
and the annulus, due to the sloping of equilibrium geopotential height surfaces in the
presence of a vertical shear in horizontal velocity. In the channel, these geopotential
heights and PV gradients are linear in the across-channel direction (giving an effective
[-effect), whereas in the annulus they are quadratic because of the parabolic equilibrium
interface height shape (Section 2.4). This gives a quadratic [3-effect, with the possibil-
ity of qualitatively different dynamics than in the presence of the usual linear (-effect.

Furthermore, the quadratic -effect can be quite large (Section 5.3).

As a final point, not connected with geometry, few of the existing Q-G layer channel
models include the effects of interfacial tension, which are not necessarily always negli-

gible in the laboratory (Section 2.2.3).

Since we desire quantitative agreement with the laboratory experiments, we conclude
for these reasons that we need to construct a new multi-layer Q-G model which takes
into account the cylindrical geometry and interfacial tension. Such a model is described

in the remaining sections of this chapter.
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Figure 5.1: Schematic diagram showing a vertical cross-section through the two-
layer annulus system being modelled. The dashed line shows the resting interface
height. See text for definitions.

5.3 Derivation of model equations

The system to be modelled is shown schematically in Figure 5.1. Such a model is often
informally referred to as two-and-a-half dimensional, as the representation of the vertical
is achieved through only two discrete layers. Cylindrical polar coordinates r = (r, 0, z)
are used, the z-axis being coincident with the vertical rotation axis. The fluid is bounded
by a flat base at z = 0, a flat lid at 2 = 2H > 0 and cylindrical walls at r = a and
r = b > a. The two immiscible layers have densities p;, kinematic viscosities v; and
mutual interfacial tension S. The undisturbed layer depth is H and the disturbed lower
layer depth is H + 1. The acceleration due to gravity is g. The annulus base and walls
rotate about the axis of symmetry with angular velocity €2, and the lid with angular

velocity 2 + AQQ.

Working in the frame of the base, the four fundamental equations for the pressure p;(r, t)
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and the velocity w;(r,t) in layer i = 1,2 are the Navier-Stokes equations:

ou; 1
5: + (i V)u; +22 x u; + Q2 x (2 x7)=——Vp; +v,Vu; +g (5.1)
Pi

and the equation of volume conservation for the incompressible liquid:

We take the curl of equation (5.1) and use vector identities to obtain an equation for

the layer vorticities w; = V X u; :

awi
ot

+ (u; - Vw; = [(2Q + w;) - V]u; + 1, V2w, | (5.3)

the z-component of which, in the layer interiors where the flow is assumed to be

vertically-columnar and inviscid, is

o€, ~
%oy V)G = (e e (5.4

where §; is the z-component of w;, f = 20} is the Coriolis parameter and w; , is the

vertical velocity.

We next vertically integrate equation (5.4) over the fluid interiors, parameterizing verti-
cal Ekman pumping/suction velocities at the lid, base and interface (Gill, 1982). Assum-
ing that the Ekman layer depths are much smaller than the total layer depths, and
making the quasi-geostrophic assumptions n < H and & < f, we obtain, after rear-

rangement:
0 VQ VQ
(5r+w V)n = P eruE-al+20050 0 6
0 VvV
<§ + Uy - V> @ = — H”2 &+ x1(& —&)] (5.6)

where x; = /vi/(\/v1 +/12), and ¢;(r,0,t)/H are the perturbation potential vorticities
(PPVs), given by

q(r,0,t) =& + f—; (5.7)
and
QQ(T, 0,75) = 52 — % . (58)
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To complete the derivation, we write all of the independent variables (u;, & and 7) in

equations (5.5)—(5.8) in terms of the layer streamfunctions ;(r,,t) defined by

O
ui, 0 — a’l“ (59)
and
1 0,

The streamfunctions v; and v are defined only to within arbitrary additive constants,

which will be discussed in Section 5.4.2. The vorticities are given by
& = V2, . (5.11)

Assuming hydrostatic balance and nearly equal layer densities, the interface height per-

turbation is given in terms of the streamfunctions (to within an additive constant) by

r20)?2
n— 82V =d (g )+ L
g 29

(5.12)

where ¢' = 2g(p2—p1)/(p2+p1) is the reduced gravity. The term in 6, = 1/S/[g(p2 — p1)]
represents the effects of interfacial tension for an interface of small curvature. 6, is
the characteristic static meniscus width, as can be seen by considering solutions to
equation (5.12) when the tank is at rest (2 = 0) and the fluid velocities are zero
(1; = constant). The equation is a forced Helmholtz equation for n given 1;, where
the boundary conditions are the slopes 0n/0r at the annulus walls, which are related to
the interface contact angle. We require an explicit formula for 1, and so we seek a first
order solution to the Helmholtz equation for weak interfacial tension, by estimating the

V2n term using the solution for n when 6,, = 0. This gives

. f 2 w2 20
77—?(1+5mv)(w2—¢1)+ 29

(5.13)

where 1 and §2,V? are the first two terms in a power series solution. On simple grounds,
the series would be expected to converge rapidly if % V?p < n, which is the case if
62, < A? for waves of wavelength \. We expect waves to form on the scale of the inter-
nal Rossby radius \/¢g’H/|f|, so the convergence criterion becomes §2,f?/¢'"H < 1. This
is equivalent to F'T < 1 where F'is the Froude number, given by equation (4.1), and the
non-dimensional parameter I = §2,/(b— a)? is the interfacial tension number (Appleby,

1982).
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We finally substitute equations (5.9), (5.10), (5.11) and (5.13) into (5.5) and (5.6) to
obtain the two coupled partial differential equations governing the evolution of quasi-

geostrophic motions in the two-layer annulus:

D Vv 2A0/Qu
<D_t>1 n=-—"7 = [V + xe V(1 — 12)] + Tl (5.14)
and
D V Qv
(D_t>2q2 = 2 (Vs 4+ x1 V2 (12 — )] . (5.15)
The total derivative operators are given by
D 0 10y; 0 10¢; 0
— ] === — 4+ - — 1
(Dt)i ot ro0or 7 orao (5.16)
and the horizontal Laplacian operator is given by
0> 10 1 02
2
= 44— 1
v or? * ror * r2 00? (5.17)

From equations (5.7) and (5.8), the quantities ¢; and ¢y are given in terms of ¢ and 1,

by

f2 f 7“2Q2

¢ =V + g’H(l + 62 V?) (2 — 1) + 0 2 (5.18)
and
2 20)2
= Vs = (14 ) e ) — 5 (5.19)

On the right side of equation (5.14), the first term represents spin-down by the frictional
Ekman layers at the lid (V%) and interface (V?(¢; — t3)). The second term is the
(constant) forcing term, and represents generation of PV by the rotating lid, commu-
nicated to the fluid interior by the Ekman layer. The terms on the right side of (5.15)

have a similar interpretation, except that there is no forcing term in this case.

Equations (5.18) and (5.19) are similar to the PV-streamfunction relationships in the
channel model of Brugge et al. (1987), except that the present equations include an
interfacial tension modification, and Brugge’s By term has been replaced with our 3*r?
term. This is the quadratic [-effect discussed in Section 5.2.2. It is equal and opposite
in the upper and lower layers, corresponding to the fact that depth increases in one
layer are accompanied by equal decreases in the other layer. The radial interface height

change across the annulus, associated with these quadratic g-effect terms, can be up to

112



Chapter 5. Description of the numerical model

20 mm (Section 2.4). Since mid-radius large-scale wave amplitudes reach only 25 mm
(Section 4.8), interface perturbations due to the quadratic [-effect are not small com-

pared to those due to large-scale waves, and can therefore not be neglected.

Upon non-dimensionalization of equations (5.14), (5.15), (5.18) and (5.19), using a time
scale (AQ)~" and horizontal length scale (b — a), the definitions of Froude number
and dissipation parameter given in Section 4.1 appear naturally. We choose to code
the model using dimensional units, however, and therefore do not carry out the non-

dimensionalization here.

We now summarize the assumptions which were required to derive equations (5.14)-
(5.19). It is important to bear these approximations in mind, since they limit the

applicability of the model:

e incompressible fluids

e vertically-columnar fluid interiors

e inviscid fluid interiors (Reynolds number Re > 1)
e linear Ekman pumping/suction

e Ekman layer depths op < H £+ 7

e N H

e ¢ < f (Rossby number Ro < 1)

e hydrostatic balance Dw/Dt < g

e g <y

o |[Vn<l|

e Ik 1

e passive Stewartson layers which do not exchange fluid with the interiors

e Stewartson layer widths ds < b —a

The final two assumptions are discussed in Section 5.4, but are included here for com-

pleteness.

113



Chapter 5. Description of the numerical model

5.3.1 Perturbation equations

There is an equilibrium solution to equations (5.14)-(5.19) of the form w;, = 0, u; 9 =

rAS§2;. Substituting allows us to determine the interior solid-body rotation rates:

AQ 24y

AQ - 2(1+ x) (5:20)
and
A, 1
- 21
AQ  2(1+yx) (5.21)

where y = \/m For x = 1 this is the same result as the solution obtained from
the torque balance analysis of Chapter 3 in the absence of Stewartson layers and with
a horizontal interface (see Section 3.4.2 and Table 3.2). The corresponding interface
height (to within an additive constant) is given by equation (5.13) to be

1= (1 sy

Equations (5.20)—(5.22) describe the basic, equilibrium state upon which baroclinically-
unstable perturbations may grow. We refer to this as the mean flow and label the

corresponding streamfunctions and PPVs as ¢;(r) and (), respectively.

Governing equations for perturbations to the streamfunction . (r, 8,¢) and PPV ¢(r, 0, )
are obtained by substituting v; = v;(r) + ¥i(r,0,t) and ¢ = G(r) + ¢.(r,0,t) into
equations (5.14)—(5.19) to obtain

D 1 \% le 2 1 2/ 01 ' aqll f2 Q AQ 3W1
(Dt)l, 4 = H |:v ¢1 + XQV (¢1 ¢2)] AQl 89 + 2H g g/ 60
(5.23)
and
D r_ \4 QV? 211 2011 / Bqé f2 Q AQ 3%
<Dt>2, G=—"g VUtV — o) - AL s - on g g ) o0
(5.24)
where
! 2 91 f2 2 2 ! !
q =V 1/11 + g’H(l + 6mv )(% - ¢1) (5-25)
and
! 2 41 f2 2 2 ! !
Q@ = Vy — g’H(1 + 0V )(% - wl) . (5-26)

The total derivatives now advect according to the perturbation streamfunctions, i.e.

<D> 0 100 1040

(5.27)

Dt), ot robor rorof’
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Equations (5.23)—(5.26) are the fully nonlinear model equations which we solve. The
constant forcing term in equation (5.14), which represents forcing of the full flow by the
lid rotation, has been replaced in equations (5.23) and (5.24) with more complicated
terms which represent forcing of the perturbation flow by the equilibrium state. An
analytical assessment of the stability of small perturbations could begin by linearizing

equations (5.23)—(5.26), but for the model we retain all of the nonlinear terms.

The perturbation velocity fields are given in terms of the perturbation streamfunctions

by

oYl
I. = L 2
ul, 0 or (5 8)
and
100!
I. —_ —— ¢ 2
ul, r r 89 ? (5 9)

which are the perturbation forms of equations (5.9) and (5.10). The perturbation inter-
face height field is given (to within an additive constant) by

i = §<1 L) — ) (5.30)

which is the perturbation form of equation (5.13).

5.3.2 Normal mode decomposition of diagnostic equations

Given the fields ¢} and ¢, at any time, we can evaluate d¢./0t at that time using the
prognostic equations (5.23) and (5.24), and thereby determine ¢} at a short time in the
future. We may then use this to invert the diagnostic Helmholtz equations (5.25) and
(5.26) to obtain ¢! at that time, and then begin the loop again using the updated fields.

The Helmholtz equations are coupled, and the inversion is made easier by first writing
them in vertical normal mode form to remove the coupling. We take the sum and

difference of the equations to obtain, respectively,

VA, +4h) = q) + ¢ (5.31)
and
2 ! li 2f2 li ! ! !
V= (thy — ) — Citccg,—H(¢2 — 1) = Citeelaz — @1) » (5.32)
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where Cj.. is an interfacial tension correction coefficient given by
1

1—(2f25%)/(g'H)

We know that f262 /g'H < 1 (Section 5.3), and so Cj. is slightly larger than unity,

Clrce = (5.33)

and is exactly equal to unity if the interfacial tension is zero.

Defining the barotropic (bt) and baroclinic (bc) vertical normal mode variables to be

5.37

W = Y+, (5.34)
e = ¥ — ¢, (5.35)
Qu = ¢ +a, (5.36)

(5.37)

Q{)c = Citcc(Qé - qi) )
equations (5.31) and (5.32) both become uncoupled Helmholtz equations of the form

VAU -\ = Q) (5.38)

m

for m = bt, bc. The eigenvalues are A\, = 0 and \pc = 2Cccf2/g'H.

We now perform a second normal mode decomposition, this time into azimuthal modes,

to further simplify the solution of the Helmholtz equations. At each timestep, we expand

U (r0) = Y W (r)eY T, (5.39)
Q(rf) = > Qn(r)eV™". (5.40)

The complex functions ¥'" and Q'™ satisfy ¥'7 = ¥'~"" and Q™ = Q';"", where
the asterisk represents complex conjugation, because ! (r,6) and Q' (r,0) are real.
The n = 0 term is called the mean flow correction (a correction to the zonal flow
that is generated by nonlinear self interactions of the waves), and is equal to the zonal
average of the perturbation quantities as can be seen from the zonal integration of
equations (5.39) and (5.40). The n # 0 terms represent eddy (wave) components.
Substituting equations (5.39) and (5.40) into (5.38) gives the radial structure equation:

>y 14y n?\ - A
m 20w (A = O 5.41
dr? + r dr ( + r2> m=Qm(r) ( )

This complex ordinary differential equation must be solved for each combination of

vertical modes m € {bt,bc} and azimuthal modes n € {0,4+1,+2,...} to determine
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@' (r) given Q" (r). The inversion process required to obtain ¢(r,) from g(r,0),

which are linked by equations (5.25) and (5.26), is summarized as:

y (5.36&5.37) QO (ﬂ Q'% <EQ ‘i’,% (@Q o (5.34)&&5.35) v

m

We could now perform a third normal mode decomposition, this time in the radial coor-
dinate, by projecting U'" (r) and Q' (r) onto the eigenfunctions of the linear operator
on the left side of equation (5.41). The baroclinic eigenfunctions are modified Bessel
functions of order n in the scaled radial coordinate 7 = \/A,.r (Boas, 1983), and the
barotropic eigenfunctions are of the form r*”. However, this approach would force the
streamfunction and PPV to satisfy the same boundary conditions, for which there is no
justification. In the present model, we therefore solve the discretized radial structure

equation directly rather than projecting onto radial modes.

5.4 Perturbation streamfunction boundary conditions

for the continuous equations

We must now choose boundary conditions to apply to the perturbation streamfunction
when integrating equation (5.41). The equation was derived under the assumption of
inviscid flow. It therefore cannot describe the viscous Stewartson layers of width dg, and
so applies only to the fluid interior a + dg < r < b—ds. We assume dg < a, b so that we
may still write the integration range as a < r < b, but when we refer tor =aorr=1»>
we now mean the boundary between the fluid interior and Stewartson layer, rather than

the physical lateral boundary itself.!

There are a number of candidate boundary conditions. To impose passive Stewartson
layers which do not anywhere exchange fluid with the interior, we would apply the

impermeability condition on the radial perturbation velocity u; lr=a,p =0 V6,4, which

!An alternative method for keeping the Stewartson layers out of the analysis would be to imagine
that our laboratory apparatus is equivalent to a gedanken experiment in which, at all times in each
layer, the lateral boundaries rotate at the same rate as the fluid interiors, so that the Stewartson layers
vanish.
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in the normal mode variables corresponds to Dirichlet boundary conditions
U gy =0 Y #0,m. (5.42)

The mean flow correction n = 0 velocity is purely zonal, and so this component automati-
cally satisfies impermeability. Impermeability alone is therefore not a sufficient condition
to uniquely specify a solution. No-slip boundary conditions for the zonal perturbation
velocity U§,9|r:a, » =0 V6,1 correspond to the Neumann conditions

Ao
dr

=0 VYn,m. (5.43)

r=a, b
The equilibrium solid-body rotation flow about which we perturb satisfies impermeabil-

ity, but is not no-slip.

Since we are solving a second order differential equation, only two independent bound-
ary conditions are required. We cannot therefore impose both impermeable and no-slip
flow at both boundaries, as that would require four independent conditions. This over-
constrained nature of the PPV inversion in Q-G models is discussed in Williams (1979).
A comprehensive study of the comparative effects of using no-slip boundary conditions

rather than the more traditional free-slip conditions is described by Mundt et al. (1995).

We are therefore forced to use a reduced set of boundary conditions, but we must choose
carefully and consistently which conditions to retain and which to abandon, to avoid
any possibility of non-physical behaviour. We are, of course, free to employ different

boundary conditions for the different normal mode components specified by m and n.

The debate over suitable lateral Q-G boundary conditions has had a long and contentious
history in the literature. In the classic periodic channel models of Phillips (1954) and
Phillips (1956), boundary conditions corresponding to equation (5.42) are used for the
wave n # 0 terms, and equation (5.43) is used for the mean flow correction n = 0
component only. The latter condition was not imposed (but the former was retained)
in the studies of Phillips (1963) and Pedlosky (1964), but McIntyre (1967) showed that
relaxing this mean flow correction boundary condition leads to a spurious, unspecified
energy flux through the sidewalls. The condition was included again in Pedlosky (1970),
but replaced in Pedlosky (1971) and Pedlosky (1972) with an ad-hoc condition chosen

for mathematical convenience. Smith (1974) points out that the resulting non-physical
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energy source might well invalidate Pedlosky’s results, and repeats Pedlosky’s calcu-
lations with the proper boundary condition retained (Smith & Pedlosky, 1975; Smith,
1977). More recent studies (Appleby, 1982; Yoshida & Hart, 1986; Lewis, 1992; Stephen,
1998) have avoided the spurious energy and associated unreliable conclusions by apply-

ing both conditions in full, as in Phillips’ original paper.

A useful interpretation of Phillips’ mean flow correction boundary condition has been
given by Davey (1978). For non-zero zonal perturbation velocities u; gl,—a, 5 at the
boundary between the interior and a Stewartson layer, there will be a corresponding
return volume flux between the Ekman layers and the Stewartson layer due to the
asymmetry of the Ekman spiral (Pedlosky, 1987), which will have a non-zero radial
component proportional to u;’9|r:a,b. We can therefore ensure that there is no net

build-up of mass in the Stewartson layers by setting

2w
/ Ul glrea,pdd =0 Vi, (5.44)
0

This condition is automatically satisfied for the wave n # 0 components, and is equiv-
alent to equation (5.43) with n = 0, which is the condition used by Phillips. With this
condition, there is no net exchange of fluid due to the perturbation flow between each

Ekman layer and the Stewartson layers, though local exchange is allowed.

Next, we attempt to derive a consistent and plausible set of boundary conditions for the
annulus, which do not lead to non-physical behaviour, by considering integral properties

of both the prognostic and diagnostic model equations.

5.4.1 Integral properties of the prognostic equations

Consider the area-integral of the perturbation PPV tendencies over the annular domain:

2T b i
0q.
Ly drdf A4
/o—o/r—aatrr , (5.45)

as given by the prognostic equations (5.23) and (5.24). The linear 0/06 forcing terms

integrate to give zero unconditionally. The advection terms in the total derivatives

integrate to give zero (Salmon & Talley, 1989) if

0Y;
00

=0, (5.46)

r=a, b
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and the Laplacian (V?) terms integrate to give zero if

[
0 87‘

The two conditions (5.46) and (5.47) are equivalent to impermeability for the waves and

d9=0. (5.47)

r=a, b

no-slip for the mean flow correction, as originally used by Phillips. With these condi-
tions, the mean layer PPVs are conserved by the continuous equations and there is no
spurious energy flux. We choose to apply these conditions to the present model, except
that the second condition leads to an ill-posed PPV inversion for the special case n = 0,

m = bt, as we will see in Section 5.4.2.

5.4.2 Integral properties of the diagnostic equations

Equation (5.41) for the barotropic mean flow correction is

d2\i/'0 1 d\ijIO R
@ tra @ (5.48)

Since A,y = 0 and n = 0 for this case, one of the terms in the radial structure equation
has vanished, making the left side an exact differential. Equation (5.48) can therefore
be integrated analytically between r = a and r = b to give

A

Ay,
dr

dr

b
= / Q" rdr . (5.49)

r=b
We choose initial conditions for which the right side of this equation is zero, i.e. the
barotropic PPV averaged over the 2-D annular domain is zero, and it is then guaranteed
to remain so for all time, as shown in Section 5.4.1. This means that we need only

explicitly set

d\ijlo
?’” =0 (5.50)
and we will automatically have
LT 0 (5.51)
dr |,._, '

from equation (5.49). If we explicitly set both (5.50) and (5.51) when solving (5.48), we
have an underconstrained problem. We need to find an additional constraint, therefore,

to close the solution.

We have defined two streamfunctions in the model — one per layer or, equivalently, one

per vertical normal mode — and each of these has an integration constant associated
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with it (Section 5.3). Just because these two arbitrary constants have no physical mean-
ing does not mean that they do not need to be defined in the numerical model. Now that
we know that equations (5.50) and (5.51) are not independent boundary conditions, and
therefore that to explicitly impose both would lead to an underconstrained PPV inver-
sion, we choose to explicitly impose only equation (5.50). We then take the opportunity
to use the remaining degree of freedom associated with the solution of equation (5.48)

to define one of the streamfunction integration constants, by arbitrarily setting
Tl =0, (5.52)

which completes the set of two boundary conditions for the m = bt, n = 0 case, and

gives a well-posed problem.

Incidentally, the second streamfunction integration constant is defined by requiring the
mean interface perturbation to be zero using equation (5.13), which follows from volume
conservation for either layer. This requirement is imposed by adding a suitably-chosen
constant to one of the streamfunction fields after the PPV inversion, and not as a bound-

ary condition during the inversion.

A summary of the boundary conditions which we must explicitly set when integrating
equation (5.41) is given in Table 5.1. With these conditions, the sidewall boundaries are
impermeable to each component of the full flow — the solid-body rotation equilibrium
flow, the mean flow correction and the eddy components. The boundaries are slippery

to the solid-body rotation flow and the eddies, but no-slip to the mean flow correction.

5.5 Discretization of model equations

We have derived a set of model partial differential equations and boundary conditions
which are both sensible and well-posed. We now discretize the equations so that they
are suitable for numerical solution on a computer. We must take great care to ensure
that the discretized equations and boundary conditions retain the important properties
possessed by the continuous equations. In particular, it is important that they satisfy

discretized analogues of the integral properties discussed in Section 5.4.
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n=>0 n # 0
d\iﬂZz _ Tm _
7| =0 B, =0
m — bt
\Ijlgm|r:b =0 ‘Il,%|r:b =0
d\ij’ﬁl _ Aln —
7| =0 L
m = bc
T/ R
dgjrm =0 \Iﬂnm|r=b =0
r=b

Table 5.1: Summary of suitable boundary conditions to apply to the streamfunc-
tion when integrating the continuous equations. Because the diagnostic Helmholtz
equation relating ¢ and ¢ is second order, two conditions (one at each boundary)
are required for each combination of vertical and azimuthal normal modes, denoted
by m and n respectively.

Ar /2 j=1

j = I\Iazim

I=Nrad

Figure 5.2: Definition of the model grid. Grid-points are marked with a “x” sign,
grid-boxes with dashed lines, and the two cylindrical boundaries with solid lines.
The dimensions of typical grid-boxes, both in the interior and at the boundary, are
shown.
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The grid on which we discretize the equations is shown in Figure 5.2. The grid consists
of Nyaq points in the radial dimension (including one point on each boundary r = a and

r =10), and Ny, points in the azimuthal dimension. We define

b—a
Ar= — )
r Nog—1 (5.53)
and
P (5.54)
B Nazim ’ '
and then we have
r(@)=a+(@—-1Ar, i=1,2,...,Nu (5.55)
and
9(]):]07 j:1127---7Nazim- (556)

The point (i, Naim + 1) is equivalent to the point (i,1). We define the perturbation
streamfunction ¢’ (7, j, k) and PPV ¢'(i, j, k) at each of these points in each layer k = 1,2,
so that 9" and ¢’ are co-located on the grid. The area of the gridbox with coordinates
(,7) is approximately [1 — 24, 1 — 50;, n,.,]7(1)ArAf, where 6 is the Kronecker delta

function.

5.5.1 Prognostic equations

In the continuous case, we chose perturbation streamfunction boundary conditions such
that each of the three contributions to the area-integrated perturbation PPV tendency
was zero. We would now like to choose discretizations of these contributions, together
with discretizations of the boundary conditions, for which this statement still holds
exactly. If our discretization only conserves mean PPV approximately, then there is
the possibility of a non-physical and explosive increase in the PPV, even if the error is
small, due to the compound effects of very many timesteps. Following Section 5.4.1, we
therefore next examine the discretizations and boundary conditions necessary to ensure

that

Nrad Nazim

Z Z 0i1 = szd]f(z 3, k)r(i)ArAf =0 (5.57)

i=1 j=1

for k = 1,2, where f(i,j,k) is, in turn, the discretized azimuthal derivative, Jacobian

and Laplacian.

123



Chapter 5. Description of the numerical model

Azimuthal derivative

The centred, second order discretization of the azimuthal derivative:

77//(7;7.]' + lak) B ,Ivbl(la.] - lak)
2A0

fli,5,k) = (5.58)

satisfies equation (5.57) unconditionally, as in the continuous case.

Jacobian

The second order Arakawa (1966) discretization of the Jacobian satisfies equation (5.57)
if
W(i,j + 17 k) B wl(iaja k)
Af

which is a discretized version of the condition (5.46) for the continuous case.

=0 Vj,ki=1 Nu, (5.59)

Laplacian

It is tedious but straightforward to show that the five-point discretization of the Lapla-

cian (whose continuous definition is given in equation (5.17) for reference):

w,(2+17]7k)_2w,(la.77 )‘Hﬂ( 1]7 )

Fligh) = o
’Q/},(Z + laja k) _ ¢I(Z _ laja k)
2r(i)Ar
’Q/},(i,j + ]-7 k) - 2¢I(i7j7 k) + 1//(%] - ]-7 k)
() AI] ! (5.60)

with ghost point values ¢'(0,j, k) and ¢’ (Nraq + 1, j, k) given by linear extrapolation:

w,(27j7 k) - w,(laja k) = ¢I(17j7 k) - 1//(0,]', k) (561)
w,(Nrad + 1;ja k) - wl(Nrad;j; k) — wl(Nradaja k) - w,(Nrad - 1;ja k) ) (562)

satisfies equation (5.57) if

Na. zim !
(2, "(1,4,k
Jj=1
and
pis rada.]a w,(NI‘ad_ laja k)
=0 V& 5.64
; A’I" Y ( )
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which are discretized versions of the condition (5.47) for the continuous case. There will
be a small error in the value of the discretized Laplacian at the boundaries due to the
assumption of linearly-extrapolated ghost points, but there seems to be no other simple
way to discretize the Laplacian in such a way that analogues of its integral properties

are fully preserved.

5.5.2 Diagnostic equations

The discretized versions of equations (5.39) and (5.40) are

]\razim*1

U, (i) = Y W (i)eV I Nasim (5.65)
n=0
]\razim*1

Qig) = > Qi)™ i/ Nuim (5.66)

n=0
The summations have been truncated, compared to equations (5.39) and (5.40), because
there are only N, independent Fourier components associated with the discrete Fourier

transform of a series of V,,;m numbers.

Because W' (i, 7) is real, we have
Plaim () = (W ()], n=1,2,..., Nagim — 1 . (5.67)

We choose N,,im to be even, and then we need only explicitly solve equation (5.41) for
n=0,1,2,..., Naim/2. Solutions for n = Nyim/2+ 1,..., Nasim — 1 are given in terms
of solutions for n = Nuim/2 — 1,...,1 by equation (5.67), halving the processing time
required for the PPV inversions. The maximum resolvable wavenumber is the Nyquist

wavenumber, Naim/2.

In terms of the normal mode variables, the discretized boundary conditions (5.59), (5.63)

and (5.64) reduce, on substitution into equations (5.65) and (5.66), to

1) =
. Vm,n #0 (5.68)
U (Npaa) = 0
and
\ij/O 1 — \i,lO 2
m(l) m(?) Vm . (5.69)

\iﬂ?n(Nrad) = \iﬂ?n(Nrad_ 1)
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We now consider the discretization of the radial structure equation (5.41). Using centred

three-point finite differences at the interior points i = 2,3, ..., Nyq — 1, we obtain

T (i — 1) — 20 (3) + B (i 4 1)

S (AT)Q A
T (i 4 1) — B (i — 1)
* 2r (i) Ar
[ | = an. (5:10)

Re-grouping terms according to grid-points gives
a (D)W'5, (i = 1) + (D)0, (0) + o ()W, (i + 1) = Q' (i) (Ar)* (5.71)

where the dimensionless quantities a® and v are given by

Ar

at(i) =1+ 2 (5.72)
and
v(i) = -2 — [)\m + W} (Ar)” . (5.73)

In Cartesian geometry we would have a* (i) = 1.

The Npag — 2 equations (5.71), together with 2 boundary conditions, complete the set of
Niaq equations in the N,,q unknowns \if’ﬁl(i), i=1,2,..., Niaq. These linear equations

can be written in matrix form:

bdy  bdy w'n (1) 0
a”(2) 12 o*(2) ] e Qr(2)(Ar)?
a (3) () ot (3) ] PRG) || @ne)an)?
a (1) (@) at(4) .|| VR Qr(9)(Ar)?
a”(3) A06) .. || ¥RO) Q' (5)(Ar)?

(5.74)
where the zero elements in the tridiagonal N,,q by N;,q matrix have been left blank.
The two elements labelled “bdy” are boundary condition elements, dependent upon m

and n, and there are two more such elements in the final two columns of the bottom row.
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5.6 Perturbation streamfunction boundary conditions

for the discretized equations

In the continuous case, we found that the boundary conditions for the barotropic mean
flow correction component (m = bt, n = 0) were ill-posed as originally stated, and
remained so until we replaced a redundant boundary condition with an equation to
define an integration constant (Section 5.4). This happens in the discretized case, too:
the square matrix in equation (5.74) is singular for the barotropic mean flow correction,
when the boundary condition elements “bdy” are (—1,1) in the top row and (1,—1)
in the bottom row. The analytical proof of this, which involves showing that a certain
linear combination of rows is zero, is tedious but straightforward. By analogy with the
continuous case, we replace the two boundary condition elements in the bottom row
with (0, 1) to define the integration constant by setting the streamfunction for this com-
ponent to zero on the outer boundary, and then the matrix is no longer singular (typical

condition numbers are given in Section 5.9).

In the continuous system, we set the n = 0, m = bt normal streamfunction deriva-
tive to zero at one boundary and found that, if the mean barotropic PPV was zero,
the streamfunction derivative would automatically be zero at the other boundary (Sec-
tion 5.4.2). Importantly, in contrast with the continuous system, this statement does
not hold exactly for the discretized system. This is because Q" (1) and Q" (Nyq) do
not appear in equation (5.74); we do not apply the discretized differential equation at
the boundaries, as we need to use these two degrees of freedom to set the boundary

conditions.

The error corresponding to this PPV leak is small (~ (Ar)?), but even small errors can
grow to dominate the solution after a large number of timesteps. To fix this problem
with the barotropic mean flow correction, we discard the outer boundary streamfunction
0’ 9 (Nyaq) obtained through inversion of equation (5.74) and define a new value for it by
setting W', (Nyaa) = W'9, (Nyaa — 1). This ensures that the boundary conditions (5.69)
required for conservation of mean PPV are satisfied, but the consequence is that the
discretized differential equation (5.70) is not exactly satisfied at the point N.,q — 1. The

imposed boundary conditions are summarized in Table 5.2.
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n=>0 n#0
m(2) = (1) =0 (1) =0
m — bt
\Ijlgm(Nra‘d) = OT \III%(Nra‘d) =
m(2) = ¥n(1) =0 (1) =0
m = bc
\Iﬂnm(Nrad) - \Ij”riz(Nra‘d - 1) =0 \Ijlnm(Nrad) =

Table 5.2: Summary of the boundary conditions applied to the streamfunction
when integrating the discretized equations. The analogous conditions for the for

the continuous case are given in Table 5.1. TAfter the inversion, \i!’gt(Nrad) is
redefined by 0’9 (Nyaq) — ', (Npaq — 1) = 0, as discussed in the text.

5.7 Details of the numerical schemes

Time stepping

For the time-stepping we use a leapfrog scheme with a Robert (1966) 3-level time filter
applied at each timestep, to suppress the computational mode splitting between even
and odd numbered steps (Mesinger & Arakawa, 1976). At each step, of size At, ¢'™! is

determined at each grid point using the leapfrog scheme:
¢ = ¢+ 20t Giengency - (5.75)

and then the value of ¢’ is adjusted in such a way as to move it closer to the mean of
¢! and ¢'*!:

t—1 t+1
il qt> . (5.76)

¢ —q¢+R < 5
The old value of ¢’ is abandoned and the new, filtered value is used in its place. The
Robert filter parameter R > 0 is chosen to be as small as possible whilst still suppressing

the leapfrog decoupling.
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Time-lagged diffusion

Numerical solutions of the simple diffusion equation, using the leapfrog scheme for
the time-discretization and a time-centred three-point finite difference for the space-
discretization, are unconditionally unstable due to a computational mode (Haltiner &
Williams, 1980). To avoid this in the present model, we time-lag the diffusion terms
by one timestep when evaluating the right sides of the discretized analogues of equa-
tions (5.23) and (5.24). This means that, when evaluating the PPV tendency at timestep
t, we calculate the forcing (0/00) and advection terms using the fields at timestep ¢, but
calculate the diffusion (V?) terms using the fields at timestep ¢ — 1.

Hyperdiffusion

To represent sub-gridscale effects we add a hyperdiffusion term to the right sides of the

prognostic equations (5.23) and (5.24), as is usual in numerical models (e.g. Lewis, 1992).

At first, a fourth-order streamfunction hyperdiffusion term vyy,e V49! was tried, but sig-
nificant gridscale features were always found to form at the lateral boundaries whenever
the model was run. This is because during the PPV inversion, any gridscale features
in the PPV field will give rise to corresponding grid-scale features in the perturbation
streamfunction field, and then the vuyperV*¢)' contribution to the PPV tendency will
tend to damp out these features in the PPV field. Unfortunately this does not happen
at the boundaries in the discretized system, because boundary values of the PPV are
not used when performing the inversion. As already discussed, Q' (1) and Q'™ (Nyaq)
are missing from equation (5.74). Values of PPV therefore are able to feed back into the
PPV tendency field only at interior points, and there is nothing to suppress grid-scale
features in the PPV field at the boundaries.

To avoid this, we instead use second-order hyperdiffusion applied to the PPV, by adding
a term vhyper V¢, to the prognostic equations. This term is also time-lagged by one
timestep, as discussed above. The hyperdiffusion term does not exactly satisfy equa-
tion (5.57), though the error is small. In order to keep the model solutions as close as
possible to the continuous equations solutions, we reset the mean PPV to zero after each

timestep, by adding a very small constant whose value is chosen to fit this requirement.
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Summary of numerical integration scheme

A flow chart summarizing the details of the numerical integration scheme is shown in
Figure 5.3. Given the PPV fields at times ¢ — 1 and ¢, we invert to obtain the stream-
function fields at those times, which then allows us to calculate all the contributions to
the PPV tendency. We perform a leapfrog time integration to obtain the PPV field at
time ¢ + 1, and then modify the PPV field at time ¢ by applying a Robert filter. Once
we have obtained ¢'(t) and ¢'(t 4+ 1) from ¢'(t — 1) and ¢(¢), we discard ¢'(t — 1) and
Y'(t—1), we dump ¢'(¢) and ' (t) to disk, then we re-label ¢ — ¢t — 1 and begin the loop

again.

The system state is completely determined by ¢’. Note that it is also completely deter-
mined by ¢' together with the boundary conditions, because equations (5.25) and (5.26)
are uniquely invertible. It is not necessary to dump both v’ and ¢’ to disk in order to
have a complete description of the system, therefore. Nevertheless, we choose to save
both fields, in order to reduce the need for further calculations when plotting model

diagnostics.

5.8 Initial conditions

A feature of the leapfrog timestepping scheme is that initial condition fields are required
at two separate times, in order to begin the integration. As shown in Figure 5.3, we
choose to specify the PPV fields as initial conditions. We use small amplitude random
noise for these fields, seeding the system to permit the growth of unstable perturbations
of any azimuthal and radial wavenumber. The intrinsic Fortran function RANDOM_NUMBER
is used to generate random numbers with a uniform distribution which are shifted to a
chosen interval centred on zero. We then subtract the mean PPV in each layer at both
timesteps, which makes the fields satisfy the zero mean barotropic PPV condition of

Sections 5.4.2 and 5.6.
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Figure 5.3: Organigram showing how the the model integrations progress, start-
ing with initial conditions ¢’(0) and ¢'(1). Each timestep has inputs ¢/(t — 1) and
¢'(t) and outputs ¢'(¢) and ¢'(t+1), shown shaded. J(¢',q") = [(9¢'/0r)(Dq' ] 96) —
(0y']00)(dq' /Or)]/r is the Jacobian. The stochastic term, designed to represent

the effects of small-scale waves, is introduced in Chapter 7 and is left switched off
until then.
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m=Dbt m=Dbc
n= 389 59
n=1 112 35
n=2 99 33
n=3 82 31
n= 67 29
n= 54 26
n==~6 44 24
n==7 36 21
n=2~8 31 19
n= 26 17

Table 5.3: Estimates of the condition numbers (in the infinity-norm) of the tridi-
agonal matrices in equation (5.74), corresponding to the first 10 azimuthal modes
for both of the vertical modes. Values given are rounded to the nearest integer.

5.9 Suitable values for numerical parameters

Code to carry out the numerical integrations described in this chapter has been writ-
ten in Fortran 95 by the author and his supervisors, and compiled using the Numerical
Algorithms Group (NAG) 95 compiler for Linux. Routines from the NAG library were
employed: nag fft for the transformations between real and spectral space described
by equations (5.65) and (5.66), and nag_gen_bnd_lin_sys for solving the complex band

matrix equation (5.74) a large number (~ Nyiy,) of times each timestep.

All model runs described in this thesis were performed using double numerical preci-
sion (retaining 16 significant figures) for the calculations, and single numerical precision
(retaining 8 significant figures) for the dumps to disk. The factor by which relative
errors in the perturbation streamfunction are greater than relative errors in the PPV
is known as the condition number of the corresponding matrix. Some typical condition
numbers for the matrices in equations (5.74) are shown in Table 5.3. The largest condi-
tion number in the system has a value of a few hundred, implying that only the last two
significant figures of the inferred perturbation streamfunctions will be uncertain, and

that errors due to rounding are therefore small.

The azimuthal derivative, Laplacian and Jacobian routines were each tested using input
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Figure 5.4: Gridpoint positions used for the model runs in this thesis. There are
96 points in the azimuthal direction and 16 in the radial direction, giving gridboxes
which are approximately square near the inner boundary.

fields consisting of random numbers satisfying the boundary conditions. The mean PPV
tendency due to each contribution was found to be zero to within numerical precision,
implying that the code for these routines is free from errors. The Helmholtz solver was
tested by first using the forward formulae (5.25) and (5.26) with our discretized Lapla-
cian (5.60)—(5.62) to calculate the PPV fields corresponding to given random perturba-
tion streamfunction fields, and then using the Helmholtz solver routine to reconstruct
the streamfunction fields from the calculated PPVs. The root-mean-square difference
between the original and reconstructed streamfunction fields was around 0.1%, imply-
ing that the solver code was also free from errors. The reason that the agreement is
not exact, to within numerical precision, is that we assume linearly-extrapolated ghost
points to evaluate the Laplacian in the forward formulae — an assumption which is not

made during the inversion.

For all the model runs described in this thesis (unless stated otherwise), the annulus
dimensions a, b and H have the values indicated in Figure 2.3, the fluid properties p;, v;
and S are as indicated in Table 2.1, and the acceleration due to gravity is ¢ = 9.81 m s~2.

The FFT is much faster if the only prime factors of N,,m are 2, 3 and 5, and so we
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use a grid defined by Nysim = 2° X 3 = 96 and N,,q = 16, as shown in Figure 5.4. The
Robert filter parameter is R = 0.01. For given ) and Af), we take the amplitude of
the random initial PPV perturbation to be A{2/100 so that we are assessing the growth
of very small perturbations, we choose the timestep At to be such that the azimuthal
Courant number %AQAt/ Af is 0.01, and we choose the hyperdiffusion coefficient vpyper
to be such that the e-folding time 1/(VnyperkRyquisi) for damping of mid-radius gridscale

waves with the Nyquist wave vector knyquist = Nazim/ (@ + ) is equal to one lid rotation

period.

In order to demonstrate insensitivity to the numerical parameters, comparative runs
were done with (separately) the hyperdiffusion coefficient decreased by a factor of 10,
the Robert filter parameter decreased by a factor of 10 and the gridspacing doubled
in both directions, but all other parameters unmodified. The equilibrated wave num-
ber was the same in each case, and the mid-radius wave amplitude and phase speed
differed by at most 0.3%. We have therefore demonstrated that both rounding errors
and discretization errors are small, and that the equilibrated state is insensitive to the
values of the numerical parameters, implying that the model output gives an accurate

representation of the true solutions of the continuous model equations.

The code is very efficient: on a Linux workstation with a 1.4 GHz AMD Athlon processor
and 100% of the CPU usage, and with N,,;;, = 96 and N,,q = 16, a model integration
speed of 120 timesteps per second is attained. Since timesteps of up to around 0.1 s can
be used stably, the model can run ten times faster than the laboratory annulus. The

run-time memory requirement is 3.1 MB.

5.10 Chapter summary

We have constructed a multi-layer cylindrical quasi-geostrophic numerical model of the
rotating annulus laboratory experiment, and named it QUAGMIRE. Great care has been
taken to choose discretizations and boundary conditions which are both physically sen-
sible and computationally stable, and as a result the model gives reliable solutions of the
continuous equations. Large series of model runs have been carried out for comparison

with the laboratory results, and are described in the next chapter.

134



Chapter 6

Results of the numerical

experiments

“The purpose of models is not to fit the data but to

sharpen the questions.”

Samuel Karlin,
11th R. A. Fisher Memorial Lecture,
The Royal Society, 20 April 1983.

A large number of annulus flows have been simulated using QUAGMIRE, and the results
are described in this chapter. A Matlab diagnostics package has been written by the
author, to read in the raw data dumped to disk and plot it and other derived quantities.
Comparisons are made between flow properties in the model and the laboratory, both as
a check that the model works properly and reliably, and to investigate whether we can

attribute any differences to short waves present in the laboratory but not in the model.

A major advantage of the numerical model is that velocity fields — unavailable in the
laboratory — can easily be derived from the streamfunctions. The model velocity fields
are used in this chapter to compute various diagnostics, each of which is expected to
have some ability in predicting regions of generation of small-scale waves, either due to
a shear instability or to spontaneous emission. By identifying the indicator with the
best predictive skill, we draw conclusions about the mechanism which is most likely to

be responsible for the observed mixed-wave short emissions in the laboratory.
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6.1 Model runs with zero interfacial tension

The main series of model simulations carried out during this study consisted of 210

separate runs, one for each combination of 10 values of €2 and 21 values of A2 given by
Q/rad s™' € {1.00,1.50,1.75,2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50}
and

AQ/rad s™' € {0.01,0.02,0.03,0.04,0.05,0.06, 0.08,0.10, 0.12, 0.15,

0.20, 0.23, 0.30, 0.40, 0.50, 0.60, 0.70, 0.85, 1.06, 1.31, 1.61}.

These values were chosen to give a roughly uniform density of sampled points in the
(log[d], F') parameter space. The interfacial tension S was set to zero for these runs,
a condition which will be relaxed for the runs to be described in Section 6.4. Starting
from noisy initial conditions (Section 5.8), each run was continued for an integration
time equal to 60 lid rotation periods, which was usually found to be sufficient for waves
arising from any baroclinic instability to have equilibrated at finite amplitude. In a
few cases full equilibration was not achieved within this time and so the integration
was continued for a further 60 lid rotation periods. The 210 runs required around six
days of computer time to complete, and took up 3 GB of disk space dumping both the

streamfunction and PPV fields once every 500 timesteps.

A difference between the QUAGMIRE runs and the laboratory scans of Chapter 4 is that
for the model simulations the state was reset to the appropriate initial condition (small-
amplitude noise superimposed onto the background equilibrium state) before each new
run. In contrast, in the continuous laboratory experiment scans, the previously attained
flow served as the effective initial condition. We do this so that for each parameter
combination, we are examining the stability of small perturbations to the axisymmetric
equilibrium state, rather than the stability of an equilibrated finite amplitude large-scale
mode corresponding to a neighbouring point of parameter space. Though this approach
maintains a close association between the model and the theoretical studies of baroclinic
instability, it does mean that the model and laboratory experiments do not correspond

to exactly the same problem.
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6.1.1 Sample diagnostics

We now show some sample model diagnostics for the simulation with AQ = 0.08 rad s=!

and Q = 3.50 rad s7!, demonstrating how we can diagnose azimuthal wavenumbers,

interfacial wave amplitudes and wave phase speeds from the raw model data.

Figure 6.1 shows the perturbation interface height field (calculated from equation 5.30)
at six different timesteps, showing how the system evolves from the noisy initial state
in (a), via an azimuthal wavenumber 5 mode with initial largest growth rate in (b)-
(e), to the equilibrated wavenumber 3 mode in (f). Note that the selected mode is not
that with the initial largest growth rate, which was quite a common occurrence in the
model runs. This is due to the development of a radial mode between timesteps 10,000
and 14,000 as seen in (c), (d) and (e), which seems to alter the relative stability of
the azimuthal wavenumber 3 and 5 modes. Appleby (1988) has discussed the difficulty
of predicting, in a two-layer flow simultaneously baroclinically-unstable to two discrete
wavelengths, which of the two modes will eventually predominate. Note the close resem-
blance between the wave shapes in Figures 6.1(f) and 4.16(a), giving our first evidence
that the simulated flows are reasonable. A quantitative model/laboratory comparison

is carried out in Section 6.1.2.

Azimuthal wavenumbers can easily be read off by eye from the interface height plots, but
it is convenient to automate this procedure when it needs to be done for many hundreds
of model runs. To this end, the azimuthal Fourier component amplitudes corresponding
to the field in Figure 6.1(f) are plotted in Figure 6.2. The wavenumber 3 component is
the largest, as expected, but the azimuthal profiles are not perfectly sinusoidal. There
are significant wavenumber 6 and 9 harmonics, with amplitudes around a factor of 10
smaller than the dominant component. There is only slight evidence of an energy build-
up at the gridscale (wavenumbers of around N, /2 = 48), showing that the numerical

hyperdiffusion term (Section 5.7) is successfully suppressing any spurious growth.

In order to determine wave amplitudes, Figure 6.3 shows azimuthal profiles of full
(i.e. mean plus perturbation) interface height corresponding to Figure 6.1(f), at each
of the 16 model radii. The height shows no variation with azimuth at the two sidewall

boundaries, a consequence of both layer streamfunctions being constant there. Wave
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Figure 6.1: Evolution of the perturbation interface height field 7', from ran-
dom small-amplitude initial conditions to an equilibrated large-scale mode with
azimuthal wavenumber 3. Note that the colourbar scales vary between the plots.
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Figure 6.2: Amplitudes of azimuthal Fourier components of the mid-radius per-
turbation interface height n’ at timestep 200,000, normalized by the wavenumber
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Figure 6.4: Time series of amplitude of mid-radius perturbation interface height
n' up to timestep 300,000, starting at time zero with random small-amplitude
initial conditions.

amplitudes at each radius can be computed from diagrams such as this, by halving the
difference between the maximum and minimum displacements. In this case the ampli-

tude is largest near the middle of the annular gap, where it reaches around 1 mm.

Figure 6.4 shows a timeseries of mid-radius wave amplitude for the entire model run.
The wavenumber 5 mode is seen to grow very rapidly at the start of the run, but then
gives way to the selected wavenumber 3 mode after around 300 s. The mode 3 amplitude
temporarily vacillates as it decays towards its equilibrated value of 1.1 mm, after which

it remains constant.

By watching the equilibrated wave as it drifts around the annulus, we can derive its
phase speed. Figure 6.5 shows a post-equilibrium timeseries of perturbation interface
height displacement at a fixed mid-radius point, from which we can verify our previous
finding that the wave amplitude is 1.1 mm. By taking a temporal Fourier transform
we find the predominant period to be 51.7 s, which we must multiply by the azimuthal
wavenumber to obtain the drift period of 155 s. This is closely equal to double the lid
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Figure 6.5: Time series of mid-radius perturbation interface height displacement
n' at a fixed azimuthal point, between timesteps 200,000 and 300,000. The three
lobes of the large-scale wave, which pass the measurement point in turn, have
slightly different amplitudes suggesting that perfect equilibration has not quite
been reached.
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Figure 6.6: Contour plot of perturbation streamfunction 1] in the upper layer at
timestep 200,000. Perturbation velocity vectors u), derived from the streamfunc-
tion field, are over-plotted. The largest perturbation velocity vector in the plot
has a magnitude of 2.1 mm s".

rotation period 2 x 2w /AQ = 157 s, so that the wave angular phase speed is half the lid

rotation speed in this case.

We can derive the perturbation velocity components from the perturbation streamfunc-
tions, using equations (5.28) and (5.29). These two fields in the upper layer, after equi-
libration, are shown over-plotted in Figure 6.6. The streamfunction is constant along
the boundaries, meaning that the radial velocity component is zero there. Both con-
stants have adjusted to take different values, however, meaning that there is a non-zero
radially-averaged azimuthal velocity component, which corresponds to the mean flow
correction (Section 5.3.2). Six eddies have developed: three with rotation in the clock-
wise sense and three in the anti-clockwise sense. The net azimuthal fluid transport due
to the perturbation velocities of these eddies is in the retrograde (clockwise) direction,
though this transport is weaker than that of the mean flow and so the overall transport is
still in the prograde direction. In the lower layer, the net perturbation transport is in the
prograde (anti-clockwise) direction (not shown). The wave arising from the baroclinic
instability has therefore tended to reduce the mean velocity shear across the interface

which caused the instability.
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Figure 6.7: Time series of radially-averaged zonal perturbation velocity uy’ in
both layers, up to timestep 300,000.

We can evaluate the radially-averaged azimuthal velocity components responsible for
reducing the shear, by taking the difference between the streamfunctions at » = a and
r = b and dividing by b — a. The results of this for both layers are shown in Figure 6.7
as functions of time. The series are almost exactly equal and opposite, implying that
the mean azimuthal velocity is almost purely baroclinic, with a much smaller barotropic
component. This finding is consistent with the highly-truncated two-layer model of
Lovegrove (1997), in which certain interaction coefficients are shown to be zero because
of an additional symmetry introduced due to the layer depths being equal. This leads to
the equilibrated barotropic mean flow correction component being zero (see Lovegrove’s

equation (1.17) and following comments).

As an example of an amplitude vacillation simulated by QUAGMIRE, Figure 6.8 shows
a timeseries of post-transient amplitude from the run with AQ = 0.70 rad s~!' and
Q= 3.25 rad s~ !. In this case, the equilibrated state is a 1AV, with an amplitude enve-
lope that is not sinusoidal. The vacillation period is 47.5 s and the wave drift period in

this case is 17.3 s (not shown), so that the wave drifts completely around the tank about
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Figure 6.8: Time series of amplitude of mid-radius perturbation interface height
7', after the initial transients have decayed away, showing an amplitude vacillation
envelope.

three times between successive peaks of the vacillation cycle. This is in good agreement

with typical vacillation periods observed in the laboratory experiment.

6.1.2 Comparison between model and laboratory

We have shown how wavenumbers, amplitudes and phase speeds can be derived from the
raw data generated by the QUAGMIRE numerical experiments. These three quantities
are also readily available from the calibrated laboratory experiments, and we now under-

take a comparison between the two as an important test of QUAGMIRE’s reliability.

Wavenumber comparison

The dominant azimuthal wavenumber after equilibration has been determined for each
of the 210 model runs described in Section 6.1, and the resulting numerical regime dia-
gram is shown in Figure 6.9. There are well-defined regimes everywhere, apart from at

low d and high F' where the wavenumber 1 and 2 regions become entangled and confused.
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Figure 6.9: Model regime diagram, showing equilibrated azimuthal wavenumber
m € {0,1,2,3} at each of the 210 points investigated. Wavenumber transition
curves have been inferred and over-plotted.
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A small number of 10-member ensemble runs was carried out, in order to test sensitivity
to initial conditions. The runs within each ensemble had the same run parameters, but
different random numbers for the noise in the initial state. All ten members gave equi-
librated flows which were identical in terms of wavenumber, wave speed and amplitude,
except in the low-d and high-F' corner where there was a probability partition between
wavenumber 1 and 2. In this region there is high sensitivity to initial conditions, which
help to determine the final state, whereas elsewhere in the regime diagram there is insen-
sitivity to the precise details of the noise in the initial conditions. We return to examine
the response of the model to small-scale random noise in Chapter 7, when we use a noisy

forcing term to represent the laboratory small-scale waves.

The laboratory regime diagram corresponding to Figure 6.9 is shown in Figure 4.1.
There is excellent qualitative agreement between the shapes of the model and labo-
ratory wavenumber transition curves. Quantitative agreement is limited by a shift in
the regime features in the (d, F') plane between the two diagrams. For example, con-
sideration of the coordinates of the m = 0,1,2 and m = 0,2, 3 transition curve triple
points shows that the model overestimates F' by a factor of 1-2 and d by a factor of
5-10. The error in F'is small, and can be attributed to the many approximations made
when deriving the model Q-G equations. The error in d is significantly larger. In the
non-dimensionalized governing equations, d is the coefficient of the Ekman layer terms.
The mismatch between QUAGMIRE and laboratory regime diagrams therefore suggests
that the model assumption of linear, parameterized Ekman layers is inadequate. This
is perhaps not surprising, as the Ekman velocity formulae used in the model equations
are derived under the assumption of geostrophy, but the Rossby numbers reached in the

laboratory MRW regime can be as large as 1 (see Figure 4.6(b)).

Wave speed comparison

The post-transient angular phase speed of the waves has been determined for each of
the baroclinically-unstable model runs, and is shown in Figure 6.10. The wave speed
shows no variation with turntable speed €2, as in the laboratory experiments, and in

each case it is close to half the lid rotation speed A{2. These two statements hold even
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Figure 6.10: Angular phase speed of the model waves after equilibration, plotted
against Q for various AQ, for each model run which exhibited baroclinic instability.

as wavenumber transition curves are crossed. Since the equilibrium Q-G rotation rates
are closely one-quarter and three-quarters of the lid rotation speed (Section 5.3.1), we

conclude that the model waves travel at the mean of the equilibrium layer rotation rates.

The variation of model wave speed with lid speed is shown in Figure 6.11 for the case
Q = 2.0 rad s7!. Over-plotted on the same figure is the equivalent laboratory data,
obtained from experiments PAI1-10 after 90 minutes by timing drift periods with a
stopwatch. The model overestimates the wave speeds by a factor of four, presumably
due (at least in part) to the importance of Stewartson layer drag discussed in Sec-
tion 3.4.3, which is present in the laboratory but absent in the model, and also to the

uncertainty in the fluid properties, to be investigated in Sections 6.2 and 6.3.

Wave amplitude comparison

A systematic model/laboratory amplitude comparison is difficult because a given 2 and
AQ will correspond to different wavenumber regimes in the laboratory and model, due

to the shift of features in the (d, F') parameter space, discussed above. Whilst wave
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Figure 6.11: Angular phase speed of the wave after equilibration, plotted against
AQ for © = 2.0 rad s~!. Data from both the model and laboratory experiments
are shown, together with straight lines (dotted) of gradient 0.50 and 0.12 passing
through the origin.

speeds are independent of wavenumber, as shown above, we might expect that wave
amplitudes are not. Instead, the mid-radius wave amplitudes after equilibration were
determined for each of the baroclinically-unstable model runs, and typical values were
used for the comparison, because amplitude variations within wavenumber regimes were
small. Typical amplitudes of wavenumber 1, 2 and 3 flows in the model were found
to be around 5 mm, 2 mm and 1 mm respectively, a factor of a few smaller than the
laboratory amplitudes reported in Section 4.8. We investigate this mismatch, together

with the phase speed mismatch, in Sections 6.2 and 6.3.

6.2 Variation of model viscosity

Sufficient evidence has been accumulated (Sections 2.2.4 and 4.2) to suggest that there
may be slow changes in the physical properties of the working liquids. In this section
and the next, we vary the model viscosities and interfacial tension, respectively, to inves-

tigate whether these changes can help to explain the observed discrepancies between the
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Figure 6.12: Timeseries of mid-radius wave amplitude, showing how the ampli-
tude responds to six discontinuous increases in lower layer viscosity.

amplitudes and phase speeds of the large-scale waves reported above. Preliminary labo-
ratory evidence for changes in the large-scale waves with time, and therefore with fluid
properties, has been presented in Section 4.2. On these grounds we expect the model

waves to display a variation with fluid properties also.

The experiment with AQ = 0.60 rad s™! and Q = 2.25 rad s~! was repeated with the
lower layer viscosity v, varying throughout the run. Starting with a wave which had
equilibrated with the measured laboratory viscosity (Table 2.1), v, was increased dis-
continuously to a new value and the system was allowed to re-equilibrate, and then s
was increased again, etc. The increase was by a factor of around two in each case, and
the flow remained 1S throughout. The resulting amplitude trace is shown in Figure 6.12.
There is a ringing effect as the system adjusts to each of the six changes. Though the
viscosities reached by the end of the run were unrealistically large, just a single doubling
of vy from its assumed value produces a significant increase in wave amplitude, of around

25%.

The viscosity scan experiment described above was repeated once more, this time with
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Figure 6.13: Variation of equilibrated mid-radius wave amplitude with viscosity
ratio, given as a multiple of its value when the viscosities are equal.

six discontinuous decreases in lower layer viscosity. The equilibrated wave amplitudes
obtained from each of the 13 viscosities investigated are shown in Figure 6.13, as a
function of x = \/m . There are two distinct branches of the curve corresponding to
increasing and decreasing y. If v, were twice as large as its assumed value, and v, were
half as large, then x would be twice its assumed value and the wave amplitude would

be over 50% larger.

The reason that wave amplitudes vary with viscosity seems to be that viscosity affects
the energetics of the system. From equations (5.20) and (5.21), as x — 0, AQ; — AQ
and AQy — %AQ, whereas as y — oo, AQ; — %AQ and AQy — 0. Therefore, as y
increases, the kinetic energy of the fluids decreases. There seems to be a corresponding
increase in the gravitational potential energy, which manifests itself as an increase in the

interfacial wave amplitude.

The wave angular phase speed was also determined for each of the 13 viscosities investi-

gated, and is plotted as a function of y in Figure 6.14. There is a strong variation with
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Figure 6.14: Variation of equilibrated wave angular phase speed with viscosity
ratio, given as a fraction of the angular lid speed. The dotted line represents the
mean of the equilibrium layer rotation rates (see text).

X. Over-plotted is a curve corresponding to the mean of the equilibrium layer rotation
rates, %(AQI + A€)y), determined theoretically as a function of y from equations (5.20)
and (5.21). There is a good fit between the curve and the 13 points, showing that
QUAGMIRE waves travel at the mean layer speed for all viscosities in this range. An

increase in y from 1 to 2 would decrease the model wave speeds by around 20%.

The increase in model wave amplitude and decrease in model wave speed as x is doubled
do not fully account for the laboratory/model disagreement reported in Section 6.1.2.
Since uncertainties in the viscosity can only partially account for the discrepancy, in the

following section we investigate the effects of uncertainties in the interfacial tension.

6.3 Variation of model interfacial tension

The experiment with AQ = 0.60 rad s™! and Q = 2.25 rad s~! was repeated with the
interfacial tension S varying throughout the run. Starting with a wave which had equili-

brated with zero tension, S was increased discontinuously to a new value and the system
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Figure 6.15: Timeseries of mid-radius wave amplitude, showing how the ampli-
tude responds to ten discontinuous jumps in interfacial tension.

was allowed to re-equilibrate, and then S was increased again, etc. The increase was by
1072 N m~! in each case, and the flow remained 1S throughout. The resulting amplitude
trace is shown in Figure 6.15. As with the viscosity scans, there is a ringing effect as

the system adjusts to each change.

The equilibrated wave amplitudes obtained from each of the 11 interfacial tensions inves-
tigated are shown in Figure 6.16, as a function of S. The interfacial tension reached at
the end of the run was 1072 N m~!, only around a third of the assumed laboratory value
in the absence of a surfactant (Table 2.1), but the product FI had reached 0.47 by this
stage and QUAGMIRE requires FI < 1 (Section 5.3). We therefore do not expect the
rapid amplitude growth with S shown in the figure to be continued as F'I approaches
unity, but we can infer that the assumed interfacial tension can increase QUAGMIRE

amplitudes by at least a factor of five relative to the S = 0 case.

The wave angular phase speed was also determined for each of the 11 interfacial ten-
sions investigated, and is plotted as a function of S in Figure 6.17. There is no variation

with S, the speed taking on the mean layer speed 0.5A€) for all investigated interfacial
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tensions.

We have been unable to find detailed studies of the impact of interfacial tension on
baroclinic instability in the geophysical literature, and so it is difficult to corroborate
the above findings. The effects of interfacial tension on Kelvin-Helmholtz instability
have been more widely studied, however. From equation (9.3) of Acheson (1990), the
amplitude growth rate of a Kelvin-Helmholtz mode increases with interfacial tension,
and the wave phase speed is independent of it. In this section, we have come to similar
conclusions about waves due to baroclinic instability — equilibrated amplitudes grow
with increased tension, but speeds are unaffected — and so the comparison with Kelvin-

Helmholtz instability makes our findings plausible.

The model /laboratory intercomparison has been improved by increasing the model inter-

facial tension. The comparison is discussed in more detail in Section 6.5.

6.4 Model runs with non-zero interfacial tension

A second series of 210 model runs has been carried out, identical to the first series (Sec-
tion 6.1) except that the interfacial tension is now set to be S = 5.0 x 107 N m~!,
close to the assumed laboratory value in the presence of a surfactant (Section 2.2.3).
The resulting wavenumber regime diagram is shown in Figure 6.18. The 21 runs with
Q) = 3.50 rad s~! all crashed due to an arithmetic exception before the 500th timestep,
as the product F'I was then 0.57 and the interfacial tension correction coefficient Ci;.. =
1/(1 —2F1T) was negative, and so there are no points corresponding to these runs in the
diagram. When € is 3.25 rad s7!, 3.00 rad s~' and 2.75 rad s~!, the product FI is 0.49,
0.42 and 0.35 respectively. None of these is much smaller than unity, and so wavenum-

bers in the top three rows of points in the regime diagram are likely to be unreliable.

Neglecting these top three rows, there is good agreement between QUAGMIRE wavenum-
ber transition curves both without and with small interfacial tension (Figures 6.9 and 6.18,
respectively). We conclude, based on the present regime diagram and the analysis of Sec-
tion 6.3, that small model interfacial tension has no impact upon equilibrated wavenum-

bers or wave speeds, but significantly increases wave amplitudes.
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Figure 6.18: Model regime diagram with non-zero interfacial tension, showing
equilibrated azimuthal wavenumber m € {0,1,2,3} at each of the points investi-
gated. Wavenumber transition curves have been inferred and over-plotted.
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laboratory numerical model
S=0 S=0 | S=5mNm"’
(d, F) coordinates
of triple points
m=20,1,2 | (0.01, 4.8) | (0.06, 6) ? (+0%, +0%)
m=20,2 3 | (0.02, 5.5) | (0.25, 11) ? (+0%, +0%)
mid-radius
wave amplitude
m=1 25 mm 5 mm
m =2 8 mm 2 mm +55% +75%
m=3 7 mm 1 mm
angular wave speed | 0.12 AQ | 0.50 AQ —20% +0%

Table 6.1: Comparison of three important wave properties between the laboratory
experiments and the QUAGMIRE runs with model parameters S =0 and y = 1.
The changes in the properties when x is increased to 2 and S is increased to
5.0 x 1073 N m~! are also shown. The change in the triple point coordinates as
x is doubled has not been investigated, and accordingly these entries are labelled
with “?7”.

6.5 Discussion of model/laboratory comparison

A summary of the findings of Sections 6.1.2, 6.2, 6.3 and 6.4, regarding the quantita-
tive comparison between large-scale waves in the laboratory and the model, is given in
Table 6.1. In the present section, we consider in turn each of the comparisons in the
table, with the aim of investigating whether or not it is possible to confidently assign
reasons for the discrepancies. In particular, laboratory/model differences could be due
to (a) uncertainties in the fluid parameters; (b) unreasonable model assumptions apart

from the neglect of fast modes; and (c¢) the neglect of fast modes in the model. Before
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we can attribute the discrepancies to reason (c), and thereby claim that we have found
evidence of an observable fast wave impact upon the slow wave dynamics, we must first

be able to reject the hypotheses that the discrepancies are due to reasons (a) and (b).

Model and laboratory Froude numbers agree to within a factor of up to 2, which seems
reasonable given the many model approximations, including the small Rossby number
assumption. The significant disagreement between dissipation parameters, by a factor of
up to around 10, can probably be put down to uncertainties in layer viscosities (which
appear in the dissipation parameter formula), and to the assumption of geostrophic
parameterized Ekman velocities and other model approximations, including boundary
conditions. Lovegrove (1997) constructed a spectral, channel model of the annulus, and
came to very similar conclusions about the laboratory transition curve comparison. He

notes that:

“... while the Froude numbers of experimental runs are of the same magnitude

as those present in the theoretical regime diagram, the experimental values of
the dissipation parameter are actually about an order of magnitude smaller

than the predicted theoretical values.”

He accounts for the discrepancy as being due to system differences, and without recourse

to short waves.

Model wave amplitudes with zero interfacial tension are a factor of up to 7 times smaller
than those measured in the laboratory. Realistic errors in the viscosity could increase
the model amplitudes by one-half. Interfacial tensions smaller than the assumed labo-
ratory value in the absence of a surfactant could almost double model wave amplitudes.
Though we have been unable to run the model with a realistically large tension, it seems
believable from Figure 6.16 that the measured tension could give the required amplitude

amplification to account for this discrepancy.

Finally, the model waves travel around four times faster than those in the laboratory.
This could partially be explained by uncertainties in the viscosities, to which model wave
speeds are moderately sensitive: a realistic viscosity error could reduce model speeds by
20%. The dominant mechanism, though, is the neglect of Stewartson boundary layers

in the model. We know that such boundary layers exist in the laboratory experiment,
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and we have seen in Section 3.4.3 that they exert a significant drag force on the layers,
slowing down waves by up to an additional 40% (Table 3.2). Further allowing for the
approximation in equation (3.24), and the model assumptions, is probably enough to

explain this discrepancy.

Despite the model/laboratory discrepancies reported in the above paragraphs, many
aspects of the comparison are positive. The model gives a realistic variety of selected
wavenumbers, waves of reasonable shape and form, and vacillations with reasonable
periods. We conclude that it seems likely that the discrepancies can be attributed to
mechanisms (a) and (b). It follows that, since we are unable to reject these mechanisms,
the discrepancies are not proof of an observable fast wave impact upon the balanced

modes.

6.6 Radiation indicators

In the first part of this chapter, we have found reasonable agreement between the numer-
ical and laboratory experiments, in terms of wave speeds, amplitudes and wavenumbers.
It is therefore reasonable to assume that QUAGMIRE is also adequately simulating
velocity fields. In the remainder of this chapter, we use the model velocity fields to
compute five diagnostics of small-scale wave generation in the MRW regime. Some of
the diagnostics are predictors of small-scale waves due to a shear instability mechanism,
and others due to a nonlinear spontaneous emission mechanism. By investigating which
of the five indicators best predicts the spatial locations of the laboratory small-scale

waves, we will be able to infer which of the two generation mechanisms is responsible.

6.6.1 Indicator definitions

We now review, in turn, each of the five radiation indicators to be diagnosed using the

model velocity fields.
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Horizontal divergence, ¢

To first order in the Rossby number, the velocity fields in any quasi-geostrophic model
are horizontally non-divergent, permitting the introduction of a streamfunction. At
higher order, though, there must be a small non-zero horizontal divergence § = V,.uy
in order to allow the interface height to slowly evolve. In a velocity decomposition, vorti-
cal components correspond to balanced modes and divergent components to unbalanced

modes, which suggests that 6 may be a good indicator of small-scale wave generation.

From mass conservation V.u = 0 for an incompressible fluid, we have

_Ow
0z

Integrating over the lower layer (including Ekman layers), at the top and bottom of

5= 6.1)

which the vertical velocities are (D/Dt)yh and 0 respectively, gives

62:—%<8 10y O 16w26>h,

ot r 00 or r Or 00

with a similar expression for the upper layer. The horizontal divergence is a general

(6.2)

indicator of short wave emission, i.e. it is not specific to either the shear or spontaneous

emission mechanisms.

Local Richardson number, Ri

The Richardson number discussed in Section 4.4.1 is expected to be a good indicator
of small-scale wave generation by a shear instability mechanism. In that section we
derived an expression for the Richardson number in terms of the velocity fields. In
the baroclinically-stable regime these velocity fields were simply those associated with
solid-body rotation, for which we could write down analytical expressions. By doing
this we were able to show that the Richardson number was a good indicator of the pro-
duction of small-scale waves in the KH regime. We were unable to repeat the analysis
for the small-scale waves in the MRW regime as we could not determine the velocity
fields. However, these fields are now known from the model, enabling us to complete

this avenue of inquiry.

The general definition of Richardson number for the annulus is

!
Ri— 29'\/v/Q

R (6.3)
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where (Au)? = (Au,)? + (Auy)? is the velocity shear across the interface, which can be
diagnosed from the streamfunction. Equation (6.3) is a generalization of equation (4.4),

which applies only to the axisymmetric equilibrium flow.

Brown indicator, ¢, and turbulent energy dissipation rate, ¢

A number of shear instability indicators have been developed as complementary alterna-
tives to the Richardson number. Two of these are the Brown indicator ¢ and turbulent
energy dissipation rate e, first studied by Roach (1970) as indicators of Clear Air Tur-
bulence (CAT) in the atmosphere. CAT occurs in cloudless conditions at altitudes of
around 10 km, and is due to small-scale Kelvin-Helmholtz billows. It is occasionally
severe enough to lift aeroplane passengers from their seats and cause injury or death
(Roach & Bysouth, 2002), and so there are important practical reasons for developing

a reliable indicator.

Roach begins his analysis by noting that, on the one hand, there are dynamical pro-
cesses which tend to increase the vertical shear in horizontal velocity, e.g. thermal wind
balance giving a tropospheric jetstream in the atmosphere, or the imposed differential
lid rotation in the annulus. On the other hand, viscous energy dissipation due to small-
scale waves tends to reduce the shear. Roach makes an assumption of approximate
balance between these two competing effects on short timescales, leaving the shear (and

Richardson number) constant.

Roach proceeds by imagining a thought experiment in the atmosphere in which the
dissipation effect is switched off, destroying the balance and allowing an increase in
shear. He argues that the rate at which the small-scale features were dissipating energy
just before the switch-off must equal the rate of energy increase of the system just after,
which is analytically derivable from the dynamical equations by setting the viscosity to

zero. Using this approach, he calculates an energy dissipation rate of

(Au)?
=) ¢ 020 (6.4)
0 : ¢<0
where
1 DRi
o= “RiDi (6.5)
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Aw is the vertial shear in horizontal velocity associated with the tropospheric jetstream,
taken to be the shear across the interface in the annulus, and Ri is the Richardson num-
ber for the large-scale flow, defined for the annulus by equation (6.3). D/Dt is the total
derivative operator calculated from equation (5.16). The indicator ¢ takes its name from
Brown (1973), who derived an approximate form which was more practical for opera-
tional diagnosis of CAT, though in the present study we use the direct definition (6.5)
involving Ri. In Brown’s paper, both ¢ and e are shown to be better indicators of CAT

than Ri, and so we might expect the same to be true in the annulus.

Lighthill radiation term, LRT

Lighthill (1952) has presented a theory for the generation of sound waves by large-scale
motions in a 3-D compressible adiabatic gas. The governing equations for Lighthill’s
system are isomorphic to the non-rotating shallow water equations, with a correspon-
dence between acoustic and gravity modes, and so the problem of generation of pure
gravity waves had also unintentionally been solved by Lighthill. Ford (1994) extended
the theory to include rotation, and thereby derived an inertia-gravity wave radiation
term. The generation mechanism in this case is an evolving vortical motion rather than

a velocity shear, making this indicator fundamentally different from the previous three.

Ford’s derivation begins by taking the f-plane inviscid barotropic shallow water equa-
tions, in flux form. Two equations, obtained by taking the curl and the divergence of

the momentum equation, are combined to produce a single equation:

0? ) o\ Oh 0 90 <20
where
F = uV.(hu) + (hu.V)u (6.7)

and k is the unit vertical vector. The left side of equation (6.6) is the linear shallow-
water inertia-gravity wave operator acting on 0h/0t, which turns out to be a more
convenient variable than h. The right side contains all of the nonlinear terms, which we
refer to collectively as the Lighthill Radiation Term (LRT). The linear normal modes

of equation (6.6) are shallow-water inertia-gravity waves, for which the intrinsic angular
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frequency w and total wave vector K are related by dispersion equation:
w?=f?+gHK?* . (6.8)

The right side of Ford’s original equation is written explicitly in Cartesian coordinates,
but we retain the vector form here as we would like to diagnose LRT in the cylindrical
geometry of the annulus. Ford goes on to derive an approximate form for LRT based on
small Froude number, though Froude numbers are larger than unity for flows of interest
in the present system, and so we use the unapproximated form given in equations (6.6)

and (6.7).

Ford argues that inertia-gravity waves will be generated in any region for which LRT
is non-zero, so that all vortical flows will emit freely-propagating inertia-gravity waves,
disproving the existence of a strict slow manifold. The radiation mechanism is termed
spontaneous-adjustment emission radiation (SER) by Ford et al. (2000). SER is a gen-
eralization of geostrophic adjustment radiation (GAR), as it includes GAR as a sub-class

but does not necessarily take the flow towards a state of geostrophic balance.

It is important to note that Ford’s theory is based on the shallow water equations,
and so the expression for LRT given by equation (6.6) is an indicator of shallow-water
inertia-gravity wave emission by an evolving shallow-water large-scale mode. Though
the large-scale modes in the present system can reasonably be classified as shallow, it
appears that the small-scale modes cannot. Their typical wavelengths (around 20 mm,
from Section 4.4.2) are significantly smaller than the layer depth (125 mm), suggesting
that the observed short waves are in the deep-water regime with a different dispersion
relation from that above. Nevertheless, Lovegrove (1997) was able to demonstrate good
agreement between short wave periods measured in the laboratory, and those predicted
by the shallow water dispersion relation (6.8), suggesting that the boundary between
the shallow and deep limits is determined by more than just the wave aspect ratio. We
therefore speculate that Ford’s theory is appropriate to the current system, even though
the system seems to be in a regime which is formally outside the limits of the theory’s

applicability.

An approximation needs to be made before we can apply Ford’s one-layer theory to

the two-layer annulus. We approximate Vp; = 3Vp,, which enables us to write the
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indicator name definition mechanism | radiation condition
horizontal divergence 0 = V. not specific 0#0
. . 1 .
Richardson number Riox —— KH Ri<1
(Au)?
.. D . ..
Brown indicator o= Dt In Ri KH ¢ large and positive
energy dissipation rate € o¢ ¢(Au)? KH e>0
Lighthill radiation term | non-linear IGW terms SER ILRT| >0

Table 6.2: Summary of the five radiation indicators to be diagnosed using data
from QUAGMIRE. The particular generation mechanism associated with each indi-
cator is listed (Kelvin-Helmholtz shear KH, or Spontaneous Emission Radiation
SER) together with the condition which needs to be satisfied in order for radiation
to be expected.

horizontal pressure gradient force in the lower layer as (1/p2)Vpy = —(¢'/2)Vh. This
assumption applies because equilibrium zonal velocities in the upper layer are three
times those in the lower layer (for equal viscosities, from Section 5.3.1) and so three
times the radial pressure gradient is required to support them. The implication is that
equation (6.6) holds for the lower layer in the rotating annulus, so long as we replace
g with —g’/2. All of the terms in the expression for LRT can be calculated from the
QUAGMIRE output.

Table 6.2 gives a summary of the properties of the five radiation indicators discussed in

this section, including the conditions under which short wave emission is expected.

6.6.2 Indicator plots using model data

Figure 6.19 shows plots of the five radiation indicators as calculated from the main series

QUAGMIRE experiment (S = 0) with AQ = 0.15 rad s™' and Q = 3.00 rad s™', for
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Figure 6.19: Plots of interface height (top left), lower layer horizontal velocity
divergence (top right), Richardson number (middle left), lower layer Brown indi-
cator (middle right), lower layer energy dissipation rate (bottom left) and lower
layer Lighthill radiation term (bottom right) from a 2S QUAGMIRE simulation.
The corresponding plots for the upper layer are similar.
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which the equilibrated flow is 2S, denoting a steady (non-vacillating) wavenumber two
flow in the notation of Section 4.1. The interface height field is also shown in the figure.
If we observed this interface height field in the laboratory experiment, we would expect
small-scale wave generation at low- to mid-radii near # = 0° (“3 o’clock”) and 6 = 180°
(“9 o’clock”), as can be seen by comparison with Figure 1.6 rotated through 90°. We
are therefore interested in which (if any) of the five indicators would predict radiation

at these (and only these) angular positions, based on the radiation criteria in Table 6.2.

The horizontal divergence indicator shows four large amplitude regions, but this includes
two at which small-scale waves are not observed in the laboratory. The Richardson num-
ber shows local minima with respect to azimuth at the two expected regions, but is at
its smallest close to the outer sidewall which is not a laboratory generation region. The
Brown indicator has large positive maxima exactly where the short laboratory waves
appear, but there are two equally large maxima elsewhere in the annulus. Similarly, the
energy dissipation rate has two maxima too many to be a reliable indicator, and both
of the unwanted maxima are larger than the maxima in the expected locations. The
Lighthill radiation term has large global maxima at the two expected regions, and two

weaker local maxima at other locations in the annulus.

Figure 6.20 shows a similar analysis for an equilibrated 1S (steady wavenumber one)
flow with AQ = 0.50 rad s ' and Q = 2.75 rad s !. In this case, based on the laboratory

experiments, we would expect small-scale radiation at # = 90° (“12 o’clock”).

The Lighthill radiation term formulae (6.6) and (6.7) contain terms with up to four
derivatives in them, which amplify small-scale features relative to large-scale features.

This heavy differentiation gives rise to the high level of noise present in the LRT plots.

The three Kelvin-Helmholtz instability indicators have each over-predicted regions of
small-scale wave generation, in both the 2S and 1S cases. The Lighthill diagnostic,
an indicator of spontaneous emission radiation, gives the best fit with the laboratory
observations. It has large values exactly where the short waves appear in the laboratory.
There are smaller subsidiary local maxima in other regions, but the values taken there

are presumably not large enough for the laboratory short waves to overcome the effects
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Figure 6.20: Plots of interface height (top left), lower layer horizontal velocity
divergence (top right), Richardson number (middle left), lower layer Brown indi-
cator (middle right), lower layer energy dissipation rate (bottom left) and lower
layer Lighthill radiation term (bottom right) from a 1S QUAGMIRE simulation.
The corresponding plots for the upper layer are similar.
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of viscous dissipation — not included in Ford’s theory — and grow to an amplitude
which would make them visible. We conclude that the SER mechanism is likely to be

responsible for the MRW regime small-scale wave generation in the laboratory.

As regards the baroclinically-stable flow regime, §, ¢ and € are each identically zero since
the flow is then steady and axisymmetric. Most of the contributions to LRT are also
zero, and those which aren’t are very small due to the heavy differentiation, giving an
LRT which is around 10° times smaller than in Figures 6.19 and 6.20 (not shown). Only
Ri is non-negligible, reinforcing the conclusions of Section 4.4.1 that the laboratory short

waves in the baroclinically-stable regime are generated by a shear instability.

6.7 Chapter summary

In this chapter we have investigated the results of simulations using the rotating, two
layer annulus model described in Chapter 5. The basic model behaviour is the same as
that seen in the laboratory, confirming that the model is reliable and that the code is
free from errors. For example, the model displays baroclinic instability with a variety of
realistic equilibrated wavenumbers for super-critical Froude numbers, and stability with

relaxation back to an axisymmetric state otherwise.

We have shown how wave amplitudes, phase speeds and wavenumbers can be derived
from the raw data produced by the model. These quantities are in reasonable agree-
ment with measurements from the laboratory annulus. Specifically, we have found that
it seems likely that all observed laboratory/model discrepancies can be attributed to
fluid property errors and model approximations other than the neglect of fast modes.
This means that we are able to state, based on the comparisons that have been carried
out in this chapter, that we have found no evidence of an observable small-scale wave

impact upon the large-scale balanced flow in the laboratory.

By diagnosing five candidate radiation indicators using the model velocity fields, we have
been able to conclude that the observed short laboratory waves in the MRW regime (and
presumably also the MIW regime) are best explained by the spontaneous emission radi-

ation mechanism. This is because shear mechanisms predict short wave generation at
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regions other than those observed.

There were many differences between model and laboratory — apart from the neglect
of the fast modes in the model — in the comparison described in this chapter. In the
following chapter, we incorporate a stochastic inertia-gravity wave parameterization into
the model. This allows us to run comparative simulations in which the only difference
is the presence and absence of inertia-gravity waves, allowing a stronger test of their

impacts than has been achieved here.
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A stochastic parameterization of the

fast waves

“Démons et merveilles

Vents et marées

Au loin déja la mer s’est retirée
Mais dans tes yeux entrouverts

Deuz petites vagues sont restées
Démons et merveilles

Vents et marées

Deuz petites vagues pour me noyer.”

Sables Mouvants, Jacques Prévert.

In this chapter, we design and implement a simple parameterization of inertia-gravity
waves in QUAGMIRE. Having first justified the need for a parameterization, we review
previous deterministic and stochastic parameterization schemes, and give details of the
chosen present scheme. We then describe numerical runs designed to measure the depen-
dence of the equilibrated wavenumber, wave amplitude and phase speed of the large-scale
waves on the amplitude of the parameterized inertia-gravity waves. We are particularly
interested in investigating differences between runs with the parameterization switched
on and off. The short wave parameterization proves to be fruitful, as we are able to iden-
tify regions of parameter space in which the parameterized waves exert a large influence
on the balanced flow, in particular by forcing spontaneous transitions between regimes

of different azimuthal wavenumber.
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7.1 Parameterizations of inertia-gravity waves

Based on the comparison between laboratory experiments and numerical model runs in
Chapter 6, we were able to draw the conclusion that no evidence had been found of an
observable small-scale wave impact upon the large-scale flow. However, since the model
differs from the laboratory experiments in more ways than just through the absence
of small-scale waves, this conclusion was necessarily weak. Any discrepancy between
laboratory and model could be put down to these differences, including uncertain fluid

properties and model approximations, rather than to the filtering out of small scales.

We would like to design a stronger test of the scale-separated interaction. Ideally, we
would like to run two laboratory experiments, one with and one without small-scale
waves, but identical in all other ways. Unfortunately this is impossible, as the labora-
tory small-scale waves cannot easily be switched off at will, and so the next best thing
is to include them in the numerical model. QUAGMIRE is a quasi-geostrophic model,
and so by construction cannot explicitly capture the evolution of the short ageostrophic
waves. It can, however, represent them implicitly by including a parameterization of
their effects on the balanced flow. Such a parameterization for the two-layer annulus is
described in this chapter, and model runs are compared both with the parameterization

switched on and off.

Most conventional parameterization schemes are deterministic, i.e. they describe the
effects of sub-gridscale processes by deterministic bulk formulae which depend upon
local resolved scale variables and a number of adjustable parameters (Palmer, 2001). For
example, a well-known deterministic parameterization is that for the momentum depo-
sition due a continuous spectrum of gravity waves developed by Hines (1997). Recently,
Piani & Norton (2003) have shown that the deterministic Hines parameterization, which
has one adjustable parameter a, significantly underestimates the variability of the quasi-
biennial oscillation in simulations using the UK Meteorological Office Unified Model.
They have shown that a stochastic parameterization, in which a is allowed to vary ran-
domly according to some chosen probability distribution, gives an increased variability

and better agreement with observations.

Following Piani, we include a stochastic parameterization of small-scale waves in QUAG-
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MIRE, by adding a random noise term to the right side of the prognostic model equa-
tions (5.23) and (5.24) for each layer. To do this, we must assume that the precise details
and structure of the laboratory small-scale waves are irrelevant, and that they have the

same impact on the balanced flow as would random noise.

As previously noted, QUAGMIRE cannot capture the evolution of the small-scale waves.
However, we can reasonably expect it to capture the response of the balanced modes
to PV anomalies induced by the small-scale modes. Inertia-gravity waves have zero PV
anomaly only in the linear limit, and so any finite amplitude inertia-gravity waves will
carry a non-zero PPV. It is this quantity which we parameterize in the model equations,
as a stochastic perturbation to the PPV tendency fields. It was pointed out in Sec-
tion 5.7 that the system state is completely specified by the PPV field. By perturbing
the PPV tendency field with noise, therefore, we are effectively perturbing all of the
dynamical fields, including the horizontal divergence field which we expect the labora-

tory inertia-gravity waves to perturb directly.

We choose the simplest possible form for the stochastic noise terms. At each gridpoint
and at each timestep, a random number is drawn from the uniform distribution on the
interval [0, 1], and then shifted to the interval [—amp, amp] before being used as an addi-
tive contribution to the PPV tendency as shown in Figure 5.3. The constant amp is a

given amplitude with units s—2

, and is related to interface height wave amplitudes in a
way to be determined in Section 7.2.2. The noise fields are chosen to be purely baro-
clinic, i.e. equal and opposite in both layers, as any increase in the depth of one layer due
to an interfacial small-scale wave is matched by a corresponding reduction in the depth
of the other layer. The discretized noise fields so defined contain no correlations in either
time or horizontal position. An important difference between laboratory and model is
that the parameterized short model waves are present throughout the entire annular
domain, whereas the laboratory short waves are localized in space and time, appearing
only where the Lighthill radiation term is large (Section 6.6.2). This strengthens the

analogy between the model and the atmosphere, where inertia-gravity waves are more

ubiquitous than in the laboratory annulus.
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7.2 Model runs with the stochastic parameteriza-
tion

In the following sections we show the results of some model runs with the stochastic

terms switched on, for comparison with the runs described in Chapter 6.

7.2.1 Reproducibility of the equilibrated state

In this section, we investigate the possible role that small-scale features play in large-

I and

scale wavenumber selection. We use an experiment with AQ = 0.23 rad s~
Q0 = 2.25 rad s~!, which is quite close to the wavenumber m = 1,2 transition curve. A

30-member ensemble was carried out for each of 21 values of the noise tendency ampli-

2 2

tude parameter, ranging from 0 to 2.0 s™° in steps of 0.1 s7. Within each ensemble,
the only difference between the 30 members was the random numbers in the stochastic
forcing fields. In each case, the equilibrated azimuthal wavenumber m was noted, and

found to be either 1 or 2.

Typical post-transient model fields are shown in Figure 7.1, for a noise amplitude of
0.5 s~2, giving an indication of the relative amplitudes of the large-scale wavenumber 2
mode and the small-scale stochastic noise. Since the model gridspacing is approximately
equal to the wavelengths of the laboratory short waves (see Figures 1.6 and 5.4), there
is a reasonable matching of lengthscales between laboratory and stochastic model short
waves. At first sight, the plots of PPV in Figures 7.1(a) and (b) appear unrealistically
noisy compared to the laboratory, but this is simply because the Laplacian operator —
which amplifies small scales relative to large scales — is required to obtain the PPV
from the streamfunction. For this reason, the plot of interface height in Figure 7.1(c)
is much less noisy. We will show in Section 7.2.2 that there is a good matching of the

amplitudes of interface perturbations between the laboratory and model short waves.

For each ensemble of constant noise amplitude, the probability of equilibration to wavenum-
ber 2 was calculated and is plotted in Figure 7.2. There is a clear and strong dependence
of probability partition on noise amplitude. The results are consistent with a linear drop-

off in the probability of m = 2 as the noise increases to around 1.0 s~2, followed by a
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Figure 7.2: Probability of equilibration to azimuthal wavenumber two as a func-
tion of stochastic noise amplitude. The error bars correspond to plus and minus
the standard deviation of the appropriate binomial distribution.

saturation at a probability of around 10% up to a noise of 2.0 s 2.

We will see in Section 7.2.2 that, as suggested by the interface height plot in Figure 7.1(c),
the interfacial wave amplitude for the noise is much smaller than for the large-scale mode.
The addition of small-amplitude noise has therefore had a very significant impact upon
the system’s predictability, at this point in parameter space. An extensive investigation
of the effects of the stochastic parameterization at other points in parameter space has
not been performed, due to constraints on time and computational resources. 10-member
ensembles at the centres of the m = 1,2, 3 regions demonstrated 100% equilibration to
the given wavenumber, irrespective of noise amplitude up to 2.0 s=2. This suggests that
the regions of parameter space in which inertia-gravity waves can exert a strong influence

on the large-scale modes, are confined to finite width strips adjacent to transition curves.

The model wave phase speeds were measured and found to be completely unaffected by

-2

the introduction of noise up to 2.0 s~* (not shown).
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7.2.2 Diagnosis of amplitude of stochastic small-scale features

Figure 7.3(a) shows azimuthal interface height profiles after equilibration, from one of
the ensemble runs described in the previous section with a noise amplitude of 1.0 s~2.
Figure 7.3(b) shows the same profiles after filtering by taking a running mean in the
azimuthal direction with a window size of 8 gridpoints. This is sufficiently large to

remove features at the scale of the stochastic forcing, and is sufficiently small to leave

intact the large-scale features.

We can derive interfacial wave amplitudes (defined as half the difference between maxi-
mum and minimum displacements) from Figure 7.3. The amplitude so calculated from
(b) is interpreted as the amplitude of the underlying large-scale wave, and that from (a)
as the sum of the large-scale and small-scale wave amplitudes. By taking the difference,
we can infer the amplitude of the stochastic small-scale waves. The results of this anal-
ysis at mid-radius, for each of the 21 noise amplitudes used and for both wavenumbers

1 and 2, are shown in Figure 7.4.

For a stochastic noise tendency amplitude of zero, the unfiltered and filtered amplitudes
are almost identical, implying that the filtering has not modified the structure of the
long modes. The amplitudes of the large-scale waves (“filtered” curves in the figure)
increase significantly with stochastic noise amplitude. This is because the parameter-
ized inertia-gravity waves have added energy to the system, which is expected because
an interface height field containing short ripples has more gravitational potential energy
than the same field with the ripples smoothed out. Importantly, the amplitudes of the
small-scale stochastic features (“unfiltered—filtered” curves) are consistent between the
large-scale wavenumber 1 and 2 cases, validating the analysis and giving us a direct
linear correspondence between the stochastic noise tendency parameter in the model
(in s7?) and the corresponding interfacial amplitude of the stochastic small-scale fea-

tures (in mm).

It is clear from Figure 7.4 that the stochastic small-scale features which caused the
re-partitioning of the probability distribution in Figure 7.2 were many times smaller in
amplitude than the large-scale wave with which they coexisted. Their typical amplitudes

are similar to those observed in the laboratory.
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Figure 7.3: (a) Interface height profiles after equilibration, showing an azimuthal
wavenumber 2 mode with superimposed small-scale noise representing inertia-
gravity waves. (b) Same profiles but with inertia-gravity waves filtered out. The
legend relating colour to radius (not shown here to allow the full profiles to be
seen) is identical to that in Figure 6.3.
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7.2.3 Continuous variation of amplitude of stochastic small-

scale features

In Section 7.2.1 we investigated the stability of an equilibrium axisymmetric annulus
flow continuously seeded with stochastic noise, which is in many ways a simple model of
an axisymmetric atmospheric jetstream in the presence of inertia-gravity waves. A more
likely scenario in the atmosphere is for a particular large-scale azimuthal mode to have
already equilibrated, and so there are good geophysical reasons to be more interested in
the stability of an equilibrated large-scale wave in the presence of inertia-gravity waves,
rather than the stability of an axisymmetric jetstream upon which a large-scale wave is
soon to grow in the presence of inertia-gravity waves.

In order to investigate this, we now take a wavenumber 2 flow with AQ = 0.23 rad s™*
and Q = 2.25 rad s~!, which has equilibrated at finite amplitude in the absence of
stochastic forcing. As with the investigation of Section 7.2.1, which also used these
parameters, the system is quite close to the wavenumber m = 1,2 transition curve. In
the present investigation, we continue the model integrations but increase the stochastic

2

noise amplitude from 0 to 2.0 s~ 2, by 10°® s72 each timestep so that the increase is

quasi-continuous.

When this numerical experiment is performed, the wavenumber 2 mode persists until
the noise reaches a certain threshold level, at which point a spontaneous transition is
observed to a wavenumber 1 mode. A Hovmiiller diagram showing the transition, which
takes place over around 100 s, or the time taken for the large-scale wave to travel around
the annulus twice, is shown in Figure 7.5. This kind of transition was never observed
without the inertia-gravity wave parameterization switched on, and so we can conclude
that the transition was caused by the parameterization. At the time of the transition,

2

the stochastic noise parameter had reached a value of 1.1 s7°, corresponding from Fig-

ure 7.4 to an interface perturbation of amplitude of 0.3 mm.

After the transition to wavenumber 1, the stochastic noise amplitude was decreased back

to zero by 1076 s72 each timestep, but the reverse transition back to wavenumber 2 did
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Figure 7.5: Hovmiiller diagram, showing a mid-radius azimuth-time contour plot
of PPV in the upper layer around the time of a spontaneous wavenumber transition.

not occur. At the end of the integration, when the noise had reached zero, the wavenum-
ber 1 mode was still dominant, indicating the presence of hysteresis in the system. If
these conclusions are portable to the atmosphere (Chapter 8) then the implication is
that a short but sufficiently intense burst of small-amplitude inertia-gravity waves could
force a large-scale regime change which could persist long after the inertia-gravity waves

have been dissipated away.

This result suggests a simple schematic model for explaining the spontaneous transitions,
in which the stable equilibrium states m = 1 and m = 2 are represented by minima of
the potential well shown in Figure 7.6. With the system in the m = 2 state, a short
burst of sufficiently large amplitude stochastic forcing permits the system to overcome
the transition barrier and thereby undergo an irreversible transition to the m = 1 state,

in which the system will remain after the end of the burst.

As in Section 7.2.1, when the above experiment was repeated with parameters corre-
sponding to the centre of a wavenumber regime in parameter space, spontaneous tran-

sitions were not observed.
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Figure 7.6: Schematic double-well potential for a bistable system, which can
explain the observed model regime transitions close to the m = 1,2 transition
curve in (d, F') parameter space.

7.3 Discussion

We have seen that the addition of small-amplitude noise has had a very significant
impact on the system. This phenomenon is a form of stochastic resonance (Pikovsky et
al., 2001). This is a nonlinear resonance which is not dependent upon any matching of
timescales, as is the familiar criterion required for linear resonance. The phenomenon
allows a small (stochastic) forcing to produce a large (resonant) response. If stochastic
resonance is exhibited by a nonlinear system, then the introduction of very small ampli-

tude noise can dramatically affect the system state.

Stochastic resonance has been observed before in fluid systems. De Swart & Grasman
(1987) have studied the effects of adding a stochastic forcing term to a low-order atmo-
spheric spectral model based on the barotropic potential vorticity equation, and found
that the noise forces the system to alternately visit different regimes due to a stochastic
resonance. The phenomenon is widely observed across the entire spectrum of the nat-
ural sciences. For example, the human eye can detect signals otherwise too faint to be
seen if random noise is added to the field of vision (Hogan, 2003). And, as discussed in
Section 1.2, Chua’s electronic circuit displays an altered temporal regularity upon the

introduction of small amplitude noise.

The addition of noise terms to the governing model equations has led to a better agree-

ment between one of the the laboratory/model comparisons. We found in Section 6.1.2
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that model wave amplitudes were significantly lower their laboratory counterparts. How-
ever, we see from Figure 7.4 that the inclusion in the model of parameterized short waves
of less than 1 mm in amplitude increases the long wave amplitudes by up to 60%, giving
a better fit with the laboratory results. This amplitude increase is due to energy from

the short modes filtering upscale into the long modes.

Our findings regarding stochastic resonance mirror an observation we made in the lab-
oratory. In the current chapter, we found that the presence of small-amplitude, fast
waves could increase the likelihood of a model state transition. Correspondingly, we
found in the preliminary laboratory experiments of Section 4.2 that the annulus with
a complete absence of fast waves exhibited a strong reluctance to undergo a transition
away from the wavenumber 2 mode. We are not in a position at the moment to be
able to fully attribute this reluctance to the absence of fast modes, as there were also
unknown changes in the fluid properties which could have been responsible. However,
we can state with certainty that the short waves do appear to have an influence on

wavenumber transitions, in both the laboratory and the model.

7.4 Chapter summary

By implementing a simple stochastic inertia-gravity wave parameterization in the numer-
ical model, we have shown that short modes can play a crucial role in large mode
wavenumber selection. This finding seems to apply only to regions of parameter space
which are some finite distance away from a wavenumber transition curve. These short
modes also significantly increase the long wave amplitudes, but leave their propagation

speeds unaltered.

Via the phenomenon of stochastic resonance, the stochastic inertia-gravity wave parame-
terization has the ability to induce spontaneous azimuthal wavenumber transitions which

would not occur if the inertia-gravity waves were absent.
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Conclusions and future work

“Habe nun, ach! Philosophie,

Juristerei und Medizin,

Und leider auch Theologie

Durchaus studiert, mit heiffem Bemiihn.
Da steh’ ich nun, ich armer Tor,

Und bin so klug als wie zuvor.”

Faust, J. W. von Goethe.

8.1 Summary of findings

The first part of this thesis focused on the results of laboratory experiments using a rotat-
ing, two-layer annulus, in which relative motion was forced between the two isothermal
and immiscible layers by a differentially-rotating lid in contact with the upper layer.
The natural interfacial tension between the liquids was reduced by the addition of a sur-
factant. Based on direct observations of the fluid interface, and on an initial inability to
reproduce the results of previous experimental studies, we speculated that the physical

properties of the liquids were exhibiting slow changes with time.

Because the lower-layer liquid was optically active and the apparatus was seen through
crossed polaroids, a video camera viewing the fluids from above registered colours which
were related to the depth of the lower layer. The relationship between hue and interface
height was quantified by deriving a calibration curve, based on a torque balance calcu-

lation which gives an analytical expression for the equilibrium interface height field in
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the absence of any instability. An upgrade of the flow visualization hardware, together
with the implemented calibration scheme, allowed two-dimensional maps of interface
height to be inferred with a horizontal resolution of up to 0.2 mm, a vertical resolution
of up to 1 mm and a temporal resolution of 1/25 s. The vertical resolution could be
further improved as long as a reduction in the horizontal or temporal resolution could

be tolerated.

Four series of new laboratory experiments were performed: one with prograde differen-
tial rotation in an annulus with increasing Froude number (PAI); one with retrograde
differential rotation in an annulus with increasing Froude number (RAI); one with pro-
grade differential rotation in an annulus with decreasing Froude number (PAD); and one
with prograde differential rotation in an eccentric annulus with increasing Froude num-
ber (PEI). As predicted by standard theory, the motions observed in the fluids fell into
two distinct categories and were robust to the changes in experimental configuration.
The short, fast waves had wavelengths of around 20 mm and interfacial amplitudes of
around 3 mm, and the long, slow waves had wavelengths of around 200 mm and inter-

facial amplitudes of up to 25 mm.

Each flow observed contained either no waves at all (the axisymmetric flow regime, AX),
short waves only (the Kelvin-Helmholtz regime, KH), or both long and short waves
coexisting (the mixed regular and irregular wave regimes, MRW and MIR). Flows con-
taining long waves only, with a complete absence of short waves, were observed only in
preliminary experiments with fresh preparations of the working liquids, and were not
investigated in detail in this thesis. These experimental results are in concordance with
the assertion by Ford et al. (2000) that every single evolving vortical flow emits inertia-
gravity waves, which in our case are large enough to be visible if the fluid properties are

permitting.

The mechanism which gives rise to the long waves is well understood from previous stud-
ies to be baroclinic instability. The mechanism which gives rise to the short waves when
they develop in the absence of long waves was shown in this study to be consistent with
a Kelvin-Helmholtz instability based on a critical Richardson number. Such a simple

analysis was not possible for the case when the short waves develop in the presence of

183



Chapter 8. Conclusions and future work

long waves, as the long waves perturb the layer velocity fields to an extent which cannot

be predicted by simple linear theory.

In order to assess the mechanism by which the laboratory short waves are generated
in the presence of a large-scale mode, and to examine the feedback impact of the short
waves on the long waves, a quasi-geostrophic numerical model of the laboratory exper-
iment was developed in the second part of the thesis and named QUAGMIRE. Short
waves are permitted in the laboratory experiment but not the model. There was found
to be excellent agreement, regarding the shapes of azimuthal wavenumber regimes in the
system parameter space, between numerical and laboratory experiments. Quantitative
agreement was not perfect but, due to model approximations and suspected uncertainties
in assumed laboratory fluid properties, this was not thought to be due to the presence

of short waves in the laboratory.

The model velocity fields were used to address the question of the generation mechanism
of the short waves in the presence of long waves. Kelvin-Helmholtz instability theory,
which successfully predicted the generation of laboratory short waves in the absence of
long waves, could not explain the coexisting short waves, and neither could three other
indicators of shear instability. The best predictor was found to be the Lighthill radiation
term, which is an indicator of spontaneous emission radiation which could take place

even in a purely barotropic fluid with no vertical shear.

Finally, we incorporated a simple stochastic parameterization of the short waves into
the numerical model. In general, the effect of the parameterized short waves on the
long waves was limited to an increase in the long wave amplitude. Sufficiently close to
a wavenumber transition curve, however, a stochastic resonance effect allowed the short
waves to exert a dominant influence over long mode wavenumber selection. In partic-
ular, spontaneous transitions were observed between different azimuthal modes, which
were directly attributable to the presence of the stochastic short waves. This finding
supported a similar observation we made in the laboratory, in which a flow devoid of
short waves displayed a reluctance to undergo state transitions which occurred if the

short waves were present.
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8.2 Conclusions

We are now in a position to return to the four questions posed in Section 1.7.1, and to

give answers based on the investigations of this thesis.

Under what circumstances do small-scale waves appear in the laboratory

experiments?

In the laboratory investigations of Chapter 4, we found that if the fluids were baroclinically-
stable, short waves were globally generated whenever the Richardson number dropped
below a critical value. Short waves were locally generated in every single observed
baroclinically-unstable flow with aged fluids, superimposed in the nodal regions of the
long baroclinic mode. The short wave amplitudes were larger if the long mode was under-
going an amplitude vacillation, but were still generally present with reduced amplitudes
(sometimes barely visible in stills but clearly present in the video footage) even when

the long mode amplitude remained constant.

Which mechanism causes the small-scale waves to appear in the laboratory

experiments?

Two different generation mechanisms are both responsible for short wave emissions in
the laboratory experiments, though the circumstances under which they are responsible
differ between the mechanisms. As shown in the laboratory investigations of Chapter 4,
a Kelvin-Helmholtz shear instability is responsible for small-scale wave generation in
the absence of long waves. When the short waves appear locally in the nodes of long
waves, the generation mechanism was shown using the numerical model in Chapter 6
to be spontaneous emission by the evolving large-scale flow. This conclusion is further
supported by the ship wake analysis of Chapter 4, which is an alternative way of ana-
lyzing emission of short waves by a moving “object” long wave. Further independent
corroboration for this conclusion comes from the eccentric annulus laboratory experi-
ments of Chapter 4, in which an azimuthally-varying velocity shear was not associated

with azimuthally-varying short wave emission.
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What are the effects of the laboratory small-scale waves on the large-scale,

balanced flow?

A comparison of the laboratory regime diagram of Chapter 4, derived from experiments
which included short waves, and the numerical regime diagram of Chapter 6, derived
from experiments which did not include short waves, leads us to conclude that the
laboratory short waves do not have a dominant impact upon the large-scale flow, in gen-
eral. Though we found significant discrepancies between the numerical and laboratory
results, in terms of equilibrated wavenumbers, amplitudes and phase speeds, it was felt
that these differences could be explained by other factors such as model approximations

and uncertain fluid properties.

For example, laboratory wave speeds are around a factor of four smaller than model
wave speeds. Though it might be tempting to partially attribute this to inertia-gravity
wave drag on the balanced flow, the discrepancy is adequately explained by Stewartson
layer drag and viscosity uncertainty. This is not to say that we have found evidence of
absence of a fast wave impact upon the slow modes, but rather that this particular test

has given an absence of evidence.

However, the more explicit tests described in Chapter 7, based on model runs with a
stochastic inertia-gravity wave parameterization switched on, did find evidence of an
impact. The results showed that, sufficiently close to a regime transition curve, short
waves play a key role in wavenumber selection, and can force spontaneous long wave
transitions which would otherwise not occur. The preliminary laboratory experiments
of Chapter 4, based on a comparison between flows with and without small-scale waves,

give further independent evidence to corroborate this conclusion.

Having answered these questions for a laboratory experiment, what can we

infer about answers to the analogous questions for geofluids?

If the laboratory annulus system and the atmosphere on a rotating planet were exactly
dynamically and geometrically similar, then the fluid flows would also be mathemati-
cally similar (Section 1.5) and our conclusions about the laboratory system would be

portable to the atmosphere.
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Geometrical similarity is limited by differing horizontal/vertical aspect ratios; by the
presence of annular sidewall boundaries and a rigid lid in the annulus which have no
counterpart in the atmosphere; by the discretization of the fluid in the annulus to two
discrete homogeneous layers, rather than a single continuously-stratified layer; and by
the absence of bottom topography in the annulus. Additionally, the atmosphere is forced
differently and is coupled to other components of the climate system which are not rep-
resented in the annulus, which causes the flow in the atmosphere to be generally more

irregular and chaotic.

Mindful that geometrical similarity does not hold exactly, which will limit any compari-
son, we can determine the extent to which dynamical similarity holds by evaluating the
non-dimensional system parameters for an approximated two-layer atmosphere. Refer-
ring back to Figure 1.5, we take the annular gap width L of the “atmospheric annulus”
to be a quarter of the circumference of the Earth, and H to be the scale height of around

2

10 km. We take the reduced gravity ¢’ to be 2 m s=2 in value!, and the kinematic vis-

cosity v to be the turbulent eddy value of 5 m? s~!

. We take the background rotation
rate €2 to be the local component of the Earth’s rotation vector at latitude 45°, and the
differential rotation rate A to be the zonal tropospheric jetstream speed — typically
40 m s™!, from Figure 1 of O’Sullivan & Dunkerton (1995) — divided by the radius of

the 45° latitude circle.

A comparison between non-dimensional parameters in the laboratory experiment and
in the two-layer annulus approximation to the atmosphere is shown in Table 8.1. The
atmosphere is seen to explore a significantly different regime from that explored in the
laboratory experiments. The atmospheric Froude number and dissipation parameter
are both larger, corresponding to the fact that the atmosphere typically exhibits higher
wavenumber states, and more irregularity, than the laboratory annulus. The Rossby
numbers are similar. Viscous effects are much more significant in the laboratory than

in the the atmosphere, though they are still relatively weak in both systems compared

'We could naively compute the reduced gravity using g' = gAp/p, where the densities at the surface
and the scale height are p» = 1 kg m™> and p; = e™! kg m™3, respectively. Most of this density
difference is due to static compressibility rather than static stability, however, giving an over-estimate
of g'. Tt is more appropriate to use g' = gAf/f, where # is potential temperature. We use § = 300 K
and Af = 60 K, from Figure 1 of O’Sullivan & Dunkerton (1995), to obtain the quoted value for the
reduced gravity.
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laboratory atmosphere
402172
F = H 9 50
g
V2
d = HZ 5 0.02 0.2
AQ
Ro = >0 0.1 0.09
2
Re:LAQ 2 x 103 2 x 108
v
Fk=—— 6 x 1075 5% 10710
2012
S
I=——— 0.1 0
9(p2 — p1)L?

Table 8.1: A comparison between typical values of the Froude number, dissipation
parameter, Rossby number, Reynolds number, Ekman number and interfacial ten-

sion number in the laboratory experiment and a two-layer annulus approximation
to the atmosphere.
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to other dynamical effects, as demonstrated by the large Reynolds and small Ekman
numbers. Interfacial tension effects, completely absent in the atmosphere, are also rea-
sonably significant in the laboratory, as indicated by the size of the interfacial tension

number.

The results of this thesis are not expected to depend upon whether the observed zonal
wavenumbers are 1, 2 or 3 such as in the laboratory, or around 6 as in the atmosphere.
Furthermore, though the non-dimensionalized viscosity and interfacial tension are quite
different for the two systems, these effects remain small compared to other effects in
both cases. Therefore we expect these other dynamical effects — which are similar for

both systems — to be the ones which determine the system characteristics.

An explicit comparison between inertia-gravity wave properties in the laboratory and
the atmosphere is also possible. In both cases, the amplitudes are generally around
an order of magnitude smaller than that of the main, large-scale mode. Atmospheric
pure gravity waves are sufficiently short in wavelength to be in the deep regime, like the
laboratory short waves, though larger wavelength inertia-gravity and pure inertial waves
in the atmosphere are in the shallow regime. In terms of the comparison of short wave
impacts, this difference is unlikely to alter our conclusions. If anything, the impact of
a short wave in a shallow fluid would be expected to be greater than the impact of a
short wave in a deep fluid, because in the latter case the region of dynamical influence is
vertically-confined. This suggests that the laboratory short waves, which are in a deep
fluid, are not able to exert as great an influence on the balanced flow as are short waves
in a shallow atmosphere. This means that, if anything, our laboratory investigation may

have underestimated the strength of the atmospheric interaction.

Based on the above comparisons, there is every reason to suspect that the conclusions of
this study regarding rotating laboratory experiments, will have counterparts regarding
flows in the atmosphere. For example, the stochastic resonance phenomenon discussed
here would also be expected to be observed in an atmospheric general circulation model.
The implication is that, in a region of the atmosphere which is simultaneously unstable
to two different modes with approximately equal growth rates, a local burst of inertia-

gravity wave activity could determine which mode grows to equilibration, or could alter-
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natively force a spontaneous transition from one mode to the other. The mechanism
which permits such behaviour is not captured by any weather forecasting model which
does not include inertia-gravity modes, either explicitly or through a stochastic param-

eterization.

8.3 Future work

We conclude the thesis by giving some possible avenues for future work suggested by

the results.

Experimental work

In addition to the PAI, RAI, PAD and PEI experimental runs described in Chapter 4,
there is a further configuration which warrants investigation. The inner cylinder could
be removed, so that the fluid occupies a cylindrical domain rather than an annular one.
This change would make the apparatus very similar to that used by Hart (1972). Losing
the inner sidewall boundary has the advantage that the geometrical similarity between
laboratory and atmosphere is stronger. Also, in practical terms, it has the benefit of
removing the parallax effect which blocks from view the short wave generation region.
Experimental runs in an open cylinder would allow an investigation of the role of the
inner sidewall boundary in locally enhancing the vertical shear across the interface.
QUAGMIRE runs could also be done for this configuration, as long as we insert a model
inner sidewall of very small radius to avoid the singularity in the model equations on

the rotation axis.

Numerical modelling work

A possible extension of the numerical modelling work would be to localize the inertia-
gravity wave parameterization, so that the stochastic terms are only active in those
regions where the magnitude of the Lighthill radiation term is large. This would help us
to investigate whether the stochastic resonance phenomenon still occurs when the noise

is localized. Spatio-temporal correlations could also be included in the noise terms, with
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realistic auto-correlations based on the observed short wave frequencies and wavelengths.

A second avenue for future research might be to focus on improving the laboratory /model
agreement, for example by running a more accurate dynamical model which explicitly
permits the short, fast waves. An extensive set of simulations, such as that presented in
this thesis, could not be performed due to the computational expense. However, a small

set, of case studies should still provide enough material for a fruitful analysis.

A further important investigation would be to determine how close to a transition curve
the system needs to be in order for stochastic resonance to take place, for a given
noise amplitude. We would expect that as distance from a transition curve increases,
the threshold noise amplitude for resonance would increase as the potential barrier in
Figure 7.6 becomes taller. It would be useful to quantify this by performing numeri-
cal experiments to determine the threshold amplitude as a function of position in the
parameter space. Such an investigation would allow us to make a balanced assessment
of how frequently short waves in the atmosphere are expected to resonantly interact
with long waves, an issue which should be of significant interest to the meteorological

community due to the potential for forecast error that this phenomenon could inflict.
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The HSI colour system

There are three different types of cones in the retina of the human eye, each contain-
ing different photosensitive pigments. Therefore every colour which is perceivable by
humans is defined by only three independent quantities, and is representable by a single
point in a three-dimensional space.! This is known as Young’s trichromatic theory of
colour vision (Longhurst, 1973). One of the most common colour systems uses (R, G, B)
coordinates to define this space. Respectively, these are the red, green and blue compo-
nents which, if combined, would give a colour which was indistinguishable to the normal

human eye from the colour being represented.

Another common colour system uses (H, S, ) coordinates. The intensity (I) gives an
indication of the total brightness of the colour, the hue (H) gives an indication of the
dominant wavelength, and the saturation (S) gives an indication of the strength of the
dominance. We now derive the transformation from the (R, G, B) to the (H, S, I) colour

system, following Foley & Van Dam (1982).

Figure A.1 shows a general colour represented by the coordinates C = (R, G, B). The
achromatic azis (or grey axis) is defined by the unit vector @ = %(1, 1,1). To deter-
mine (H, S, T) we first decompose C' into a component along the achromatic axis and a

component perpendicular to it:
C = [(C.a)a] + [C—(C.a)a] . (A.1)

The greater the projection onto the achromatic axis, the brighter the colour. The greater

LColour-blind people have only two different types of cones, and every colour they can perceive can
be represented in a two-dimensional space.
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achromatic axis

R

Figure A.1l: The relationship between the Cartesian (R, G, B) and cylindrical
(H,S,I) colour systems, shown geometrically. Hue describes the colour in terms
of its angular position on a “colour wheel”.

the distance from the achromatic axis, the more saturated and pure the colour (colours
exactly on the axis are grey). In the plane perpendicular to the achromatic axis, the
angle measured anti-clockwise from the vector pointing in the G-direction (—1,2,—1)
determines the dominant wavelength, as shown in Table A.1. In this definition, green
is arbitrarily assigned a hue of zero. This is the most useful definition for our purposes,
as green hues are rarely (if ever) observed in the laboratory experiment images, and so
there is no need to worry about the connection between H = 0° and H = 360° in the

calibration curve.

Correspondingly, we define

I=V3C.a , (A.2)
S=|C-(C.a)a |, (A.3)
and o
-1,2,—-1 —(C.a)a
Heeo [ o Ganal) .
where, for uniqueness, we require
0°< H<180°if R< B, (A.5)
180° < H < 360° if R > B . (A.6)
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hue, H (degrees)

green 0
cyan 60
blue 120

magenta 180
red 240

yellow 300

green 360

Table A.1: Hue, given as an angular position on a colour wheel. The zero of hue
is here arbitrarily assigned to green, though it is more common to assign it to red
so that the colours of the rainbow are cycled through in order as hue increases
from 0° to 360°.

Evaluating the expressions in (A.2)—(A.4) leads to

I=R+G+B, (A7)
sz¢gm—ay+m—3y+@—3m, (A.8)
and
» °G—R-B
H:mslvmm—av+m—3y+m—3m ' (A-9)

The definitions (A.7)—(A.9) are used in the calibration analysis of Chapter 3.
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