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Nonlinear interations of fast and slowmodes in rotating, strati�ed uid owsPaul David Williams, Balliol CollegeSubmitted for the degree of Dotor of PhilosophyTrinity Term, 2003This thesis desribes a ombined model and laboratory investigation of the generationand mutual interations of uid waves whose harateristi sales di�er by an order ofmagnitude or more. The prinipal aims are to study how waves on one sale an generatewaves on another, muh shorter sale, and to examine the subsequent nonlinear feedbakof the short waves on the long waves. The underlying motive is to better understandsuh interations in rotating, strati�ed, planetary uids suh as atmospheres and oeans.The �rst part of the thesis desribes a laboratory investigation using a rotating, two-layerannulus, fored by imposing a shear aross the interfae between the layers. A method isdeveloped for making measurements of the two-dimensional interfae height �eld whihare very highly-resolved both in spae and time. The system's linear normal modesfall into two distint lasses: \slow" waves whih are relatively long in wavelength andintrinsi period, and \fast" waves whih are muh shorter and more quikly-evolving.Experiments are performed to ategorize the ow at a wide range of points in the system'sparameter spae. At very small bakground rotation rates, the interfae is ompletelydevoid of waves of both types. At higher rates, fast modes only are generated, andare shown to be onsistent with the Kelvin-Helmholtz instability mehanism based on aritial Rihardson number. At rotation rates whih are higher still, barolini instabilitygives rise to the onset of slow modes, with subsequent loalized generation of fast modessuperimposed in the troughs of the slow waves.In order to examine the generation mehanism of these oexisting fast modes, andto assess the extent of their impat upon the evolution of the slow modes, a quasi-geostrophi numerial model of the laboratory annulus is developed in the seond partof the thesis. Fast modes are �ltered out of the model by onstrution, as the phase spaetrajetory is on�ned to the slow manifold, but the slow wave dynamis is auratelyaptured. Model veloity �elds are used to diagnose a number of fast wave radiationindiators. In ontrast to the ase of isolated fast waves, the Rihardson number is apoor indiator of the generation of the oexisting fast waves that are observed in thelaboratory, and so it is inferred that these are not Kelvin-Helmholtz waves. The bestindiator is one assoiated with the spontaneous emission of inertia-gravity waves, ageneralization of geostrophi adjustment radiation.A omparison is arried out between the equilibrated wavenumbers, phase speeds andamplitudes of slow waves in the laboratory (whih oexist with fast modes), and slowwaves in the model (whih exist alone). There are signi�ant di�erenes between thesewave properties, but it is shown that these disrepanies an be attributed to uner-tainties in uid properties, and to model approximations apart from the neglet of fastmodes. The impat of the fast modes on the slow modes is therefore suÆiently smallto evade illumination by this method of inquiry. As a stronger test of the interation, astohasti parameterization of the inertia-gravity waves is inluded in the model. Consis-tent with the laboratory/model interomparison, the parameterized fast waves generallyhave only a small impat upon the slow waves. However, suÆiently lose to a transi-tion urve between two di�erent slow modes in the system's parameter spae, it is shownthat the fast modes an exert a dominant inuene. In partiular, the fast modes anfore spontaneous transitions from one slow mode to another, due to the phenomenonof stohasti resonane. This �nding should be of interest to the meteorologial andlimate modelling ommunities, beause of its potential to a�et model reliability.
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Chapter 1
Introdution \We might say that the atmosphere is a musialinstrument on whih one an play many tunes. Highnotes are sound waves, low notes are long iner-tial waves, and nature is a musiian more of theBeethoven than of the Chopin type."Letter from Jule Charney to Phillip Thompson,12 February 1947.
1.1 OverviewLike many physial systems, uids often exhibit the oexistene of motions on a widerange of spae and time sales. Correspondingly, the linear normal modes of the gov-erning Navier-Stokes equations generally have spatio-temporal strutures whih fall nat-urally into distint lasses, when ategorized aording to the fundamental dynamialmehanisms whih permit their existene. This property of the uid equations was �rstidenti�ed by Margules (1893), who derived two speies of solutions to Laplae's tidalequations. He named his solutions \Wellen erster Art" (waves of the �rst type) and\Wellen zweiter Art" (waves of the seond type), whih we now know as inertia-gravityand Rossby waves. Important studies of the harateristis of these modes have beenpresented by Hough (1898) and Longuet-Higgins (1968).As a geophysial example of sale-separated uid motions, the Earth's atmosphere andoean support aousti waves, whih have relatively short wavelengths and are quikly5



Chapter 1. Introdution�/m �/s ph/m s�1aousti waves 1 10�2 102inertia-gravity waves 105 104 10Rossby waves 106 106 1Table 1.1: Charateristi horizontal wavelengths (�), intrinsi periods (�) andphase speeds (ph) of three di�erent lasses of waves observed in the Earth's atmo-sphere. These three quantities are related by ph = �=� . Values are given tothe nearest typial order of magnitude; in reality there is a signi�ant spread inharateristi sales about these mean values.propagating; inertia-gravity waves, whih are muh longer and more slowly evolving; andRossby waves, whih are longer and slower still. Typial sales assoiated with thesethree linear eigen-modes in the atmosphere are shown in Table 1.1.The presene of multiple, disparate sales in uid motions presents a distint diÆultyfor theoretial and numerial modelling, analysis and predition. Simultaneously andaurately apturing the evolution of features whose harateristi sales di�er by anorder of magnitude or more, requires an exeptionally areful treatment and large om-putational e�ort. Moreover, omputational resoures aside, the primary fous of a studyis usually restrited to just a subset of all the permissible motions. Inluding the entirespan of sales would be distrating, and moreover, suh a omprehensive analysis is notusually regarded as neessary for ahieving reliable results. This is beause interationsbetween motions on the sales of interest, and motions on dramatially di�erent sales,are taitly assumed to be negligible.For these reasons it has beome ommonplae to �lter from uid dynamial models,motions on those sales whih are not of primary interest. For example, a study of atmo-spheri Rossby and inertia-gravity waves is unlikely to be onerned with the aoustiwaves with whih they oexist. Sine aousti waves require uid ompressibility, theyan be �ltered out of the analysis by imposing an inompressibility approximation.6



Chapter 1. IntrodutionInertia-gravity waves and Rossby waves are still permitted in this �ltered model, butany nonlinear interation whih takes plae between these modes and aousti modes inthe real system, annot be aptured. As another example, Haine & Williams (2002) have�ltered out small-sale onvetive plumes from a surfae oean front model by imposinga hydrostati approximation, and have investigated the e�ets of the �ltering on thelarge-sale ross-frontal transfer.The question whih naturally arises is: are nonlinear wave interations strong enough tosigni�antly redue the appliability of a �ltered model, in whih at least one of the wavetypes present in the real system is absent? There must be a mathing of spae and/ortime sales in order for a signi�ant interation to our, as we will quantify shortly.In the above example, the length, time and speed sales of the �ltered (aousti) andretained (inertia-gravity and Rossby) modes are so poorly mathed, that for all pratialpurposes the answer is surely \no". Though possible in priniple | due to the butterye�et (Drazin, 1992) | there is no evidene that the sound of a person's voie an haveany real impat upon tomorrow's weather!However, we fae a potentially di�erent situation when we onsider the �ltering outof inertia-gravity waves, through imposing a balane approximation suh as quasi-geostrophy. The harateristi sale separation fators between inertia-gravity andRossby waves are only around 10{100, as ompared with 106 in the ase of aoustiand Rossby modes. This makes it feasible that a small, but signi�ant Rossby/inertia-gravity wave interation ould exist.The intuitive notion that there must be a reasonable mathing of sales for a stronginteration has been quanti�ed by Benney (1977). He presented a simple, general theoryfor interations between short and long waves, whih is outlined here. For a resonanttriad interation to our in a uid system with dispersion relation !(k), the wavevetors ka, kb and k are required (e.g. Gill, 1982) to satisfyka � kb = k (1.1)and !(ka) � !(kb) = !(k) . (1.2)7



Chapter 1. IntrodutionEquation (1.1) is satis�ed byka = ks + 12kl ; kb = ks � 12kl ; k = kl ; (1.3)where the subsripts l and s refer to long and short waves, respetively. Equations (1.3)represent a triad onsisting of two short waves (a and b) and one long wave (). Usingkl � ks to employ a linear approximation to the dispersion relations, we �nd thatequation (1.2) holds for this triad ifkl : rk !(ks) = !(kl) ; (1.4)where rk is the gradient operator in wave vetor spae. A resonant triad interationis therefore permitted between long and short waves if the phase veloity of the longwave is equal to the omponent of the group veloity of the short wave in the diretionof travel of the long wave. In one dimension, this requirement simpli�es to the phasespeed of the long wave being equal to the group speed of the short wave. The physialinterpretation is that the energy of the short modes, whih travels at their group speed,must not drift relative to the phase of the long mode. This means that any energytransfer from short to long modes is foussed at partiular loations �xed relative to thenodes of the long mode, rather than being input aross all long mode phases, and thisrequirement evidently allows a resonant reinforement of the energy transfer.Figure 1.1 shows typial dispersion urves for the three lasses of atmospheri wavespreviously mentioned. It is lear that there is no possibility of equality between thephase speed of a Rossby wave and the group speed of an aousti wave, as aoustiwaves propagate too quikly. This helps to justify the �ltering of aousti modes froma Rossby wave model, as previously disussed. But the possibility is open | in prin-iple, at least | of equality between the phase speed of a long Rossby wave and thegroup speed of a short gravity wave, and therefore of a resonant interation and energyexhange.The above analysis throws a question mark over the onventional wisdom that theRossby/inertia-gravity wave interation is always negligible. Sine Rossby waves areprototypes of the atmospheri disturbanes whih onstitute our weather systems, andsine inertia-gravity waves are atively �ltered out of numerial weather predition mod-els by the initialization proedure (Setion 1.4.1), a non-negligible interation between8



Chapter 1. Introdution
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Chapter 1. Introdutionthe two modes would have possible impliations for aurate weather foreasting.This thesis is a study of the interations between \fast" and \slow" modes, suh asRossby and inertia-gravity waves, in uid ows. We are prinipally interested in investi-gating two key aspets of the interation: �rstly, the ability of slow motions to generatemuh faster motions; and seondly, the ability of the fast modes, one generated, toimpat upon the evolution of the slow modes. In the present study, we investigate theseissues using a laboratory experiment and aompanying numerial model. The under-lying motive of the investigation is to understand the interation properties on a muhlarger sale, in planetary atmospheres and oeans.
1.2 Sale-separated interations in non-uid systemsSystems whih display interations between multiple sale proesses are ubiquitousaross the entire spetrum of the natural sienes. Examples of systems with morethan one timesale (sti� systems), from the �elds of lassial mehanis, hemistry andiruit theory, are briey disussed in the following paragraphs. Though the govern-ing equations for these systems may be very di�erent from those of uid systems, wemight expet sale-separated interation harateristis to be robust enough to with-stand hanges in the detailed phase spae topologies. We may therefore be able to infersome of the qualitative features of sale-separated interations in uids, from those inthe other systems.
The swinging springThis system is also known as the elasti pendulum, sine it is like the well-known simplependulum exept that the rigid rod is replaed with a spring. A point massm is attahedto a spring with fore onstant k in a gravitational �eld g, so that the equilibrium lengthof the spring is l. When onstrained to move in a vertial plane, there are two modes ofosillation, distinguished by the physial mehanism that provides the restoring fore.As with the simple pendulum, there is a rotational linear normal mode with timesalepl=g, but now there is also an elasti linear normal mode due to spring strething and10



Chapter 1. Introdutionompression, with timesale pm=k. For the typial values m = 1 kg, k = 103 N m�1,g = 10 m s�2 and l = 1 m, the timesales are 0.3 s and 0.03 s, showing a lear separationby a fator of ten.Lynh (2000) has desribed an expliit analogy between the swinging spring systemand atmospheri ow. He ompares the high-frequeny elasti modes to inertia-gravitywaves, and the low-frequeny rotational modes to Rossby waves. In the swinging spring,as in the atmosphere, there is nonlinear oupling between the fast and slow modes. Theanalogy proves to be useful, even though the swinging spring has a four-dimensionalphase spae whereas the atmosphere explores a manifold of dimension muh larger thanfour in an in�nite-dimensional phase spae. In both ases, for general initial onditionsboth normal modes are exited and persist as the system evolves, but it is possible todetermine initial onditions for whih the fast modes remain absent. Lynh derives suhinitial onditions for the spring, and uses his analogy to illustrate the onept of atmo-spheri balane.Lynh goes on to apply the Kolmogorov-Arnold-Moser (KAM) theorem to the springsystem (Arnold, 1963). KAM theory provides a method for investigating how the phasespae strutures of a ompletely integrable system (e.g. the rigid pendulum) are mod-i�ed when the system is slightly perturbed in suh a way that integrability no longerexatly holds (e.g. by replaing the pendulum with a spring and allowing the fast andslow modes to interat). His onlusion is that if most of the energy is initially in theslow mode, then only an amount proportional to the ratio of fast to slow timesalesan be transferred to the fast osillations. This result is rigorously valid only for sys-tems with four degrees of freedom, though Lynh speulates that the onlusion may beportable to the inertia-gravity/Rossby wave interation in uids with many more thanfour independent variables.
Chemial reationsChemial proesses often exhibit the oexistene of hemial reations and transportphenomena with a wide range of timesales. Vora & Daoutidis (2001) have developeda general method for removing the fast variables from analyses of hemial systems,11



Chapter 1. Introdutionsomething akin to making an assumption of balane in a uid dynamis model. Theytest their method by omparing numerial integrations of some full-order models andassoiated redued models, and �nd exellent agreement.In partiular, they study the esteri�ation of a arboxyli aid with an alohol in thepresene of a atalyst. The system has 11 hemial speies and 12 elementary reations,of whih 4 are slow and 8 are fast. Their method allows a redution in the number ofdegrees of freedom from 11 to 7, signi�antly reduing the omputational expense.Chua's iruitThe haoti behaviour of this nonlinear eletroni iruit has been widely studied (Madan,1993). It has two apaitors C1 and C2, an indutor L, and a diode with a nonlinearurrent-voltage response. These four omponents, together with a power supply, are allplaed in parallel. There are two natural timesales in the equations: pLC1 and pLC2.In a ommon set-up, L = 10 mH, C1 = 0:08 �F and C2 = 4:4 nF, so that the fast andslow timesales are 7 �s and 28 �s.Zhu et al. (2002) have shown in a laboratory experiment using Chua's iruit that thetemporal regularity is enhaned by the introdution of a small amplitude noise soure.This is a phenomenon known as stohasti resonane, whih we investigate in uids inChapter 7 when we add a stohasti inertia-gravity wave parameterization to a quasi-geostrophi numerial model.
1.3 The slow manifoldThe inompressible Navier-Stokes equations an be written in the general form_x = f(x) ; (1.5)where the dot denotes di�erentiation with respet to time. The state vetor x(t) on-tains the values of all the dynamial variables (veloity, pressure, et.) at eah spatialpoint at time t. The number of elements of x orresponds to the number of degrees offreedom of the uid, whih is formally in�nite for the ontinuous system, but �nite for a12



Chapter 1. Introdutiondisretized or trunated normal mode approximation. The nonlinear vetor operator frepresents the dynamis embodied in the Navier-Stokes equations, inluding boundaryonditions. The phase spae trajetory traed out by x(t) desribes the evolving stateof the uid.Imposing a balane ondition, to �lter out inertia-gravity waves, orresponds to imposinga set of onstraint equations whih an be written in the general formg(x) = 0 : (1.6)Phase spae trajetories x(t) are now onstrained to move on the hyper-surfae g(x) = 0,whih redues the number of degrees of freedom of the system by the number of elementsof the vetor operator g. The surfae g(x) = 0 is alled the uid dynamial slow man-ifold, beause trajetories whih are onstrained to evolve on it are ompletely devoidof fast inertia-gravity modes.1 Slow manifolds an be de�ned in the same way for theother sale-separated systems disussed in Setion 1.2.It is more natural to piture the slow manifold in the phase spae spanned by the linearnormal mode variables, rather than by the physial variables. The linear normal modesof equations (1.5) are naturally partitioned into a fast lass (inertia-gravity waves) anda slow lass (Rossby waves). Sine the spatio-temporal strutures xfastn and xslown of thelinear normal modes form a omplete set, solutions to equations (1.5) an be alwayswritten x(t) = Xn afastn (t) xfastn + Xn aslown (t) xslown : (1.7)This equation represents a transformation between the elements of the state vetor x(t)and the normal mode amplitudes an(t). The slow manifold is now simply de�ned asafastn = 0 8 n.The onept of the slow manifold is intimately related to fast/slow interations. If theinteration is negligible then we may onstrain model trajetories to the slow manifoldwithout loss of auray, justifying the use of �ltered models.1In turn, solutions of the full inompressible Navier-Stokes equations an also be said to exist on aslow manifold, namely that manifold of the ompressible Navier-Stokes equations whih is ompletelydevoid of the \very fast" aousti modes. 13



Chapter 1. IntrodutionThe existene of a strit invariant slow manifold within the unapproximated equationsof uid motion, upon whih a real ow may evolve without ever exiting inertia-gravitywave modes, has been debated ever sine it was de�ned by Leith (1980) and Lorenz(1980). There is no guarantee that a trajetory whih starts out on the slow manifoldbut whih evolves aording to the full equations (1.5) will remain on the slow manifoldfor all time. This is a potential soure of unreliability in any �ltered model whih makesthe a priori assumption of perpetual slow manifold on�nement.Lorenz (1986) and Lorenz & Krishnamurthy (1987) have investigated the problem byonstruting redued-dimensional primitive equation models derived from the shallowwater equations, ontaining three slow and two fast independent variables. They ouldnot �nd initial onditions for whih the fast motions remained absent during their numer-ial integrations, and onluded that this model did not possess an invariant slow man-ifold. Jaobs (1991) examined the same numerial model and disovered that a slowmanifold did in fat exist. Lorenz (1992) argues that there is no mathematial inonsis-teny between the two onlusions, and that the apparent disrepany is due to di�eringde�nitions of the slow manifold.More reently, Yavneh & MWilliams (1994) report a distint breakdown of the slowmanifold at a ritial Rossby number, in a numerial solution of the shallow water equa-tions, though their breakdown is primarily assoiated with enhaned dissipation ratherthan an initiation of inertia-gravity wave propagation. Warn & Menard (1986) haveargued that, when the slow manifold breaks down, it may simply be perturbed from asmooth subspae to a quasi-stohasti subspae, but that this \fuzzy manifold" may stillpossess many of the most useful properties of the original slow manifold. The questionsof the existene of slow and fuzzy manifolds, and even of how to properly de�ne them,learly remain ontroversial.
1.4 Appliation to weather foreastingInertia-gravity waves exist ubiquitously in the Earth's atmosphere, and are of partiu-larly large amplitude in the upper troposphere and lower stratosphere. They are observedin high resolution data from radiosondes, rokets and satellites (e.g. Sato (1994) and ref-14



Chapter 1. Introdution

Figure 1.2: Gravity waves in notiluent louds photographed over Kiruna, Swe-den at 23:08 on the night of 10th August 2000. On this oasion, the waves per-sisted for around 15 minutes before dissipating away. (Photograph by Dr. S. Kirk-wood, Dr. P. Dalin and Dr. A. Mostr�om, Swedish Institute of Spae Physis.)erenes therein for radar observations). They are reported to have vertial wavelengthsof around 1{5 km, horizontal wavelengths of around 200{1000 km and intrinsi timeperiods of around 10 hours.Reently, extensive ground-based observations of atmospheri pure gravity waves havebeen made by a team at the Swedish Institute of Spae Physis. They report that grav-ity waves of wavelengths in the range 5{50 km are visible from the ground in notiluentlouds (NLCs) on around one night in three during the summer months, predominantlybetween latitudes 50{70ÆN and times 22:00{04:00 (Dr. P. Dalin, personal ommunia-tion). A typial observation is shown in Figure 1.2.Observations suh as these have been mirrored in high-resolution numerial simula-tions of the atmosphere (e.g. O'Sullivan & Dunkerton, 1995; Sato et al., 1999) inwhih inertia-gravity waves have been generated by the geostrophi adjustment of abarolinially-unstable tropospheri jetstream. An example of the inertia-gravity waveradiation produed during this proess is shown in Figure 1.3.15



Chapter 1. Introdution

Figure 1.3: Contours of horizontal veloity divergene at 130 mb on day 11 of ahigh-resolution (T126, �z = 700 m) numerial simulation by O'Sullivan & Dunker-ton (1995). The model was initialized with a small-amplitude zonal wavenumber6 mode, superimposed on a zonally-uniform barolinially-unstable ow. By day11, the perturbation has reahed its maximum amplitude and begun to deay,generating the inertia-gravity waves shown.The normal modes of a system will only appear if there is a mehanism present to exitethem. There are two generation mehanisms for inertia-gravity waves in the free atmo-sphere (away from topography). Dalin's waves were generated due to a loal wind shear,whereas O'Sullivan and Dunkerton's were radiated as exess energy, as a balaned modelost and then re-established its balane through the geostrophi adjustment mehanism.It seems to be unlear whih is the dominant of these two mehanisms in the atmosphere,but in Chapter 6 we will be in a position to determine the dominant mehanism in a lab-oratory experiment whih is in many respets a saled-down analogue of the atmosphere.
1.4.1 The importane of initializationDespite the on�rmed ubiquitous presene of inertia-gravity waves in the lower, meteo-rologially signi�ant part of the atmosphere, a onsiderable portion of the e�ort thatgoes into produing weather foreasts is spent on the initialization proess, in whihinertia-gravity waves are �ltered out of the observations before they are used as initialonditions. This is done for a number of reasons.Firstly, atmospheri observations are often of suh dubious quality that any apparentdepartures from balane are just as likely to be due to errors in the measurements, or in16
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Figure 1.4: Time series of surfae pressure at a �xed spatial point from a prim-itive equations model of the atmosphere, with uninitialized (solid) and initialized(dashed) starting �elds. From Williamson & Temperton (1981).the proess whih interpolates these measurements onto a regular grid, as to the pres-ene of inertia-gravity waves. Seondly, even if inertia-gravity waves are the reason fordepartures from balane, typial observations are too sparse to fully resolve them, andthe horizontal spatial resolution of numerial models is at present too low (11 km in theUK Meteorologial OÆe mesosale model) to aurately apture their evolution (butsee Setion 1.4.3). Furthermore, omplete and permanent elimination of the fast modespermits the use of a signi�antly longer timestep whilst still satisfying the CFL riterion,whih leads to more eÆient integrations. Finally, the key aim of operational meteorol-ogists is to model the synopti-sale phenomena that onstitute our weather systems,rather than trouble themselves with small-sale waves whose e�ets are seondary. Forthese reasons, it is desirable to have an initial atmospheri state whih has no projetiononto inertia-gravity modes, and so the observations are projeted onto the slow manifoldbefore being used as the initial onditions for the foreast.An example of the likely onsequenes of running an uninitialized primitive equationsmodel is shown in Figure 1.4. Using uninitialized starting onditions, based on raw17



Chapter 1. Introdutionobservational data, the time series ontains a large and spurious high-frequeny inertia-gravity wave omponent whih dominates the signal. Performing the same run butusing initialized starting onditions, obtained by slightly adjusting the observations ina presribed way to take them towards balane, ompletely removes the high-frequenyomponent leaving only the slow trend of meteorologial interest.The issue of whether inertia-gravity waves in the atmosphere an a�et the develop-ment of synopti-sale weather systems is therefore an important and topial problemin meteorology, sine if suh an interation exists it ould plae a fundamental limit onthe auray of foreasting models whih do not inorporate it. Operational meteoro-logial entres inlude a parameterization of the e�ets of inertia-gravity waves in theirforeasting models, in partiular of their drag on the large-sale ow (Hines, 1997), butthis is ertainly an inomplete representation of the full interation.
1.4.2 History of numerial weather preditionAtmospheri inertia-gravity waves are not readily exited, sine the length sale of thedi�erential solar foring between equator and poles is well-mathed to typial Rossbymode wavelengths, but not to inertia-gravity wavelengths. Moreover, inertia-gravitymodes are more eÆiently dissipated sine visous e�ets are highly sale-seletive.Therefore the vast majority of the energy of the atmosphere is in the vortial modes,and the atmospheri state is lose to the slow manifold.We an apitalize on this when onstruting a model for numerial weather predition.There would be a large redundany in a model whih aptured the dynamis of solu-tions far from the slow manifold if it was known that the phase spae trajetory wouldnever visit there. To overome this, we an either �lter the fast modes out of the initialonditions, as desribed in Setion 1.4.1, or alternatively �lter the fast mode solutionsout of the equations themselves by projeting the equations onto the slow manifold. Wenow briey review the history of numerial weather predition, in whih both of thesemethods have been attempted, in order to illustrate the importane and diÆulty ofeliminating unbalaned modes from the foreast.18



Chapter 1. IntrodutionPeople have been fasinated by the weather sine time immemorial, and have oftenmade asual foreasts based on simple loal observations suh as the olour of the nightsky. The �rst regular and systemati foreasts were those produed by Admiral RobertFitzroy in 1860, whih he published in the Times (Lynh, 2001). Foreasting methodsemployed then inluded maintaining a large atalogue of daily weather maps from thepast, in order, and then �nding a map whih resembled the onditions for the presentday and supposing that the atmosphere would do again what it had done before. Lorenz(1969) has shown that with this method, known as the method of analogues, it is diÆultto �nd an aeptably lose math even if the atalogue onsists of 2000 maps.Meteorology was �nally given a �rm sienti� basis when when Bjerknes (1904) sug-gested the then revolutionary idea of solving partial di�erential equations to alulate thefuture weather. Two deades later this method was atually implemented by Rihardson(1922), who performed the world's �rst numerial weather foreast. He integrated thedisretized partial di�erential equations numerially on paper and, aording to Lynh(1993), took two years to obtain his solution. He used the hydrostati primitive equations(HPEs) | a slightly approximated form of the Navier-Stokes equations on a sphere, on-taining both fast and slow modes. He obtained ompletely unrealisti values (a surfaepressure hange of 145 mb in 6 hours) beause the initial �elds ontained a signi�antbut spurious inertia-gravity wave omponent, as in Figure 1.4, and not beause of errorsin his method.The world's �rst omputer foreast was performed by Charney, Fj�ortoft and Von Neu-mann three deades later. In order to avoid Rihardson's problem, they �ltered theequations of motion to derive the quasi-geostrophi (Q-G) system (Charney, 1948) andtheir foreasts were reasonably suessful.The HPEs were used again a few years later, sine they were shown to be more auratethan the Q-G equations. But in order to avoid Rihardson's error, it was neessary toinitialize the starting �elds. Determining the most suitable initialization method formeda major area of researh during the deades whih followed. The following initializationmethods have been proposed. 19



Chapter 1. IntrodutionHinkelmann (1951) suggested that the initial state should be modi�ed so as to begeostrophially balaned, and then Charney (1955) suggested that it should instead sat-isfy the nonlinear balane equation, a diagnosti relation between the wind �eld and thegeopotential. Phillips (1960) suggested that an even better initialization would result ifthe horizontal divergene of the initial wind were set equal to that implied by Q-G theory.The tehnique of dynami initialization was introdued by Miyakoda & Moyer (1968),and is disussed in the initialization review artile by Lynh (1986). This involves inte-grating the raw observation data �rst forwards and then bakwards in time, using theHPEs with enhaned dissipation. This forward/bakward yle is repeated several timesto obtain �elds in whih the high frequeny omponents have been damped out by thedissipation, and the �elds so obtained are used as the initial onditions for the foreast.Initialization tehniques based on normal mode deompositions are disussed in thereview artile by Daley (1980). The tehnique of linear normal mode initialization(LNMI) was tested by Williamson (1976). The initial �elds are separated into Rossbyand inertia-gravity wave omponents (that is, projeted onto the linear normal modesas in Setion 1.3) and the amplitudes of the latter are set to zero. Unfortunately theinertia-gravity waves soon re-appear in the foreast: the primitive equations are nonlin-ear and evidently allow the Rossby omponents to interat in suh a way as to generatenew inertia-gravity waves.The tehnique of nonlinear normal mode initialization (NNMI) was suggested indepen-dently by Mahenhauer (1977) and Baer (1977) and Baer & Tribbia (1977). This involvesnot setting the initial inertia-gravity wave omponents to zero, but instead setting theirinitial rate-of-hange to zero. NNMI takes into aount the nonlinear nature of the equa-tions. It works very well: the foreast is very smooth and the spurious inertia-gravitywaves remain aeptably small throughout the integration. NNMI is the most popularmethod of initialization today, and it is used in many foreast entres.Most reently, the tehnique of digital �ltering has been suggested by Lynh (1991) as asimpler method than NNMI. It involves arrying out two short HPE model integrationsstarting with the raw data, one forwards in time and one bakwards. This gives a time20



Chapter 1. Introdutionseries (of typially 6 hours) entred on t = 0 for eah model variable at eah grid-point.A low-pass �lter is then applied to these time-series, and the resulting values at t = 0 areused as the initial onditions. An optimal �lter shape has been hosen and suessfullyimplemented by Lynh (1996). Interestingly, Lynh (1999) has repeated Rihardson'smanual alulation on a omputer, and reprodued the surfae pressure tendeny of145 mb in 6 hours. In the same paper, he repeats the analysis after initialization of thestarting �elds with a digital �lter, and obtains a realisti pressure tendeny of 3 mb in6 hours.
1.4.3 When might inertia-gravity waves be resolved?The resolution of operational numerial weather predition models has improved dra-matially sine the �rst ever omputer foreasts were performed. The resolution is nowsuÆiently high that medium- to large-wavelength inertia-gravity waves an be partiallyresolved. Given a further redution in the horizontal grid spaing by a fator of 10, witha orresponding improvement in observations, suh waves ould be fully resolved andpotentially inluded expliitly in a foreast, rather than through an impliit parameter-ization of their e�ets.If latitudinal and longitudinal grid spaings were eah to drop by a fator of 10, wewould also need to redue the timestep by a fator of 10 to leave the Courant numberuna�eted. This would lead to an inrease in omputer time for a foreast by a fatorof around 1000, or alternatively, we would need an inrease in proessing speeds by afator of 1000 for the integration to take the same time. Sine this fator orrespondsto 10 doublings of lok speeds (210 � 103) and sine lok speeds double around every18 months (Moore's law), this is expeted to be ahievable in around 15 years.When this time omes, it would be useful for meteorologists to have a body of knowl-edge regarding the antiipated impats of the inertia-gravity waves on the larger-saleow. It is hoped that this thesis will form a small part of that olletion of information,and that the present study will suggest diretions for the researh that will be neededbetween now and then to produe the rest.21



Chapter 1. Introdution1.5 Dynamial similarity and laboratory experimentsIt is well-known (Douglas & Gasiorek, 2000) that, when written in non-dimensional form,the equations whih govern the evolution of seemingly di�erent uid dynamial systemsan be very similar. The aim of laboratory experiments in geophysial uid dynamis isto exploit this dynamial similarity, to make inferenes about atmospheri and oeaniphenomena from observations of the analogous laboratory ows.As an example appropriate to this study, the shallow water equations (SWEs) appliedto an approximated two-layer atmosphere or oean, an very losely resemble the SWEsfor a rotating, two-layer laboratory experiment. This statement holds despite the fatthat typial length and time sales for orresponding geophysial and laboratory owsan di�er by very many orders of magnitude. All that matters for dynamial similarityis equality of the relevant non-dimensional dynamial and geometrial parameters, suhas the Rossby number and aspet ratio.Dynamial similarity allows us to study geouids in the laboratory, as suggested byFigure 1.5. One we have solved a partiular uid ow problem by making observationsin the laboratory, we have atually solved an in�nite number of other uid ow prob-lems all of whih are dynamially and geometrially similar, inluding on the planetarysale. For most of the remainder of this thesis, we study experiments in an isothermal,rotating, two-layer laboratory apparatus. In the �nal hapter we return the fous togeouids to onsider how portable our laboratory onlusions are to the atmosphere andoean, mindful of the di�erent non-dimensional parameters and boundary onditions weenounter in the laboratory.Figure 1.6 shows a foretaste of the sort of ow we an observe using the present laboratoryapparatus. In the image, barolini instability has led to the growth of a slow, large-salemode with a dominant azimuthal wavenumber of two. Importantly for our purposes, twogroups of fast, small-sale waves have developed and are superimposed onto the larger-amplitude barolini wave. Note the striking resemblane between small-sale waves inthe laboratory experiment (Figure 1.6), and those in the atmosphere (Figure 1.2) anda numerial model (Figure 1.3). That waves on suh dramatially di�erent sales anappear so similar in form is testament to the power of the onept of dynamial similarity.22
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Figure 1.5: Diagram showing the analogy between (a) the uid in a rotatingannulus experiment in the laboratory, and (b) the uid bounded by two latitudeirles on a rotating planet. From Read et al. (1998).
23



Chapter 1. Introdution

Figure 1.6: Sample laboratory experiment image. A large-sale barolini waveis shown to oexist with two groups of small-sale waves. There is a relationship,to be determined in Chapter 3, between the olour in the image and the height ofthe two-layer liquid interfae.
1.6 Previous laboratory workLaboratory investigations of non-rotating uid ows began in the nineteenth entury,and inlude the lassi investigations of Reynolds (1883). At around the same time, Vet-tin (1884) beame probably the �rst person to exploit dynamial similarity by arryingout rotating laboratory experiments as analogues of geophysial systems. He studiedthe surfae ow in a rotating dishpan of uid with a lump of ie near the entre, repre-senting a polar ie ap, and (to the sorn of his ontemporaries) he drew meteorologialonlusions from his results.The main bene�ts of studying geouids indiretly in the laboratory are that the systemis under the omplete ontrol of the experimenter, that global high-resolution measure-ments an be systematially taken, and that experiments an be repeated as many timesas required. None of these statements hold when geouids are studied diretly ratherthan in the laboratory. A review of the role of laboratory experiments in geophysial24



Chapter 1. Introdutionuid dynamis is given in Hide (1977).As suggested by Vettin's experiment, for the losest resemblane between annulus andplanet in Figure 1.5 we should apply heating and ooling at the outer and inner vertialsidewalls, respetively, to mimi the di�erential solar thermal foring between equatorand pole. The resulting rotating thermal annulus system with ontinuous uid strati�a-tion has been extensively studied sine the early 1950s, inluding the lassi experimentsof Hide et al. (1977).It follows from the thermal (and gradient) wind balane equations for a rapidly-rotatingannulus, that a radial temperature gradient will be aompanied by a vertial shearin the zonal veloity (suh as that assoiated with the tropospheri jetstream in theatmosphere). Similar ows to those obtained in the thermal annulus an therefore beobtained in an isothermal annulus by imposing a veloity shear diretly. For studyinggeoows, an alternative to the thermal annulus is therefore the rotating two-layer annu-lus, with a shear provided aross the uid interfae by di�erentially-rotating top andbottom horizontal boundaries.The rotating, two layer annulus has also been studied extensively in the laboratory(e.g. Carrigan, 1978; King, 1979b; Appleby, 1982), and good agreement has been reahedbetween the properties of balaned ows in the thermal and two-layer annuli, and ofthose in the orresponding theoretial and numerial models (Klein, 1990). During thetwo-layer annulus laboratory experiments of Lovegrove (1997), whih were designed toinvestigate bifurations between di�erent large-sale modes, it was found under ertainirumstanes that fast, small-sale modes ould develop. This �nding, of seondaryinterest to Lovegrove's study and so not investigated in detail, has formed the startingpoint for the urrent work.
1.7 The urrent studyLovegrove's �ndings showed that the interation between balaned large-sale and unbal-aned small-sale waves ould be studied, for the �rst time, in the laboratory. Previousinvestigations had been exlusively based on highly-idealized and trunated numerial25



Chapter 1. Introdutionand theoretial models, whose representation of reality was far from omplete.This thesis is a study of sale-separated interations in uids in the laboratory, withthe underlying motive being to better understand suh interations in geouids suhas the atmosphere and oean. In the past, there have been laboratory investigationsof large sale interations (Setion 1.6), and analytial investigations of sale-separatedinterations and the slow manifold (Setion 1.3). This study is believed to be the �rstlaboratory investigation of the slow manifold.
1.7.1 Aims of this investigationThe key sienti� questions we wish to answer are:� Under what irumstanes do small-sale waves appear in the labora-tory experiments? We answer by undertaking a new series of experimentalinvestigations.� Whih mehanism auses the small-sale waves to appear in the lab-oratory experiments? We answer by omputing several radiation diagnostisassoiated with the andidate mehanisms. We do this using veloity data from anumerial model.� What are the e�ets of the laboratory small-sale waves on the large-sale, balaned ow? We answer by omparing model (�ltered) and laboratory(un�ltered) regime diagrams, and by performing model runs both with and withouta stohasti inertia-gravity wave parameterization.� Having answered these questions for a laboratory experiment, whatan we infer about answers to the analogous questions for geouids? Weanswer by omparing and ontrasting the laboratory experiment with the atmo-sphere and oean, inluding a omparison of nondimensional parameters and ofboundary onditions. 26



Chapter 1. Introdution1.7.2 Thesis outlineThis thesis is split naturally into two parts. The �rst part desribes the outome of a lab-oratory investigation using the rotating, two-layer annulus. The apparatus is desribedin Chapter 2, and a method for alibrating interfae heights is developed and applied inChapter 3. In Chapter 4, the results of an extensive series of experiments are desribedand analyzed.The seond part of the thesis desribes the outome of a omplementary method forinvestigating the rotating annulus, by running a purpose-built numerial model. InChapter 5, we derive the model equations and obtain a reliable and fast integrationsheme. In Chapter 6, we desribe the results of the model runs, and ompare themwith the laboratory results. Then, in Chapter 7, we add a stohasti inertia-gravitywave parameterization to the model, and investigate its e�ets upon the large-sale ow.Finally, in Chapter 8, we summarize the present work, and give our onlusions aboutthe sale-separated wave-wave interation in the laboratory by stating answers to theabove four questions. We disuss the appliability of these onlusions to the analogousinteration in geouids, and end by desribing some possible avenues for future work.

27



Chapter 2
Desription of the laboratoryapparatus \d-limonene ... an be harmful when vaporized and breathed."US Environmental Protetion Ageny website\...the primary ingredient of Citrus Burst r, d-limonene, is plantderived. It is extremely safe..."Florida Chemial Company, In. websiteIn this hapter, a desription is given of the rotating, two-layer annulus apparatus whihhas been used for the laboratory omponent of this study. The apparatus was built atthe U.K. Meteorologial OÆe in the early 1970s, where it was used in the studies ofKing (1979b) and Appleby (1982). The apparatus was later moved to the University ofOxford, where is was used most reently by Lovegrove (1997).In the following setions, we desribe some modi�ations whih have been made tothe apparatus sine the experiments of Lovegrove. These inlude an upgrade to ahigher-quality video format for image transmission and storage, and the installationof a higher-resolution frame-grabber in the laboratory omputer. We present some newresults regarding the sensitivity of the working uid properties to temperature utu-ations. Then we develop a simple method for reduing the mutual interfaial tension,and we disuss some previously unreported but important observed hanges as the uids28



Chapter 2. Desription of the laboratory apparatusage. Details of the employed ow visualization tehnique are given, and of the extent towhih the visualization is distorted by refration and parallax e�ets.
2.1 The rotating, two-layer annulusPhotos of the rotating, two-layer annulus apparatus are shown in Figures 2.1 and 2.2, andthe annulus is shown shematially in Figure 2.3. The annulus onsists of a ylindrialstainless steel tank of inner radius 125.00 mm and depth 250.00 mm, whih has a �xedglass base and a removable glass lid. A solid steel ylinder, of radius 62.50 mm anddepth 250.00 mm, is glued oaxially (to within an estimated 0.1 mm) to the base ofthe tank to form an annulus of gap width 62.50 mm. The annular region is �lled tothe brim with equal volumes of two immisible liquids, to give a two-layer liquid witha well-de�ned interfae and equal resting layer depths of 125 � 1 mm. Details of thepartiular uids used are given in Setion 2.2.The tank is mounted entrally (to within an estimated 0.1 mm) above a paraboli or-retion tank (disussed in Setion 2.4) on a irular turntable 1 m above the laboratoryoor, whih an be made to rotate under omputer ontrol with angular veloity 
. Theannulus lid, whih is in ontat with the upper liquid, an be made to rotate under om-puter ontrol with angular veloity �
 relative to the tank. This is possible beausethe lid is onneted to the tank via a ball rae, allowing low-frition relative motionpowered by a servo motor and drive wheel. Both 
 and �
 an take either sign, andare stable to within 1% over a period of a few hours. The maximum ahievable valuesare j
maxj = 6:3 rad s�1 and j�
maxj = 3:1 rad s�1.There is a entral irular hole in the turntable, of radius equal to the tank radius, sothat white light from a bright 500 W tungsten-halogen soure lamp on the laboratoryoor may pass vertially into, through and out of the annular gap. The light is reeivedby a olour harge-oupled devie (CCD) video amera, whih is on the rotation axisand o-rotates with the turntable 2 m above it. Communiations between the laboratoryframe and the rotating turntable frame (namely the amera power and output signal,and the servo motor power) are ahieved through a ommutator slip-ring, hidden fromamera view by the inner ylinder. 29



Chapter 2. Desription of the laboratory apparatus

Figure 2.1: The two-layer annulus apparatus and ontrol equipment. From left toright: the rotating turntable, mounted with the annulus and with a tall metal frameto support the video amera; an ampli�er whih powers the turntable rotation andlid rotation; a television and video reorder to wath and reord live images fromthe amera; and a omputer with a frame-grabber installed to digitize and saveseleted images.

Figure 2.2: Close-up view into the annular tank from above.30
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Chapter 2. Desription of the laboratory apparatus

(a) (b)Figure 2.4: Images aptured from a video tape of the two-layer annulus exper-iment, photographed by the CCD amera. Digitization of the images was doneusing (a) the urrent frame-grabber and S-VHS equipment, and (b) the previousframe-grabber and regular VHS equipment.The S-VHS signal1 output by the amera an be reorded at 25 frames per seond ontohigh-quality, S-VHS video tapes, whih an be played bak for subsequent analysis. Thevideo signal an be input to a omputer with a frame-grabber, to produe olour 24-bitdigitized images measuring 768 pixels by 576 pixels. A sample image is shown in Fig-ure 2.4(a), showing a wavenumber 2 mode whih has grown due to barolini instabilityand whih slowly drifts around the annulus with a period of around one minute. Dif-ferent olours orrespond to di�erent depths of the lower liquid layer, for reasons to bedisussed fully in Setion 2.3. For referene, an image of a similar ow, aptured usingthe older frame-grabber and ordinary VHS equipment used by Lovegrove et al. (2000),is shown in Figure 2.4(b). The image size is 320 pixels by 240 pixels, and so the use ofthe new frame-grabber has multiplied the resolution by a fator of 2.4 in eah dimension.
2.2 Fluid propertiesWe hoose to use water as the liquid for one of the layers. The water is �rst puri�edby being passed through a de-ionizing �lter, as this slows down mould growth in theapparatus. The liquid for the other layer must then be hydrophobi, so that the twolayers are mutually immisible and give a well-de�ned interfae. It should be transparentand olourless, to allow the passage of light without signi�ant absorption. It should1S-VHS, or Super-VHS, is a professional master grade version of regular VHS.32



Chapter 2. Desription of the laboratory apparatushave an optial ativity whih is non-zero and whih varies strongly with wavelength forvisible light, in order for the ow visualization tehnique to be desribed in Setion 2.3to work. It would be advantageous if it had a density and visosity lose to that of waterfor omparison with theoretial two-layer models, many of whih make assumptions ofsmall strati�ation and equal visosities (as disussed in the review artile by Klein,1990).A liquid whih satis�es most of these requirements is limonene2, an organi oil whihis distilled from orange peel. Unfortunately, its density (840 kg m3) is signi�antly lessthan that of water. The limonene annot be used as the upper layer, as it is highlyvolatile and rapidly evaporates to produe a harmful vapour (WHO, 1998), and theapparatus is not airtight. For this reason, the limonene is mixed with CFC-113 3, aheavier-than-water, olourless, hydrophobi, optially-inative solvent, in suh propor-tions that the omposite liquid is slightly more dense than water. Water is then used asthe upper layer liquid, thereby preventing harmful vapours from esaping into the lab-oratory. Some relevant physial properties of the liquids whih make up the two layersare given in Table 2.1. The liquids are the same as those used by Lovegrove.
2.2.1 Thermal expansivitiesIt is seen from Table 2.1 that the two layers have quite di�erent thermal expansivities.As the temperature rises, the lower layer beomes less dense more quikly than theupper layer. Aording to the values in the table, the ambient laboratory temperatureneeds to rise by only around 5 ÆC before the two layers have equal densities, leadingto a possible Rayleigh-Taylor instability (Aheson, 1990) and layer inversion. In orderto prevent this, the ambient laboratory temperature must be tightly ontrolled. An aironditioning system was used to ahieve this, and was found to keep the temperaturewithin 0.1 ÆC of 20.0 ÆC over a 24-hour period, as opposed to an observed utuationof 2.0 ÆC with the system swithed o�. The air onditioning system was permanentlyswithed on during the experiments desribed in this thesis, to keep variations in thefrational density di�erene tolerably low, both during and between experiments.2Limonene is also known by its synonyms arvene and methylylohexene.3The full name is 1,1,2-trihlorotriuoroethane.33



Chapter 2. Desription of the laboratory apparatusde-ionized water limonene/CFC-113layer 1 layer 2(upper) (lower)density, � (kg m�3) 997� 1 1003� 1thermal expansivity, � (10�4 K�1) 2:07� 0:01 13:0� 0:1mutual interfaial tension, S (10�2 N m�1) 2:85� 0:1 2:85� 0:1kinemati visosity, � (10�6 m2 s�1) 1:27� 0:02 1:08� 0:02optial ativity, �, at 0.59 �m ( Æ m�1) 0 770� 10refrative index, n, at 0.59 �m 1:3328� 0:0001 1:4466� 0:0001Table 2.1: Physial properties of the freshly-prepared working liquids at theambient laboratory temperature (20.0 ÆC) and pressure. The densities and ther-mal expansivities were measured in the laboratory by the author using a densitymeter, whih times the period of osillation of an eletromagnetially-exited sam-ple tube in order to aurately alulate density. The mutual interfaial tensionwas measured in the laboratory by the author using a torsion balane, whih mea-sures the fore required to pull a thin wire loop through the interfae in order todetermine the tension. The soures for the other property values are Lovegrove(1997), Hart & Kittelman (1986), Lide (1995) and Kaye & Laby (1995).There is another problem assoiated with the large temperature sensitivity of the two-layer liquid, namely that the 500 W lamp diretly beneath the annulus is not only ane�etive light soure but also an e�etive heat soure. During some of the initial exper-iments performed in this study, this heating was so strong that the liquids exhibited aspontaneous Rayleigh-Taylor inversion around two hours after the lamp was swithedon. Beause it was desired to run experiments whih lasted for longer than two hours,an eletri desktop fan was positioned on the laboratory oor to blow air aross thelamp, as shown in Figure 2.3. The aim was to inhibit and destroy onvetion ells, inthe hope that the majority of the heat transfer from lamp to liquids was via onvetionrather than radiation. This strategy worked, and experiments lasting three hours andlonger ould be arried out when the fan was swithed on.Lovegrove did not doument taking these measures to ontrol the liquid temperature,as he was probably not aware that the layer thermal expansivities were so di�erent.There is therefore a possibility of redued gravity drift in his experiments, whih wasnot doumented until now. 34
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Figure 2.5: The path of a ray of light whih enters the annulus vertially at radiusr, where the interfae height is h(r) and the slope is dh=dr.2.2.2 RefrationThe di�erent refrative indies of the two layers (Table 2.1) will ause refration to ourat the uid interfae. The images from the amera will therefore show a distorted versionof the atual interfae height shape, whih means that the images output by the ameramust be interpreted with aution.Consider a ray of vertially-travelling light whih enters the base of the tank at radiusr, as shown in Figure 2.5. For this simpli�ed analysis, the interfae height h(r) is takento be a funtion of r only. The angle of inidene 2 is given bytan 2 = dhdr ; (2.1)and is related to the angle of refration 1 by Snell's Law:n1 sin 1 = n2 sin 2 : (2.2)Eliminating 2 between (2.1) and (2.2) givessin 1 = n2n1 dh=drp1 + (dh=dr)2 : (2.3)35



Chapter 2. Desription of the laboratory apparatusThe angle through whih the ray is deeted at the interfae is then  � 1 � 2. Lightwhih entered the base at radius r appears to the amera to have entered at apparentradius r0 � r � �, where � = h tan  : (2.4)The amera therefore gives a distorted image of the annulus: if we observe a ertainolour at a partiular radius on a still from the amera, the radius at whih the lowerlayer atually has the height orresponding to that olour is o�set from the observationradius by an amount �.For a worst-ase senario of interfaial slope dh/dr=1, equations (2.1) and (2.3) give2 = 45:0Æ and 1 = 50:1Æ, so that the deetion angle is  = 5:1Æ. At a point whereh = 12:5 m, equation (2.4) gives � = 1:1 m, whih is almost 20% of the annular gapwidth. It is important to use a ertain amount of aution, then, when using images fromthe amera to infer distanes in the annulus.In pratie there will also be azimuthal refrative distortion, negleted in this analysis,whih will make no di�erene to wavelength determination but whih will bias the kur-tosis (peakiness) of the inferred wave shape. There will also be refration at the glasslid, negleted here.If it were neessary, we ould ompensate for radial refrative distortion by using equa-tions (2.1), (2.3) and (2.4) to derive the transformation from apparent radius seen bythe amera to atual radius. Suh an analysis has not been arried out in this study,beause the alulation to obtain the mapping beomes very involved; the maximumdistortion is only a entimetre; and we are not onerned with loating exatly wherethe fast waves appear in the annulus.
2.2.3 Interfaial tensionThe interfaial tension between the liquids (Table 2.1) is around four times as largeas the values enountered in the two-layer experiments of King (1979b) and Appleby(1982), who used di�erent working liquids from the present ones. The lassial theoreti-al two-layer models �rst used by Phillips (1951) do not inlude the e�ets of interfaial36



Chapter 2. Desription of the laboratory apparatusvolume of washing-upliquid per unit surfae 0 0.32 0.64 0.96area of water (ml m�2)interfaialtension 28:5� 1:1 5:3� 0:4 1:4� 0:4 1:3� 0:4(10�3 N m�1)Table 2.2: Dependene of interfaial tension on amount of added washing-upliquid, as measured in small samples of the working liquids using a torsion balanein the laboratory. A saturation limit is reahed at around 0.6 ml m�2. Thequantity of added surfatant is given as a volume per unit surfae area of theworking liquid, rather than per unit volume, as it is assumed that all surfatantmoleules are attrated to the surfae rather than existing throughout the entireliquid volume, up to the saturation point.tension. Moreover, interfaial tensions are non-existent in the atmosphere and are om-pletely negligible in the oean (exept for motions on the very smallest of length sales).Beause we would like to keep the laboratory experiment as lose as possible to the sim-ple two-layer models, and to atmospheri and oeani ows, it is desirable to attempt toredue it. We do this by adding a surfatant (surfae ative agent), a hemial whosemoleules are made up of a water soluble and a water insoluble omponent, and whihredues the surfae tension of water.Various surfatants were tested in small (20 ml) samples of the working liquids.4 Smalladded quantities of Photo-Flo, a surfatant used in the photo-developing industry, hadthe unexpeted but reproduible e�et of inreasing the interfaial tension by around30%. This is not entirely unexpeted, as surfatants are de�ned with respet to a water-air interfae, whih is very di�erent from the liquid-liquid interfae in the annulus.Ordinary hand soap was tested but rejeted, as it aused a signi�ant loudiness. Theonly surfatant to be suessfully tested was ordinary washing-up liquid, and the resultsare shown in Table 2.2.When washing-up liquid was added at 0.64 ml m�2, the interfaial tension was redued4In situ measurements of interfaial tension in the annulus are not pratiable using a torsion bal-ane, and furthermore, we do not wish to ontaminate the atual working liquids with the andidatesurfatants. 37



Chapter 2. Desription of the laboratory apparatus

(a) (b)Figure 2.6: Digitized experimental images, showing olours orresponding to theresting interfae height shape (a) immediately before the addition of 0.12 ml ofsurfatant, and (b) a few seonds after. The dark radial spoke is a shadow due tothe slip-ring onnetion wires shown in Figure 2.3. When the experiment is runningand the interfae height is not at, this shadow is washed out by the dispersivee�ets of interfaial refration (Setion 2.2.2).by more than an order of magnitude. However, this was found to failitate the formationof bubbles of the lower-layer liquid in the upper layer near the interfae, an e�et whih isundesirable. For all the experiments desribed in this thesis, washing-up liquid was addedto the water in the annulus at 0.32 ml m�2 (i.e. a total of 0.12 ml), whih we presumeto give an interfaial tension of 5:3� 10�3 N m�1. A few seonds after the addition ofthe washing-up liquid, the resting interfae shape reorded by the amera hanged asshown in Figure 2.6. The interfae beame notieably atter, and the menisus widthsat the sidewalls were redued, as expeted. However, we will see in Setion 2.2.4 thatthe interfaial tension will not neessarily remain at this redued value as the uids age.
2.2.4 Slow evolution of uid properties with timeIt has been asually observed in this study that the properties of the interfae betweenthe layers in the annulus seem to exhibit a long-term evolution as time passes. Diretobservation into the tank through the lid revealed the slow formation of a skin at theinterfae, on timesales of weeks to months. Often this skin was so strong that it resistedpiering even by a sharpened penil. This e�et, previously unreported, suggests long-term hemial hanges in the liquids, and possible aompanying variations in theirphysial properties. The values of the physial properties shown in Table 2.1 were allmeasured in freshly-prepared samples. 38



Chapter 2. Desription of the laboratory apparatusThis long term interfae evolution will be shown to have important onsequenes inSetion 4.2. Various e�ets ould explain the observed trends in interfae properties:� the pH of the water may be evolving as CO2 and/or O2 are exhanged with thelaboratory air;� the lower-layer liquid may be di�using into the upper layer | both CFC-113 andlimonene are atually sparingly soluble in water and are therefore expeted toslowly di�use out over time. CFC-113 has a solubility of 200 mg/litre in waterat 20 ÆC (WHO, 2002), and limonene has a solubility of 13.8 mg/litre in water at25 ÆC (Massaldi & King, 1973). Limonene has a strong, harateristi fruity smellwhih was observed to be taken on by the water as the uids aged, onsistent withthe di�usion theory;� there may be slow lower-layer interations with the steel ylindrial ontainer;� the strong glue whih �xed the inner ylinder to the base of the tank, and theblak paint on the inner ylinder, were often found to have been orroded whenthe liquids were hanged. This implies that the lower layer liquid is apable ofslow dissolution of sealant and paint, whih would alter its omposition;� there may be slow eletro-hemistry with the walls (espeially if the pH is hang-ing);� there may be hemial interations with the added surfatant;� any partiulate matter in the laboratory air, suh as dust, will tend to aumulatein the liquids over time as ontaminants, and thereafter be possible andidates fordissolution.Further work is needed to investigate whih of these mehanisms is responsible for theobservations.
2.3 Flow visualizationPrevious ow measurement tehniques in two-layer annulus experiments have inludedthe apaitative method of Hart (1972), in whih a thin vertial wire is inserted into39



Chapter 2. Desription of the laboratory apparatusthe uid aross the interfae. One of the liquids is hosen to be an eletrial ondu-tor, so that hanges in interfae height ause hanges in the voltage drop along thewire, whih an be measured and alibrated. A potential problem is that the wire anhave a signi�ant interation with the ow (for example, as observed by Fr�uh & Read,1997). King (1979a) suessfully applied a tehnique whih exploited the absorption ofan infra-red light beam by one of the layers, by an amount dependent upon the layerdepth. This method is non-invasive, but like Hart's method, su�ers from only return-ing measurements of interfae height at one spatial loation, rather than providing theglobal overage whih is desired. Shadowgraphy and Shlieren tehniques (Goldstein,1983) were the �rst to provide two-dimensional interfae height �elds, but were inau-rate and impratial.The urrent visualization tehnique was �rst used by Hart & Kittelman (1986) in anopen-ylinder experiment, and has sine been used by Lovegrove in his annulus experi-ment. It provides non-invasive, global measurements of interfae height whih are highly-resolved in both spae and time. The method relies on one of the liquid layers beingoptially ative, in our ase the lower layer due to the limonene. In order to understandhow the tehnique works, we now trak the passage of light through the apparatus fromsoure lamp to video amera, via the two immisible working liquids in the annulartank. This exerise is neessary to understand the relationship between the olour �eldreorded by the amera, and the interfae height �eld.As quasi-white light emitted by the soure lamp travels vertially upwards through theapparatus shown in Figure 2.3, it �rst passes through a di�user. This is a transluentplasti irular sheet of thikness 1 m and radius equal to the tank radius, whih isentrally mounted on the turntable. Its purpose is to di�use the inoming light suh thatit illuminates the base of the tank uniformly. Without the di�user, the video imageswould ontain ontrasting bright and dim regions, whih would make interpretation andanalysis more diÆult.The di�use light next passes through an entrane polaroid, �xed to the upper side of thedi�user. This is a thin (1 mm) irular sheet of linearly-polarizing �lter, of radius equalto the tank radius. The diretion of its polarization vetor determines a vertial plane40



Chapter 2. Desription of the laboratory apparatusof polarization for the emerging light. Importantly, the entrane polaroid is �xed to therotating turntable. This means that the vertial polarization plane of the light enteringthe uids will rotate in the laboratory frame, but is �xed in the amera frame.The plane-polarized light next enounters the paraboli orretion tank, whose purposeis disussed in Setion 2.4.Next, the light enters the main tank via its glass base, and travels through the optially-ative lower layer liquid, whose e�et is to rotate the plane of polarization of the light.This happens beause limonene moleules are hiral, i.e. not superimposable on theirmirror image (Marh, 1992), whih is the ause of the optial ativity. The amountof rotation depends on both the wavelength of the light and the depth of the liquidtraversed (the latter dependeny is one of proportionality, for depths greater than themoleular sale).The rotation angle per unit depth for pure limonene has been determined experimentallyby Hart & Kittelman (1986), for a range of wavelengths spanning the visible part of thespetrum. We an derive the rotation for the lower layer limonene/CFC-113 liquid byassuming that the rotation angle is redued by a fration equal to the volume-fration ofCFC-113 in the omposite mix. This assumption is easily veri�ed theoretially by takingthe total rotation angle to be the same whether the onstituent liquids are well-mixedor are separated into distint layers, and has also been veri�ed experimentally by Hart& Kittelman (1986). The resulting optial ativity urve is shown in Figure 2.7.Next, the light travels through the optially-inative upper layer and leaves the tankvia the glass lid, during whih its plane of polarization is unhanged. The light thenpasses through an analyzing polaroid, whih is a seond thin sheet of linearly-polarizing�lter �xed in front of the amera lens. This polaroid only allows the transmission of aertain fration of the inident light intensity. This fration varies from 1 if the analyz-ing polaroid axis and inident light polarization axis are parallel (or anti-parallel), to 0if they are perpendiular (assuming perfet polaroids). For a given lower layer depth,therefore, only ertain wavelengths will be rotated into lose alignment with the analyz-ing polaroid and be transmitted to the amera. Other wavelengths will be extinguished41
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(a) (b)Figure 2.8: The polarization axes of red, green and blue light, after travellingthrough (a) 10 m, and (b) 15 m of the limonene/CFC-113 mixture, as viewedfrom above by the video amera. The entrane and analyzing polaroids are shownas dashed lines.By rotating the analyzing polaroid attahed to the amera lens, the angle between theaxes of the rossed entrane and analyzing polaroids an be adjusted, whih varies theolour observed for a given interfae height. For some angles, the relationship betweenheight and olour is more sensitive than for others, i.e. small hanges in height produerelatively large hanges in olour. Before any experiments were performed in this study,the di�erential angle was adjusted | by trial and error | to be suh that the rela-tionship was at its most sensitive, so that even very small hanges in interfae heightprodue a signi�ant signal in the olour �eld. This is important if we are to be able toregister the small-amplitude interfaial short waves.
2.4 The paraboli orretion tankSuppose that the apparatus so far desribed | without the paraboli orretion tank |were set into rotation with turntable angular veloity 
 6= 0 and di�erential lid rotation�
 = 0. After spin-up of both layers to angular veloity 
, a balane is establishedbetween the radial pressure gradient fore and the entripetal fore in the uid, and thenthe equilibrium height h(r) of the uid interfae above the base of the tank is given (seealso equations 3.6 and 5.22) byh(r) = 
2r22g + onstant ; (2.5)43



Chapter 2. Desription of the laboratory apparatuswhere r is the distane from the rotation axis and g is the aeleration due to gravity(not the redued gravity, as the entripetal e�et does not depend upon any densityontrast between the layers). When the turntable is rotating at its maximum rateof 
 = 6:3 rad s�1, the assoiated interfae height hange aross the annulus will beh(12:5 m) � h(6:25 m) � 2 m. The interfae is therefore not horizontal and olourgradients are seen by the amera. If a veloity shear is applied by rotating the lid,the interfae height will be perturbed away from the paraboli shape given by equation(2.5), as desribed by equation (5.22). This manifests itself in the experiments of Hart& Kittelman (1986) as a reddening of their images at large radii.Deiding that this e�et was undesirable, Lovegrove (1997) devised a way of eliminatingthis bakground paraboli distortion from the view seen by the amera. His methodrelies on the fat that limonene exists in two di�erent optial isomers: a dextrorotaryisomer (d-limonene) whih rotates plane-polarized light in the lokwise sense, and alaevorotary isomer (l-limonene) whih rotates it by an equal angle in the anti-lokwisesense.Lovegrove used d-limonene for the lower layer of the main tank, and introdued a seond\paraboli orretion" tank ontaining l-limonene and air, diretly beneath it as shownin Figure 2.3. In equilibrium with �
 = 0 and 
 6= 0, the surfae of the l-limonene layertakes up exatly the same onave upwards paraboli shape as the interfae in the maintank (equation 2.5), even though its domain is ylindrial rather than annular and it isovered with air rather than water. Clokwise light rotations in the main tank are thenexatly anelled out by anti-lokwise rotations in the paraboli orretion tank, andso there are no olour gradients in the images output by the amera. When �
 6= 0,the amera then shows olours whih orrespond to the deviation of the interfae heightaway from this basi paraboli shape, avoiding the bakground olour gradients of Hart& Kittelman (1986).Sine the d-limonene is diluted with CFC-113 to inrease its density, the optial ativ-ities of the omposite lower liquid in the main tank and the pure l-limonene in theparaboli orretion tank will not be exat opposites, and the statement above will onlybe approximately true. It seems that the reason Lovegrove deided not to dilute the l-44



Chapter 2. Desription of the laboratory apparatuslimonene with CFC-113, whih would have given liquids with exatly equal and oppositeoptial ativities, was that the CFC is highly volatile and would have quikly evaporatedwithout a protetive overing of water.
2.5 Parallax e�etsThe diameter of the inner ylinder in an experimental image (e.g. Figure 2.6) is 310pixels. We alibrate horizontal distanes in the images by equating this to the physialdiameter of 125 mm. This gives the side length of the (square) pixels to be 0.40 mm,whih de�nes the horizontal resolution of the images.Importantly, this length alibration takes plae in the horizontal plane ontaining theannulus lid. Radii that we infer from an image, by onverting distanes from the annulusentre in pixels to distanes in mm, will therefore orrespond to radii at the lid. Beausethe amera is a �nite distane away from the annulus (200 m from the base), light pathsfrom annulus to amera are not exatly vertial, and the radius at the lid rlid will notbe the same as the radius r at the uid interfae. Negleting refration, the relationshipbetween them is given by geometry to berrlid = 200 m� 12:5 m200 m� 25:0 m = 1:07 : (2.6)Therefore, when we observe a olour at a partiular point in an image, we must inreaseits apparent radius by 7% to obtain the real radius at whih the interfae height takesthe value orresponding to the observed olour.At the inner sidewall, rlid takes the value 6.25 m. From equation (2.6), r is then6.70 m, implying that when the interfae is at we will not be able to see the inner0.45 m beause of a parallax e�et. A similar alulation shows that the outer 0.78 mof the annular gap will likewise not be visible to the amera.45



Chapter 2. Desription of the laboratory apparatus2.6 Chapter summaryDesriptions have been given of the rotating, two-layer annulus laboratory apparatus,uid properties and ow visualization tehnique.Useful information from the laboratory experiment images, e.g. wavelengths and propa-gation speeds, an be extrated using the ow visualization tehnique. But the imagesontain muh more information whih has until now remained untapped, namely quan-titative data about the interfae height �eld, whih is enoded in the image olours.In the next hapter we desribe a new method for alibrating interfae heights in theexperiment, to allow this information to be extrated for the �rst time.
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Chapter 3
Calibration of the laboratoryexperiment \Mere olour, unspoiled by meaning, and unalliedwith de�nite form, an speak to the soul in a thou-sand di�erent ways." Osar WildeIn this hapter, we desribe the alibration of the laboratory experiment, allowing thetransformation from raw laboratory images to quantitative maps of interfae height.Three andidate alibration shemes are desribed, and the one onsidered likely to bethe most aurate is developed and implemented. The hosen sheme involves solvinglayerwise torque balane equations to determine the equilibrium interfae height shapewhen the apparatus is in motion. This analysis is an extension of previous alulations,to inlude new and important physial e�ets.The alibration attempt is suessful, allowing the amplitudes of the interfaial fast andslow waves to be aurately measured for the �rst time with this apparatus.
3.1 Motivation for alibrating the experimentThe unproessed olour video images from the laboratory experiment (e.g. Figure 1.6)are of limited use. Though they provide essential quantitative information about thehorizontal struture of the ow (wavelengths and propagation speeds), the information47



Chapter 3. Calibration of the laboratory experimentregarding the vertial diretion (in partiular, interfaial wave amplitudes) is only qual-itative. All we know so far is that hanges in interfae height orrespond to hanges inobserved olour, as disussed in Setion 2.3. The exat quantitative relationship betweenheight and olour is not known, and so previous experimenters using this apparatus havehad to estimate interfaial wave amplitudes by visual observation through the annuluslid. This method is fraught with diÆulty, due to the rotating metal struture whihsupports the amera, inauraies due to refration at the lid and, most of all, theinherent unreliability of guesswork. In this hapter, we develop a method for measuringinterfae height quantitatively.The images obtained from the amera are reorded onto video tape, and an be subse-quently digitized by the frame grabber to produe red R(h), green G(h) and blue B(h)intensity omponents, whih depend upon the lower layer depth h(r; �; t). The task ofthis hapter is to determine the funtions R(h), G(h) and B(h), and hene their inversesso that we an ompute h given R, G and B. In the following setions we onsider threepossible approahes to this problem.
3.2 Theoretial approahSuppose that the angle between the axes of the entrane and analyzing polaroids is�, and that the rotation angle per unit lower layer depth shown in Figure 2.7 is �(�).Negleting the liquid in the paraboli orretion tank, if light of wavelength � travelsthrough a lower layer depth of h(r; �; t), then a fration os2[�� h�(�)℄ of the inidentintensity will be transmitted through the analyzing polaroid to the amera. Assumingthat the soure lamp is perfetly emitting, the intensity spetrum input into the liquidsis the Plank funtion I0(�) at the temperature of the lamp (given as 3200 K by Trundle,1987). Further assuming no absorption by the apparatus, the intensity spetrum I(�)reeived at the amera is given byI(�) = I0(�)os2[�� h�(�)℄ : (3.1)48



Chapter 3. Calibration of the laboratory experimentThis spetrum is sampled by the amera at three wavelengths (orresponding to red,green and blue light), to give pixel intensities ofR(h) = A I0(�red) os2[�� h�(�red)℄ ; (3.2)G(h) = A I0(�green) os2[�� h�(�green)℄ ; (3.3)B(h) = A I0(�blue) os2[�� h�(�blue)℄ ; (3.4)where A is a onstant of proportionality. Equations (3.2){(3.4) ould eah be written asa weighted integral of (3.1) with respet to �, where the weighting funtions, or am-era response funtions, peak in the red, green and blue parts of the spetrum. Theassumption is made here that the response funtions are delta-funtions, however. Theamera then simply samples the inoming spetrum at three disrete wavelengths ratherthan over three narrow bands of �nite width. We have sueeded in determining thefuntions R(h), G(h) and B(h). One we have determined R, G and B from an image,equations (3.2){(3.4) represent three equations in three unknowns: A, � and h. It istedious but straightforward to eliminate A and � to give an impliit, nonlinear equa-tion for h in terms of R, G and B (Williams, 2000). However, this method is madeunreliable by the assumptions whih have been made (soure lamp being a perfet blakbody at an assumed temperature, amera response funtions being delta-funtions, zeroabsorption in working liquids), none of whih is partiularly well-justi�ed. We require aquantitatively aurate alibration sheme whih is more reliable than this approximatetheoretial method.
3.3 Diret experimental approahFor auray, it is desirable to take an experimental approah to the alibration prob-lem. There is an obvious and diret experimental method. One an imagine �lling upthe initially-empty annular tank with the limonene/CFC mixture, in a series of disretesteps so that eah time the depth rises by, say, 1 mm. A video reording ould be madeafter eah millimetre rise, allowing the olour in eah video image to be measured andalibrated with interfae height.This method would require the limonene layer to be exposed to the laboratory air for asigni�ant period of time. Beause of the harmful vapour released by limonene when not49



Chapter 3. Calibration of the laboratory experimentovered by the water layer, this method would pose a health risk to the user. A LoalExhaust Ventilation (LEV) system ould be used to redue emissions into the labora-tory, but the LEV is an e�etive extrator only when it is positioned diretly above theannulus and therefore bloking the amera �eld of view, whih would defeat the objet.For these reasons, the diret experimental approah was rejeted.
3.4 Indiret experimental approahWe have hosen for the present purposes to use an experimental alibration based onimages taken when the experiment is in operation, that is, when both the turntableand lid are rotating at di�erent rates. All that is needed is a method for obtaining theinterfae height �eld in just one speial ase. The method must be independent, in thesense that it does not rely on the olour information in the images, sine that is whatwe wish to alibrate. Fortunately, it is possible to derive an analytial expression forthe equilibrium interfae height in the speial ase of no barolini instability. In thisase, zonal wave modes are ompletely absent and the interfae is axisymmetri, but theheight an still vary strongly with radius.We plan to take interfae height as a funtion of radius from the analytial expression,and olour as a funtion of radius from a laboratory experiment, and to determine therelationship between interfae height and olour from the two. We derive the requiredanalytial expression over the following pages.
3.4.1 Equilibrium interfae height �eldWe begin the alulation by deriving an expression for the equilibrium lower layer depth�eld h(r), shown in Figure 3.1, in terms of the uid interior solid-body rotation rates�
1 and �
2. The pressures in eah layer are given bypi = 12�i
2i r2 � �igz + onstant ; (3.5)where i = 1 refers to the upper layer and i = 2 to the lower layer. This equationrepresents hydrostati balane in the z-diretion, and a balane between the radial pres-sure gradient fore and the aeleration experiened by a uid parel exeuting irular50
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Chapter 3. Calibration of the laboratory experimentmotion with angular veloity 
i = 
 +�
i in the laboratory frame.We may dedue the pressure di�erene between the annulus base and lid using thepressure �eld given by equation (3.5), and we an equate this pressure drop to the samequantity determined in an independent manner, namely by vertial integration of thehydrostati equation. This gives12(�2
22 � �1
21)r2 + onstant = �2gh+ �1g(2H � h)� Sr2h ; (3.6)where the term in r2h represents the drop in pressure aross the interfae due to inter-faial tension S. From this equation we an evaluate h(r). Using the fat that �1 � �2and negleting menisus e�ets we obtainh(r) = (
22 � 
21)r22g0 + onstant ; (3.7)where g0 = g(�2 � �1)=[12(�2 + �1)℄. Finally, we determine the arbitrary onstant byapplying onservation of volume:r=bZr=a 2�rh(r) dr = �(b2 � a2)H ; (3.8)to obtain h(r) = H + (
22 � 
21)(r2 � 52a2)2g0 : (3.9)We will need the following three formulae for the torque balane alulation. The valuestaken by the interfae height at the sidewall boundaries areh(r = a) = H + 32a2�
21 � 
222g0 � � H+ (3.10)and h(r = b) = H � 32a2�
21 � 
222g0 � � H� ; (3.11)and the interfae slope at the outer sidewall isdhdr ����r=b = ��b(
21 � 
22)g0 � : (3.12)The substitution b = 2a has been used in equations (3.9){(3.11).52



Chapter 3. Calibration of the laboratory experiment3.4.2 Previous approahesAll that remains to be done, to omplete our derivation of the interfae height �eld, isto determine the 
i in terms of 
 and �
. In muh of Hart's work, inluding Hart(1972), Hart (1973) and Hart (1985), as well as in other studies inluding Bradford etal. (1981), these interior rotation rates are derived from the 2-layer quasi-geostrophi(Q-G) equations with linear, parameterized Ekman veloities, negleting the inuene ofthe sidewall boundaries and assuming a horizontal, at interfae. This alulation yieldsthe simple result �
2 = 14�
 and �
1 = 34�
 for the ase of exatly equal visosities(see equations 5.20 and 5.21). These values an be substituted into equation (3.9) toobtain an expliit expression for h(r).The assumptions of geostrophy, non-interating Stewartson layers and a horizontal inter-fae mean that this method an only be onsidered a �rst approximation. Therefore,King (1979b) extended the Q-G analysis to inlude a non-horizontal interfae, by inlud-ing fators of os(mean interfae gradient) in the Ekman layer terms. This simple exten-sion made the alulation signi�antly more diÆult, as the formulae for �
i now inludethe mean interfae slope. Therefore, on substituting into (3.9) an impliit, nonlinearequation for h(r) is obtained, whih must be solved numerially. This approah wastaken in Williams (2001) to alibrate the present experiment, but it gave rotation rateswhih seemed too large due to the exlusion of Stewartson layer drag from this analysis.Stewartson layers and ageostrophy annot be aptured by the simple Q-G approah, andso King (1979b) went on to take a di�erent approah based on layer torque balane. Heargued that, in equilibrium, the uid interiors do not experiene an angular aeleration,and so the net external torque on the interiors due to the boundary layers must be zero.Stewartson layers and ageostrophy are both inluded, but King resorted to using thehorizontal interfae assumption to make the alulation analytially tratable.In the present problem, we spei�ally require a non-horizontal interfae, as we want thealibration urve to span as wide a range of interfae heights as possible. We thereforepresent, in the following setion, an extension of King's torque balane alulation toinlude non-horizontal interfae e�ets. A summary of the physial e�ets inluded inthe previous and present alulations is shown in Table 3.1.53



Chapter 3. Calibration of the laboratory experimentQ-G method Ekman ux torque balane torque balaneused by Hart alulation of alulation of alulationand Bradford King King in this thesisEkman layers X X X XStewartson layers � � X Xsloping interfae � X � Xageostrophy � � X XTable 3.1: A omparison of the physial e�ets taken into aount in variousalulations to determine the equilibrium interfae height in a rotating, two-layerannulus. The methods in the �rst two olumns are based on equating geostrophiEkman pumping and sution veloities at the top and bottom of eah layer. Themethods in the last two olumns are based on torque balane equations for eahlayer.
3.4.3 Torque balane alulationFor the torque balane alulation we model eah uid layer as an invisid interior region,making up the vast majority of the volume of the layer, surrounded on all sides by thinvisous boundary layers whih serve to hange the uid veloity from its interior value toits no-slip boundary value. In the two-layer annulus, the boundaries are the lid, base anduid interfae (at whih the boundary layers are Ekman (1905) layers), and the innerand outer ylindrial sidewalls (at whih the boundary layers are Stewartson (1957) lay-ers). We assume that the interior ow in eah layer is hydrostati and olumnar, andin solid-body rotation with the angular veloities (to be determined) shown in Figure 3.1.We expet, when the imposed lid rotation �
 is positive, that0 < �
2 < �
I < �
1 < �
 ; (3.13)54



Chapter 3. Calibration of the laboratory experimentwhere �
I is the angular veloity of the interfae. Qualitatively, the upper layer interioris being ated upon by a prograde (anti-lokwise) stress due to the Ekman layer at thelid, and by retrograde (lokwise) stresses due to the Ekman layer above the interfaeand both Stewartson layers. The boundary layer at the lid is tending to spin the layerup, and the remaining three boundary layers are tending to spin it down. In the lowerlayer, it is the interfaial boundary layer whih gives a positive angular veloity ten-deny, and the remaining three whih give a negative ontribution.The larger the veloity shear aross a boundary layer, the larger the stress and the largerthe torque exerted on the uid interior by the boundary. If there is a non-zero net torquein either layer, there will be an angular aeleration. We expet the interior rotationrates to adjust themselves so that, in equilibrium, the net torque is zero and the rotationrates remain onstant with time.We now quantify the ideas of the previous paragraphs by writing down equations forthe net torques in both layers in terms of the rotation rates, and then solving for theequilibrium rates by setting the torques equal to zero. To simplify the analysis we assumeequal layer visosities � and densities �, both of whih approximations are very good inthe present ontext (see Table 2.1). The Ekman and Stewartson layer widths are derivedin e.g. Read (1992b) to be, respetively,ÆE = � �
� 12 (3.14)and ÆS = �a2�
 � 14 : (3.15)There are two distint Stewartson layers at eah sidewall in the rotating annulus. Theone used here is that whih serves to take the horizontal uid veloity to zero at theboundary, and whih has a nondimensional width of the Ekman number to the power ofone-quarter. This is the appropriate layer for the present alulation, as it is the regionin whih the lateral veloity shear exists. The other Stewartson layer, of width equalto the Ekman number to the power of one-third, is responsible for returning vertialEkman uxes. This layer is not assoiated with a horizontal drag fore at the sidewalls,and therefore does not make a ontribution to the torque about the rotation axis. Fora typial rotation rate of 
 = 1 rad s�1, we obtain ÆE = 1 mm and ÆS = 8 mm.55



Chapter 3. Calibration of the laboratory experimentRotation rate of interfaeIn equilibrium, the interfae does not aelerate, and therefore must feel no net torquedue to the thin Ekman layers above and below it. This means that the vertial shear inhorizontal veloity aross the upper interfaial Ekman layer must equal that aross thelower one, giving �
I = 12(�
1 +�
2) : (3.16)
Torque due to Stewartson layersIn general, shear stresses within uids are given by the tensor Si; j = ���ui=�xj ; i 6= j.So, for example, the stress on the upper layer interior by the vertial boundary r = b is��� b�
1ÆS ; (3.17)where the minus sign indiates that this stress represents a drag. A mean has been takenover the thin Stewartson layer, aross whih a veloity hange of b�
1 is ahieved. TheStewartson layer has area 2�bH+ (equations 3.10 and 3.11) and is a distane b from therotation axis, and so it exerts a torque on the uid ofT Stewartsonlayer=1; r=b = �2����
1H+b3ÆS : (3.18)Similar expressions are obtained for the torques T Stewartsonlayer=1; r=a, T Stewartsonlayer=2; r=b and T Stewartsonlayer=2; r=adue to the remaining three Stewartson layers.Torque due to lid and base Ekman layersThe stress on the upper layer interior by the horizontal boundary z = 2H at radius r is�� r(�
��
1)ÆE : (3.19)In this ase the stress is dependent upon radius. An area element is r dr d� and thedistane from the axis is r, and so this Ekman layer exerts a torque on the uid ofTEkmanlayer=1; z=2H = 2�Z�=0 bZr=a ��(�
��
1)r3ÆE dr d� (3.20)= ���(�
 ��
1)(b4 � a4)2ÆE : (3.21)56



Chapter 3. Calibration of the laboratory experimentA similar expression is obtained for the torque TEkmanlayer=2; z=0 on the lower layer interiordue to the Ekman layer at the base.Torque due to interfaial Ekman layersThe stress on the upper layer interior by the interfae z = h(r) at radius r is��� r(�
1 ��
I)ÆE : (3.22)In this ase the area element is p1 + (dh=dr)2 r dr d� and the distane from the axis isr, and so this Ekman layer exerts a torque on the uid ofTEkmanlayer=1; z=h = � 2�Z�=0 bZr=a ��(�
1 ��
I)r3ÆE s1 + �dhdr�2 dr d� (3.23)� ����(�
1 ��
I)(b4 � a4)2ÆE s1 + �dhdr ����r=b�2 : (3.24)An approximation has been employed (without whih further analytial progress beomesimpossible) to replae the surd in the integrand of equation (3.23) with its value at r = b,sine the r3 fator heavily weights the integral towards larger r.A similar expression is obtained for the torque TEkmanlayer=2; z=h on the lower layer interiordue to the Ekman layer at the interfae.Torque balane equationsWe now write down expressions for the net torque in eah layer, and equate them tozero in equilibrium to giveT Stewartsonlayer=1; r=a + T Stewartsonlayer=1; r=b + TEkmanlayer=1; z=2H + TEkmanlayer=1; z=h = 0 (3.25)and T Stewartsonlayer=2; r=a + T Stewartsonlayer=2; r=b + TEkmanlayer=2; z=0 + TEkmanlayer=2; z=h = 0 : (3.26)Equations (3.25){(3.26) are two nonlinear equations in the two unknowns �
1 and �
2.Rearranging, we may write the equations in matrix form:2641 + 12q1 + �dhdr ��b�2 + � 415�� ÆEÆS�� 8H++H�a ��12q1 + �dhdr ��b�2 �12q1 + �dhdr ��b�21 + 12q1 + �dhdr ��b�2 + � 415�� ÆEÆS ��8H�+H+a �37557



Chapter 3. Calibration of the laboratory experiment� ��
1�
2� = ��
0 � : (3.27)
The matrix equation is nonlinear beause H+, H� and dh=drjr=b all depend upon �
1and �
2 through equations (3.10){(3.12). If we now make the horizontal interfaeassumption, whih is H+ = H� = H and dh=drjr=b = 0, the equations linearize andwe reover the results of King's torque balane alulation. Additionally negleting theStewartson layers by letting ÆS !1 redues the matrix equation to� 3=2�1=2 �1=23=2 � ��
1�
2 � = ��
0 � ; (3.28)for whih the solution is ��
1�
2� = � 34�
14�
� ; (3.29)whih is the simple Q-G result, as expeted.Iterative solutionsWe use an iterative approah to solve the full, nonlinear matrix equation (3.27):1. hoose �
1 = �
2 = 0 as a �rst guess;2. evaluate H+, H� and dh=drjr=b for this �
1, �
2;3. evaluate the four matrix elements for this H+, H�, dh=drjr=b;4. invert the matrix equation to obtain an improved guess for �
1 and �
2;5. if the original and improved solutions are not equal to within the required preision,return to step 2 for another iteration.The iterations were found to onverge in almost all ases. The exeptions ourred whenboth 
 and �
 were very large, when a feature with a period of two iterations persistedin the equilibrated iteration series. In these ases there is presumably no equilibriumsolution to the torque balane equations.Figure 3.2 shows the results of the iteration alulation (performed using Matlab), bothwith the Stewartson layers swithed on and o�, for 
 = 3 rad s�1 and �
 = 1 rad s�1.58
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Chapter 3. Calibration of the laboratory experiment�
1 (rad s�1) horizontal interfae urved interfaeStewartson layers swithed o� 0.75 0.61Stewartson layers swithed on 0.54 0.42(a)�
2 (rad s�1) horizontal interfae urved interfaeStewartson layers swithed o� 0.25 0.39Stewartson layers swithed on 0.14 0.23(b)Table 3.2: Equilibrated values of (a) �
1 and (b) �
2 for the ase 
 = 3 rad s�1and �
 = 1 rad s�1. The values are based on a torque balane analysis whihalways inludes Ekman layers, and whih an also additionally inlude Stewartsonlayers and/or the inreased drag e�ets of a urved interfae.The fourth deimal plae of the solutions is stable after around the 20th iteration. Notefrom the above iteration plan that the �rst improved guess is atually the solution ofthe horizontal interfae problem, as when �
1 = �
2 = 0 we have H+ = H� = H anddh=drjr=b = 0, so we have solved this problem for every ombination of Stewartson layerspresent and absent, and interfae horizontal and urved. The �ndings are summarizedin Table 3.2.In both layers, and both with and without a non-horizontal interfae, the inlusion ofStewartson layer drag has signi�antly redued the layer rotation rates. In the upperlayer, allowing for a non-at interfae also redues the rotation rate, beause a urvedinterfae has a greater surfae area than a at one, and hene gives a greater drag fore.In the lower layer, the rotation rate is inreased when the non-at interfae is inluded,as the Ekman layer at the interfae provides the only positive torque in this layer.60
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Figure 3.3: Laboratory experiment image used for the alibration, showing theequilibrated ow in the ase �
 = 0:77 rad s�1, 
 = 1:87 rad s�1. The fourboxes, eah measuring 106 pixels by 40 pixels, indiate the areas from whih olourinformation was extrated.
We onlude that both Stewartson layers and urved interfae e�ets are important fordetermining quantitatively aurate layer rotation rates, whih justi�es the full analysisgiven above for the purposes of alibrating the laboratory experiment.
3.5 Implementation of the alibration shemeWe now desribe the implementation of the alibration sheme. An image from a labo-ratory experiment, showing the equilibrated axisymmetri ow whih is attained in thebarolinially-stable ase �
 = 0:77 rad s�1 and 
 = 1:87 rad s�1, is shown in Figure 3.3.In this ase, the onverged iterative solution to equation (3.27) with Stewartson layersand a sloping interfae is found to be �
1 = 0:34 rad s�1 and �
2 = 0:14 rad s�1.Figure 3.4 shows the interfae height shape thereby obtained, alulated using equa-tion (3.9). There are 106 pixels aross the annular gap in Figure 3.3, and there willtherefore be 106 points on the alibration urve we obtain.61
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Figure 3.4: Lower layer depth h(r) as a funtion of radius, alulated analytiallyfor the ow shown in Figure 3.3.

Figure 3.5: Azimuthally-averaged red, green and blue omponents as funtions ofradius, derived from Figure 3.3. The absissa is drawn to span the entire annulargap, even though parallax e�ets disussed in Setion 2.5 prevent the extrationof data near the sidewalls. 62



Chapter 3. Calibration of the laboratory experiment3.5.1 Choie of olour alibration variableNow that we know the olour �eld and the interfae height �eld, we are in a position toderive a alibration urve. The R, G and B values of the pixels in Figure 3.3 have beenextrated by loading the jpeg image into IDL, from whih they are eah given as integersbetween 0 and 28 � 1 = 255 inlusive (beause the olour digitization is 8-bit for eahof the three olour hannels). The mean radial dependene of the R, G and B �elds isshown in Figure 3.5, where the parallax e�ets of Setion 2.5 have been inluded to givean unbiased measurement of the radius. As indiated in Figure 3.3, averages have beentaken over the azimuthal angles orresponding to \3 o'lok", \6 o'lok", \9 o'lok"and \12 o'lok", in ase the ow is not perfetly axisymmetri. Also as indiated inthe �gure, averages have been taken over 40 azimuthally-neighbouring pixels at eah ofthese four angles, to redue ontamination of the signal by noise.We an eliminate radius between the urves in Figures 3.4 and 3.5 to obtain the redR(h), green G(h) and blue B(h) omponents as funtions of interfae height h. Then inthe three-dimensional spae (R;G;B), the most omplete alibration urve we an de�neis given parametrially by (R(h); G(h); B(h)). To �nd h for a given point (R�; G�; B�),we would simply need to �nd the point on the 3-D alibration urve whih is losestto the given point. We ould do this by, for example, minimizing the ost funtion[R(h)�R�℄2 + [G(h)�G�℄2 + [B(h)�B�℄2 with respet to h. This alulation is quiteomputationally-expensive, espeially if interfae heights are required at the majority ofpoints on a 768 by 576 spatial grid, 25 times per seond.We would prefer a one-dimensional alibration urve, so that we an use simple linearinterpolation to inexpensively return interfae heights. For example, we ould hooseto use R(h) as the alibration urve, abandoning G(h) and B(h), though it would seemwasteful to disard two-thirds of the available olour information. To avoid this redun-dany, any funtion of R(h), G(h) and B(h) ould be used.There are other olour systems apart from the (R;G;B) system, and there is no guaran-tee that R, G and B are in any way optimized as alibration variables. A ommonly-usedalternative is the (H;S; I) system (e.g. Foley & Van Dam, 1982), where H is the hue, Sis the saturation and I is the total intensity. The transformation from (R;G;B) oor-63
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Figure 3.6: Azimuthally-averaged hue omponent as a funtion of radius.dinates to (H;S; I) oordinates is outlined in Appendix A. The H, S and I �elds inFigure 3.3, alulated from the R, G and B �elds, are shown in Figures (3.6){(3.8).
3.5.2 Derivation of alibration urveIn theory, any of the six variables R, G, B, H, S, I ould be used to derive a alibrationurve. However, the hue H is the most suitable, for two important reasons. Firstly, hueis the only olour variable of the six whih is a one-to-one funtion of interfae heightover the height range being onsidered. The other �ve are many-to-one funtions, andhene are not uniquely invertible. If any one of these �ve were to be used as the ali-bration variable, there would often be an ambiguity over whih height had given rise tothe observed olour omponent. This is learly an undesirable feature of any alibrationsheme.Seondly, it follows from the de�nition of hue (equation A.9) that if R, G and B areall redued in equal proportions then H will be una�eted. This is beause hue is inde-pendent of the total intensity. The impliation is that any loal absorption in the uidsdue to ontamination by small partiles, will be visible in all the olour �elds exept64
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Figure 3.7: Azimuthally-averaged saturation omponent as a funtion of radius.

Figure 3.8: Azimuthally-averaged intensity omponent as a funtion of radius.65
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Figure 3.9: Calibration urve showing the relationship between the hue ompo-nent and lower-layer depth. A slight smoothing has been applied to the urve, bytaking a moving average, to remove the last remnants of noise.hue (assuming equal absorption at all wavelengths). This explains why the hue �eldin Figure 3.6 is less noisy than the red, green and blue �elds in Figure 3.5. A furthersoure of light absorption in the uids is a loudiness that is often found to form in theliquids whenever the laboratory temperature ools slightly, possibly due to ondensationof trae quantities of lower-layer liquid in the upper layer. Calibration urves using R,G, B, S, I would therefore be expeted to return heights whih varied from one day tothe next, unlike a alibration urve using H.Hue being a monotoni funtion of depth, oupled with its robustness to absorptione�ets, makes it the ideal alibration variable. The hue alibration urve, obtained byeliminating the radius from Figures 3.4 and 3.6, is shown in Figure 3.9. The urve isnonlinear, whih means that interpretation of the raw experimental images must be donewith aution. The regions of largest olour gradient do not neessarily orrespond tothe regions of steepest interfae slope.Stritly, we should alibrate hue against path length rather than interfae height. Thetwo are not exatly the same beause of the paraboli orretion tank, whih is asso-66
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Figure 3.10: Family of alibration urves, eah derived from di�erent experimen-tal onditions, as labelled. The urve shown in Figure 3.9 is inluded, togetherwith eight others.iated with negative path lengths whih vary spatially beause of the paraboli shapetaken up by the l-limonene. It follows from Setion 2.4 that when 
 = 2 rad s�1 thehange in l-limonene depth aross the gap is only 2 mm. This is suÆiently small that itis negleted here, i.e. we assume that the l-limonene surfae is perfetly horizontal, andtherefore has the same e�et as simply altering the orientation of the entrane polaroidaxis.The method used to obtain the alibration urve in Figure 3.9 from the image in Fig-ure 3.3 has been arried out eight further times, eah time using a laboratory experimentimage orresponding to a di�erent ombination of 
 and �
. The hoies for these twovariables were limited beause only those ombinations whih give an axisymmetri,barolinially-stable equilibrated ow will do. A alibration urve was derived in eahase, and the nine urves are shown over-plotted in Figure 3.10.Deriving suh a family of alibration urves, for a range of values of 
 and �
, is animportant test of the validity and auray of the alibration sheme. If the torquebalane analysis had been an inomplete representation of the shear stresses ating on67



Chapter 3. Calibration of the laboratory experimentthe annulus liquids, or if a mistake had rept into the alulation, we would expet asigni�ant disagreement between di�erent urves in the family. This is not the ase, asthe �gure shows that all the urves have the same harateristi S-shape, and that thereis good quantitative agreement between them. This implies that the error in the torquebalane analysis is small, and that the analysis is a good representation of torques in theannulus. We onlude that the derived alibration urves are reasonably reliable andaurate. We may now proeed to use the urves to reonstrut interfae height �eldsfrom given experimental images, inluding images in whih the ow is not axisymmetri.There is a spread in interfae heights assoiated with any given hue, when inferred usingthe nine urves in Figure 3.10. This spread an be used to de�ne an error in the inferredheights, whih is less than �3 mm aross most of the range. It is important to notethat errors in inferred wave amplitudes will be muh less than this value, however. Thisis beause inferred wave amplitudes are determined by the gradients of the alibrationurves, rather than their absolute values, and there is exellent agreement aross mostof the range between gradients within the family of urves. In Setion 3.6, we studyanother, muh greater, soure of error in inferred wave amplitudes.
3.6 Noise analysisThere is noise in the laboratory experiment images due to a phenomenon known aspixel jitter, whih has ontributions from the amera, the video reorder and the framegrabber. Pixel jitter auses the olour properties of eah pixel to vary randomly in timeabout some mean value, even when the sene being shot by the amera remains exatlythe same. It is the e�ets of this, and of the 8-bit olour quantization, whih ultimatelylimit the vertial resolution of the inferred interfae heights.To estimate the size of the noise, olour information was extrated from a ertain �xedpixel in 25 di�erent frames, eah showing the same resting interfae in the annulus.Sine there are no interfae height hanges between the frames, any variane in theolour properties is due entirely to pixel jitter. The standard deviations in the R, G, B,H, S and I data are shown in Table 3.3 for two ases: �rstly, using images from a videoreording, and seondly, using live images diret from the amera.68



Chapter 3. Calibration of the laboratory experimentvideo reording diret from amerared, R 3.6 2.5green, G 4.2 2.9blue, B 6.6 4.6hue, H 9.6Æ 5.2Æsaturation, S 3.4 1.9intensity, I 10.3 9.0Table 3.3: Noise in eah of the six olour omponents, alulated as the standarddeviation of the pixel jitter in 25 frames.It is evident from the table that the noise an be redued by about one third by usinglive images rather than video reordings, though video images were used in this thesisfor reasons of onveniene. In both ases the noise in the R, G and B signals is greaterthan one. This means that the auray of the inferred interfae heights is ultimatelylimited by pixel jitter, rather than the disretization of R, G and B to integers.A ruial issue is whether or not the signature of the small amplitude, small-sale waveswill be visible through the noise in the hue �eld. We an investigate this by projetingthe noise in the hue �eld onto the alibration urve to alulate the expeted noise inthe interfae height �eld. For a alibration urve h(H) giving interfae height h in termsof hue H, we have h(H + �H) � h(H) + �H dhdH ; (3.30)where �H is the noise in the hue �eld. The predited pixel jitter noise �h in the inferredinterfae height �elds is therefore given by�h � �H dhdH ; (3.31)whih is plotted against interfae height for the alibration urve of Figure 3.9 in Fig-ure 3.11, assuming images from a video reording with �H = 9:6Æ (see Table 3.3). Weassume that �H is independent of interfae height.We an interpret the noise plotted in Figure 3.11 as the error in inferred heights, oralternatively as the smallest hange in height that we an detet. A wave of amplitude69
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Figure 3.11: Resolution assoiated with the hue alibration urve, when usedwith images from a video reording.1 mm ould therefore be marginally resolved if it was superimposed on a bakgroundinterfae height of around 130 mm, but away from this height the resolution deterioratesrapidly.If we average over a group of N neighbouring pixels in a frame, the noise dereases by afator of pN . For example, if we averaged over a box measuring 20 pixels by 20 pixelsentred on the pixel of interest, we would have N = 400 and noise redution by a fatorof 20. This would mean that we ould resolve 1 mm amplitude waves at any observedinterfae height in the range of Figure 3.11, but the ost of this inrease in vertial res-olution is a derease in horizontal resolution. 20 pixels orresponds to 8 mm, and so inthis thesis the N = 20�20 box averaging is performed only for inferring interfae heightfeatures with large horizontal sales (the large-sale waves). Fortunately, the small-salewaves tend to our near interfae heights of 130 mm, and so for these we hoose a boxaverage of N = 3�3 whih gives adequate resolution in both the horizontal and vertial.Another possible way to overome the e�ets of pixel jitter would be to average overa number of frames whih are sequential in time. The small-sale waves are so rapidlyevolving that we ould not average over more than around �ve frames (0.2 s) without70



Chapter 3. Calibration of the laboratory experimentlosing resolution, and even then the signal-to-noise gain would be only p5 � 2:2, sotime-averaging was not attempted in this study.
3.7 Sample reonstruted height �eldAn example of an appliation of the alibration sheme is shown in Figure 3.12. Theannulus rotation rates in this ase were 
 = 0:46 rad s�1 and �
 = 3:70 rad s�1,at whih there is a rotationally-modi�ed Kelvin-Helmholtz instability but no baroliniinstability. The equilibrated ow is a Kelvin-Helmholtz mode of azimuthal wavenumber9. The wave has a partiularly large wavelength and amplitude due to the very large lidrotation. The �gure shows the reonstruted 2-D interfae height, as well as an azimuthalross-setion at radius r = 100 mm, in whih the angle inreases in the anti-lokwisediretion and has its zero at \3 o'lok". Parallax e�ets desribed in Setion 2.5 weretaken into aount to produe these images, and all other reonstruted interfae heightimages in this thesis. We dedue that the amplitude of the interfae height displaementis around 10 mm, at this radius.Beause there are still slight remnants of pixel jitter noise present, a �ltered versionof the azimuthal ross-setion is shown over-plotted on the un�ltered urve. The �l-tering method used involves projeting the urve onto the Daubehies (1988) DisreteWavelet Transform (DWT) funtions, setting those oeÆients assoiated with randomnoise equal to zero, and then reonstruting the urve from the remaining (non-zero)basis funtions. This is implemented using the IDL routine wtn. The DWT funtionsare loalized and ompat (hene the term wavelet) and therefore optimized for noiseremoval, unlike �ltering based on the Fast Fourier Transform (FFT) basis funtions(global sine and osine waves). The reonstruted height �elds in this thesis are all�ltered in this way.Further interfae height reonstrutions are performed in Setion 4.8, after a ompre-hensive series of laboratory experiments has been arried out.71
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(a)

(b)

()Figure 3.12: (a) Raw experimental image; (b) reonstruted 2D interfae height;and () un�ltered (solid) and �ltered (dashed) azimuthal interfae height pro�le.72



Chapter 3. Calibration of the laboratory experiment3.8 Chapter summaryWe have suessfully implemented a alibration sheme for interfae height in the labo-ratory experiment. By iterative solution of the nonlinear layer torque balane equations,we have found that Ekman layers and Stewartson layers both exert a signi�ant dragfore on the layer interiors, and that allowing for sloping interfae heights is also impor-tant for an aurate result. We have identi�ed hue as an optimal olour alibrationvariable, and have used a multi-layer torque balane analysis to derive a alibrationurve.By projeting hue onto the alibration urve we have been able to make aurate reon-strutions of interfae height maps, and thereby derive wave amplitudes in the annulusfor the �rst time. The vertial resolution of the inferred interfae heights is limited bypixel jitter, but it an be better than 1 mm if live images are used and an average istaken over a number of pixels whih are neighbouring in spae or time.In the next hapter, we desribe the partiular laboratory experiments whih have beenarried out in this study, and analyze the results.
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Chapter 4
Results of the laboratoryexperiments \Are you ready to kik it into ation yet?"\Oh, I'm ready to kik it alright!"
We begin this hapter by summarizing the experimental results obtained by Lovegrove(1997) and Lovegrove et al. (2000) using the rotating, two-layer annulus apparatus. Wethen desribe three new series of experiments whih have been arried out in the presentstudy, mentioning some preliminary experimental diÆulties whih frustrated progressduring the �rst year. The new series are designed to extend Lovegrove's results, bothby exploring a more extreme range of parameters inluding the hitherto uninvestigatedageostrophi regime, and by investigating the e�ets of three partiular system hanges.The new experiments prove to be fruitful, as large- and small-sale waves are found tooexist at a greater number of regions in parameter spae than reported by Lovegrove.The loations of the major transition urves in the present experiments are shown toompare well with the preditions of simple theory.With one partiular set-up, we �nd that we an make video reordings of the waves witha horizontal spatial resolution of better than one �fth of a millimetre, orresponding toaround 100 measurements per small-sale wavelength.74
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Figure 4.1: Regime diagram obtained by Lovegrove et al. (2000). The paths ofthe four sans are shown. In all ases the diretion of the paths was towards higherFroude number. Categorization of the equilibrated large-sale ow was performedat eah of the 48 points marked with a diamond, allowing the approximate loationsof the transition urves to be inferred (thin urves). The diagram is also dividedinto regions aording to the dominant azimuthal wavenumber (thik urves).4.1 Findings of LovegroveLovegrove performed a general survey of the di�erent equilibrated large-sale ow typesahieved in the barolinially-unstable rotating, two-layer annulus. His results are givenin terms of two dimensionless parameters: the internal Froude number (F ) and dissipa-tion parameter (d), whih are de�ned byF = f 2L2g0H (4.1)and d = p�
H�
 ; (4.2)where L = 6:25 m is the radial gap width, H = 12:5 m is the layer depth, f = 2
 isthe Coriolis parameter, g0 = 2g(�2� �1)=(�1+ �2) = 6 m s�2 is the redued gravity and� = (�1 + �2)=2 = 1:18� 10�6 m2 s�1 is the mean kinemati visosity.75



Chapter 4. Results of the laboratory experimentsLovegrove performed four sans in the (d; F ) parameter spae, in eah one keeping�
 > 0 onstant, and inreasing 
 > 0 in twelve disrete steps over a six hour period.This meant that 30 minutes was spent at eah of the 48 visited points of parameterspae, suÆiently longer than the spin-up time of around ten minutes, and thereforeallowing a reliable post spin-up ow ategorization to be determined.
The results of Lovegrove's experiments are shown in Figure 4.1. The ow types aredenoted by a number followed by one or more letters. The number refers to the domi-nant azimuthal wavenumber(s), and the letters refer to how the ow evolves with time:Ax denotes axisymmetri ow of azimuthal wavenumber zero; S denotes a steady wavewhose amplitude is onstant with time; Av denotes an amplitude vaillation wave whoseamplitude periodially grows and deays with time. There are further, more ompliatedow types present in the regime diagram whih are not studied in this thesis.
The main fous of Lovegrove's work was transitions between these di�erent large-saleow types, and he found good agreement between the laboratory regime diagram, andone based on a bifuration analysis of a theoretial model using spetral amplitudeequations. However, he also reported the presene of small-sale waves during ampli-tude vaillation (Av) ows only. The small-sale waves would develop near the innerylinder during deaying phases of the vaillation, and would be ompletely absent dur-ing growth phases.
This was the �rst time that a systemati small-sale wave presene had been reportedin a rotating, two-layer annulus experiment. Read (1992a) had reported the presene ofweak, high-frequeny wave ativity in the signal from a thermoouple probe embeddedin a thermally-driven, ontinuously-strati�ed rotating annulus ow. The reorded fre-queny was lose to the buoyany frequeny, suggesting that the origin of the signal wasan inertia-gravity wave. However, the inertia-gravity wave ould well have been gener-ated by an interation between the probe and the ow, and so this annot be regardedas evidene of spontaneous emission. 76



Chapter 4. Results of the laboratory experiments4.2 Preliminary diÆulties with urrent experimentsDiÆulties were enountered in this study, when an attempt was made to reprodue theresults of Lovegrove. In preliminary experiments, the �t between the observed regimediagram transition urves and those shown in Figure 4.1 was unsatisfatory. In partiu-lar, even though points aross the entire regime diagram were sampled, equilibration wasfound to be nearly always to a wavenumber two ow. The uid displayed a relutane toundergo transitions to di�erent states with wavenumbers other than two. Furthermore| in stark ontrast with Lovegrove's �ndings | all ows were ompletely devoid ofsmall-sale waves.1 In an attempt to �x this problem, the working liquids were replaedwith fresh preparations on a number of oasions, but the small-sale waves remainedabsent.After almost a year of failed experiments, some time was spent working on a non-experimental part of the projet. Surprisingly, when the experiments were attemptedagain after this break, the small-sale waves appeared in abundane. The only hange inthe apparatus between the unsuessful and suessful experiments, was that the uidswere six weeks older. We therefore infer a hange in the liquids' physial and/or hemialproperties over time, as previously suggested in Setion 2.2.4. It is not surprising thatsuh hanges might a�et small-sale waves more than large-sale ones, sine visousand interfaial tension e�ets are both sale-seletive. Changes in the liquid propertiesould therefore make the di�erene between presene and absene of small-sale waves,whilst simultaneously exerting a signi�ant but lesser impat upon the large-sale waves.Figure 4.2 shows a omparison between the equilibrated ows obtained with fresh andaged uids. The experimental details are otherwise idential, with 
 = 2:3 rad s�1 and�
 = 0:62 rad s�1. A train of short waves is present in the experiment with old uids,but with the fresh preparation no short waves are visible, even in the original videofootage. In both ases, an experiment was performed in whih �
 was held onstantat the value just given, but 
 was slowly and ontinuously inreased from its startingvalue at a rate of 4 � 10�4 rad s�2, in antiipation of the experiments to be desribedin Setion 4.3. In the system with short waves present, the ow underwent a transi-1An undergraduate using the annulus had also previously failed to produe a ow with small-salewave ativity, during her Masters projet. 77
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(a) (b)Figure 4.2: Raw laboratory images showing the post-transient ow obtained inexperiments whih used (a) fresh working liquids, and (b) aged working liquids,but whih were otherwise dynamially idential. During the many weeks whihpassed between the two experiments, the soure lamp broke and was replaedwith a brighter one, the automati gain ontrol (AGC) feature of the amera wasswithed o�, and the orientation of the analyzing polaroid was altered. Thesemodi�ations explain the qualitative di�erenes between the two images.tion to a wavenumber 3 state when 
 reahed 2.7 rad s�1. The same transition wasobserved in the system without short waves, but it did not our until 
 had reahed3.4 rad s�1, suggesting that the short waves play a role in enouraging transitions. It wasdiÆult to study this phenomenon systematially, beause the uid properties hangein an unontrolled and unknown way. Furthermore, the observation ould be due to thediret impat of the hanging uid properties upon the large-sale, balaned dynamis,rather than to the impat of the short waves | whose generation is permitted by thehanging uid properties | on the balaned dynamis. Beause of these diÆulties,this phenomenon is not investigated further here, but is studied more arefully using anumerial model in Chapter 7.There is a need for further work to determine exatly how the uid properties hangewith age. Disrepanies between the results of this study and those of Lovegrove aredisussed, in the ontext of evolving uids, in Setion 4.9. To explore the impat of theunertain uid properties, simulations using a numerial model with varying visosityand interfaial tension are desribed in Setions 6.2 and 6.3, respetively.The rest of this hapter desribes the laboratory experiments whih were arried outwhen the working liquids had been together in the annulus for between two and six78



Chapter 4. Results of the laboratory experimentsexperiment number �
 (rad s�1)1 0.622 0.693 0.774 0.855 0.956 1.067 1.198 1.319 1.4610 1.6111 1.8012 2.0313 2.2414 2.5115 2.7316 3.14Table 4.1: The magnitude of the onstant di�erential lid rotation �
 used ineah of the present experiments, measured by timing the rotation period using astopwath. The error in the measurements is around 1%.months. At this age, diret observation of the liquids and interfae suggested that theuid properties had beome relatively stable.
4.3 Desription of urrent experimentsIn the urrent study, four series of laboratory experiments have been performed, eahusing a slightly di�erent on�guration of the two-layer annulus. Eah series involvesmany sans aross (d; F ) parameter spae, though the range of parameters overed ismuh greater here than in Lovegrove's experiments. Also, we are interested here notso muh in determining the preise large-sale ow type, but primarily in loating theregions of existene and oexistene of large-sale and small-sale waves.All experiments had 
 > 0 so that, when viewed from above, the turntable rotation wasanti-lokwise in the laboratory frame. In the �rst series, denoted PAI (prograde, annu-79



Chapter 4. Results of the laboratory experimentslus, inreasing), the lid rotation was prograde (�
 > 0), the geometry was annular, andthe runs were performed with inreasing 
 (and therefore inreasing Froude number).This series orresponds to the experiments of Lovegrove. In the seond series, denotedRAI (retrograde, annulus, inreasing), the lid rotation was retrograde (�
 < 0), thegeometry was annular, and the runs were performed with inreasing Froude number.This is an interesting ase to study as there is an asymmetry between the large-saledynamis of prograde and retrograde ow, as we will see in Setion 4.5. In the thirdseries, denoted PAD (prograde, annulus, dereasing), the lid rotation was again progradeand the geometry annular, but the runs were performed with dereasing Froude number,whih allows us to investigate the e�ets of hysteresis. In the fourth series, denoted PEI(prograde, eentri, inreasing), the lid rotation was prograde and the Froude numberwas inreasing, but the inner ylinder was displaed horizontally to give an eentriannular geometry. The purpose of reversing the lid rotation and the diretion of theparameter spae san, and of modifying the geometry, is to see whether any of thesesystem hanges a�ets the prodution of small-sale waves.Eah of the four series onsisted of 16 experiments, in whih the di�erential lid rotation�
 was held onstant at the magnitude shown in Table 4.1. In eah experiment, last-ing three hours, the voltage supplied to the turntable motor was linearly inreased ordereased with time under omputer ontrol. This aused the turntable rotation rate
 to vary slowly as shown in Figure 4.3. The angular aeleration/deeleration d
=dtprodued was losely onstant at 4� 10�4 rad s�2. By holding �
 onstant and gradu-ally inreasing 
, a urve is traed out in the (d; F ) parameter spae. In ontrast withLovegrove's experiments, in whih 48 disrete points in parameter spae were sampled,in the present experiments we perform ontinuous sans.We now look, in turn, at the results from eah of the four series of laboratory experiments.
4.4 Experimental results: PAI seriesDuring a typial experimental run in the prograde, annulus, inreasing PAI series, theow types observed fell into the following four distint lasses, when ategorized aord-ing to the presene and absene of large- and small-sale waves. The ow types are80
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Figure 4.3: Measured temporal variation of the turntable rotation 
 used inthe laboratory experiments. In the PAI, RAI and PEI experiments the omputer-generated voltage, input to an ampli�er whih supplies power to the turntablemotor, was linearly inreased from zero to 3 V over three hours, to give the dottedurve. In the PAD experiments, the voltage was linearly dereased over three hours,to give the dashed urve. The urves were derived by making measurements of therotation period every 10 minutes, by eletronially timing suessive breakings ofa light beam by a tab �xed to the turntable at its irumferene.
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(a) 5 min (b) 35 min

() 70 min (d) 93 min 00 se

(e) 93 min 30 se (f) 94 min 15 se

(g) 95 min 00 se (h) 142 minFigure 4.4: Images from experiment number PAI5, at the indiated times.82



Chapter 4. Results of the laboratory experimentsillustrated in Figure 4.4 by representative images from experiment number PAI5.� Axisymmetri ow regime, AX. Absene of both large-sale and small-salewaves, e.g. Figure 4.4(a) and ().� Kelvin-Helmholtz regime, KH. Absene of large-sale waves with global pres-ene of small-sale waves, e.g. Figure 4.4(b) [and also Figure 3.12(a)℄.� Mixed Regular Wave regime, MRW. Presene of regular large-sale wavestogether with loal presene of small-sale waves, e.g. Figures 4.4(d){(g) whihshow a large-sale amplitude vaillation yle.� Mixed Irregular Wave regime, MIW. Presene of irregular large-sale wavestogether with loal presene of small-sale waves, e.g. Figure 4.4(h).In general, during a three hour run, the order in whih the ow types were enounteredwas AX, KH, AX, MRW, MIW, so that there were four transitions in total. The KHregime is so-alled in antiipation of evidene to be presented in Setion 4.4.1 that thesmall-sale waves in that regime are, indeed, Kelvin-Helmholtz waves. For pratialpurposes, wavenumbers below �ve were ounted as large-sale waves, and all others assmall-sale waves, though typially the spetral gap was muh larger than permitted bythis de�nition.In all ow regimes, the large- and small-sale waves desribed are superimposed ontoa bakground paraboli interfae shape given by equation (3.9), as radial pressure gra-dients are established to provide the required entripetal aeleration. The transitionbetween the AX and KH regimes marks the onset of a rotationally-modi�ed Kelvin-Helmholtz instability whih gives rise to the observed global small-sale waves, as wewill show shortly. The return to the AX regime marks an instability boundary, at whihthe turntable rotation is suÆiently large to re-stabilize the system against these waves.The start of the MRW regime orresponds to the onset of barolini instability whihgives rise to the observed large-sale waves, with oexisting loalized trains of small-salewaves. The transition to the MIW regime marks the point at whih the foring is sostrong that the spatio-temporal regularity of the large-sale waves breaks down to leavea haoti ow. 83
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Figure 4.5: Close-up of the small-sale waves radiated during the deay phaseof a 2Av large-sale ow in a laboratory experiment with �
 = 1:46 rad s�1 and
 = 1:94 rad s�1, orresponding to experiment PAI9 at a time of 90 minutes.The annular gap width (62.5 mm) measures 334 pixels in the image, and so thehorizontal resolution in this lose-up view is 0.19 mm. The small-sale wavelengthis around 20 mm, so the waves are very well resolved.Small-sale waves were observed during almost every barolinially-unstable ow (theMRW and MIR regimes) in the present experiments, inluding ows in whih the large-sale wave amplitude was onstant in time. This is in ontrast with Lovegrove's experi-ments, in whih small-sale waves were reported to appear only during amplitude vail-lation ows. Possible reasons for this apparent inonsisteny are give in Setion 4.9.As a one-o�, a speial experiment was performed in whih the amera zoom lens was usedto zoom in to the annulus as far as possible. The amera was also shifted horizontallyby around 10 m, so that the �eld of view was entred not on the rotation axis but onthe annular gap. This removes the parallax e�et disussed in Setion 2.5, whih bloksfrom view a signi�ant portion of the interfae height adjaent to the inner ylinder,whih is exatly where the small-sale waves tend to appear. A lose-up of the radiatedsmall-sale wave �eld so obtained is shown in Figure 4.5. Only an azimuthally-restritedpart of the ow an be seen, but the advantage is that the horizontal struture of thewave-train an be seen at exeptionally high resolution (0.19 mm | see �gure aption).84



Chapter 4. Results of the laboratory experiments
For eah of the 16 experiments in the PAI series, the times of transitions between thefour ow lasses (in minutes sine the start of the experiment) were reorded. �
 isknown from Table 4.1 and 
 an be determined from the transition time using Fig-ure 4.3, allowing the Froude number (F ) and dissipation parameter (d) orrespondingto eah transition to be alulated using equations (4.1) and (4.2). The results therebyobtained are summarized in the regime diagrams of Figure 4.6. Contours of onstantRossby number Ro = �
=(2
) are shown in Figure 4.6(b) for referene, showing thatwe have investigated ows in whih this parameter varies by three orders of magnitude,enompassing the geostrophi Ro < 1 and ageostrophi Ro > 1 regimes. No attemptwas made during this study to reprodue Lovegrove's detailed sub-lassi�ation withinthe MRW regime. The full Froude number span was not always ahieved, as some of thehigher-numbered experiments were terminated before the full three hours had elapsed.This was beause the uid interfae had beome so steep that it began to interset the lid.As regards the large-sale waves, there is good agreement between the loation ofthe marginal barolini instability urve in the present and Lovegrove experiments.The Phillips model (e.g. Pedlosky, 1987) predits a Froude number for this urve ofFritial = �2=2 � 4:9, independent of the shear (i.e. the dissipation parameter). Thisis in reasonable agreement with the Froude numbers for the transitions to the MRWregime in Figure 4.6. There seems to be a weak dependene on shear in the laboratorywhih is not aptured by the model, possibly beause the model is for a hannel ratherthan an annulus, and beause of ageostrophi e�ets not aptured by the model.The small-sale modes of main interest have di�erent harateristi properties when theyappear in the MRW and MIW regimes rather than in the KH regime. This an be seenby omparing Figures 4.4(b)&(h), for example. In the MRW and MIW regimes, theshort waves are generally smaller in amplitude and wavelength, and are radially andazimuthally on�ned unlike in the KH regime. This suggests that di�erent generationmehanisms may be responsible in the two ases, a possibility whih we investigate inSetions 4.4.1 and 4.4.2. 85
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Chapter 4. Results of the laboratory experiments4.4.1 Analysis of small-sale waves in the KH regimeWe now show that the KH regime small-sale waves are Kelvin-Helmholtz modes gener-ated by a shear instability, as antiipated by the label. The transfer of energy from thelarge-sale basi ow to the small-sale growing waves is ahieved in this ase through awave-mean ow interation, unlike the wave-wave triad interation mehanism disussedin Setion 1.1. Kelvin-Helmholtz modes are expeted to be generated whenever the ver-tial shear in horizontal veloity exeeds a partiular value. This riterion is expressedin non-dimensional terms as the Rihardson number dropping below some ritial value,usually taken to be 14 or 1 depending upon the exat de�nition of the Rihardson number(Aheson, 1990).The gradient Rihardson number for a ontinuously strati�ed ow is de�ned byRi = �(g=�)(��=�z)(�u=�z)2 ; (4.3)where �(z) and u(z) are the density and horizontal veloity pro�les, respetively. For anaxisymmetri two-layer annulus ow, with solid-body rotation rates in layers 1 and 2 of�
1 and �
2 relative to the turntable, the bulk Rihardson number, vertially-averagedover the interfaial Ekman layers | both of widthp�=
 from equation (3.14) | is, atradius r, Ri = 2g0p�=
r2(�
1 ��
2)2 : (4.4)
The Rihardson number riterion stated above stritly only applies to non-rotating sys-tems. The appliability of non-rotating Kelvin-Helmholtz instability theory to rotatingsystems has been investigated by James (1977). He derives an impliit fourth orderpolynomial dispersion relation for a rotating, two-layer hannel, and numerially solvesit to plot Kelvin-Helmholtz growth rate urves for both the rotating and non-rotatingases. A omparison of the urves leads him to onlude that\the Kelvin-Helmholtz instability is but little a�eted by rotation . . . broadly,this [rotating ase℄ instability is adequately desribed by the non-rotatingtheory."This statement holds beause the laboratory small-sale waves evolve on timesales ofmuh less than the rotation period. We onlude that we may proeed to apply the87
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. The urves are obtained from solutions of the annulus torque balaneequations (3.27) derived in Chapter 3. For ombinations where both 
 and �
were large, the iterative solution desribed in that hapter failed to onverge, andso these points are missing from the �gure.non-rotating riterion to the rotating annulus system.To a �rst approximation, �
1 and �
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 and independent of the turntable rotation 
. We developed, in Chapter 3,an iterative method for alulating �
1 and �
2 (and hene the shear �
1��
2) forgiven �
 and 
. We an use the same torque balane analysis here, too, to improve onthe �rst approximation for the shear. The results of this alulation for eah ombina-tion of 7 di�erent values of �
 and 16 di�erent values of 
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 held onstant, we enounter Rihardson numbers �rstgreater than the ritial values required for Kelvin-Helmholtz instability, then less than,and then greater than again. This is exatly what we observed during the transitionsto and from the AX and KH regimes in the experiments of Setion 4.4, with the onsetof Kelvin-Helmholtz instability being followed shortly after by a re-stabilization, as seenin Figure 4.6(b). 89
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To further test the ability of this simple model to predit Kelvin-Helmholtz instabilityin the laboratory, we evaluate the dissipation parameter d and Froude number F at eahof the points in Figure 4.8, and plot a point in (d; F ) spae aording to whether theRihardson number is sub- or super-ritial. The results are shown in Figure 4.9. Thereis good qualitative agreement between regions of Kelvin-Helmholtz instability in this�gure and in the experimental regime diagram of Figure 4.6(b). The AX and KH owtypes are both reprodued by this simple analysis for the two shown values of ritialRihardson number. Their detailed shapes are not reprodued exatly, probably due tothe neglet of interfaial tension in the analysis.We are now in a position to explain the shape of the AX and KH regions in Fig-ure 4.6(b). The initial AX regime is missing from experiments 7{16 beause the shear isso large that the system is Kelvin-Helmholtz unstable even at the start of these exper-iments. Similarly, the larger Froude number AX regime is missing from experiments90



Chapter 4. Results of the laboratory experiments12{16 beause the shear is so large that the system does not re-stabilize with respet tothe Kelvin-Helmholtz mehanism before barolini instability ours.
4.4.2 Analysis of small-sale waves in the MRW and MIWregimesWe will ondut an investigation of the prodution of the MRW small-sale waves inChapter 6, using veloity �elds from a numerial model. However, there is a simpleanalysis that does not require veloity data, whih an be done now. The analysis isbased on the ship wave problem studied by Lighthill (1978), in whih an objet movingin a straight line at speed V in a uid generates a wake of deep water surfae gravitywaves. It is shown in that analysis, using geometrial arguments based on the phasespeed being twie the group speed, that waves at the edge of the wake will have a wave-length of � = (4�=3)(V 2=g), and that their rests will meet eah other at an angle of� = 90Æ + sin�1 �13� � 109Æ.This suggests a model for the MRW and MIW small-sale wave generation in the lab-oratory experiments, in whih the entire large-sale wave is taken to be the extendedmoving objet whih auses inertia-gravity wave generation. The Lighthill theory is non-rotating, but as in Setion 4.4.1 we assume that the laboratory small-sale waves are notstrongly inuened by rotation. Sine the speed at whih the the large-sale wave travelsaround the annulus is proportional to �
, the model would suggest a small-sale waverest intersetion angle whih does not vary between experiments, and a wavelengthwhih inreases with inreasing experiment number.A omparison between Figures 4.4(h) and 4.5, from mixed wave ows in experimentsPAI5 and PAI9 respetively, reveals that these preditions are onsistent with observa-tions. The wave rest angle is around 90Æ in eah ase, reasonably lose to the preditedangle. The drift period of the large-sale wave in Figure 4.5 was measured to be 33 susing a stop-wath. Converting to an angular phase speed and then to a veloity at mid-radius, r = 9:4 m, gives V = 1:78 m s�1. With this veloity, and using the reduedgravity in plae of g, the Lighthill theory predits � = 23 mm, in exellent agreementwith the observed wavelength given Lighthill's assumptions of no rotation and a point91



Chapter 4. Results of the laboratory experimentsgenerating objet. The same analysis for the ow in Figure 4.4(h), for whih the driftperiod is 45 s, gives � = 12 mm, whih is also in good agreement with observations.The small-sale waves in the Lighthill theory are not Kelvin-Helmholtz waves generatedby a shear instability, but inertia-gravity waves generated by the motion of an objet inthe uid. This gives our �rst indiation that the observed laboratory small-sale wavesin the MRW and MIW regimes may not be Kelvin-Helmholtz waves like those in theKH regime. This possibility is explored more fully in Setions 4.7 and 6.6.
4.5 Experimental results: RAI seriesThe same four regime types enountered in the PAI series were also observed in the ret-rograde, annulus, inreasing RAI series, as illustrated in Figure 4.10 by representativeimages from experiment number RAI5. Note that the bakground radial olour gradi-ents are di�erent from those in Figure 4.4, beause the equilibrium paraboli interfaeheight h(r) is now oppositely oriented in the z-diretion. For prograde lid rotations inthe PAI series we had h � �r2, but for the present retrograde series we have h � +r2(see equation 5.22).Figures 4.10(a), (b) and () show images from the AX, KH and AX regimes, respetively.Figures 4.10(d){(g), eah separated by 10 s, show a steady (non-vaillating) azimuthalwavenumber 1 ow (1S in Lovegrove's notation) orresponding to the MRW regime.The large-sale wave drifts around the annulus with a period of around 40 s. Small-salewaves are barely visible in these images, but an be seen in the original video reordings| they are easier to detet when a moving sequene of images is wathed, rather thana single snapshot. They have amplitudes whih are smaller than in the orrespondingPAI experiments. Figure 4.10(h) shows an irregular large-sale wave orresponding tothe MIW regime, with small-sale waves whih are again barely detetable. The bottompart of the inner ylinder has been refrated into the �eld of view in this image, ausingthe dark feature at mid-radius and making the image diÆult to interpret.Figure 4.11 shows the regime diagram for the RAI series. It is broadly the same as thediagram for the PAI series shown in Figure 4.6(b), exept that the shapes of the AX92
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(a) 5 min (b) 40 min

() 70 min (d) 119 min 50 se

(e) 120 min 00 se (f) 120 min 10 se

(g) 120 min 20 se (h) 179 minFigure 4.10: Images from experiment number RAI5, at the indiated times.93
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Chapter 4. Results of the laboratory experimentsand KH regions have been modi�ed slightly.The most likely explanation for the redued small-sale wave amplitudes in this series,ompared with the PAI series, is that interfaial tension e�ets are larger in the presentase. The quasi-geostrophi equilibrium paraboli interfae height shape will shortlybe shown to be given by equation (5.22). There are two ontributions: the externalentripetal e�et 
2r2=(2g) is always positive, whereas the internal entripetal e�et�
�
r2=(2g0) is positive for retrograde 
�
 < 0 ow and negative for prograde
�
 > 0 ow. In the urrent series of experiments, then, the external and internalentripetal e�ets ombine onstrutively to give an interfae of larger urvature than inthe PAI series, where there was partial anellation between the two terms. This seemsto have reinfored the e�ets of interfaial tension | whih are proportional to urvature| to suh an extent that the growth of small-sales waves has been suppressed in thisase.
4.6 Experimental results: PAD seriesFigure 4.12 shows the equivalent regime diagram for the prograde, annulus, dereasingPAD series. Individual frames from a typial experiment are not shown in this ase, asthey are almost idential to those from the PAI series exept that their order is reversedin time. The small-sale wave amplitudes seemed to be generally the same as for thePAI series.The regime diagram is almost exatly the same as the diagram for the PAI series shownin Figure 4.6(b), exept that the AX regime at larger Froude numbers has vanished.The boundary between the AX and KH region is very well predited by Figure 4.9 witha ritial Rihardson number of 1. The only dynamial di�erene between the largeFroude number KH regions in the PAI and PAD series is the diretion of approah inparameter spae. Sensitivity to diretion of approah is a manifestation of intransitiv-ity and is a onsequene of hysteresis in the system. Intransitivity has been observedbefore in experimental studies of the rotating annulus (e.g. Hide & Mason, 1975). Theimpliation is that for a given (d; F ) there are many possible equilibrated ows, and thepartiular one whih is observed depends to an extent upon the system's memory of its95
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Figure 4.12: Experimental regime diagram for the PAD series. Eah multi-oloured line orresponds to one 3-hour experiment, with experiment number 1furthest to the right and experiment number 16 furthest to the left.previous state.
4.7 Experimental results: PEI seriesFor the prograde, eentri, inreasing PEI on�guration, we displae the inner ylinderhorizontally so that it is no longer aligned with the rotation axis. The onentri annulusthus beomes an eentri annulus, with a distorted geometry in whih the annular gapwidth and Froude number vary with azimuth. Streamlines beome more tightly pakedin the region of smallest gap width, enhaning the shear there and allowing an inves-tigation into whether there are preferential azimuthal angles for short wave generationnow that the azimuthal symmetry is broken.Beause of time onstraints, the full set of 16 PEI experiments ould not be arried out,and so a regime diagram ould not be drawn. Representative stills from experimentPEI3 are shown in Figure 4.13, however. The same four ow types previously desribed96
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(a) 5 min (b) 40 min

() 70 min (d) 95 min

(e) 115 min (f) 131 min

(g) 132 min (h) 161 minFigure 4.13: Images from experiment number PEI3, at the indiated times.97



Chapter 4. Results of the laboratory experimentswere observed. The AX ow type is shown in (a) and (), and the KH regime in (b).The MRW regime is shown in (d){(g), with (d) showing a 2S ow, (e) showing a 3S ow,and (f) and (g) showing times of maximum and minimum amplitude in the yle of a4Av ow. TheMIW regime is shown in (h). Unlike in the KH regime of this preliminaryexperiment, in the mixed wave regimes there was no evidene of preferential short waveemission regions orrelated with regions of large shear (i.e. regions near \9 o'lok").This adds weight to the onlusion from Setion 4.4.2 that the short waves in the MRWand MIW regimes are not generated by a shear instability.
4.8 Calulation of wave amplitudesWe now use the alibration sheme of Chapter 3 to determine the amplitudes of wavesin the MRW regime of the PAI experiments (Setion 4.4), following the example of Se-tion 3.7. Figures (4.14){(4.16) show the amplitude alulation for large-sale, baroliniwaves of azimuthal wavenumbers 1, 2 and 3. The wave amplitudes in the middle ofthe annular gap (at r = 94 mm) are found to be around 25 mm, 8 mm and 7 mm,respetively. The azimuthal pro�les show that the waves are not perfetly regular, andso the wave amplitudes read-o� by eye and quoted here are approximate. This spatialirregularity an be seen in the raw images, and suggests the presene of azimuthal modesother than the dominant one. For example, the presene of a sub-dominant wavenumber1 mode an be seen in the raw image of Figure 4.15(a). The amplitudes determined herewill be ompared with amplitudes from a numerial simulation in Setion 6.1.2.Figure 4.17 shows a similar analysis for the image shown in Figure 1.6, onsisting oflarge-sale waves superimposed with two trains of small-sale waves. The amplitude ofthe small-sale waves near the inner ylindrial boundary (at r = 70 mm) is around3 mm. This is around a third of the mid-radius barolini wave amplitude, implyingthat these small-sale waves are signi�antly larger, relative to the large-sale mode,than those reported by Read (1992a). The small-sale wave amplitude dereases quiterapidly with inreasing radius, dropping below 1 mm at mid-radius (not shown).98
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(a)

(b)Figure 4.14: Large-sale barolini wave with azimuthal wavenumber 1. (a) Rawexperimental image, and (b) reonstruted mid-radius azimuthal pro�le of interfaeheight.
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Chapter 4. Results of the laboratory experiments

(a)

(b)Figure 4.15: Large-sale barolini wave with azimuthal wavenumber 2. (a) Rawexperimental image, and (b) reonstruted mid-radius azimuthal pro�le of interfaeheight.
100
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(a)

(b)Figure 4.16: Large-sale barolini wave with azimuthal wavenumber 3. (a) Rawexperimental image, and (b) reonstruted mid-radius azimuthal pro�le of interfaeheight.
101



Chapter 4. Results of the laboratory experiments

Figure 4.17: Reonstruted azimuthal pro�le of interfae height near the innerylindrial boundary of Figure 1.6.4.9 DisussionThe small-sale waves in the urrent experiments are more ubiquitous than those inLovegrove's experiments. In partiular, whereas Lovegrove reported small-sale wavegeneration only during amplitude vaillating large-sale modes, we have observed themin almost all non-vaillating large-sale ows, though their amplitudes are generallysmaller when the large-sale amplitude is onstant. The large-sale ow types duringwhih small-sale waves were observed to be generated in Lovegrove's experiments, aretherefore a subset of those in the present experiments.This apparent disrepany an be explained in either (or both) of two ways. We ouldassume that small-sale waves were atually just as ubiquitous in Lovegrove's experi-ments as in the present ones, but that his ow visualization had suÆient resolutionto apture only those with the largest amplitude. This ould be due to his lower-gradevideo signal or frame-grabber (Figure 2.4), or to a non-optimized rossed polaroid angle(Setion 2.3). Alternatively it may have been that the di�erenes in uid properties,whih evolve in time as inferred in Setions 2.2.4 and 4.2, have had a signi�ant impatupon the small-sale wave prodution mehanism. It is not lear whih of these two102



Chapter 4. Results of the laboratory experimentsexplanations is responsible, though it seems more likely to be the latter.
4.10 Chapter summaryThe wave modes ourring in the rotating two-layer annulus equations fall into twodistint lasses, both of whih we have observed in the present series of laboratoryexperiments. We have identi�ed those regions of the prinipal 2-D parameter spaein whih the large-sale and small-sale modes exist and oexist, and labelled themappropriately. Kelvin-Helmholtz shear instability theory, based on a ritial Rihardsonnumber, appears to explain the loations of the AX ! KH and KH ! AX transitionurves, and barolini instability theory based on a ritial Froude number suessfullyaounts for the loations of the AX !MRW and KH !MRW transition urves.The mehanism by whih the MRW and MIW small-sale waves are generated remainsto be explained, though we have shown that the waves are robust to various systemhanges, appearing in four di�erent experimental on�gurations, and are therefore notjust a feature peuliar to the partiular on�guration used by Lovegrove. The gener-ation mehanism responsible will be investigated in detail using a numerial model inChapter 6.This hapter marks the end of the �rst part of the thesis. Though we have been ableto derive wavelengths and amplitudes in the experiment, there is no pratiable wayto measure veloity �elds. These are needed to investigate the prodution of short,fast waves in barolinially-unstable ow regimes. Motivated by this, in the followinghapters we develop and run a numerial model of the laboratory experiment, whih willallow us to derive high-resolution veloity data for this purpose. It will also give interfaeheights and azimuthal wavenumbers for omparison with those in the laboratory annulus.
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Chapter 5
Desription of the numerial model\quagmire (noun) 1. an area of soft wet groundwhih you sink into if you try and walk on it.2. a diÆult and dangerous situation."Cambridge Advaned Learner's Ditionary,2003.In this hapter, we desribe the design and onstrution of a new numerial model forsimulating uid ows in rotating annulus laboratory experiments. Having disussed avariety of andidate model types, eah with di�erent dynamial assumptions, we deideto use a multi-layer quasi-geostrophi model. A model with a full representation of theannular geometry is preferable to a Cartesian hannel model, for a number of importantreasons whih are disussed.The two-layer ontinuous quasi-geostrophi equations in ylindrial oordinates are derived,and are deomposed into vertial and azimuthal normal mode form to simplify their solu-tion. Suitable sidewall boundary onditions are derived by onsidering integral propertiesof the governing equations. Then the equations are arefully disretized in suh a way asto preserve disrete analogues of the integral properties. Suitable numerial parametervalues and initial onditions are given, and the model ode units are tested to ensurethat they are free from errors.The model has beome known as QUAGMIRE, the QUAsi-Geostrophi annulus Modelfor Investigating Rotating uids Experiments.104



Chapter 5. Desription of the numerial model5.1 Motivation for running numerial simulationsIn this, the seond part of the thesis, we embark upon an investigation of the rotating,two-layer annulus using a numerial model. This omputational approah is omplemen-tary to the laboratory investigation undertaken in the previous hapters, and is intendedto enhane and extend our understanding of the dynamial mehanisms at play. The keyaims are to determine the uid veloity �elds (unavailable from the laboratory experi-ments) in order to investigate soures of the observed small-sale wave emission in theMRW regime, and to run simulations both with and without a representation of the fastwaves in order to investigate their impats on the large-sale ow.One possible numerial approah would be to arry out a diret numerial simulation(DNS) of the Navier-Stokes equations for the system, and to examine the model's abilityto simulate the prodution of short waves as observed in the laboratory. DNS odes havebeen developed for the rotating ontinuously-strati�ed thermal annulus (e.g. White,1986; Hignett et al., 1985) but these would require signi�ant modi�ation in order tobe appliable to the disrete-layer isothermal system. Furthermore, DNS odes are om-putationally expensive, and ould be used to examine not more than a few ase studiesat the resolution required to simulate the fast, small-sale waves.As an alternative to a DNS for the numerial simulations, it was deided to use a bal-aned model, in whih small-sale waves are �ltered out by onstrution (Setion 1.1).Beause of the �ltering of unbalaned modes, balaned models have fewer dynamialdegrees of freedom and therefore run muh more quikly than DNS models, allowinglarge numbers of simulations to be performed.A key additional bene�t is that a omparison of the laboratory and numerial resultsallows us to assess the ability of a �ltered model to simulate a system in whih motionsour on a wider spetrum of sales than that permitted by the �ltering. This is equiv-alent to an assessment of the impat of the small-sale waves upon the large-sale bal-aned ow. If there are found to be disrepanies between model and laboratory systembehaviour, and if the only signi�ant di�erene between model and laboratory is thepresene of small-sale waves in the laboratory, then we an infer that those disrepan-ies are likely to be due to the presene of the small-sale waves.105



Chapter 5. Desription of the numerial model
5.2 Review of �ltered modelsThe relative merits of three andidate �ltered models and two andidate geometries arenow disussed.
5.2.1 Candidate �ltered modelsThree ommonly-used �ltered models for simulating rapidly-rotating, two-layer ows arethose based on the quasi-geostrophi equations, the balane equations and the slow equa-tions. These three equation sets an eah be derived from the shallow water equations,whih in turn are derived from the Navier-Stokes equations under the assumptions ofhydrostati balane and olumnar ow. Disussions of these and other �ltered modelsare given by MWilliams & Gent (1980) and by MIntyre & Norton (2000).The main assumptions made in the derivation of the quasi-geostrophi equations, �rstused by Charney et al. (1950), are that the potential vortiity is adveted only by thegeostrophi omponent of the ow, and that the amplitudes of perturbations to theuid surfaes are muh smaller than the mean uid depths. A list of the omplete setof approximations is given in Setion 5.3.The balane equations (Charney, 1955) are derived by performing a horizontal velo-ity deomposition into rotational and divergent omponents, and then trunating withrespet to the divergent omponent. The balane that they desribe is more ompli-ated, but also more aurate, than geostrophi balane, and eÆient proedures havebeen developed to integrate them (Daley, 1982). However, it has been pointed out byMoura (1976) that, in their most general form, the balane equations have spuriousnon-physial wave solutions with phase speeds muh larger than those of inertia-gravitywaves.The slow equations (Lynh, 1989) are derived in a similar way to the balane equations,exept that the veloity trunation is performed in a more systemati manner (based106



Chapter 5. Desription of the numerial modelon normal mode initialization, disussed in Setion 1.4), whih results in the vanishingof the spurious solutions. Numerial integrations of the slow equations show exellentagreement with initialized numerial integrations of the shallow water equations.Of these three andidate models, the quasi-geostrophi (Q-G) model was seleted to sim-ulate ows in the annulus. This is beause only one salar funtion of horizontal positionis needed per layer to uniquely de�ne the state of the system using a Q-G model (stream-funtion), whereas three are needed per layer using a balane or slow equations model(streamfuntion, veloity potential and geopotential). With three times fewer indepen-dent variables, the omputational advantages gained from using a Q-G model were feltto outweigh the disadvantages of its slightly lower formal auray.
5.2.2 Candidate geometriesA number of numerial Q-G models have been developed for systems onsisting of super-posed immisible uid layers in a retangular hannel (e.g. Brugge et al., 1987). Beforeonstruting a new numerial model, we �rst onsidered whether any of these Cartesianmodels ould meet our requirements. For the following reasons, it was deided that theyould not.Firstly, the hannel equations with periodi boundary onditions are a good approxi-mation to the annulus equations only if the ratio of the width of the annular gap toits mean radius is muh smaller than unity (King, 1979b). With this geometry, theurvature beomes negligible, and we would be justi�ed in using a hannel model tosimulate the ow in the annulus. For the present laboratory apparatus, though, theratio is 6:25 m=9:375 m � 0:7, whih is only slightly smaller than 1.Seondly, hannel models have additional, shift-reet symmetries (Cattaneo & Hart,1990) not present in annulus models. This is the ase beause, though the annulus andperiodi hannel are topologially similar, the geometry of their boundaries is fundamen-tally di�erent. For example, there is a reet symmetry in the hannel in the plane whihis equidistant from the sidewall boundaries, but there is no analogous symmetry in theannulus. Kwon & Mak (1988) show that the existene of suh additional symmetries107



Chapter 5. Desription of the numerial modelin the periodi hannel leads to ertain large-sale wave-wave interation oeÆientsbeing identially zero. Importantly, an annular model would allow the omplete set oflarge-sale wave-wave interations that take plae in the laboratory experiments, to beinluded in the model, whih is important for quantitative agreement.Furthermore, a model in ylindrial oordinates would be more general, and potentiallyappliable to laboratory experiments other than the present one. For example, it wouldkeep open the possibility of running simulations in an open ylinder with no inner side-wall, as well as in an annulus, though it would then be neessary to inlude an innersidewall of small nominal radius in the model, to avoid the singularity at r = 0. Wewould need to assume that the ow is insensitive to the inlusion of this additionalboundary.There are bakground potential vortiity (PV) gradients present in both the hanneland the annulus, due to the sloping of equilibrium geopotential height surfaes in thepresene of a vertial shear in horizontal veloity. In the hannel, these geopotentialheights and PV gradients are linear in the aross-hannel diretion (giving an e�etive�-e�et), whereas in the annulus they are quadrati beause of the paraboli equilibriuminterfae height shape (Setion 2.4). This gives a quadrati �-e�et, with the possibil-ity of qualitatively di�erent dynamis than in the presene of the usual linear �-e�et.Furthermore, the quadrati �-e�et an be quite large (Setion 5.3).As a �nal point, not onneted with geometry, few of the existing Q-G layer hannelmodels inlude the e�ets of interfaial tension, whih are not neessarily always negli-gible in the laboratory (Setion 2.2.3).Sine we desire quantitative agreement with the laboratory experiments, we onludefor these reasons that we need to onstrut a new multi-layer Q-G model whih takesinto aount the ylindrial geometry and interfaial tension. Suh a model is desribedin the remaining setions of this hapter. 108
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Figure 5.1: Shemati diagram showing a vertial ross-setion through the two-layer annulus system being modelled. The dashed line shows the resting interfaeheight. See text for de�nitions.5.3 Derivation of model equationsThe system to be modelled is shown shematially in Figure 5.1. Suh a model is ofteninformally referred to as two-and-a-half dimensional, as the representation of the vertialis ahieved through only two disrete layers. Cylindrial polar oordinates r = (r; �; z)are used, the z-axis being oinident with the vertial rotation axis. The uid is boundedby a at base at z = 0, a at lid at z = 2H > 0 and ylindrial walls at r = a andr = b > a. The two immisible layers have densities �i, kinemati visosities �i andmutual interfaial tension S. The undisturbed layer depth is H and the disturbed lowerlayer depth is H + �. The aeleration due to gravity is g. The annulus base and wallsrotate about the axis of symmetry with angular veloity 
, and the lid with angularveloity 
 +�
.Working in the frame of the base, the four fundamental equations for the pressure pi(r; t)109



Chapter 5. Desription of the numerial modeland the veloity ui(r; t) in layer i = 1; 2 are the Navier-Stokes equations:�ui�t + (ui �r)ui + 2
� ui +
� (
� r) = � 1�irpi + �ir2ui + g (5.1)and the equation of volume onservation for the inompressible liquid:r � ui = 0 : (5.2)We take the url of equation (5.1) and use vetor identities to obtain an equation forthe layer vortiities !i =r� ui :�!i�t + (ui �r)!i = [(2
+ !i) �r℄ui + �ir2!i ; (5.3)the z-omponent of whih, in the layer interiors where the ow is assumed to bevertially-olumnar and invisid, is��i�t + (ui �r)�i = (f + �i)�ui; z�z ; (5.4)where �i is the z-omponent of !i, f = 2
 is the Coriolis parameter and ui; z is thevertial veloity.We next vertially integrate equation (5.4) over the uid interiors, parameterizing verti-al Ekman pumping/sution veloities at the lid, base and interfae (Gill, 1982). Assum-ing that the Ekman layer depths are muh smaller than the total layer depths, andmaking the quasi-geostrophi assumptions � � H and �i � f , we obtain, after rear-rangement: � ��t + u1 �r� q1 = �p
�1H [�1 + �2(�1 � �2)℄ + 2�
p
�1H ; (5.5)� ��t + u2 �r� q2 = �p
�2H [�2 + �1(�2 � �1)℄ ; (5.6)where �i = p�i=(p�1+p�2), and qi(r; �; t)=H are the perturbation potential vortiities(PPVs), given by q1(r; �; t) = �1 + f�H (5.7)and q2(r; �; t) = �2 � f�H : (5.8)
110



Chapter 5. Desription of the numerial modelTo omplete the derivation, we write all of the independent variables (ui, �i and �) inequations (5.5){(5.8) in terms of the layer streamfuntions  i(r; �; t) de�ned byui; � = � i�r (5.9)and ui; r = �1r � i�� : (5.10)The streamfuntions  1 and  2 are de�ned only to within arbitrary additive onstants,whih will be disussed in Setion 5.4.2. The vortiities are given by�i = r2 i : (5.11)Assuming hydrostati balane and nearly equal layer densities, the interfae height per-turbation is given in terms of the streamfuntions (to within an additive onstant) by� � Æ2mr2� = fg0 ( 2 �  1) + r2
22g ; (5.12)where g0 = 2g(�2��1)=(�2+�1) is the redued gravity. The term in Æm =pS=[g(�2 � �1)℄represents the e�ets of interfaial tension for an interfae of small urvature. Æm isthe harateristi stati menisus width, as an be seen by onsidering solutions toequation (5.12) when the tank is at rest (
 = 0) and the uid veloities are zero( i = onstant). The equation is a fored Helmholtz equation for � given  i, wherethe boundary onditions are the slopes ��=�r at the annulus walls, whih are related tothe interfae ontat angle. We require an expliit formula for �, and so we seek a �rstorder solution to the Helmholtz equation for weak interfaial tension, by estimating ther2� term using the solution for � when Æm = 0. This gives� = fg0 (1 + Æ2mr2)( 2 �  1) + r2
22g ; (5.13)where 1 and Æ2mr2 are the �rst two terms in a power series solution. On simple grounds,the series would be expeted to onverge rapidly if Æ2mr2� � �, whih is the ase ifÆ2m � �2 for waves of wavelength �. We expet waves to form on the sale of the inter-nal Rossby radius pg0H=jf j, so the onvergene riterion beomes Æ2mf 2=g0H � 1. Thisis equivalent to FI � 1 where F is the Froude number, given by equation (4.1), and thenon-dimensional parameter I = Æ2m=(b� a)2 is the interfaial tension number (Appleby,1982). 111



Chapter 5. Desription of the numerial modelWe �nally substitute equations (5.9), (5.10), (5.11) and (5.13) into (5.5) and (5.6) toobtain the two oupled partial di�erential equations governing the evolution of quasi-geostrophi motions in the two-layer annulus:� DDt�1 q1 = �p
�1H �r2 1 + �2r2( 1 �  2)�+ 2�
p
�1H (5.14)and � DDt�2 q2 = �p
�2H �r2 2 + �1r2( 2 �  1)� : (5.15)The total derivative operators are given by� DDt�i = ��t � 1r � i�� ��r + 1r � i�r ��� (5.16)and the horizontal Laplaian operator is given byr2 = �2�r2 + 1r ��r + 1r2 �2��2 : (5.17)From equations (5.7) and (5.8), the quantities q1 and q2 are given in terms of  1 and  2by q1 = r2 1 + f 2g0H (1 + Æ2mr2)( 2 �  1) + fH r2
22g (5.18)and q2 = r2 2 � f 2g0H (1 + Æ2mr2)( 2 �  1)� fH r2
22g : (5.19)
On the right side of equation (5.14), the �rst term represents spin-down by the fritionalEkman layers at the lid (r2 1) and interfae (r2( 1 �  2)). The seond term is the(onstant) foring term, and represents generation of PV by the rotating lid, ommu-niated to the uid interior by the Ekman layer. The terms on the right side of (5.15)have a similar interpretation, exept that there is no foring term in this ase.Equations (5.18) and (5.19) are similar to the PV-streamfuntion relationships in thehannel model of Brugge et al. (1987), exept that the present equations inlude aninterfaial tension modi�ation, and Brugge's �y term has been replaed with our ��r2term. This is the quadrati �-e�et disussed in Setion 5.2.2. It is equal and oppositein the upper and lower layers, orresponding to the fat that depth inreases in onelayer are aompanied by equal dereases in the other layer. The radial interfae heighthange aross the annulus, assoiated with these quadrati �-e�et terms, an be up to112



Chapter 5. Desription of the numerial model20 mm (Setion 2.4). Sine mid-radius large-sale wave amplitudes reah only 25 mm(Setion 4.8), interfae perturbations due to the quadrati �-e�et are not small om-pared to those due to large-sale waves, and an therefore not be negleted.Upon non-dimensionalization of equations (5.14), (5.15), (5.18) and (5.19), using a timesale (�
)�1 and horizontal length sale (b � a), the de�nitions of Froude numberand dissipation parameter given in Setion 4.1 appear naturally. We hoose to odethe model using dimensional units, however, and therefore do not arry out the non-dimensionalization here.We now summarize the assumptions whih were required to derive equations (5.14){(5.19). It is important to bear these approximations in mind, sine they limit theappliability of the model:� inompressible uids� vertially-olumnar uid interiors� invisid uid interiors (Reynolds number Re � 1)� linear Ekman pumping/sution� Ekman layer depths ÆE � H � �� � � H� �i � f (Rossby number Ro � 1)� hydrostati balane Dw=Dt� g� g0 � g� jr� � 1j� FI � 1� passive Stewartson layers whih do not exhange uid with the interiors� Stewartson layer widths ÆS � b� aThe �nal two assumptions are disussed in Setion 5.4, but are inluded here for om-pleteness. 113



Chapter 5. Desription of the numerial model5.3.1 Perturbation equationsThere is an equilibrium solution to equations (5.14){(5.19) of the form ui;r = 0, ui;� =r�
i. Substituting allows us to determine the interior solid-body rotation rates:�
1�
 = 2 + �2(1 + �) (5.20)and �
2�
 = 12(1 + �) ; (5.21)where � = p�2=�1. For � = 1 this is the same result as the solution obtained fromthe torque balane analysis of Chapter 3 in the absene of Stewartson layers and witha horizontal interfae (see Setion 3.4.2 and Table 3.2). The orresponding interfaeheight (to within an additive onstant) is given by equation (5.13) to be� = 
2r22g �1� �
=
g0=g � : (5.22)Equations (5.20){(5.22) desribe the basi, equilibrium state upon whih barolinially-unstable perturbations may grow. We refer to this as the mean ow and label theorresponding streamfuntions and PPVs as  i(r) and qi(r), respetively.Governing equations for perturbations to the streamfuntion  0i(r; �; t) and PPV q0i(r; �; t)are obtained by substituting  i =  i(r) +  0i(r; �; t) and qi = qi(r) + q0i(r; �; t) intoequations (5.14){(5.19) to obtain� DDt�10 q01 = �p
�1H �r2 01 + �2r2( 01 �  02)���
1 �q01�� + f 22H �
g � �
g0 � � 01��(5.23)and� DDt�20 q02 = �p
�2H �r2 02 + �1r2( 02 �  01)���
2�q02�� � f 22H �
g � �
g0 � � 02�� ;(5.24)where q01 = r2 01 + f 2g0H (1 + Æ2mr2)( 02 �  01) (5.25)and q02 = r2 02 � f 2g0H (1 + Æ2mr2)( 02 �  01) : (5.26)The total derivatives now advet aording to the perturbation streamfuntions, i.e.� DDt�i0 = ��t � 1r � 0i�� ��r + 1r � 0i�r ��� : (5.27)114



Chapter 5. Desription of the numerial modelEquations (5.23){(5.26) are the fully nonlinear model equations whih we solve. Theonstant foring term in equation (5.14), whih represents foring of the full ow by thelid rotation, has been replaed in equations (5.23) and (5.24) with more ompliatedterms whih represent foring of the perturbation ow by the equilibrium state. Ananalytial assessment of the stability of small perturbations ould begin by linearizingequations (5.23){(5.26), but for the model we retain all of the nonlinear terms.The perturbation veloity �elds are given in terms of the perturbation streamfuntionsby u0i; � = � 0i�r (5.28)and u0i; r = �1r � 0i�� ; (5.29)whih are the perturbation forms of equations (5.9) and (5.10). The perturbation inter-fae height �eld is given (to within an additive onstant) by�0 = fg0 (1 + Æ2mr2)( 02 �  01) ; (5.30)whih is the perturbation form of equation (5.13).
5.3.2 Normal mode deomposition of diagnosti equationsGiven the �elds  0i and q0i at any time, we an evaluate �q0i=�t at that time using theprognosti equations (5.23) and (5.24), and thereby determine q0i at a short time in thefuture. We may then use this to invert the diagnosti Helmholtz equations (5.25) and(5.26) to obtain  0i at that time, and then begin the loop again using the updated �elds.The Helmholtz equations are oupled, and the inversion is made easier by �rst writingthem in vertial normal mode form to remove the oupling. We take the sum anddi�erene of the equations to obtain, respetively,r2( 01 +  02) = q01 + q02 (5.31)and r2( 02 �  01)� Cit 2f 2g0H ( 02 �  01) = Cit(q02 � q01) ; (5.32)115



Chapter 5. Desription of the numerial modelwhere Cit is an interfaial tension orretion oeÆient given byCit = 11� (2f 2Æ2m)=(g0H) : (5.33)We know that f 2Æ2m=g0H � 1 (Setion 5.3), and so Cit is slightly larger than unity,and is exatly equal to unity if the interfaial tension is zero.De�ning the barotropi (bt) and barolini (b) vertial normal mode variables to be	0bt =  01 +  02 ; (5.34)	0b =  02 �  01 ; (5.35)Q0bt = q01 + q02 ; (5.36)Q0b = Cit(q02 � q01) ; (5.37)equations (5.31) and (5.32) both beome unoupled Helmholtz equations of the formr2	0m � �m	0m = Q0m (5.38)for m = bt; b. The eigenvalues are �bt = 0 and �b = 2Citf 2=g0H.We now perform a seond normal mode deomposition, this time into azimuthal modes,to further simplify the solution of the Helmholtz equations. At eah timestep, we expand	0m(r; �) = 1Xn=�1 	̂0nm(r)ep�1n� ; (5.39)Q0m(r; �) = 1Xn=�1 Q̂0nm(r)ep�1n� : (5.40)The omplex funtions 	̂0nm and Q̂0nm satisfy 	̂0nm = 	̂0�nm � and Q̂0nm = Q̂0�nm �, wherethe asterisk represents omplex onjugation, beause 	0m(r; �) and Q0m(r; �) are real.The n = 0 term is alled the mean ow orretion (a orretion to the zonal owthat is generated by nonlinear self interations of the waves), and is equal to the zonalaverage of the perturbation quantities as an be seen from the zonal integration ofequations (5.39) and (5.40). The n 6= 0 terms represent eddy (wave) omponents.Substituting equations (5.39) and (5.40) into (5.38) gives the radial struture equation:d2	̂0nmdr2 + 1r d	̂0nmdr � ��m + n2r2� 	̂0nm = Q̂0nm(r) : (5.41)This omplex ordinary di�erential equation must be solved for eah ombination ofvertial modes m 2 fbt; bg and azimuthal modes n 2 f0;�1;�2; : : :g to determine116



Chapter 5. Desription of the numerial model	̂0nm(r) given Q̂0nm(r). The inversion proess required to obtain  0i(r; �) from q0i(r; �),whih are linked by equations (5.25) and (5.26), is summarized as:q0i (5:36) & (5:37)�! Q0m (5:40)�! Q̂0nm (5:41)�! 	̂0nm (5:39)�! 	0m (5:34) & (5:35)�!  0iWe ould now perform a third normal mode deomposition, this time in the radial oor-dinate, by projeting 	̂0nm(r) and Q̂0nm(r) onto the eigenfuntions of the linear operatoron the left side of equation (5.41). The barolini eigenfuntions are modi�ed Besselfuntions of order n in the saled radial oordinate ~r = p�br (Boas, 1983), and thebarotropi eigenfuntions are of the form r�n. However, this approah would fore thestreamfuntion and PPV to satisfy the same boundary onditions, for whih there is nojusti�ation. In the present model, we therefore solve the disretized radial strutureequation diretly rather than projeting onto radial modes.
5.4 Perturbation streamfuntion boundary onditionsfor the ontinuous equationsWe must now hoose boundary onditions to apply to the perturbation streamfuntionwhen integrating equation (5.41). The equation was derived under the assumption ofinvisid ow. It therefore annot desribe the visous Stewartson layers of width ÆS, andso applies only to the uid interior a+ ÆS < r < b� ÆS . We assume ÆS � a; b so that wemay still write the integration range as a < r < b, but when we refer to r = a or r = bwe now mean the boundary between the uid interior and Stewartson layer, rather thanthe physial lateral boundary itself.1There are a number of andidate boundary onditions. To impose passive Stewartsonlayers whih do not anywhere exhange uid with the interior, we would apply theimpermeability ondition on the radial perturbation veloity u0i; rjr=a; b = 0 8 �; i, whih1An alternative method for keeping the Stewartson layers out of the analysis would be to imaginethat our laboratory apparatus is equivalent to a gedanken experiment in whih, at all times in eahlayer, the lateral boundaries rotate at the same rate as the uid interiors, so that the Stewartson layersvanish. 117



Chapter 5. Desription of the numerial modelin the normal mode variables orresponds to Dirihlet boundary onditions	̂0nmjr=a; b = 0 8 n 6= 0; m : (5.42)The mean ow orretion n = 0 veloity is purely zonal, and so this omponent automati-ally satis�es impermeability. Impermeability alone is therefore not a suÆient onditionto uniquely speify a solution. No-slip boundary onditions for the zonal perturbationveloity u0i;�jr=a; b = 0 8 �; i orrespond to the Neumann onditionsd	̂0nmdr ����r=a; b = 0 8 n;m : (5.43)The equilibrium solid-body rotation ow about whih we perturb satis�es impermeabil-ity, but is not no-slip.Sine we are solving a seond order di�erential equation, only two independent bound-ary onditions are required. We annot therefore impose both impermeable and no-slipow at both boundaries, as that would require four independent onditions. This over-onstrained nature of the PPV inversion in Q-G models is disussed in Williams (1979).A omprehensive study of the omparative e�ets of using no-slip boundary onditionsrather than the more traditional free-slip onditions is desribed by Mundt et al. (1995).We are therefore fored to use a redued set of boundary onditions, but we must hoosearefully and onsistently whih onditions to retain and whih to abandon, to avoidany possibility of non-physial behaviour. We are, of ourse, free to employ di�erentboundary onditions for the di�erent normal mode omponents spei�ed by m and n.The debate over suitable lateral Q-G boundary onditions has had a long and ontentioushistory in the literature. In the lassi periodi hannel models of Phillips (1954) andPhillips (1956), boundary onditions orresponding to equation (5.42) are used for thewave n 6= 0 terms, and equation (5.43) is used for the mean ow orretion n = 0omponent only. The latter ondition was not imposed (but the former was retained)in the studies of Phillips (1963) and Pedlosky (1964), but MIntyre (1967) showed thatrelaxing this mean ow orretion boundary ondition leads to a spurious, unspei�edenergy ux through the sidewalls. The ondition was inluded again in Pedlosky (1970),but replaed in Pedlosky (1971) and Pedlosky (1972) with an ad-ho ondition hosenfor mathematial onveniene. Smith (1974) points out that the resulting non-physial118



Chapter 5. Desription of the numerial modelenergy soure might well invalidate Pedlosky's results, and repeats Pedlosky's alu-lations with the proper boundary ondition retained (Smith & Pedlosky, 1975; Smith,1977). More reent studies (Appleby, 1982; Yoshida & Hart, 1986; Lewis, 1992; Stephen,1998) have avoided the spurious energy and assoiated unreliable onlusions by apply-ing both onditions in full, as in Phillips' original paper.A useful interpretation of Phillips' mean ow orretion boundary ondition has beengiven by Davey (1978). For non-zero zonal perturbation veloities u0i; �jr=a; b at theboundary between the interior and a Stewartson layer, there will be a orrespondingreturn volume ux between the Ekman layers and the Stewartson layer due to theasymmetry of the Ekman spiral (Pedlosky, 1987), whih will have a non-zero radialomponent proportional to u0i; �jr=a; b. We an therefore ensure that there is no netbuild-up of mass in the Stewartson layers by settingZ 2�0 u0i; �jr=a; b d� = 0 8 i : (5.44)This ondition is automatially satis�ed for the wave n 6= 0 omponents, and is equiv-alent to equation (5.43) with n = 0, whih is the ondition used by Phillips. With thisondition, there is no net exhange of uid due to the perturbation ow between eahEkman layer and the Stewartson layers, though loal exhange is allowed.Next, we attempt to derive a onsistent and plausible set of boundary onditions for theannulus, whih do not lead to non-physial behaviour, by onsidering integral propertiesof both the prognosti and diagnosti model equations.
5.4.1 Integral properties of the prognosti equationsConsider the area-integral of the perturbation PPV tendenies over the annular domain:Z 2��=0 Z br=a �q0i�t r dr d� ; (5.45)as given by the prognosti equations (5.23) and (5.24). The linear �=�� foring termsintegrate to give zero unonditionally. The advetion terms in the total derivativesintegrate to give zero (Salmon & Talley, 1989) if� 0i�� ����r=a; b = 0 ; (5.46)119



Chapter 5. Desription of the numerial modeland the Laplaian (r2) terms integrate to give zero ifZ 2�0 � 0i�r ����r=a; b d� = 0 : (5.47)The two onditions (5.46) and (5.47) are equivalent to impermeability for the waves andno-slip for the mean ow orretion, as originally used by Phillips. With these ondi-tions, the mean layer PPVs are onserved by the ontinuous equations and there is nospurious energy ux. We hoose to apply these onditions to the present model, exeptthat the seond ondition leads to an ill-posed PPV inversion for the speial ase n = 0,m = bt, as we will see in Setion 5.4.2.
5.4.2 Integral properties of the diagnosti equationsEquation (5.41) for the barotropi mean ow orretion isd2	̂00btdr2 + 1r d	̂00btdr = Q̂00bt : (5.48)Sine �bt = 0 and n = 0 for this ase, one of the terms in the radial struture equationhas vanished, making the left side an exat di�erential. Equation (5.48) an thereforebe integrated analytially between r = a and r = b to givebd	̂00btdr ����r=b � ad	̂00btdr ����r=a = Z ba Q̂00bt r dr : (5.49)We hoose initial onditions for whih the right side of this equation is zero, i.e. thebarotropi PPV averaged over the 2-D annular domain is zero, and it is then guaranteedto remain so for all time, as shown in Setion 5.4.1. This means that we need onlyexpliitly set d	̂00btdr ����r=a = 0 (5.50)and we will automatially have d	̂00btdr ����r=b = 0 (5.51)from equation (5.49). If we expliitly set both (5.50) and (5.51) when solving (5.48), wehave an underonstrained problem. We need to �nd an additional onstraint, therefore,to lose the solution.We have de�ned two streamfuntions in the model | one per layer or, equivalently, oneper vertial normal mode | and eah of these has an integration onstant assoiated120



Chapter 5. Desription of the numerial modelwith it (Setion 5.3). Just beause these two arbitrary onstants have no physial mean-ing does not mean that they do not need to be de�ned in the numerial model. Now thatwe know that equations (5.50) and (5.51) are not independent boundary onditions, andtherefore that to expliitly impose both would lead to an underonstrained PPV inver-sion, we hoose to expliitly impose only equation (5.50). We then take the opportunityto use the remaining degree of freedom assoiated with the solution of equation (5.48)to de�ne one of the streamfuntion integration onstants, by arbitrarily setting	̂00btjr=b = 0 ; (5.52)whih ompletes the set of two boundary onditions for the m = bt, n = 0 ase, andgives a well-posed problem.Inidentally, the seond streamfuntion integration onstant is de�ned by requiring themean interfae perturbation to be zero using equation (5.13), whih follows from volumeonservation for either layer. This requirement is imposed by adding a suitably-hosenonstant to one of the streamfuntion �elds after the PPV inversion, and not as a bound-ary ondition during the inversion.A summary of the boundary onditions whih we must expliitly set when integratingequation (5.41) is given in Table 5.1. With these onditions, the sidewall boundaries areimpermeable to eah omponent of the full ow | the solid-body rotation equilibriumow, the mean ow orretion and the eddy omponents. The boundaries are slipperyto the solid-body rotation ow and the eddies, but no-slip to the mean ow orretion.
5.5 Disretization of model equationsWe have derived a set of model partial di�erential equations and boundary onditionswhih are both sensible and well-posed. We now disretize the equations so that theyare suitable for numerial solution on a omputer. We must take great are to ensurethat the disretized equations and boundary onditions retain the important propertiespossessed by the ontinuous equations. In partiular, it is important that they satisfydisretized analogues of the integral properties disussed in Setion 5.4.121



Chapter 5. Desription of the numerial model
n = 0 n 6= 0d	̂0nmdr ����r=a = 0 	̂0nmjr=a = 0m = bt 	̂0nmjr=b = 0 	̂0nmjr=b = 0d	̂0nmdr ����r=a = 0 	̂0nmjr=a = 0m = b d	̂0nmdr ����r=b = 0 	̂0nmjr=b = 0Table 5.1: Summary of suitable boundary onditions to apply to the streamfun-tion when integrating the ontinuous equations. Beause the diagnosti Helmholtzequation relating  and q is seond order, two onditions (one at eah boundary)are required for eah ombination of vertial and azimuthal normal modes, denotedby m and n respetively.
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Chapter 5. Desription of the numerial modelThe grid on whih we disretize the equations is shown in Figure 5.2. The grid onsistsof Nrad points in the radial dimension (inluding one point on eah boundary r = a andr = b), and Nazim points in the azimuthal dimension. We de�ne�r = b� aNrad � 1 (5.53)and �� = 2�Nazim ; (5.54)and then we have r(i) = a+ (i� 1)�r ; i = 1; 2; : : : ; Nrad (5.55)and �(j) = j� ; j = 1; 2; : : : ; Nazim : (5.56)The point (i; Nazim + 1) is equivalent to the point (i; 1). We de�ne the perturbationstreamfuntion  0(i; j; k) and PPV q0(i; j; k) at eah of these points in eah layer k = 1; 2,so that  0 and q0 are o-loated on the grid. The area of the gridbox with oordinates(i; j) is approximately [1 � 12Æi; 1 � 12Æi; Nrad ℄r(i)�r��, where Æ is the Kroneker deltafuntion.
5.5.1 Prognosti equationsIn the ontinuous ase, we hose perturbation streamfuntion boundary onditions suhthat eah of the three ontributions to the area-integrated perturbation PPV tendenywas zero. We would now like to hoose disretizations of these ontributions, togetherwith disretizations of the boundary onditions, for whih this statement still holdsexatly. If our disretization only onserves mean PPV approximately, then there isthe possibility of a non-physial and explosive inrease in the PPV, even if the error issmall, due to the ompound e�ets of very many timesteps. Following Setion 5.4.1, wetherefore next examine the disretizations and boundary onditions neessary to ensurethat NradXi=1 NazimXj=1 [1� 12Æi;1 � 12Æi;Nrad℄ f(i; j; k)r(i)�r�� = 0 (5.57)for k = 1; 2, where f(i; j; k) is, in turn, the disretized azimuthal derivative, Jaobianand Laplaian. 123



Chapter 5. Desription of the numerial modelAzimuthal derivativeThe entred, seond order disretization of the azimuthal derivative:f(i; j; k) =  0(i; j + 1; k)�  0(i; j � 1; k)2�� (5.58)satis�es equation (5.57) unonditionally, as in the ontinuous ase.
JaobianThe seond order Arakawa (1966) disretization of the Jaobian satis�es equation (5.57)if  0(i; j + 1; k)�  0(i; j; k)�� = 0 8 j; k; i = 1; Nrad ; (5.59)whih is a disretized version of the ondition (5.46) for the ontinuous ase.
LaplaianIt is tedious but straightforward to show that the �ve-point disretization of the Lapla-ian (whose ontinuous de�nition is given in equation (5.17) for referene):f(i; j; k) =  0(i+ 1; j; k)� 2 0(i; j; k) +  0(i� 1; j; k)(�r)2+  0(i+ 1; j; k)�  0(i� 1; j; k)2r(i)�r+  0(i; j + 1; k)� 2 0(i; j; k) +  0(i; j � 1; k)[r(i)��℄2 ; (5.60)with ghost point values  0(0; j; k) and  0(Nrad + 1; j; k) given by linear extrapolation: 0(2; j; k)�  0(1; j; k) =  0(1; j; k)�  0(0; j; k) (5.61) 0(Nrad + 1; j; k)�  0(Nrad; j; k) =  0(Nrad; j; k)�  0(Nrad � 1; j; k) ; (5.62)satis�es equation (5.57) ifNazimXj=1  0(2; j; k)�  0(1; j; k)�r = 0 8 k (5.63)and NazimXj=1  0(Nrad; j; k)�  0(Nrad � 1; j; k)�r = 0 8 k ; (5.64)124



Chapter 5. Desription of the numerial modelwhih are disretized versions of the ondition (5.47) for the ontinuous ase. There willbe a small error in the value of the disretized Laplaian at the boundaries due to theassumption of linearly-extrapolated ghost points, but there seems to be no other simpleway to disretize the Laplaian in suh a way that analogues of its integral propertiesare fully preserved.
5.5.2 Diagnosti equationsThe disretized versions of equations (5.39) and (5.40) are	0m(i; j) = Nazim�1Xn=0 	̂0nm(i)e2�p�1nj=Nazim ; (5.65)Q0m(i; j) = Nazim�1Xn=0 Q̂0nm(i)e2�p�1nj=Nazim : (5.66)The summations have been trunated, ompared to equations (5.39) and (5.40), beausethere are onlyNazim independent Fourier omponents assoiated with the disrete Fouriertransform of a series of Nazim numbers.Beause 	0m(i; j) is real, we have	̂0Nazim�nm (i) = [	̂0nm(i)℄� ; n = 1; 2; : : : ; Nazim � 1 : (5.67)We hoose Nazim to be even, and then we need only expliitly solve equation (5.41) forn = 0; 1; 2; : : : ; Nazim=2. Solutions for n = Nazim=2 + 1; : : : ; Nazim � 1 are given in termsof solutions for n = Nazim=2 � 1; : : : ; 1 by equation (5.67), halving the proessing timerequired for the PPV inversions. The maximum resolvable wavenumber is the Nyquistwavenumber, Nazim=2.In terms of the normal mode variables, the disretized boundary onditions (5.59), (5.63)and (5.64) redue, on substitution into equations (5.65) and (5.66), to	̂0nm(1) = 0	̂0nm(Nrad) = 0 9=; 8 m;n 6= 0 (5.68)and 	̂00m(1) = 	̂00m(2)	̂00m(Nrad) = 	̂00m(Nrad � 1) 9=; 8 m : (5.69)125



Chapter 5. Desription of the numerial modelWe now onsider the disretization of the radial struture equation (5.41). Using entredthree-point �nite di�erenes at the interior points i = 2; 3; : : : ; Nrad � 1, we obtain	̂0nm(i� 1)� 2	̂0nm(i) + 	̂0nm(i + 1)(�r)2+	̂0nm(i + 1)� 	̂0nm(i� 1)2r(i)�r� ��m + n2[r(i)℄2� 	̂0nm(i) = Q̂0nm(i) : (5.70)Re-grouping terms aording to grid-points gives��(i)	̂0nm(i� 1) + (i)	̂0nm(i) + �+(i)	̂0nm(i+ 1) = Q̂0nm(i)(�r)2 ; (5.71)where the dimensionless quantities �� and  are given by��(i) = 1� �r2r(i) (5.72)and (i) = �2� ��m + n2[r(i)℄2� (�r)2 : (5.73)In Cartesian geometry we would have ��(i) = 1.The Nrad� 2 equations (5.71), together with 2 boundary onditions, omplete the set ofNrad equations in the Nrad unknowns 	̂0nm(i); i = 1; 2; : : : ; Nrad. These linear equationsan be written in matrix form:0BBBBBBBBBBBB�
bdy bdy : : :��(2) (2) �+(2) : : :��(3) (3) �+(3) : : :��(4) (4) �+(4) : : :��(5) (5) : : :... ... ... ... ... . . .

1CCCCCCCCCCCCA
0BBBBBBBBBBBB�

	̂0nm(1)	̂0nm(2)	̂0nm(3)	̂0nm(4)	̂0nm(5)...
1CCCCCCCCCCCCA =

0BBBBBBBBBBBB�
0Q̂0nm(2)(�r)2Q̂0nm(3)(�r)2Q̂0nm(4)(�r)2Q̂0nm(5)(�r)2...

1CCCCCCCCCCCCA(5.74)where the zero elements in the tridiagonal Nrad by Nrad matrix have been left blank.The two elements labelled \bdy" are boundary ondition elements, dependent upon mand n, and there are two more suh elements in the �nal two olumns of the bottom row.126



Chapter 5. Desription of the numerial model5.6 Perturbation streamfuntion boundary onditionsfor the disretized equationsIn the ontinuous ase, we found that the boundary onditions for the barotropi meanow orretion omponent (m = bt, n = 0) were ill-posed as originally stated, andremained so until we replaed a redundant boundary ondition with an equation tode�ne an integration onstant (Setion 5.4). This happens in the disretized ase, too:the square matrix in equation (5.74) is singular for the barotropi mean ow orretion,when the boundary ondition elements \bdy" are (�1; 1) in the top row and (1;�1)in the bottom row. The analytial proof of this, whih involves showing that a ertainlinear ombination of rows is zero, is tedious but straightforward. By analogy with theontinuous ase, we replae the two boundary ondition elements in the bottom rowwith (0; 1) to de�ne the integration onstant by setting the streamfuntion for this om-ponent to zero on the outer boundary, and then the matrix is no longer singular (typialondition numbers are given in Setion 5.9).In the ontinuous system, we set the n = 0, m = bt normal streamfuntion deriva-tive to zero at one boundary and found that, if the mean barotropi PPV was zero,the streamfuntion derivative would automatially be zero at the other boundary (Se-tion 5.4.2). Importantly, in ontrast with the ontinuous system, this statement doesnot hold exatly for the disretized system. This is beause Q̂0nm(1) and Q̂0nm(Nrad) donot appear in equation (5.74); we do not apply the disretized di�erential equation atthe boundaries, as we need to use these two degrees of freedom to set the boundaryonditions.The error orresponding to this PPV leak is small (� (�r)2), but even small errors angrow to dominate the solution after a large number of timesteps. To �x this problemwith the barotropi mean ow orretion, we disard the outer boundary streamfuntion	̂00bt(Nrad) obtained through inversion of equation (5.74) and de�ne a new value for it bysetting 	̂00bt(Nrad) = 	̂00bt(Nrad � 1). This ensures that the boundary onditions (5.69)required for onservation of mean PPV are satis�ed, but the onsequene is that thedisretized di�erential equation (5.70) is not exatly satis�ed at the point Nrad� 1. Theimposed boundary onditions are summarized in Table 5.2.127



Chapter 5. Desription of the numerial modeln = 0 n 6= 0	̂0nm(2)� 	̂0nm(1) = 0 	̂0nm(1) = 0m = bt 	̂0nm(Nrad) = 0y 	̂0nm(Nrad) = 0	̂0nm(2)� 	̂0nm(1) = 0 	̂0nm(1) = 0m = b 	̂0nm(Nrad)� 	̂0nm(Nrad � 1) = 0 	̂0nm(Nrad) = 0Table 5.2: Summary of the boundary onditions applied to the streamfuntionwhen integrating the disretized equations. The analogous onditions for the forthe ontinuous ase are given in Table 5.1. yAfter the inversion, 	̂00bt(Nrad) isrede�ned by 	̂00bt(Nrad)� 	̂00bt(Nrad � 1) = 0, as disussed in the text.
5.7 Details of the numerial shemesTime steppingFor the time-stepping we use a leapfrog sheme with a Robert (1966) 3-level time �lterapplied at eah timestep, to suppress the omputational mode splitting between evenand odd numbered steps (Mesinger & Arakawa, 1976). At eah step, of size �t, qt+1 isdetermined at eah grid point using the leapfrog sheme:qt+1 = qt�1 + 2�t qttendeny ; (5.75)and then the value of qt is adjusted in suh a way as to move it loser to the mean ofqt�1 and qt+1: qt ! qt +R�qt�1 + qt+12 � qt� : (5.76)The old value of qt is abandoned and the new, �ltered value is used in its plae. TheRobert �lter parameter R > 0 is hosen to be as small as possible whilst still suppressingthe leapfrog deoupling. 128



Chapter 5. Desription of the numerial modelTime-lagged di�usionNumerial solutions of the simple di�usion equation, using the leapfrog sheme forthe time-disretization and a time-entred three-point �nite di�erene for the spae-disretization, are unonditionally unstable due to a omputational mode (Haltiner &Williams, 1980). To avoid this in the present model, we time-lag the di�usion termsby one timestep when evaluating the right sides of the disretized analogues of equa-tions (5.23) and (5.24). This means that, when evaluating the PPV tendeny at timestept, we alulate the foring (�=��) and advetion terms using the �elds at timestep t, butalulate the di�usion (r2) terms using the �elds at timestep t� 1.
Hyperdi�usionTo represent sub-gridsale e�ets we add a hyperdi�usion term to the right sides of theprognosti equations (5.23) and (5.24), as is usual in numerial models (e.g. Lewis, 1992).At �rst, a fourth-order streamfuntion hyperdi�usion term �hyperr4 0i was tried, but sig-ni�ant gridsale features were always found to form at the lateral boundaries wheneverthe model was run. This is beause during the PPV inversion, any gridsale featuresin the PPV �eld will give rise to orresponding grid-sale features in the perturbationstreamfuntion �eld, and then the �hyperr4 0 ontribution to the PPV tendeny willtend to damp out these features in the PPV �eld. Unfortunately this does not happenat the boundaries in the disretized system, beause boundary values of the PPV arenot used when performing the inversion. As already disussed, Q̂0nm(1) and Q̂0nm(Nrad)are missing from equation (5.74). Values of PPV therefore are able to feed bak into thePPV tendeny �eld only at interior points, and there is nothing to suppress grid-salefeatures in the PPV �eld at the boundaries.To avoid this, we instead use seond-order hyperdi�usion applied to the PPV, by addinga term �hyperr2q0i to the prognosti equations. This term is also time-lagged by onetimestep, as disussed above. The hyperdi�usion term does not exatly satisfy equa-tion (5.57), though the error is small. In order to keep the model solutions as lose aspossible to the ontinuous equations solutions, we reset the mean PPV to zero after eahtimestep, by adding a very small onstant whose value is hosen to �t this requirement.129



Chapter 5. Desription of the numerial model
Summary of numerial integration shemeA ow hart summarizing the details of the numerial integration sheme is shown inFigure 5.3. Given the PPV �elds at times t � 1 and t, we invert to obtain the stream-funtion �elds at those times, whih then allows us to alulate all the ontributions tothe PPV tendeny. We perform a leapfrog time integration to obtain the PPV �eld attime t + 1, and then modify the PPV �eld at time t by applying a Robert �lter. Onewe have obtained q0(t) and q0(t + 1) from q0(t � 1) and q0(t), we disard q0(t � 1) and 0(t� 1), we dump q0(t) and  0(t) to disk, then we re-label t! t� 1 and begin the loopagain.The system state is ompletely determined by  0. Note that it is also ompletely deter-mined by q0 together with the boundary onditions, beause equations (5.25) and (5.26)are uniquely invertible. It is not neessary to dump both  0 and q0 to disk in order tohave a omplete desription of the system, therefore. Nevertheless, we hoose to saveboth �elds, in order to redue the need for further alulations when plotting modeldiagnostis.
5.8 Initial onditionsA feature of the leapfrog timestepping sheme is that initial ondition �elds are requiredat two separate times, in order to begin the integration. As shown in Figure 5.3, wehoose to speify the PPV �elds as initial onditions. We use small amplitude randomnoise for these �elds, seeding the system to permit the growth of unstable perturbationsof any azimuthal and radial wavenumber. The intrinsi Fortran funtion RANDOM NUMBERis used to generate random numbers with a uniform distribution whih are shifted to ahosen interval entred on zero. We then subtrat the mean PPV in eah layer at bothtimesteps, whih makes the �elds satisfy the zero mean barotropi PPV ondition ofSetions 5.4.2 and 5.6. 130
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Chapter 5. Desription of the numerial modelm=bt m=bn = 0 389 59n = 1 112 35n = 2 99 33n = 3 82 31n = 4 67 29n = 5 54 26n = 6 44 24n = 7 36 21n = 8 31 19n = 9 26 17Table 5.3: Estimates of the ondition numbers (in the in�nity-norm) of the tridi-agonal matries in equation (5.74), orresponding to the �rst 10 azimuthal modesfor both of the vertial modes. Values given are rounded to the nearest integer.5.9 Suitable values for numerial parametersCode to arry out the numerial integrations desribed in this hapter has been writ-ten in Fortran 95 by the author and his supervisors, and ompiled using the NumerialAlgorithms Group (NAG) f95 ompiler for Linux. Routines from the NAG library wereemployed: nag fft for the transformations between real and spetral spae desribedby equations (5.65) and (5.66), and nag gen bnd lin sys for solving the omplex bandmatrix equation (5.74) a large number (� Nazim) of times eah timestep.All model runs desribed in this thesis were performed using double numerial prei-sion (retaining 16 signi�ant �gures) for the alulations, and single numerial preision(retaining 8 signi�ant �gures) for the dumps to disk. The fator by whih relativeerrors in the perturbation streamfuntion are greater than relative errors in the PPVis known as the ondition number of the orresponding matrix. Some typial onditionnumbers for the matries in equations (5.74) are shown in Table 5.3. The largest ondi-tion number in the system has a value of a few hundred, implying that only the last twosigni�ant �gures of the inferred perturbation streamfuntions will be unertain, andthat errors due to rounding are therefore small.The azimuthal derivative, Laplaian and Jaobian routines were eah tested using input132
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Chapter 5. Desription of the numerial modeluse a grid de�ned by Nazim = 25 � 3 = 96 and Nrad = 16, as shown in Figure 5.4. TheRobert �lter parameter is R = 0:01. For given 
 and �
, we take the amplitude ofthe random initial PPV perturbation to be �
=100 so that we are assessing the growthof very small perturbations, we hoose the timestep �t to be suh that the azimuthalCourant number 12�
�t=�� is 0:01, and we hoose the hyperdi�usion oeÆient �hyperto be suh that the e-folding time 1=(�hyperk2Nyquist) for damping of mid-radius gridsalewaves with the Nyquist wave vetor kNyquist = Nazim=(a+ b) is equal to one lid rotationperiod.In order to demonstrate insensitivity to the numerial parameters, omparative runswere done with (separately) the hyperdi�usion oeÆient dereased by a fator of 10,the Robert �lter parameter dereased by a fator of 10 and the gridspaing doubledin both diretions, but all other parameters unmodi�ed. The equilibrated wave num-ber was the same in eah ase, and the mid-radius wave amplitude and phase speeddi�ered by at most 0.3%. We have therefore demonstrated that both rounding errorsand disretization errors are small, and that the equilibrated state is insensitive to thevalues of the numerial parameters, implying that the model output gives an auraterepresentation of the true solutions of the ontinuous model equations.The ode is very eÆient: on a Linux workstation with a 1.4 GHz AMD Athlon proessorand 100% of the CPU usage, and with Nazim = 96 and Nrad = 16, a model integrationspeed of 120 timesteps per seond is attained. Sine timesteps of up to around 0.1 s anbe used stably, the model an run ten times faster than the laboratory annulus. Therun-time memory requirement is 3.1 MB.
5.10 Chapter summaryWe have onstruted a multi-layer ylindrial quasi-geostrophi numerial model of therotating annulus laboratory experiment, and named it QUAGMIRE. Great are has beentaken to hoose disretizations and boundary onditions whih are both physially sen-sible and omputationally stable, and as a result the model gives reliable solutions of theontinuous equations. Large series of model runs have been arried out for omparisonwith the laboratory results, and are desribed in the next hapter.134



Chapter 6
Results of the numerialexperiments \The purpose of models is not to �t the data but tosharpen the questions." Samuel Karlin,11th R. A. Fisher Memorial Leture,The Royal Soiety, 20 April 1983.
A large number of annulus ows have been simulated using QUAGMIRE, and the resultsare desribed in this hapter. A Matlab diagnostis pakage has been written by theauthor, to read in the raw data dumped to disk and plot it and other derived quantities.Comparisons are made between ow properties in the model and the laboratory, both asa hek that the model works properly and reliably, and to investigate whether we anattribute any di�erenes to short waves present in the laboratory but not in the model.A major advantage of the numerial model is that veloity �elds | unavailable in thelaboratory | an easily be derived from the streamfuntions. The model veloity �eldsare used in this hapter to ompute various diagnostis, eah of whih is expeted tohave some ability in prediting regions of generation of small-sale waves, either due toa shear instability or to spontaneous emission. By identifying the indiator with thebest preditive skill, we draw onlusions about the mehanism whih is most likely tobe responsible for the observed mixed-wave short emissions in the laboratory.135



Chapter 6. Results of the numerial experiments6.1 Model runs with zero interfaial tensionThe main series of model simulations arried out during this study onsisted of 210separate runs, one for eah ombination of 10 values of 
 and 21 values of �
 given by
=rad s�1 2 f1:00; 1:50; 1:75; 2:00; 2:25; 2:50; 2:75; 3:00; 3:25; 3:50gand �
=rad s�1 2 f0:01; 0:02; 0:03; 0:04; 0:05; 0:06; 0:08; 0:10; 0:12; 0:15;0:20; 0:23; 0:30; 0:40; 0:50; 0:60; 0:70; 0:85; 1:06; 1:31; 1:61g:These values were hosen to give a roughly uniform density of sampled points in the(log[d℄; F ) parameter spae. The interfaial tension S was set to zero for these runs,a ondition whih will be relaxed for the runs to be desribed in Setion 6.4. Startingfrom noisy initial onditions (Setion 5.8), eah run was ontinued for an integrationtime equal to 60 lid rotation periods, whih was usually found to be suÆient for wavesarising from any barolini instability to have equilibrated at �nite amplitude. In afew ases full equilibration was not ahieved within this time and so the integrationwas ontinued for a further 60 lid rotation periods. The 210 runs required around sixdays of omputer time to omplete, and took up 3 GB of disk spae dumping both thestreamfuntion and PPV �elds one every 500 timesteps.A di�erene between the QUAGMIRE runs and the laboratory sans of Chapter 4 is thatfor the model simulations the state was reset to the appropriate initial ondition (small-amplitude noise superimposed onto the bakground equilibrium state) before eah newrun. In ontrast, in the ontinuous laboratory experiment sans, the previously attainedow served as the e�etive initial ondition. We do this so that for eah parameterombination, we are examining the stability of small perturbations to the axisymmetriequilibrium state, rather than the stability of an equilibrated �nite amplitude large-salemode orresponding to a neighbouring point of parameter spae. Though this approahmaintains a lose assoiation between the model and the theoretial studies of baroliniinstability, it does mean that the model and laboratory experiments do not orrespondto exatly the same problem. 136



Chapter 6. Results of the numerial experiments6.1.1 Sample diagnostisWe now show some sample model diagnostis for the simulation with �
 = 0:08 rad s�1and 
 = 3:50 rad s�1, demonstrating how we an diagnose azimuthal wavenumbers,interfaial wave amplitudes and wave phase speeds from the raw model data.Figure 6.1 shows the perturbation interfae height �eld (alulated from equation 5.30)at six di�erent timesteps, showing how the system evolves from the noisy initial statein (a), via an azimuthal wavenumber 5 mode with initial largest growth rate in (b){(e), to the equilibrated wavenumber 3 mode in (f). Note that the seleted mode is notthat with the initial largest growth rate, whih was quite a ommon ourrene in themodel runs. This is due to the development of a radial mode between timesteps 10,000and 14,000 as seen in (), (d) and (e), whih seems to alter the relative stability ofthe azimuthal wavenumber 3 and 5 modes. Appleby (1988) has disussed the diÆultyof prediting, in a two-layer ow simultaneously barolinially-unstable to two disretewavelengths, whih of the two modes will eventually predominate. Note the lose resem-blane between the wave shapes in Figures 6.1(f) and 4.16(a), giving our �rst evidenethat the simulated ows are reasonable. A quantitative model/laboratory omparisonis arried out in Setion 6.1.2.Azimuthal wavenumbers an easily be read o� by eye from the interfae height plots, butit is onvenient to automate this proedure when it needs to be done for many hundredsof model runs. To this end, the azimuthal Fourier omponent amplitudes orrespondingto the �eld in Figure 6.1(f) are plotted in Figure 6.2. The wavenumber 3 omponent isthe largest, as expeted, but the azimuthal pro�les are not perfetly sinusoidal. Thereare signi�ant wavenumber 6 and 9 harmonis, with amplitudes around a fator of 10smaller than the dominant omponent. There is only slight evidene of an energy build-up at the gridsale (wavenumbers of around Nazim=2 = 48), showing that the numerialhyperdi�usion term (Setion 5.7) is suessfully suppressing any spurious growth.In order to determine wave amplitudes, Figure 6.3 shows azimuthal pro�les of full(i.e. mean plus perturbation) interfae height orresponding to Figure 6.1(f), at eahof the 16 model radii. The height shows no variation with azimuth at the two sidewallboundaries, a onsequene of both layer streamfuntions being onstant there. Wave137
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We an evaluate the radially-averaged azimuthal veloity omponents responsible forreduing the shear, by taking the di�erene between the streamfuntions at r = a andr = b and dividing by b� a. The results of this for both layers are shown in Figure 6.7as funtions of time. The series are almost exatly equal and opposite, implying thatthe mean azimuthal veloity is almost purely barolini, with a muh smaller barotropiomponent. This �nding is onsistent with the highly-trunated two-layer model ofLovegrove (1997), in whih ertain interation oeÆients are shown to be zero beauseof an additional symmetry introdued due to the layer depths being equal. This leads tothe equilibrated barotropi mean ow orretion omponent being zero (see Lovegrove'sequation (1.17) and following omments).As an example of an amplitude vaillation simulated by QUAGMIRE, Figure 6.8 showsa timeseries of post-transient amplitude from the run with �
 = 0:70 rad s�1 and
 = 3:25 rad s�1. In this ase, the equilibrated state is a 1AV, with an amplitude enve-lope that is not sinusoidal. The vaillation period is 47.5 s and the wave drift period inthis ase is 17.3 s (not shown), so that the wave drifts ompletely around the tank about143
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Figure 6.8: Time series of amplitude of mid-radius perturbation interfae height�0, after the initial transients have deayed away, showing an amplitude vaillationenvelope.three times between suessive peaks of the vaillation yle. This is in good agreementwith typial vaillation periods observed in the laboratory experiment.
6.1.2 Comparison between model and laboratoryWe have shown how wavenumbers, amplitudes and phase speeds an be derived from theraw data generated by the QUAGMIRE numerial experiments. These three quantitiesare also readily available from the alibrated laboratory experiments, and we now under-take a omparison between the two as an important test of QUAGMIRE's reliability.
Wavenumber omparisonThe dominant azimuthal wavenumber after equilibration has been determined for eahof the 210 model runs desribed in Setion 6.1, and the resulting numerial regime dia-gram is shown in Figure 6.9. There are well-de�ned regimes everywhere, apart from atlow d and high F where the wavenumber 1 and 2 regions beome entangled and onfused.144
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Chapter 6. Results of the numerial experimentsA small number of 10-member ensemble runs was arried out, in order to test sensitivityto initial onditions. The runs within eah ensemble had the same run parameters, butdi�erent random numbers for the noise in the initial state. All ten members gave equi-librated ows whih were idential in terms of wavenumber, wave speed and amplitude,exept in the low-d and high-F orner where there was a probability partition betweenwavenumber 1 and 2. In this region there is high sensitivity to initial onditions, whihhelp to determine the �nal state, whereas elsewhere in the regime diagram there is insen-sitivity to the preise details of the noise in the initial onditions. We return to examinethe response of the model to small-sale random noise in Chapter 7, when we use a noisyforing term to represent the laboratory small-sale waves.The laboratory regime diagram orresponding to Figure 6.9 is shown in Figure 4.1.There is exellent qualitative agreement between the shapes of the model and labo-ratory wavenumber transition urves. Quantitative agreement is limited by a shift inthe regime features in the (d; F ) plane between the two diagrams. For example, on-sideration of the oordinates of the m = 0; 1; 2 and m = 0; 2; 3 transition urve triplepoints shows that the model overestimates F by a fator of 1{2 and d by a fator of5{10. The error in F is small, and an be attributed to the many approximations madewhen deriving the model Q-G equations. The error in d is signi�antly larger. In thenon-dimensionalized governing equations, d is the oeÆient of the Ekman layer terms.The mismath between QUAGMIRE and laboratory regime diagrams therefore suggeststhat the model assumption of linear, parameterized Ekman layers is inadequate. Thisis perhaps not surprising, as the Ekman veloity formulae used in the model equationsare derived under the assumption of geostrophy, but the Rossby numbers reahed in thelaboratory MRW regime an be as large as 1 (see Figure 4.6(b)).
Wave speed omparisonThe post-transient angular phase speed of the waves has been determined for eah ofthe barolinially-unstable model runs, and is shown in Figure 6.10. The wave speedshows no variation with turntable speed 
, as in the laboratory experiments, and ineah ase it is lose to half the lid rotation speed �
. These two statements hold even146
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 = 2:0 rad s�1. Over-plotted on the same �gure is the equivalent laboratory data,obtained from experiments PAI1{10 after 90 minutes by timing drift periods with astopwath. The model overestimates the wave speeds by a fator of four, presumablydue (at least in part) to the importane of Stewartson layer drag disussed in Se-tion 3.4.3, whih is present in the laboratory but absent in the model, and also to theunertainty in the uid properties, to be investigated in Setions 6.2 and 6.3.
Wave amplitude omparisonA systemati model/laboratory amplitude omparison is diÆult beause a given 
 and�
 will orrespond to di�erent wavenumber regimes in the laboratory and model, dueto the shift of features in the (d; F ) parameter spae, disussed above. Whilst wave147
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6.2 Variation of model visositySuÆient evidene has been aumulated (Setions 2.2.4 and 4.2) to suggest that theremay be slow hanges in the physial properties of the working liquids. In this setionand the next, we vary the model visosities and interfaial tension, respetively, to inves-tigate whether these hanges an help to explain the observed disrepanies between the148
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 = 0:60 rad s�1 and 
 = 2:25 rad s�1 was repeated with thelower layer visosity �2 varying throughout the run. Starting with a wave whih hadequilibrated with the measured laboratory visosity (Table 2.1), �2 was inreased dis-ontinuously to a new value and the system was allowed to re-equilibrate, and then �2was inreased again, et. The inrease was by a fator of around two in eah ase, andthe ow remained 1S throughout. The resulting amplitude trae is shown in Figure 6.12.There is a ringing e�et as the system adjusts to eah of the six hanges. Though thevisosities reahed by the end of the run were unrealistially large, just a single doublingof �2 from its assumed value produes a signi�ant inrease in wave amplitude, of around25%.The visosity san experiment desribed above was repeated one more, this time with149
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1 ! �
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2 ! 12�
, whereas as � ! 1, �
1 ! 12�
 and �
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Chapter 6. Results of the numerial experiments

0 1 2 3 4 5 6 7 8 9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

square root of viscosity ratio, χ = (ν
2
 / ν

1
)1/2

an
gu

la
r 

w
av

e 
sp

ee
d 

as
 a

 m
ul

tip
le

 o
f t

he
 li

d 
an

gu
la

r 
sp

ee
d

wave speed from model
theoretical mean flow speed

Figure 6.14: Variation of equilibrated wave angular phase speed with visosityratio, given as a fration of the angular lid speed. The dotted line represents themean of the equilibrium layer rotation rates (see text).�. Over-plotted is a urve orresponding to the mean of the equilibrium layer rotationrates, 12(�
1 +�
2), determined theoretially as a funtion of � from equations (5.20)and (5.21). There is a good �t between the urve and the 13 points, showing thatQUAGMIRE waves travel at the mean layer speed for all visosities in this range. Aninrease in � from 1 to 2 would derease the model wave speeds by around 20%.The inrease in model wave amplitude and derease in model wave speed as � is doubleddo not fully aount for the laboratory/model disagreement reported in Setion 6.1.2.Sine unertainties in the visosity an only partially aount for the disrepany, in thefollowing setion we investigate the e�ets of unertainties in the interfaial tension.
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Chapter 6. Results of the numerial experimentstensions.We have been unable to �nd detailed studies of the impat of interfaial tension onbarolini instability in the geophysial literature, and so it is diÆult to orroboratethe above �ndings. The e�ets of interfaial tension on Kelvin-Helmholtz instabilityhave been more widely studied, however. From equation (9.3) of Aheson (1990), theamplitude growth rate of a Kelvin-Helmholtz mode inreases with interfaial tension,and the wave phase speed is independent of it. In this setion, we have ome to similaronlusions about waves due to barolini instability | equilibrated amplitudes growwith inreased tension, but speeds are una�eted | and so the omparison with Kelvin-Helmholtz instability makes our �ndings plausible.The model/laboratory interomparison has been improved by inreasing the model inter-faial tension. The omparison is disussed in more detail in Setion 6.5.
6.4 Model runs with non-zero interfaial tensionA seond series of 210 model runs has been arried out, idential to the �rst series (Se-tion 6.1) exept that the interfaial tension is now set to be S = 5:0 � 10�3 N m�1,lose to the assumed laboratory value in the presene of a surfatant (Setion 2.2.3).The resulting wavenumber regime diagram is shown in Figure 6.18. The 21 runs with
 = 3:50 rad s�1 all rashed due to an arithmeti exeption before the 500th timestep,as the produt FI was then 0:57 and the interfaial tension orretion oeÆient Cit =1=(1� 2FI) was negative, and so there are no points orresponding to these runs in thediagram. When 
 is 3.25 rad s�1, 3.00 rad s�1 and 2.75 rad s�1, the produt FI is 0:49,0:42 and 0:35 respetively. None of these is muh smaller than unity, and so wavenum-bers in the top three rows of points in the regime diagram are likely to be unreliable.Negleting these top three rows, there is good agreement between QUAGMIRE wavenum-ber transition urves both without and with small interfaial tension (Figures 6.9 and 6.18,respetively). We onlude, based on the present regime diagram and the analysis of Se-tion 6.3, that small model interfaial tension has no impat upon equilibrated wavenum-bers or wave speeds, but signi�antly inreases wave amplitudes.154



Chapter 6. Results of the numerial experiments

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

20

25

30

dissipation parameter (d)

F
ro

ud
e 

nu
m

be
r 

(F
)

axisymmetric

wavenumber 1

wavenumber 2

wavenumber 3

Figure 6.18: Model regime diagram with non-zero interfaial tension, showingequilibrated azimuthal wavenumber m 2 f0; 1; 2; 3g at eah of the points investi-gated. Wavenumber transition urves have been inferred and over-plotted.

155



Chapter 6. Results of the numerial experimentslaboratory numerial modelS = 0 S = 0 S = 5 mN m�1� = 1 � = 2 � = 1(d, F) oordinatesof triple pointsm = 0, 1, 2 (0:01; 4:8) (0:06; 6) ? (+0%, +0%)m = 0, 2, 3 (0:02; 5:5) (0:25; 11) ? (+0%, +0%)mid-radiuswave amplitudem = 1 25 mm 5 mmm = 2 8 mm 2 mm +55% +75%m = 3 7 mm 1 mmangular wave speed 0:12 �
 0:50 �
 �20% +0%Table 6.1: Comparison of three important wave properties between the laboratoryexperiments and the QUAGMIRE runs with model parameters S = 0 and � = 1.The hanges in the properties when � is inreased to 2 and S is inreased to5:0 � 10�3 N m�1 are also shown. The hange in the triple point oordinates as� is doubled has not been investigated, and aordingly these entries are labelledwith \?".
6.5 Disussion of model/laboratory omparisonA summary of the �ndings of Setions 6.1.2, 6.2, 6.3 and 6.4, regarding the quantita-tive omparison between large-sale waves in the laboratory and the model, is given inTable 6.1. In the present setion, we onsider in turn eah of the omparisons in thetable, with the aim of investigating whether or not it is possible to on�dently assignreasons for the disrepanies. In partiular, laboratory/model di�erenes ould be dueto (a) unertainties in the uid parameters; (b) unreasonable model assumptions apartfrom the neglet of fast modes; and () the neglet of fast modes in the model. Before156



Chapter 6. Results of the numerial experimentswe an attribute the disrepanies to reason (), and thereby laim that we have foundevidene of an observable fast wave impat upon the slow wave dynamis, we must �rstbe able to rejet the hypotheses that the disrepanies are due to reasons (a) and (b).Model and laboratory Froude numbers agree to within a fator of up to 2, whih seemsreasonable given the many model approximations, inluding the small Rossby numberassumption. The signi�ant disagreement between dissipation parameters, by a fator ofup to around 10, an probably be put down to unertainties in layer visosities (whihappear in the dissipation parameter formula), and to the assumption of geostrophiparameterized Ekman veloities and other model approximations, inluding boundaryonditions. Lovegrove (1997) onstruted a spetral, hannel model of the annulus, andame to very similar onlusions about the laboratory transition urve omparison. Henotes that:\... while the Froude numbers of experimental runs are of the same magnitudeas those present in the theoretial regime diagram, the experimental values ofthe dissipation parameter are atually about an order of magnitude smallerthan the predited theoretial values."He aounts for the disrepany as being due to system di�erenes, and without reourseto short waves.Model wave amplitudes with zero interfaial tension are a fator of up to 7 times smallerthan those measured in the laboratory. Realisti errors in the visosity ould inreasethe model amplitudes by one-half. Interfaial tensions smaller than the assumed labo-ratory value in the absene of a surfatant ould almost double model wave amplitudes.Though we have been unable to run the model with a realistially large tension, it seemsbelievable from Figure 6.16 that the measured tension ould give the required amplitudeampli�ation to aount for this disrepany.Finally, the model waves travel around four times faster than those in the laboratory.This ould partially be explained by unertainties in the visosities, to whih model wavespeeds are moderately sensitive: a realisti visosity error ould redue model speeds by20%. The dominant mehanism, though, is the neglet of Stewartson boundary layersin the model. We know that suh boundary layers exist in the laboratory experiment,157



Chapter 6. Results of the numerial experimentsand we have seen in Setion 3.4.3 that they exert a signi�ant drag fore on the layers,slowing down waves by up to an additional 40% (Table 3.2). Further allowing for theapproximation in equation (3.24), and the model assumptions, is probably enough toexplain this disrepany.Despite the model/laboratory disrepanies reported in the above paragraphs, manyaspets of the omparison are positive. The model gives a realisti variety of seletedwavenumbers, waves of reasonable shape and form, and vaillations with reasonableperiods. We onlude that it seems likely that the disrepanies an be attributed tomehanisms (a) and (b). It follows that, sine we are unable to rejet these mehanisms,the disrepanies are not proof of an observable fast wave impat upon the balanedmodes.
6.6 Radiation indiatorsIn the �rst part of this hapter, we have found reasonable agreement between the numer-ial and laboratory experiments, in terms of wave speeds, amplitudes and wavenumbers.It is therefore reasonable to assume that QUAGMIRE is also adequately simulatingveloity �elds. In the remainder of this hapter, we use the model veloity �elds toompute �ve diagnostis of small-sale wave generation in the MRW regime. Some ofthe diagnostis are preditors of small-sale waves due to a shear instability mehanism,and others due to a nonlinear spontaneous emission mehanism. By investigating whihof the �ve indiators best predits the spatial loations of the laboratory small-salewaves, we will be able to infer whih of the two generation mehanisms is responsible.
6.6.1 Indiator de�nitionsWe now review, in turn, eah of the �ve radiation indiators to be diagnosed using themodel veloity �elds. 158



Chapter 6. Results of the numerial experimentsHorizontal divergene, ÆTo �rst order in the Rossby number, the veloity �elds in any quasi-geostrophi modelare horizontally non-divergent, permitting the introdution of a streamfuntion. Athigher order, though, there must be a small non-zero horizontal divergene Æ = rh:uhin order to allow the interfae height to slowly evolve. In a veloity deomposition, vorti-al omponents orrespond to balaned modes and divergent omponents to unbalanedmodes, whih suggests that Æ may be a good indiator of small-sale wave generation.From mass onservation r:u = 0 for an inompressible uid, we haveÆ = ��w�z : (6.1)Integrating over the lower layer (inluding Ekman layers), at the top and bottom ofwhih the vertial veloities are (D=Dt)2h and 0 respetively, givesÆ2 = �1h � ��t � 1r � 2�� ��r + 1r � 2�r ���� h ; (6.2)with a similar expression for the upper layer. The horizontal divergene is a generalindiator of short wave emission, i.e. it is not spei� to either the shear or spontaneousemission mehanisms.Loal Rihardson number, RiThe Rihardson number disussed in Setion 4.4.1 is expeted to be a good indiatorof small-sale wave generation by a shear instability mehanism. In that setion wederived an expression for the Rihardson number in terms of the veloity �elds. Inthe barolinially-stable regime these veloity �elds were simply those assoiated withsolid-body rotation, for whih we ould write down analytial expressions. By doingthis we were able to show that the Rihardson number was a good indiator of the pro-dution of small-sale waves in the KH regime. We were unable to repeat the analysisfor the small-sale waves in the MRW regime as we ould not determine the veloity�elds. However, these �elds are now known from the model, enabling us to ompletethis avenue of inquiry.The general de�nition of Rihardson number for the annulus isRi = 2g0p�=
(�u)2 ; (6.3)159



Chapter 6. Results of the numerial experimentswhere (�u)2 = (�ur)2 + (�u�)2 is the veloity shear aross the interfae, whih an bediagnosed from the streamfuntion. Equation (6.3) is a generalization of equation (4.4),whih applies only to the axisymmetri equilibrium ow.Brown indiator, �, and turbulent energy dissipation rate, �A number of shear instability indiators have been developed as omplementary alterna-tives to the Rihardson number. Two of these are the Brown indiator � and turbulentenergy dissipation rate �, �rst studied by Roah (1970) as indiators of Clear Air Tur-bulene (CAT) in the atmosphere. CAT ours in loudless onditions at altitudes ofaround 10 km, and is due to small-sale Kelvin-Helmholtz billows. It is oasionallysevere enough to lift aeroplane passengers from their seats and ause injury or death(Roah & Bysouth, 2002), and so there are important pratial reasons for developinga reliable indiator.Roah begins his analysis by noting that, on the one hand, there are dynamial pro-esses whih tend to inrease the vertial shear in horizontal veloity, e.g. thermal windbalane giving a tropospheri jetstream in the atmosphere, or the imposed di�erentiallid rotation in the annulus. On the other hand, visous energy dissipation due to small-sale waves tends to redue the shear. Roah makes an assumption of approximatebalane between these two ompeting e�ets on short timesales, leaving the shear (andRihardson number) onstant.Roah proeeds by imagining a thought experiment in the atmosphere in whih thedissipation e�et is swithed o�, destroying the balane and allowing an inrease inshear. He argues that the rate at whih the small-sale features were dissipating energyjust before the swith-o� must equal the rate of energy inrease of the system just after,whih is analytially derivable from the dynamial equations by setting the visosity tozero. Using this approah, he alulates an energy dissipation rate of� = 8<: (�u)224 � : � > 00 : � < 0 (6.4)where � = � 1Ri DRiDt : (6.5)160



Chapter 6. Results of the numerial experiments�u is the vertial shear in horizontal veloity assoiated with the tropospheri jetstream,taken to be the shear aross the interfae in the annulus, and Ri is the Rihardson num-ber for the large-sale ow, de�ned for the annulus by equation (6.3). D=Dt is the totalderivative operator alulated from equation (5.16). The indiator � takes its name fromBrown (1973), who derived an approximate form whih was more pratial for opera-tional diagnosis of CAT, though in the present study we use the diret de�nition (6.5)involving Ri. In Brown's paper, both � and � are shown to be better indiators of CATthan Ri, and so we might expet the same to be true in the annulus.
Lighthill radiation term, LRTLighthill (1952) has presented a theory for the generation of sound waves by large-salemotions in a 3-D ompressible adiabati gas. The governing equations for Lighthill'ssystem are isomorphi to the non-rotating shallow water equations, with a orrespon-dene between aousti and gravity modes, and so the problem of generation of puregravity waves had also unintentionally been solved by Lighthill. Ford (1994) extendedthe theory to inlude rotation, and thereby derived an inertia-gravity wave radiationterm. The generation mehanism in this ase is an evolving vortial motion rather thana veloity shear, making this indiator fundamentally di�erent from the previous three.Ford's derivation begins by taking the f -plane invisid barotropi shallow water equa-tions, in ux form. Two equations, obtained by taking the url and the divergene ofthe momentum equation, are ombined to produe a single equation:� �2�t2 + f 2 � gHr2� �h�t = ��tr:F + fk:r� F + g2 ��tr2h2 ; (6.6)where F = ur:(hu) + (hu:r)u (6.7)and k is the unit vertial vetor. The left side of equation (6.6) is the linear shallow-water inertia-gravity wave operator ating on �h=�t, whih turns out to be a moreonvenient variable than h. The right side ontains all of the nonlinear terms, whih werefer to olletively as the Lighthill Radiation Term (LRT). The linear normal modesof equation (6.6) are shallow-water inertia-gravity waves, for whih the intrinsi angular161



Chapter 6. Results of the numerial experimentsfrequeny ! and total wave vetor K are related by dispersion equation:!2 = f 2 + gHK2 : (6.8)The right side of Ford's original equation is written expliitly in Cartesian oordinates,but we retain the vetor form here as we would like to diagnose LRT in the ylindrialgeometry of the annulus. Ford goes on to derive an approximate form for LRT based onsmall Froude number, though Froude numbers are larger than unity for ows of interestin the present system, and so we use the unapproximated form given in equations (6.6)and (6.7).Ford argues that inertia-gravity waves will be generated in any region for whih LRTis non-zero, so that all vortial ows will emit freely-propagating inertia-gravity waves,disproving the existene of a strit slow manifold. The radiation mehanism is termedspontaneous-adjustment emission radiation (SER) by Ford et al. (2000). SER is a gen-eralization of geostrophi adjustment radiation (GAR), as it inludes GAR as a sub-lassbut does not neessarily take the ow towards a state of geostrophi balane.It is important to note that Ford's theory is based on the shallow water equations,and so the expression for LRT given by equation (6.6) is an indiator of shallow-waterinertia-gravity wave emission by an evolving shallow-water large-sale mode. Thoughthe large-sale modes in the present system an reasonably be lassi�ed as shallow, itappears that the small-sale modes annot. Their typial wavelengths (around 20 mm,from Setion 4.4.2) are signi�antly smaller than the layer depth (125 mm), suggestingthat the observed short waves are in the deep-water regime with a di�erent dispersionrelation from that above. Nevertheless, Lovegrove (1997) was able to demonstrate goodagreement between short wave periods measured in the laboratory, and those preditedby the shallow water dispersion relation (6.8), suggesting that the boundary betweenthe shallow and deep limits is determined by more than just the wave aspet ratio. Wetherefore speulate that Ford's theory is appropriate to the urrent system, even thoughthe system seems to be in a regime whih is formally outside the limits of the theory'sappliability.An approximation needs to be made before we an apply Ford's one-layer theory tothe two-layer annulus. We approximate rp1 = 3rp2, whih enables us to write the162



Chapter 6. Results of the numerial experimentsindiator name de�nition mehanism radiation onditionhorizontal divergene Æ =rh:uh not spei� Æ 6= 0Rihardson number Ri / 1(�u)2 KH Ri < 1Brown indiator � = � DDt lnRi KH � large and positiveenergy dissipation rate � / �(�u)2 KH � > 0Lighthill radiation term non-linear IGW terms SER jLRTj > 0Table 6.2: Summary of the �ve radiation indiators to be diagnosed using datafrom QUAGMIRE. The partiular generation mehanism assoiated with eah indi-ator is listed (Kelvin-Helmholtz shear KH, or Spontaneous Emission RadiationSER) together with the ondition whih needs to be satis�ed in order for radiationto be expeted.horizontal pressure gradient fore in the lower layer as (1=�2)rp2 = �(g0=2)rh. Thisassumption applies beause equilibrium zonal veloities in the upper layer are threetimes those in the lower layer (for equal visosities, from Setion 5.3.1) and so threetimes the radial pressure gradient is required to support them. The impliation is thatequation (6.6) holds for the lower layer in the rotating annulus, so long as we replaeg with �g0=2. All of the terms in the expression for LRT an be alulated from theQUAGMIRE output.Table 6.2 gives a summary of the properties of the �ve radiation indiators disussed inthis setion, inluding the onditions under whih short wave emission is expeted.
6.6.2 Indiator plots using model dataFigure 6.19 shows plots of the �ve radiation indiators as alulated from the main seriesQUAGMIRE experiment (S = 0) with �
 = 0:15 rad s�1 and 
 = 3:00 rad s�1, for163
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Figure 6.19: Plots of interfae height (top left), lower layer horizontal veloitydivergene (top right), Rihardson number (middle left), lower layer Brown indi-ator (middle right), lower layer energy dissipation rate (bottom left) and lowerlayer Lighthill radiation term (bottom right) from a 2S QUAGMIRE simulation.The orresponding plots for the upper layer are similar.
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Chapter 6. Results of the numerial experimentswhih the equilibrated ow is 2S, denoting a steady (non-vaillating) wavenumber twoow in the notation of Setion 4.1. The interfae height �eld is also shown in the �gure.If we observed this interfae height �eld in the laboratory experiment, we would expetsmall-sale wave generation at low- to mid-radii near � = 0Æ (\3 o'lok") and � = 180Æ(\9 o'lok"), as an be seen by omparison with Figure 1.6 rotated through 90Æ. Weare therefore interested in whih (if any) of the �ve indiators would predit radiationat these (and only these) angular positions, based on the radiation riteria in Table 6.2.The horizontal divergene indiator shows four large amplitude regions, but this inludestwo at whih small-sale waves are not observed in the laboratory. The Rihardson num-ber shows loal minima with respet to azimuth at the two expeted regions, but is atits smallest lose to the outer sidewall whih is not a laboratory generation region. TheBrown indiator has large positive maxima exatly where the short laboratory wavesappear, but there are two equally large maxima elsewhere in the annulus. Similarly, theenergy dissipation rate has two maxima too many to be a reliable indiator, and bothof the unwanted maxima are larger than the maxima in the expeted loations. TheLighthill radiation term has large global maxima at the two expeted regions, and twoweaker loal maxima at other loations in the annulus.Figure 6.20 shows a similar analysis for an equilibrated 1S (steady wavenumber one)ow with �
 = 0:50 rad s�1 and 
 = 2:75 rad s�1. In this ase, based on the laboratoryexperiments, we would expet small-sale radiation at � = 90Æ (\12 o'lok").The Lighthill radiation term formulae (6.6) and (6.7) ontain terms with up to fourderivatives in them, whih amplify small-sale features relative to large-sale features.This heavy di�erentiation gives rise to the high level of noise present in the LRT plots.The three Kelvin-Helmholtz instability indiators have eah over-predited regions ofsmall-sale wave generation, in both the 2S and 1S ases. The Lighthill diagnosti,an indiator of spontaneous emission radiation, gives the best �t with the laboratoryobservations. It has large values exatly where the short waves appear in the laboratory.There are smaller subsidiary loal maxima in other regions, but the values taken thereare presumably not large enough for the laboratory short waves to overome the e�ets165
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Figure 6.20: Plots of interfae height (top left), lower layer horizontal veloitydivergene (top right), Rihardson number (middle left), lower layer Brown indi-ator (middle right), lower layer energy dissipation rate (bottom left) and lowerlayer Lighthill radiation term (bottom right) from a 1S QUAGMIRE simulation.The orresponding plots for the upper layer are similar.
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Chapter 6. Results of the numerial experimentsof visous dissipation | not inluded in Ford's theory | and grow to an amplitudewhih would make them visible. We onlude that the SER mehanism is likely to beresponsible for the MRW regime small-sale wave generation in the laboratory.As regards the barolinially-stable ow regime, Æ, � and � are eah identially zero sinethe ow is then steady and axisymmetri. Most of the ontributions to LRT are alsozero, and those whih aren't are very small due to the heavy di�erentiation, giving anLRT whih is around 106 times smaller than in Figures 6.19 and 6.20 (not shown). OnlyRi is non-negligible, reinforing the onlusions of Setion 4.4.1 that the laboratory shortwaves in the barolinially-stable regime are generated by a shear instability.
6.7 Chapter summaryIn this hapter we have investigated the results of simulations using the rotating, twolayer annulus model desribed in Chapter 5. The basi model behaviour is the same asthat seen in the laboratory, on�rming that the model is reliable and that the ode isfree from errors. For example, the model displays barolini instability with a variety ofrealisti equilibrated wavenumbers for super-ritial Froude numbers, and stability withrelaxation bak to an axisymmetri state otherwise.We have shown how wave amplitudes, phase speeds and wavenumbers an be derivedfrom the raw data produed by the model. These quantities are in reasonable agree-ment with measurements from the laboratory annulus. Spei�ally, we have found thatit seems likely that all observed laboratory/model disrepanies an be attributed touid property errors and model approximations other than the neglet of fast modes.This means that we are able to state, based on the omparisons that have been arriedout in this hapter, that we have found no evidene of an observable small-sale waveimpat upon the large-sale balaned ow in the laboratory.By diagnosing �ve andidate radiation indiators using the model veloity �elds, we havebeen able to onlude that the observed short laboratory waves in theMRW regime (andpresumably also the MIW regime) are best explained by the spontaneous emission radi-ation mehanism. This is beause shear mehanisms predit short wave generation at167



Chapter 6. Results of the numerial experimentsregions other than those observed.There were many di�erenes between model and laboratory | apart from the negletof the fast modes in the model | in the omparison desribed in this hapter. In thefollowing hapter, we inorporate a stohasti inertia-gravity wave parameterization intothe model. This allows us to run omparative simulations in whih the only di�ereneis the presene and absene of inertia-gravity waves, allowing a stronger test of theirimpats than has been ahieved here.
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Chapter 7
A stohasti parameterization of thefast waves \D�emons et merveillesVents et mar�eesAu loin d�ej�a la mer s'est retir�eeMais dans tes yeux entrouvertsDeux petites vagues sont rest�eesD�emons et merveillesVents et mar�eesDeux petites vagues pour me noyer."Sables Mouvants, Jaques Pr�evert.
In this hapter, we design and implement a simple parameterization of inertia-gravitywaves in QUAGMIRE. Having �rst justi�ed the need for a parameterization, we reviewprevious deterministi and stohasti parameterization shemes, and give details of thehosen present sheme. We then desribe numerial runs designed to measure the depen-dene of the equilibrated wavenumber, wave amplitude and phase speed of the large-salewaves on the amplitude of the parameterized inertia-gravity waves. We are partiularlyinterested in investigating di�erenes between runs with the parameterization swithedon and o�. The short wave parameterization proves to be fruitful, as we are able to iden-tify regions of parameter spae in whih the parameterized waves exert a large inueneon the balaned ow, in partiular by foring spontaneous transitions between regimesof di�erent azimuthal wavenumber. 169



Chapter 7. A stohasti parameterization of the fast waves7.1 Parameterizations of inertia-gravity wavesBased on the omparison between laboratory experiments and numerial model runs inChapter 6, we were able to draw the onlusion that no evidene had been found of anobservable small-sale wave impat upon the large-sale ow. However, sine the modeldi�ers from the laboratory experiments in more ways than just through the abseneof small-sale waves, this onlusion was neessarily weak. Any disrepany betweenlaboratory and model ould be put down to these di�erenes, inluding unertain uidproperties and model approximations, rather than to the �ltering out of small sales.We would like to design a stronger test of the sale-separated interation. Ideally, wewould like to run two laboratory experiments, one with and one without small-salewaves, but idential in all other ways. Unfortunately this is impossible, as the labora-tory small-sale waves annot easily be swithed o� at will, and so the next best thingis to inlude them in the numerial model. QUAGMIRE is a quasi-geostrophi model,and so by onstrution annot expliitly apture the evolution of the short ageostrophiwaves. It an, however, represent them impliitly by inluding a parameterization oftheir e�ets on the balaned ow. Suh a parameterization for the two-layer annulus isdesribed in this hapter, and model runs are ompared both with the parameterizationswithed on and o�.Most onventional parameterization shemes are deterministi, i.e. they desribe thee�ets of sub-gridsale proesses by deterministi bulk formulae whih depend uponloal resolved sale variables and a number of adjustable parameters (Palmer, 2001). Forexample, a well-known deterministi parameterization is that for the momentum depo-sition due a ontinuous spetrum of gravity waves developed by Hines (1997). Reently,Piani & Norton (2003) have shown that the deterministi Hines parameterization, whihhas one adjustable parameter a, signi�antly underestimates the variability of the quasi-biennial osillation in simulations using the UK Meteorologial OÆe Uni�ed Model.They have shown that a stohasti parameterization, in whih a is allowed to vary ran-domly aording to some hosen probability distribution, gives an inreased variabilityand better agreement with observations.Following Piani, we inlude a stohasti parameterization of small-sale waves in QUAG-170



Chapter 7. A stohasti parameterization of the fast wavesMIRE, by adding a random noise term to the right side of the prognosti model equa-tions (5.23) and (5.24) for eah layer. To do this, we must assume that the preise detailsand struture of the laboratory small-sale waves are irrelevant, and that they have thesame impat on the balaned ow as would random noise.
As previously noted, QUAGMIRE annot apture the evolution of the small-sale waves.However, we an reasonably expet it to apture the response of the balaned modesto PV anomalies indued by the small-sale modes. Inertia-gravity waves have zero PVanomaly only in the linear limit, and so any �nite amplitude inertia-gravity waves willarry a non-zero PPV. It is this quantity whih we parameterize in the model equations,as a stohasti perturbation to the PPV tendeny �elds. It was pointed out in Se-tion 5.7 that the system state is ompletely spei�ed by the PPV �eld. By perturbingthe PPV tendeny �eld with noise, therefore, we are e�etively perturbing all of thedynamial �elds, inluding the horizontal divergene �eld whih we expet the labora-tory inertia-gravity waves to perturb diretly.
We hoose the simplest possible form for the stohasti noise terms. At eah gridpointand at eah timestep, a random number is drawn from the uniform distribution on theinterval [0; 1℄, and then shifted to the interval [�amp; amp℄ before being used as an addi-tive ontribution to the PPV tendeny as shown in Figure 5.3. The onstant amp is agiven amplitude with units s�2, and is related to interfae height wave amplitudes in away to be determined in Setion 7.2.2. The noise �elds are hosen to be purely baro-lini, i.e. equal and opposite in both layers, as any inrease in the depth of one layer dueto an interfaial small-sale wave is mathed by a orresponding redution in the depthof the other layer. The disretized noise �elds so de�ned ontain no orrelations in eithertime or horizontal position. An important di�erene between laboratory and model isthat the parameterized short model waves are present throughout the entire annulardomain, whereas the laboratory short waves are loalized in spae and time, appearingonly where the Lighthill radiation term is large (Setion 6.6.2). This strengthens theanalogy between the model and the atmosphere, where inertia-gravity waves are moreubiquitous than in the laboratory annulus.171



Chapter 7. A stohasti parameterization of the fast waves7.2 Model runs with the stohasti parameteriza-tionIn the following setions we show the results of some model runs with the stohastiterms swithed on, for omparison with the runs desribed in Chapter 6.
7.2.1 Reproduibility of the equilibrated stateIn this setion, we investigate the possible role that small-sale features play in large-sale wavenumber seletion. We use an experiment with �
 = 0:23 rad s�1 and
 = 2:25 rad s�1, whih is quite lose to the wavenumber m = 1; 2 transition urve. A30-member ensemble was arried out for eah of 21 values of the noise tendeny ampli-tude parameter, ranging from 0 to 2.0 s�2 in steps of 0.1 s�2. Within eah ensemble,the only di�erene between the 30 members was the random numbers in the stohastiforing �elds. In eah ase, the equilibrated azimuthal wavenumber m was noted, andfound to be either 1 or 2.Typial post-transient model �elds are shown in Figure 7.1, for a noise amplitude of0.5 s�2, giving an indiation of the relative amplitudes of the large-sale wavenumber 2mode and the small-sale stohasti noise. Sine the model gridspaing is approximatelyequal to the wavelengths of the laboratory short waves (see Figures 1.6 and 5.4), thereis a reasonable mathing of lengthsales between laboratory and stohasti model shortwaves. At �rst sight, the plots of PPV in Figures 7.1(a) and (b) appear unrealistiallynoisy ompared to the laboratory, but this is simply beause the Laplaian operator |whih ampli�es small sales relative to large sales | is required to obtain the PPVfrom the streamfuntion. For this reason, the plot of interfae height in Figure 7.1()is muh less noisy. We will show in Setion 7.2.2 that there is a good mathing of theamplitudes of interfae perturbations between the laboratory and model short waves.For eah ensemble of onstant noise amplitude, the probability of equilibration to wavenum-ber 2 was alulated and is plotted in Figure 7.2. There is a lear and strong dependeneof probability partition on noise amplitude. The results are onsistent with a linear drop-o� in the probability of m = 2 as the noise inreases to around 1.0 s�2, followed by a172
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()Figure 7.1: Model output with a stohasti PPV tendeny term of amplitude0.5 s�2, showing (a) PPV as a funtion of radius and azimuth, (b) mid-radiusPPV as a funtion of azimuth and time, and () mid-radius interfae height as afuntion of azimuth and time. 173
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Chapter 7. A stohasti parameterization of the fast waves7.2.2 Diagnosis of amplitude of stohasti small-sale featuresFigure 7.3(a) shows azimuthal interfae height pro�les after equilibration, from one ofthe ensemble runs desribed in the previous setion with a noise amplitude of 1.0 s�2.Figure 7.3(b) shows the same pro�les after �ltering by taking a running mean in theazimuthal diretion with a window size of 8 gridpoints. This is suÆiently large toremove features at the sale of the stohasti foring, and is suÆiently small to leaveintat the large-sale features.We an derive interfaial wave amplitudes (de�ned as half the di�erene between maxi-mum and minimum displaements) from Figure 7.3. The amplitude so alulated from(b) is interpreted as the amplitude of the underlying large-sale wave, and that from (a)as the sum of the large-sale and small-sale wave amplitudes. By taking the di�erene,we an infer the amplitude of the stohasti small-sale waves. The results of this anal-ysis at mid-radius, for eah of the 21 noise amplitudes used and for both wavenumbers1 and 2, are shown in Figure 7.4.For a stohasti noise tendeny amplitude of zero, the un�ltered and �ltered amplitudesare almost idential, implying that the �ltering has not modi�ed the struture of thelong modes. The amplitudes of the large-sale waves (\�ltered" urves in the �gure)inrease signi�antly with stohasti noise amplitude. This is beause the parameter-ized inertia-gravity waves have added energy to the system, whih is expeted beausean interfae height �eld ontaining short ripples has more gravitational potential energythan the same �eld with the ripples smoothed out. Importantly, the amplitudes of thesmall-sale stohasti features (\un�ltered{�ltered" urves) are onsistent between thelarge-sale wavenumber 1 and 2 ases, validating the analysis and giving us a diretlinear orrespondene between the stohasti noise tendeny parameter in the model(in s�2) and the orresponding interfaial amplitude of the stohasti small-sale fea-tures (in mm).It is lear from Figure 7.4 that the stohasti small-sale features whih aused there-partitioning of the probability distribution in Figure 7.2 were many times smaller inamplitude than the large-sale wave with whih they oexisted. Their typial amplitudesare similar to those observed in the laboratory.175
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(b)Figure 7.3: (a) Interfae height pro�les after equilibration, showing an azimuthalwavenumber 2 mode with superimposed small-sale noise representing inertia-gravity waves. (b) Same pro�les but with inertia-gravity waves �ltered out. Thelegend relating olour to radius (not shown here to allow the full pro�les to beseen) is idential to that in Figure 6.3. 176



Chapter 7. A stohasti parameterization of the fast waves

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

amplitude of stochastic tendency term (s−2)

in
te

rf
ac

ia
l w

av
e 

am
pl

itu
de

s 
(m

m
)

unfiltered
filtered
unfiltered − filtered

Figure 7.4: Un�ltered, �ltered and un�ltered{�ltered interfaial wave amplitudesas a funtion of stohasti noise tendeny amplitude. Red points orrespond towavenumber 1, and blue to wavenumber 2. Eah of the 30 ensemble members fora noise tendeny amplitude of 1.7 s�2 equilibrated to wavenumber 1, and so thereis no data orresponding to wavenumber 2 at this noise amplitude.

177



Chapter 7. A stohasti parameterization of the fast waves
7.2.3 Continuous variation of amplitude of stohasti small-sale featuresIn Setion 7.2.1 we investigated the stability of an equilibrium axisymmetri annulusow ontinuously seeded with stohasti noise, whih is in many ways a simple model ofan axisymmetri atmospheri jetstream in the presene of inertia-gravity waves. A morelikely senario in the atmosphere is for a partiular large-sale azimuthal mode to havealready equilibrated, and so there are good geophysial reasons to be more interested inthe stability of an equilibrated large-sale wave in the presene of inertia-gravity waves,rather than the stability of an axisymmetri jetstream upon whih a large-sale wave issoon to grow in the presene of inertia-gravity waves.In order to investigate this, we now take a wavenumber 2 ow with �
 = 0:23 rad s�1and 
 = 2:25 rad s�1, whih has equilibrated at �nite amplitude in the absene ofstohasti foring. As with the investigation of Setion 7.2.1, whih also used theseparameters, the system is quite lose to the wavenumber m = 1; 2 transition urve. Inthe present investigation, we ontinue the model integrations but inrease the stohastinoise amplitude from 0 to 2.0 s�2, by 10�6 s�2 eah timestep so that the inrease isquasi-ontinuous.When this numerial experiment is performed, the wavenumber 2 mode persists untilthe noise reahes a ertain threshold level, at whih point a spontaneous transition isobserved to a wavenumber 1 mode. A Hovm�uller diagram showing the transition, whihtakes plae over around 100 s, or the time taken for the large-sale wave to travel aroundthe annulus twie, is shown in Figure 7.5. This kind of transition was never observedwithout the inertia-gravity wave parameterization swithed on, and so we an onludethat the transition was aused by the parameterization. At the time of the transition,the stohasti noise parameter had reahed a value of 1.1 s�2, orresponding from Fig-ure 7.4 to an interfae perturbation of amplitude of 0.3 mm.After the transition to wavenumber 1, the stohasti noise amplitude was dereased bakto zero by 10�6 s�2 eah timestep, but the reverse transition bak to wavenumber 2 did178
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Figure 7.5: Hovm�uller diagram, showing a mid-radius azimuth-time ontour plotof PPV in the upper layer around the time of a spontaneous wavenumber transition.
not our. At the end of the integration, when the noise had reahed zero, the wavenum-ber 1 mode was still dominant, indiating the presene of hysteresis in the system. Ifthese onlusions are portable to the atmosphere (Chapter 8) then the impliation isthat a short but suÆiently intense burst of small-amplitude inertia-gravity waves ouldfore a large-sale regime hange whih ould persist long after the inertia-gravity waveshave been dissipated away.This result suggests a simple shemati model for explaining the spontaneous transitions,in whih the stable equilibrium states m = 1 and m = 2 are represented by minima ofthe potential well shown in Figure 7.6. With the system in the m = 2 state, a shortburst of suÆiently large amplitude stohasti foring permits the system to overomethe transition barrier and thereby undergo an irreversible transition to the m = 1 state,in whih the system will remain after the end of the burst.As in Setion 7.2.1, when the above experiment was repeated with parameters orre-sponding to the entre of a wavenumber regime in parameter spae, spontaneous tran-sitions were not observed. 179



Chapter 7. A stohasti parameterization of the fast waves
m = 2 m = 1

Figure 7.6: Shemati double-well potential for a bistable system, whih anexplain the observed model regime transitions lose to the m = 1; 2 transitionurve in (d; F ) parameter spae.7.3 DisussionWe have seen that the addition of small-amplitude noise has had a very signi�antimpat on the system. This phenomenon is a form of stohasti resonane (Pikovsky etal., 2001). This is a nonlinear resonane whih is not dependent upon any mathing oftimesales, as is the familiar riterion required for linear resonane. The phenomenonallows a small (stohasti) foring to produe a large (resonant) response. If stohastiresonane is exhibited by a nonlinear system, then the introdution of very small ampli-tude noise an dramatially a�et the system state.Stohasti resonane has been observed before in uid systems. De Swart & Grasman(1987) have studied the e�ets of adding a stohasti foring term to a low-order atmo-spheri spetral model based on the barotropi potential vortiity equation, and foundthat the noise fores the system to alternately visit di�erent regimes due to a stohastiresonane. The phenomenon is widely observed aross the entire spetrum of the nat-ural sienes. For example, the human eye an detet signals otherwise too faint to beseen if random noise is added to the �eld of vision (Hogan, 2003). And, as disussed inSetion 1.2, Chua's eletroni iruit displays an altered temporal regularity upon theintrodution of small amplitude noise.The addition of noise terms to the governing model equations has led to a better agree-ment between one of the the laboratory/model omparisons. We found in Setion 6.1.2180



Chapter 7. A stohasti parameterization of the fast wavesthat model wave amplitudes were signi�antly lower their laboratory ounterparts. How-ever, we see from Figure 7.4 that the inlusion in the model of parameterized short wavesof less than 1 mm in amplitude inreases the long wave amplitudes by up to 60%, givinga better �t with the laboratory results. This amplitude inrease is due to energy fromthe short modes �ltering upsale into the long modes.Our �ndings regarding stohasti resonane mirror an observation we made in the lab-oratory. In the urrent hapter, we found that the presene of small-amplitude, fastwaves ould inrease the likelihood of a model state transition. Correspondingly, wefound in the preliminary laboratory experiments of Setion 4.2 that the annulus witha omplete absene of fast waves exhibited a strong relutane to undergo a transitionaway from the wavenumber 2 mode. We are not in a position at the moment to beable to fully attribute this relutane to the absene of fast modes, as there were alsounknown hanges in the uid properties whih ould have been responsible. However,we an state with ertainty that the short waves do appear to have an inuene onwavenumber transitions, in both the laboratory and the model.
7.4 Chapter summaryBy implementing a simple stohasti inertia-gravity wave parameterization in the numer-ial model, we have shown that short modes an play a ruial role in large modewavenumber seletion. This �nding seems to apply only to regions of parameter spaewhih are some �nite distane away from a wavenumber transition urve. These shortmodes also signi�antly inrease the long wave amplitudes, but leave their propagationspeeds unaltered.Via the phenomenon of stohasti resonane, the stohasti inertia-gravity wave parame-terization has the ability to indue spontaneous azimuthal wavenumber transitions whihwould not our if the inertia-gravity waves were absent.
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Chapter 8
Conlusions and future work\Habe nun, ah! Philosophie,Juristerei und Medizin,Und leider auh TheologieDurhaus studiert, mit hei�em Bem�uhn.Da steh' ih nun, ih armer Tor,Und bin so klug als wie zuvor."Faust, J. W. von Goethe.
8.1 Summary of �ndingsThe �rst part of this thesis foused on the results of laboratory experiments using a rotat-ing, two-layer annulus, in whih relative motion was fored between the two isothermaland immisible layers by a di�erentially-rotating lid in ontat with the upper layer.The natural interfaial tension between the liquids was redued by the addition of a sur-fatant. Based on diret observations of the uid interfae, and on an initial inability toreprodue the results of previous experimental studies, we speulated that the physialproperties of the liquids were exhibiting slow hanges with time.Beause the lower-layer liquid was optially ative and the apparatus was seen throughrossed polaroids, a video amera viewing the uids from above registered olours whihwere related to the depth of the lower layer. The relationship between hue and interfaeheight was quanti�ed by deriving a alibration urve, based on a torque balane alu-lation whih gives an analytial expression for the equilibrium interfae height �eld in182



Chapter 8. Conlusions and future workthe absene of any instability. An upgrade of the ow visualization hardware, togetherwith the implemented alibration sheme, allowed two-dimensional maps of interfaeheight to be inferred with a horizontal resolution of up to 0.2 mm, a vertial resolutionof up to 1 mm and a temporal resolution of 1=25 s. The vertial resolution ould befurther improved as long as a redution in the horizontal or temporal resolution ouldbe tolerated.Four series of new laboratory experiments were performed: one with prograde di�eren-tial rotation in an annulus with inreasing Froude number (PAI); one with retrogradedi�erential rotation in an annulus with inreasing Froude number (RAI); one with pro-grade di�erential rotation in an annulus with dereasing Froude number (PAD); and onewith prograde di�erential rotation in an eentri annulus with inreasing Froude num-ber (PEI). As predited by standard theory, the motions observed in the uids fell intotwo distint ategories and were robust to the hanges in experimental on�guration.The short, fast waves had wavelengths of around 20 mm and interfaial amplitudes ofaround 3 mm, and the long, slow waves had wavelengths of around 200 mm and inter-faial amplitudes of up to 25 mm.Eah ow observed ontained either no waves at all (the axisymmetri ow regime, AX ),short waves only (the Kelvin-Helmholtz regime, KH ), or both long and short wavesoexisting (the mixed regular and irregular wave regimes, MRW and MIR). Flows on-taining long waves only, with a omplete absene of short waves, were observed only inpreliminary experiments with fresh preparations of the working liquids, and were notinvestigated in detail in this thesis. These experimental results are in onordane withthe assertion by Ford et al. (2000) that every single evolving vortial ow emits inertia-gravity waves, whih in our ase are large enough to be visible if the uid properties arepermitting.The mehanism whih gives rise to the long waves is well understood from previous stud-ies to be barolini instability. The mehanism whih gives rise to the short waves whenthey develop in the absene of long waves was shown in this study to be onsistent witha Kelvin-Helmholtz instability based on a ritial Rihardson number. Suh a simpleanalysis was not possible for the ase when the short waves develop in the presene of183



Chapter 8. Conlusions and future worklong waves, as the long waves perturb the layer veloity �elds to an extent whih annotbe predited by simple linear theory.In order to assess the mehanism by whih the laboratory short waves are generatedin the presene of a large-sale mode, and to examine the feedbak impat of the shortwaves on the long waves, a quasi-geostrophi numerial model of the laboratory exper-iment was developed in the seond part of the thesis and named QUAGMIRE. Shortwaves are permitted in the laboratory experiment but not the model. There was foundto be exellent agreement, regarding the shapes of azimuthal wavenumber regimes in thesystem parameter spae, between numerial and laboratory experiments. Quantitativeagreement was not perfet but, due to model approximations and suspeted unertaintiesin assumed laboratory uid properties, this was not thought to be due to the preseneof short waves in the laboratory.The model veloity �elds were used to address the question of the generation mehanismof the short waves in the presene of long waves. Kelvin-Helmholtz instability theory,whih suessfully predited the generation of laboratory short waves in the absene oflong waves, ould not explain the oexisting short waves, and neither ould three otherindiators of shear instability. The best preditor was found to be the Lighthill radiationterm, whih is an indiator of spontaneous emission radiation whih ould take plaeeven in a purely barotropi uid with no vertial shear.Finally, we inorporated a simple stohasti parameterization of the short waves intothe numerial model. In general, the e�et of the parameterized short waves on thelong waves was limited to an inrease in the long wave amplitude. SuÆiently lose toa wavenumber transition urve, however, a stohasti resonane e�et allowed the shortwaves to exert a dominant inuene over long mode wavenumber seletion. In parti-ular, spontaneous transitions were observed between di�erent azimuthal modes, whihwere diretly attributable to the presene of the stohasti short waves. This �ndingsupported a similar observation we made in the laboratory, in whih a ow devoid ofshort waves displayed a relutane to undergo state transitions whih ourred if theshort waves were present. 184



Chapter 8. Conlusions and future work8.2 ConlusionsWe are now in a position to return to the four questions posed in Setion 1.7.1, and togive answers based on the investigations of this thesis.
Under what irumstanes do small-sale waves appear in the laboratoryexperiments?In the laboratory investigations of Chapter 4, we found that if the uids were barolinially-stable, short waves were globally generated whenever the Rihardson number droppedbelow a ritial value. Short waves were loally generated in every single observedbarolinially-unstable ow with aged uids, superimposed in the nodal regions of thelong barolini mode. The short wave amplitudes were larger if the long mode was under-going an amplitude vaillation, but were still generally present with redued amplitudes(sometimes barely visible in stills but learly present in the video footage) even whenthe long mode amplitude remained onstant.
Whih mehanism auses the small-sale waves to appear in the laboratoryexperiments?Two di�erent generation mehanisms are both responsible for short wave emissions inthe laboratory experiments, though the irumstanes under whih they are responsibledi�er between the mehanisms. As shown in the laboratory investigations of Chapter 4,a Kelvin-Helmholtz shear instability is responsible for small-sale wave generation inthe absene of long waves. When the short waves appear loally in the nodes of longwaves, the generation mehanism was shown using the numerial model in Chapter 6to be spontaneous emission by the evolving large-sale ow. This onlusion is furthersupported by the ship wake analysis of Chapter 4, whih is an alternative way of ana-lyzing emission of short waves by a moving \objet" long wave. Further independentorroboration for this onlusion omes from the eentri annulus laboratory experi-ments of Chapter 4, in whih an azimuthally-varying veloity shear was not assoiatedwith azimuthally-varying short wave emission.185



Chapter 8. Conlusions and future workWhat are the e�ets of the laboratory small-sale waves on the large-sale,balaned ow?A omparison of the laboratory regime diagram of Chapter 4, derived from experimentswhih inluded short waves, and the numerial regime diagram of Chapter 6, derivedfrom experiments whih did not inlude short waves, leads us to onlude that thelaboratory short waves do not have a dominant impat upon the large-sale ow, in gen-eral. Though we found signi�ant disrepanies between the numerial and laboratoryresults, in terms of equilibrated wavenumbers, amplitudes and phase speeds, it was feltthat these di�erenes ould be explained by other fators suh as model approximationsand unertain uid properties.For example, laboratory wave speeds are around a fator of four smaller than modelwave speeds. Though it might be tempting to partially attribute this to inertia-gravitywave drag on the balaned ow, the disrepany is adequately explained by Stewartsonlayer drag and visosity unertainty. This is not to say that we have found evidene ofabsene of a fast wave impat upon the slow modes, but rather that this partiular testhas given an absene of evidene.However, the more expliit tests desribed in Chapter 7, based on model runs with astohasti inertia-gravity wave parameterization swithed on, did �nd evidene of animpat. The results showed that, suÆiently lose to a regime transition urve, shortwaves play a key role in wavenumber seletion, and an fore spontaneous long wavetransitions whih would otherwise not our. The preliminary laboratory experimentsof Chapter 4, based on a omparison between ows with and without small-sale waves,give further independent evidene to orroborate this onlusion.
Having answered these questions for a laboratory experiment, what an weinfer about answers to the analogous questions for geouids?If the laboratory annulus system and the atmosphere on a rotating planet were exatlydynamially and geometrially similar, then the uid ows would also be mathemati-ally similar (Setion 1.5) and our onlusions about the laboratory system would beportable to the atmosphere. 186



Chapter 8. Conlusions and future workGeometrial similarity is limited by di�ering horizontal/vertial aspet ratios; by thepresene of annular sidewall boundaries and a rigid lid in the annulus whih have noounterpart in the atmosphere; by the disretization of the uid in the annulus to twodisrete homogeneous layers, rather than a single ontinuously-strati�ed layer; and bythe absene of bottom topography in the annulus. Additionally, the atmosphere is foreddi�erently and is oupled to other omponents of the limate system whih are not rep-resented in the annulus, whih auses the ow in the atmosphere to be generally moreirregular and haoti.Mindful that geometrial similarity does not hold exatly, whih will limit any ompari-son, we an determine the extent to whih dynamial similarity holds by evaluating thenon-dimensional system parameters for an approximated two-layer atmosphere. Refer-ring bak to Figure 1.5, we take the annular gap width L of the \atmospheri annulus"to be a quarter of the irumferene of the Earth, and H to be the sale height of around10 km. We take the redued gravity g0 to be 2 m s�2 in value1, and the kinemati vis-osity � to be the turbulent eddy value of 5 m2 s�1. We take the bakground rotationrate 
 to be the loal omponent of the Earth's rotation vetor at latitude 45Æ, and thedi�erential rotation rate �
 to be the zonal tropospheri jetstream speed | typially40 m s�1, from Figure 1 of O'Sullivan & Dunkerton (1995) | divided by the radius ofthe 45Æ latitude irle.A omparison between non-dimensional parameters in the laboratory experiment andin the two-layer annulus approximation to the atmosphere is shown in Table 8.1. Theatmosphere is seen to explore a signi�antly di�erent regime from that explored in thelaboratory experiments. The atmospheri Froude number and dissipation parameterare both larger, orresponding to the fat that the atmosphere typially exhibits higherwavenumber states, and more irregularity, than the laboratory annulus. The Rossbynumbers are similar. Visous e�ets are muh more signi�ant in the laboratory thanin the the atmosphere, though they are still relatively weak in both systems ompared1We ould na��vely ompute the redued gravity using g0 = g��=�, where the densities at the surfaeand the sale height are �2 = 1 kg m�3 and �1 = e�1 kg m�3, respetively. Most of this densitydi�erene is due to stati ompressibility rather than stati stability, however, giving an over-estimateof g0. It is more appropriate to use g0 = g��=�, where � is potential temperature. We use � = 300 Kand �� = 60 K, from Figure 1 of O'Sullivan & Dunkerton (1995), to obtain the quoted value for theredued gravity. 187
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Chapter 8. Conlusions and future workto other dynamial e�ets, as demonstrated by the large Reynolds and small Ekmannumbers. Interfaial tension e�ets, ompletely absent in the atmosphere, are also rea-sonably signi�ant in the laboratory, as indiated by the size of the interfaial tensionnumber.The results of this thesis are not expeted to depend upon whether the observed zonalwavenumbers are 1, 2 or 3 suh as in the laboratory, or around 6 as in the atmosphere.Furthermore, though the non-dimensionalized visosity and interfaial tension are quitedi�erent for the two systems, these e�ets remain small ompared to other e�ets inboth ases. Therefore we expet these other dynamial e�ets | whih are similar forboth systems | to be the ones whih determine the system harateristis.An expliit omparison between inertia-gravity wave properties in the laboratory andthe atmosphere is also possible. In both ases, the amplitudes are generally aroundan order of magnitude smaller than that of the main, large-sale mode. Atmospheripure gravity waves are suÆiently short in wavelength to be in the deep regime, like thelaboratory short waves, though larger wavelength inertia-gravity and pure inertial wavesin the atmosphere are in the shallow regime. In terms of the omparison of short waveimpats, this di�erene is unlikely to alter our onlusions. If anything, the impat ofa short wave in a shallow uid would be expeted to be greater than the impat of ashort wave in a deep uid, beause in the latter ase the region of dynamial inuene isvertially-on�ned. This suggests that the laboratory short waves, whih are in a deepuid, are not able to exert as great an inuene on the balaned ow as are short wavesin a shallow atmosphere. This means that, if anything, our laboratory investigation mayhave underestimated the strength of the atmospheri interation.Based on the above omparisons, there is every reason to suspet that the onlusions ofthis study regarding rotating laboratory experiments, will have ounterparts regardingows in the atmosphere. For example, the stohasti resonane phenomenon disussedhere would also be expeted to be observed in an atmospheri general irulation model.The impliation is that, in a region of the atmosphere whih is simultaneously unstableto two di�erent modes with approximately equal growth rates, a loal burst of inertia-gravity wave ativity ould determine whih mode grows to equilibration, or ould alter-189



Chapter 8. Conlusions and future worknatively fore a spontaneous transition from one mode to the other. The mehanismwhih permits suh behaviour is not aptured by any weather foreasting model whihdoes not inlude inertia-gravity modes, either expliitly or through a stohasti param-eterization.
8.3 Future workWe onlude the thesis by giving some possible avenues for future work suggested bythe results.
Experimental workIn addition to the PAI, RAI, PAD and PEI experimental runs desribed in Chapter 4,there is a further on�guration whih warrants investigation. The inner ylinder ouldbe removed, so that the uid oupies a ylindrial domain rather than an annular one.This hange would make the apparatus very similar to that used by Hart (1972). Losingthe inner sidewall boundary has the advantage that the geometrial similarity betweenlaboratory and atmosphere is stronger. Also, in pratial terms, it has the bene�t ofremoving the parallax e�et whih bloks from view the short wave generation region.Experimental runs in an open ylinder would allow an investigation of the role of theinner sidewall boundary in loally enhaning the vertial shear aross the interfae.QUAGMIRE runs ould also be done for this on�guration, as long as we insert a modelinner sidewall of very small radius to avoid the singularity in the model equations onthe rotation axis.
Numerial modelling workA possible extension of the numerial modelling work would be to loalize the inertia-gravity wave parameterization, so that the stohasti terms are only ative in thoseregions where the magnitude of the Lighthill radiation term is large. This would help usto investigate whether the stohasti resonane phenomenon still ours when the noiseis loalized. Spatio-temporal orrelations ould also be inluded in the noise terms, with190



Chapter 8. Conlusions and future workrealisti auto-orrelations based on the observed short wave frequenies and wavelengths.A seond avenue for future researh might be to fous on improving the laboratory/modelagreement, for example by running a more aurate dynamial model whih expliitlypermits the short, fast waves. An extensive set of simulations, suh as that presented inthis thesis, ould not be performed due to the omputational expense. However, a smallset of ase studies should still provide enough material for a fruitful analysis.A further important investigation would be to determine how lose to a transition urvethe system needs to be in order for stohasti resonane to take plae, for a givennoise amplitude. We would expet that as distane from a transition urve inreases,the threshold noise amplitude for resonane would inrease as the potential barrier inFigure 7.6 beomes taller. It would be useful to quantify this by performing numeri-al experiments to determine the threshold amplitude as a funtion of position in theparameter spae. Suh an investigation would allow us to make a balaned assessmentof how frequently short waves in the atmosphere are expeted to resonantly interatwith long waves, an issue whih should be of signi�ant interest to the meteorologialommunity due to the potential for foreast error that this phenomenon ould init.
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Appendix A
The HSI olour system
There are three di�erent types of ones in the retina of the human eye, eah ontain-ing di�erent photosensitive pigments. Therefore every olour whih is pereivable byhumans is de�ned by only three independent quantities, and is representable by a singlepoint in a three-dimensional spae.1 This is known as Young's trihromati theory ofolour vision (Longhurst, 1973). One of the most ommon olour systems uses (R;G;B)oordinates to de�ne this spae. Respetively, these are the red, green and blue ompo-nents whih, if ombined, would give a olour whih was indistinguishable to the normalhuman eye from the olour being represented.Another ommon olour system uses (H;S; I) oordinates. The intensity (I) gives anindiation of the total brightness of the olour, the hue (H) gives an indiation of thedominant wavelength, and the saturation (S) gives an indiation of the strength of thedominane. We now derive the transformation from the (R;G;B) to the (H;S; I) oloursystem, following Foley & Van Dam (1982).Figure A.1 shows a general olour represented by the oordinates C = (R;G;B). Theahromati axis (or grey axis) is de�ned by the unit vetor â = 1p3(1; 1; 1). To deter-mine (H;S; I) we �rst deompose C into a omponent along the ahromati axis and aomponent perpendiular to it:C = [(C:â)â℄ + [C�(C:â)â℄ : (A.1)The greater the projetion onto the ahromati axis, the brighter the olour. The greater1Colour-blind people have only two di�erent types of ones, and every olour they an pereive anbe represented in a two-dimensional spae. 192
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Figure A.1: The relationship between the Cartesian (R;G;B) and ylindrial(H;S; I) olour systems, shown geometrially. Hue desribes the olour in termsof its angular position on a \olour wheel".the distane from the ahromati axis, the more saturated and pure the olour (oloursexatly on the axis are grey). In the plane perpendiular to the ahromati axis, theangle measured anti-lokwise from the vetor pointing in the G-diretion (�1; 2;�1)determines the dominant wavelength, as shown in Table A.1. In this de�nition, greenis arbitrarily assigned a hue of zero. This is the most useful de�nition for our purposes,as green hues are rarely (if ever) observed in the laboratory experiment images, and sothere is no need to worry about the onnetion between H = 0Æ and H = 360Æ in thealibration urve.Correspondingly, we de�ne I = p3 C:â ; (A.2)S = j C�(C:â)â j ; (A.3)and H = os�1 � (�1; 2;�1)j(�1; 2;�1)j : C�(C:â)âj C�(C:â)âj� ; (A.4)where, for uniqueness, we require0Æ < H < 180Æ if R < B ; (A.5)180Æ < H < 360Æ if R > B : (A.6)193



Appendix A. The HSI olour systemhue, H (degrees)green 0yan 60blue 120magenta 180red 240yellow 300green 360Table A.1: Hue, given as an angular position on a olour wheel. The zero of hueis here arbitrarily assigned to green, though it is more ommon to assign it to redso that the olours of the rainbow are yled through in order as hue inreasesfrom 0Æ to 360Æ.Evaluating the expressions in (A.2){(A.4) leads toI = R +G+B ; (A.7)S =r13 [(R�G)2 + (R �B)2 + (G� B)2℄ ; (A.8)and H = os�1 " 2G�R� Bp2[(R�G)2 + (R� B)2 + (G�B)2℄# : (A.9)The de�nitions (A.7){(A.9) are used in the alibration analysis of Chapter 3.
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