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Nonlinear intera
tions of fast and slowmodes in rotating, strati�ed 
uid 
owsPaul David Williams, Balliol CollegeSubmitted for the degree of Do
tor of PhilosophyTrinity Term, 2003This thesis des
ribes a 
ombined model and laboratory investigation of the generationand mutual intera
tions of 
uid waves whose 
hara
teristi
 s
ales di�er by an order ofmagnitude or more. The prin
ipal aims are to study how waves on one s
ale 
an generatewaves on another, mu
h shorter s
ale, and to examine the subsequent nonlinear feedba
kof the short waves on the long waves. The underlying motive is to better understandsu
h intera
tions in rotating, strati�ed, planetary 
uids su
h as atmospheres and o
eans.The �rst part of the thesis des
ribes a laboratory investigation using a rotating, two-layerannulus, for
ed by imposing a shear a
ross the interfa
e between the layers. A method isdeveloped for making measurements of the two-dimensional interfa
e height �eld whi
hare very highly-resolved both in spa
e and time. The system's linear normal modesfall into two distin
t 
lasses: \slow" waves whi
h are relatively long in wavelength andintrinsi
 period, and \fast" waves whi
h are mu
h shorter and more qui
kly-evolving.Experiments are performed to 
ategorize the 
ow at a wide range of points in the system'sparameter spa
e. At very small ba
kground rotation rates, the interfa
e is 
ompletelydevoid of waves of both types. At higher rates, fast modes only are generated, andare shown to be 
onsistent with the Kelvin-Helmholtz instability me
hanism based on a
riti
al Ri
hardson number. At rotation rates whi
h are higher still, baro
lini
 instabilitygives rise to the onset of slow modes, with subsequent lo
alized generation of fast modessuperimposed in the troughs of the slow waves.In order to examine the generation me
hanism of these 
oexisting fast modes, andto assess the extent of their impa
t upon the evolution of the slow modes, a quasi-geostrophi
 numeri
al model of the laboratory annulus is developed in the se
ond partof the thesis. Fast modes are �ltered out of the model by 
onstru
tion, as the phase spa
etraje
tory is 
on�ned to the slow manifold, but the slow wave dynami
s is a

urately
aptured. Model velo
ity �elds are used to diagnose a number of fast wave radiationindi
ators. In 
ontrast to the 
ase of isolated fast waves, the Ri
hardson number is apoor indi
ator of the generation of the 
oexisting fast waves that are observed in thelaboratory, and so it is inferred that these are not Kelvin-Helmholtz waves. The bestindi
ator is one asso
iated with the spontaneous emission of inertia-gravity waves, ageneralization of geostrophi
 adjustment radiation.A 
omparison is 
arried out between the equilibrated wavenumbers, phase speeds andamplitudes of slow waves in the laboratory (whi
h 
oexist with fast modes), and slowwaves in the model (whi
h exist alone). There are signi�
ant di�eren
es between thesewave properties, but it is shown that these dis
repan
ies 
an be attributed to un
er-tainties in 
uid properties, and to model approximations apart from the negle
t of fastmodes. The impa
t of the fast modes on the slow modes is therefore suÆ
iently smallto evade illumination by this method of inquiry. As a stronger test of the intera
tion, asto
hasti
 parameterization of the inertia-gravity waves is in
luded in the model. Consis-tent with the laboratory/model inter
omparison, the parameterized fast waves generallyhave only a small impa
t upon the slow waves. However, suÆ
iently 
lose to a transi-tion 
urve between two di�erent slow modes in the system's parameter spa
e, it is shownthat the fast modes 
an exert a dominant in
uen
e. In parti
ular, the fast modes 
anfor
e spontaneous transitions from one slow mode to another, due to the phenomenonof sto
hasti
 resonan
e. This �nding should be of interest to the meteorologi
al and
limate modelling 
ommunities, be
ause of its potential to a�e
t model reliability.
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Chapter 1
Introdu
tion \We might say that the atmosphere is a musi
alinstrument on whi
h one 
an play many tunes. Highnotes are sound waves, low notes are long iner-tial waves, and nature is a musi
ian more of theBeethoven than of the Chopin type."Letter from Jule Charney to Phillip Thompson,12 February 1947.
1.1 OverviewLike many physi
al systems, 
uids often exhibit the 
oexisten
e of motions on a widerange of spa
e and time s
ales. Correspondingly, the linear normal modes of the gov-erning Navier-Stokes equations generally have spatio-temporal stru
tures whi
h fall nat-urally into distin
t 
lasses, when 
ategorized a

ording to the fundamental dynami
alme
hanisms whi
h permit their existen
e. This property of the 
uid equations was �rstidenti�ed by Margules (1893), who derived two spe
ies of solutions to Lapla
e's tidalequations. He named his solutions \Wellen erster Art" (waves of the �rst type) and\Wellen zweiter Art" (waves of the se
ond type), whi
h we now know as inertia-gravityand Rossby waves. Important studies of the 
hara
teristi
s of these modes have beenpresented by Hough (1898) and Longuet-Higgins (1968).As a geophysi
al example of s
ale-separated 
uid motions, the Earth's atmosphere ando
ean support a
ousti
 waves, whi
h have relatively short wavelengths and are qui
kly5



Chapter 1. Introdu
tion�/m �/s 
ph/m s�1a
ousti
 waves 1 10�2 102inertia-gravity waves 105 104 10Rossby waves 106 106 1Table 1.1: Chara
teristi
 horizontal wavelengths (�), intrinsi
 periods (�) andphase speeds (
ph) of three di�erent 
lasses of waves observed in the Earth's atmo-sphere. These three quantities are related by 
ph = �=� . Values are given tothe nearest typi
al order of magnitude; in reality there is a signi�
ant spread in
hara
teristi
 s
ales about these mean values.propagating; inertia-gravity waves, whi
h are mu
h longer and more slowly evolving; andRossby waves, whi
h are longer and slower still. Typi
al s
ales asso
iated with thesethree linear eigen-modes in the atmosphere are shown in Table 1.1.The presen
e of multiple, disparate s
ales in 
uid motions presents a distin
t diÆ
ultyfor theoreti
al and numeri
al modelling, analysis and predi
tion. Simultaneously anda

urately 
apturing the evolution of features whose 
hara
teristi
 s
ales di�er by anorder of magnitude or more, requires an ex
eptionally 
areful treatment and large 
om-putational e�ort. Moreover, 
omputational resour
es aside, the primary fo
us of a studyis usually restri
ted to just a subset of all the permissible motions. In
luding the entirespan of s
ales would be distra
ting, and moreover, su
h a 
omprehensive analysis is notusually regarded as ne
essary for a
hieving reliable results. This is be
ause intera
tionsbetween motions on the s
ales of interest, and motions on dramati
ally di�erent s
ales,are ta
itly assumed to be negligible.For these reasons it has be
ome 
ommonpla
e to �lter from 
uid dynami
al models,motions on those s
ales whi
h are not of primary interest. For example, a study of atmo-spheri
 Rossby and inertia-gravity waves is unlikely to be 
on
erned with the a
ousti
waves with whi
h they 
oexist. Sin
e a
ousti
 waves require 
uid 
ompressibility, they
an be �ltered out of the analysis by imposing an in
ompressibility approximation.6



Chapter 1. Introdu
tionInertia-gravity waves and Rossby waves are still permitted in this �ltered model, butany nonlinear intera
tion whi
h takes pla
e between these modes and a
ousti
 modes inthe real system, 
annot be 
aptured. As another example, Haine & Williams (2002) have�ltered out small-s
ale 
onve
tive plumes from a surfa
e o
ean front model by imposinga hydrostati
 approximation, and have investigated the e�e
ts of the �ltering on thelarge-s
ale 
ross-frontal transfer.The question whi
h naturally arises is: are nonlinear wave intera
tions strong enough tosigni�
antly redu
e the appli
ability of a �ltered model, in whi
h at least one of the wavetypes present in the real system is absent? There must be a mat
hing of spa
e and/ortime s
ales in order for a signi�
ant intera
tion to o

ur, as we will quantify shortly.In the above example, the length, time and speed s
ales of the �ltered (a
ousti
) andretained (inertia-gravity and Rossby) modes are so poorly mat
hed, that for all pra
ti
alpurposes the answer is surely \no". Though possible in prin
iple | due to the butter
ye�e
t (Drazin, 1992) | there is no eviden
e that the sound of a person's voi
e 
an haveany real impa
t upon tomorrow's weather!However, we fa
e a potentially di�erent situation when we 
onsider the �ltering outof inertia-gravity waves, through imposing a balan
e approximation su
h as quasi-geostrophy. The 
hara
teristi
 s
ale separation fa
tors between inertia-gravity andRossby waves are only around 10{100, as 
ompared with 106 in the 
ase of a
ousti
and Rossby modes. This makes it feasible that a small, but signi�
ant Rossby/inertia-gravity wave intera
tion 
ould exist.The intuitive notion that there must be a reasonable mat
hing of s
ales for a strongintera
tion has been quanti�ed by Benney (1977). He presented a simple, general theoryfor intera
tions between short and long waves, whi
h is outlined here. For a resonanttriad intera
tion to o

ur in a 
uid system with dispersion relation !(k), the waveve
tors ka, kb and k
 are required (e.g. Gill, 1982) to satisfyka � kb = k
 (1.1)and !(ka) � !(kb) = !(k
) . (1.2)7



Chapter 1. Introdu
tionEquation (1.1) is satis�ed byka = ks + 12kl ; kb = ks � 12kl ; k
 = kl ; (1.3)where the subs
ripts l and s refer to long and short waves, respe
tively. Equations (1.3)represent a triad 
onsisting of two short waves (a and b) and one long wave (
). Usingkl � ks to employ a linear approximation to the dispersion relations, we �nd thatequation (1.2) holds for this triad ifkl : rk !(ks) = !(kl) ; (1.4)where rk is the gradient operator in wave ve
tor spa
e. A resonant triad intera
tionis therefore permitted between long and short waves if the phase velo
ity of the longwave is equal to the 
omponent of the group velo
ity of the short wave in the dire
tionof travel of the long wave. In one dimension, this requirement simpli�es to the phasespeed of the long wave being equal to the group speed of the short wave. The physi
alinterpretation is that the energy of the short modes, whi
h travels at their group speed,must not drift relative to the phase of the long mode. This means that any energytransfer from short to long modes is fo
ussed at parti
ular lo
ations �xed relative to thenodes of the long mode, rather than being input a
ross all long mode phases, and thisrequirement evidently allows a resonant reinfor
ement of the energy transfer.Figure 1.1 shows typi
al dispersion 
urves for the three 
lasses of atmospheri
 wavespreviously mentioned. It is 
lear that there is no possibility of equality between thephase speed of a Rossby wave and the group speed of an a
ousti
 wave, as a
ousti
waves propagate too qui
kly. This helps to justify the �ltering of a
ousti
 modes froma Rossby wave model, as previously dis
ussed. But the possibility is open | in prin-
iple, at least | of equality between the phase speed of a long Rossby wave and thegroup speed of a short gravity wave, and therefore of a resonant intera
tion and energyex
hange.The above analysis throws a question mark over the 
onventional wisdom that theRossby/inertia-gravity wave intera
tion is always negligible. Sin
e Rossby waves areprototypes of the atmospheri
 disturban
es whi
h 
onstitute our weather systems, andsin
e inertia-gravity waves are a
tively �ltered out of numeri
al weather predi
tion mod-els by the initialization pro
edure (Se
tion 1.4.1), a non-negligible intera
tion between8



Chapter 1. Introdu
tion

k
x
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 k
 s

ω

acoustic       
inertia−gravity
Rossby         Figure 1.1: S
hemati
 plot of the dispersion 
urves for three di�erent zonally-propagating atmospheri
 wave modes, showing intrinsi
 angular frequen
y ! as afun
tion of zonal (East-West) wave ve
tor kx. The 
hord slope at kl is equal to thetangent slope at ks, as shown in red.
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Chapter 1. Introdu
tionthe two modes would have possible impli
ations for a

urate weather fore
asting.This thesis is a study of the intera
tions between \fast" and \slow" modes, su
h asRossby and inertia-gravity waves, in 
uid 
ows. We are prin
ipally interested in investi-gating two key aspe
ts of the intera
tion: �rstly, the ability of slow motions to generatemu
h faster motions; and se
ondly, the ability of the fast modes, on
e generated, toimpa
t upon the evolution of the slow modes. In the present study, we investigate theseissues using a laboratory experiment and a

ompanying numeri
al model. The under-lying motive of the investigation is to understand the intera
tion properties on a mu
hlarger s
ale, in planetary atmospheres and o
eans.
1.2 S
ale-separated intera
tions in non-
uid systemsSystems whi
h display intera
tions between multiple s
ale pro
esses are ubiquitousa
ross the entire spe
trum of the natural s
ien
es. Examples of systems with morethan one times
ale (sti� systems), from the �elds of 
lassi
al me
hani
s, 
hemistry and
ir
uit theory, are brie
y dis
ussed in the following paragraphs. Though the govern-ing equations for these systems may be very di�erent from those of 
uid systems, wemight expe
t s
ale-separated intera
tion 
hara
teristi
s to be robust enough to with-stand 
hanges in the detailed phase spa
e topologies. We may therefore be able to infersome of the qualitative features of s
ale-separated intera
tions in 
uids, from those inthe other systems.
The swinging springThis system is also known as the elasti
 pendulum, sin
e it is like the well-known simplependulum ex
ept that the rigid rod is repla
ed with a spring. A point massm is atta
hedto a spring with for
e 
onstant k in a gravitational �eld g, so that the equilibrium lengthof the spring is l. When 
onstrained to move in a verti
al plane, there are two modes ofos
illation, distinguished by the physi
al me
hanism that provides the restoring for
e.As with the simple pendulum, there is a rotational linear normal mode with times
alepl=g, but now there is also an elasti
 linear normal mode due to spring stret
hing and10



Chapter 1. Introdu
tion
ompression, with times
ale pm=k. For the typi
al values m = 1 kg, k = 103 N m�1,g = 10 m s�2 and l = 1 m, the times
ales are 0.3 s and 0.03 s, showing a 
lear separationby a fa
tor of ten.Lyn
h (2000) has des
ribed an expli
it analogy between the swinging spring systemand atmospheri
 
ow. He 
ompares the high-frequen
y elasti
 modes to inertia-gravitywaves, and the low-frequen
y rotational modes to Rossby waves. In the swinging spring,as in the atmosphere, there is nonlinear 
oupling between the fast and slow modes. Theanalogy proves to be useful, even though the swinging spring has a four-dimensionalphase spa
e whereas the atmosphere explores a manifold of dimension mu
h larger thanfour in an in�nite-dimensional phase spa
e. In both 
ases, for general initial 
onditionsboth normal modes are ex
ited and persist as the system evolves, but it is possible todetermine initial 
onditions for whi
h the fast modes remain absent. Lyn
h derives su
hinitial 
onditions for the spring, and uses his analogy to illustrate the 
on
ept of atmo-spheri
 balan
e.Lyn
h goes on to apply the Kolmogorov-Arnold-Moser (KAM) theorem to the springsystem (Arnold, 1963). KAM theory provides a method for investigating how the phasespa
e stru
tures of a 
ompletely integrable system (e.g. the rigid pendulum) are mod-i�ed when the system is slightly perturbed in su
h a way that integrability no longerexa
tly holds (e.g. by repla
ing the pendulum with a spring and allowing the fast andslow modes to intera
t). His 
on
lusion is that if most of the energy is initially in theslow mode, then only an amount proportional to the ratio of fast to slow times
ales
an be transferred to the fast os
illations. This result is rigorously valid only for sys-tems with four degrees of freedom, though Lyn
h spe
ulates that the 
on
lusion may beportable to the inertia-gravity/Rossby wave intera
tion in 
uids with many more thanfour independent variables.
Chemi
al rea
tionsChemi
al pro
esses often exhibit the 
oexisten
e of 
hemi
al rea
tions and transportphenomena with a wide range of times
ales. Vora & Daoutidis (2001) have developeda general method for removing the fast variables from analyses of 
hemi
al systems,11



Chapter 1. Introdu
tionsomething akin to making an assumption of balan
e in a 
uid dynami
s model. Theytest their method by 
omparing numeri
al integrations of some full-order models andasso
iated redu
ed models, and �nd ex
ellent agreement.In parti
ular, they study the esteri�
ation of a 
arboxyli
 a
id with an al
ohol in thepresen
e of a 
atalyst. The system has 11 
hemi
al spe
ies and 12 elementary rea
tions,of whi
h 4 are slow and 8 are fast. Their method allows a redu
tion in the number ofdegrees of freedom from 11 to 7, signi�
antly redu
ing the 
omputational expense.Chua's 
ir
uitThe 
haoti
 behaviour of this nonlinear ele
troni
 
ir
uit has been widely studied (Madan,1993). It has two 
apa
itors C1 and C2, an indu
tor L, and a diode with a nonlinear
urrent-voltage response. These four 
omponents, together with a power supply, are allpla
ed in parallel. There are two natural times
ales in the equations: pLC1 and pLC2.In a 
ommon set-up, L = 10 mH, C1 = 0:08 �F and C2 = 4:4 nF, so that the fast andslow times
ales are 7 �s and 28 �s.Zhu et al. (2002) have shown in a laboratory experiment using Chua's 
ir
uit that thetemporal regularity is enhan
ed by the introdu
tion of a small amplitude noise sour
e.This is a phenomenon known as sto
hasti
 resonan
e, whi
h we investigate in 
uids inChapter 7 when we add a sto
hasti
 inertia-gravity wave parameterization to a quasi-geostrophi
 numeri
al model.
1.3 The slow manifoldThe in
ompressible Navier-Stokes equations 
an be written in the general form_x = f(x) ; (1.5)where the dot denotes di�erentiation with respe
t to time. The state ve
tor x(t) 
on-tains the values of all the dynami
al variables (velo
ity, pressure, et
.) at ea
h spatialpoint at time t. The number of elements of x 
orresponds to the number of degrees offreedom of the 
uid, whi
h is formally in�nite for the 
ontinuous system, but �nite for a12
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tiondis
retized or trun
ated normal mode approximation. The nonlinear ve
tor operator frepresents the dynami
s embodied in the Navier-Stokes equations, in
luding boundary
onditions. The phase spa
e traje
tory tra
ed out by x(t) des
ribes the evolving stateof the 
uid.Imposing a balan
e 
ondition, to �lter out inertia-gravity waves, 
orresponds to imposinga set of 
onstraint equations whi
h 
an be written in the general formg(x) = 0 : (1.6)Phase spa
e traje
tories x(t) are now 
onstrained to move on the hyper-surfa
e g(x) = 0,whi
h redu
es the number of degrees of freedom of the system by the number of elementsof the ve
tor operator g. The surfa
e g(x) = 0 is 
alled the 
uid dynami
al slow man-ifold, be
ause traje
tories whi
h are 
onstrained to evolve on it are 
ompletely devoidof fast inertia-gravity modes.1 Slow manifolds 
an be de�ned in the same way for theother s
ale-separated systems dis
ussed in Se
tion 1.2.It is more natural to pi
ture the slow manifold in the phase spa
e spanned by the linearnormal mode variables, rather than by the physi
al variables. The linear normal modesof equations (1.5) are naturally partitioned into a fast 
lass (inertia-gravity waves) anda slow 
lass (Rossby waves). Sin
e the spatio-temporal stru
tures xfastn and xslown of thelinear normal modes form a 
omplete set, solutions to equations (1.5) 
an be alwayswritten x(t) = Xn afastn (t) xfastn + Xn aslown (t) xslown : (1.7)This equation represents a transformation between the elements of the state ve
tor x(t)and the normal mode amplitudes an(t). The slow manifold is now simply de�ned asafastn = 0 8 n.The 
on
ept of the slow manifold is intimately related to fast/slow intera
tions. If theintera
tion is negligible then we may 
onstrain model traje
tories to the slow manifoldwithout loss of a

ura
y, justifying the use of �ltered models.1In turn, solutions of the full in
ompressible Navier-Stokes equations 
an also be said to exist on aslow manifold, namely that manifold of the 
ompressible Navier-Stokes equations whi
h is 
ompletelydevoid of the \very fast" a
ousti
 modes. 13
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tionThe existen
e of a stri
t invariant slow manifold within the unapproximated equationsof 
uid motion, upon whi
h a real 
ow may evolve without ever ex
iting inertia-gravitywave modes, has been debated ever sin
e it was de�ned by Leith (1980) and Lorenz(1980). There is no guarantee that a traje
tory whi
h starts out on the slow manifoldbut whi
h evolves a

ording to the full equations (1.5) will remain on the slow manifoldfor all time. This is a potential sour
e of unreliability in any �ltered model whi
h makesthe a priori assumption of perpetual slow manifold 
on�nement.Lorenz (1986) and Lorenz & Krishnamurthy (1987) have investigated the problem by
onstru
ting redu
ed-dimensional primitive equation models derived from the shallowwater equations, 
ontaining three slow and two fast independent variables. They 
ouldnot �nd initial 
onditions for whi
h the fast motions remained absent during their numer-i
al integrations, and 
on
luded that this model did not possess an invariant slow man-ifold. Ja
obs (1991) examined the same numeri
al model and dis
overed that a slowmanifold did in fa
t exist. Lorenz (1992) argues that there is no mathemati
al in
onsis-ten
y between the two 
on
lusions, and that the apparent dis
repan
y is due to di�eringde�nitions of the slow manifold.More re
ently, Yavneh & M
Williams (1994) report a distin
t breakdown of the slowmanifold at a 
riti
al Rossby number, in a numeri
al solution of the shallow water equa-tions, though their breakdown is primarily asso
iated with enhan
ed dissipation ratherthan an initiation of inertia-gravity wave propagation. Warn & Menard (1986) haveargued that, when the slow manifold breaks down, it may simply be perturbed from asmooth subspa
e to a quasi-sto
hasti
 subspa
e, but that this \fuzzy manifold" may stillpossess many of the most useful properties of the original slow manifold. The questionsof the existen
e of slow and fuzzy manifolds, and even of how to properly de�ne them,
learly remain 
ontroversial.
1.4 Appli
ation to weather fore
astingInertia-gravity waves exist ubiquitously in the Earth's atmosphere, and are of parti
u-larly large amplitude in the upper troposphere and lower stratosphere. They are observedin high resolution data from radiosondes, ro
kets and satellites (e.g. Sato (1994) and ref-14
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Figure 1.2: Gravity waves in no
tilu
ent 
louds photographed over Kiruna, Swe-den at 23:08 on the night of 10th August 2000. On this o

asion, the waves per-sisted for around 15 minutes before dissipating away. (Photograph by Dr. S. Kirk-wood, Dr. P. Dalin and Dr. A. Mostr�om, Swedish Institute of Spa
e Physi
s.)eren
es therein for radar observations). They are reported to have verti
al wavelengthsof around 1{5 km, horizontal wavelengths of around 200{1000 km and intrinsi
 timeperiods of around 10 hours.Re
ently, extensive ground-based observations of atmospheri
 pure gravity waves havebeen made by a team at the Swedish Institute of Spa
e Physi
s. They report that grav-ity waves of wavelengths in the range 5{50 km are visible from the ground in no
tilu
ent
louds (NLCs) on around one night in three during the summer months, predominantlybetween latitudes 50{70ÆN and times 22:00{04:00 (Dr. P. Dalin, personal 
ommuni
a-tion). A typi
al observation is shown in Figure 1.2.Observations su
h as these have been mirrored in high-resolution numeri
al simula-tions of the atmosphere (e.g. O'Sullivan & Dunkerton, 1995; Sato et al., 1999) inwhi
h inertia-gravity waves have been generated by the geostrophi
 adjustment of abaro
lini
ally-unstable tropospheri
 jetstream. An example of the inertia-gravity waveradiation produ
ed during this pro
ess is shown in Figure 1.3.15
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Figure 1.3: Contours of horizontal velo
ity divergen
e at 130 mb on day 11 of ahigh-resolution (T126, �z = 700 m) numeri
al simulation by O'Sullivan & Dunker-ton (1995). The model was initialized with a small-amplitude zonal wavenumber6 mode, superimposed on a zonally-uniform baro
lini
ally-unstable 
ow. By day11, the perturbation has rea
hed its maximum amplitude and begun to de
ay,generating the inertia-gravity waves shown.The normal modes of a system will only appear if there is a me
hanism present to ex
itethem. There are two generation me
hanisms for inertia-gravity waves in the free atmo-sphere (away from topography). Dalin's waves were generated due to a lo
al wind shear,whereas O'Sullivan and Dunkerton's were radiated as ex
ess energy, as a balan
ed modelost and then re-established its balan
e through the geostrophi
 adjustment me
hanism.It seems to be un
lear whi
h is the dominant of these two me
hanisms in the atmosphere,but in Chapter 6 we will be in a position to determine the dominant me
hanism in a lab-oratory experiment whi
h is in many respe
ts a s
aled-down analogue of the atmosphere.
1.4.1 The importan
e of initializationDespite the 
on�rmed ubiquitous presen
e of inertia-gravity waves in the lower, meteo-rologi
ally signi�
ant part of the atmosphere, a 
onsiderable portion of the e�ort thatgoes into produ
ing weather fore
asts is spent on the initialization pro
ess, in whi
hinertia-gravity waves are �ltered out of the observations before they are used as initial
onditions. This is done for a number of reasons.Firstly, atmospheri
 observations are often of su
h dubious quality that any apparentdepartures from balan
e are just as likely to be due to errors in the measurements, or in16
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Figure 1.4: Time series of surfa
e pressure at a �xed spatial point from a prim-itive equations model of the atmosphere, with uninitialized (solid) and initialized(dashed) starting �elds. From Williamson & Temperton (1981).the pro
ess whi
h interpolates these measurements onto a regular grid, as to the pres-en
e of inertia-gravity waves. Se
ondly, even if inertia-gravity waves are the reason fordepartures from balan
e, typi
al observations are too sparse to fully resolve them, andthe horizontal spatial resolution of numeri
al models is at present too low (11 km in theUK Meteorologi
al OÆ
e mesos
ale model) to a

urately 
apture their evolution (butsee Se
tion 1.4.3). Furthermore, 
omplete and permanent elimination of the fast modespermits the use of a signi�
antly longer timestep whilst still satisfying the CFL 
riterion,whi
h leads to more eÆ
ient integrations. Finally, the key aim of operational meteorol-ogists is to model the synopti
-s
ale phenomena that 
onstitute our weather systems,rather than trouble themselves with small-s
ale waves whose e�e
ts are se
ondary. Forthese reasons, it is desirable to have an initial atmospheri
 state whi
h has no proje
tiononto inertia-gravity modes, and so the observations are proje
ted onto the slow manifoldbefore being used as the initial 
onditions for the fore
ast.An example of the likely 
onsequen
es of running an uninitialized primitive equationsmodel is shown in Figure 1.4. Using uninitialized starting 
onditions, based on raw17
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tionobservational data, the time series 
ontains a large and spurious high-frequen
y inertia-gravity wave 
omponent whi
h dominates the signal. Performing the same run butusing initialized starting 
onditions, obtained by slightly adjusting the observations ina pres
ribed way to take them towards balan
e, 
ompletely removes the high-frequen
y
omponent leaving only the slow trend of meteorologi
al interest.The issue of whether inertia-gravity waves in the atmosphere 
an a�e
t the develop-ment of synopti
-s
ale weather systems is therefore an important and topi
al problemin meteorology, sin
e if su
h an intera
tion exists it 
ould pla
e a fundamental limit onthe a

ura
y of fore
asting models whi
h do not in
orporate it. Operational meteoro-logi
al 
entres in
lude a parameterization of the e�e
ts of inertia-gravity waves in theirfore
asting models, in parti
ular of their drag on the large-s
ale 
ow (Hines, 1997), butthis is 
ertainly an in
omplete representation of the full intera
tion.
1.4.2 History of numeri
al weather predi
tionAtmospheri
 inertia-gravity waves are not readily ex
ited, sin
e the length s
ale of thedi�erential solar for
ing between equator and poles is well-mat
hed to typi
al Rossbymode wavelengths, but not to inertia-gravity wavelengths. Moreover, inertia-gravitymodes are more eÆ
iently dissipated sin
e vis
ous e�e
ts are highly s
ale-sele
tive.Therefore the vast majority of the energy of the atmosphere is in the vorti
al modes,and the atmospheri
 state is 
lose to the slow manifold.We 
an 
apitalize on this when 
onstru
ting a model for numeri
al weather predi
tion.There would be a large redundan
y in a model whi
h 
aptured the dynami
s of solu-tions far from the slow manifold if it was known that the phase spa
e traje
tory wouldnever visit there. To over
ome this, we 
an either �lter the fast modes out of the initial
onditions, as des
ribed in Se
tion 1.4.1, or alternatively �lter the fast mode solutionsout of the equations themselves by proje
ting the equations onto the slow manifold. Wenow brie
y review the history of numeri
al weather predi
tion, in whi
h both of thesemethods have been attempted, in order to illustrate the importan
e and diÆ
ulty ofeliminating unbalan
ed modes from the fore
ast.18



Chapter 1. Introdu
tionPeople have been fas
inated by the weather sin
e time immemorial, and have oftenmade 
asual fore
asts based on simple lo
al observations su
h as the 
olour of the nightsky. The �rst regular and systemati
 fore
asts were those produ
ed by Admiral RobertFitzroy in 1860, whi
h he published in the Times (Lyn
h, 2001). Fore
asting methodsemployed then in
luded maintaining a large 
atalogue of daily weather maps from thepast, in order, and then �nding a map whi
h resembled the 
onditions for the presentday and supposing that the atmosphere would do again what it had done before. Lorenz(1969) has shown that with this method, known as the method of analogues, it is diÆ
ultto �nd an a

eptably 
lose mat
h even if the 
atalogue 
onsists of 2000 maps.Meteorology was �nally given a �rm s
ienti�
 basis when when Bjerknes (1904) sug-gested the then revolutionary idea of solving partial di�erential equations to 
al
ulate thefuture weather. Two de
ades later this method was a
tually implemented by Ri
hardson(1922), who performed the world's �rst numeri
al weather fore
ast. He integrated thedis
retized partial di�erential equations numeri
ally on paper and, a

ording to Lyn
h(1993), took two years to obtain his solution. He used the hydrostati
 primitive equations(HPEs) | a slightly approximated form of the Navier-Stokes equations on a sphere, 
on-taining both fast and slow modes. He obtained 
ompletely unrealisti
 values (a surfa
epressure 
hange of 145 mb in 6 hours) be
ause the initial �elds 
ontained a signi�
antbut spurious inertia-gravity wave 
omponent, as in Figure 1.4, and not be
ause of errorsin his method.The world's �rst 
omputer fore
ast was performed by Charney, Fj�ortoft and Von Neu-mann three de
ades later. In order to avoid Ri
hardson's problem, they �ltered theequations of motion to derive the quasi-geostrophi
 (Q-G) system (Charney, 1948) andtheir fore
asts were reasonably su

essful.The HPEs were used again a few years later, sin
e they were shown to be more a

uratethan the Q-G equations. But in order to avoid Ri
hardson's error, it was ne
essary toinitialize the starting �elds. Determining the most suitable initialization method formeda major area of resear
h during the de
ades whi
h followed. The following initializationmethods have been proposed. 19
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tionHinkelmann (1951) suggested that the initial state should be modi�ed so as to begeostrophi
ally balan
ed, and then Charney (1955) suggested that it should instead sat-isfy the nonlinear balan
e equation, a diagnosti
 relation between the wind �eld and thegeopotential. Phillips (1960) suggested that an even better initialization would result ifthe horizontal divergen
e of the initial wind were set equal to that implied by Q-G theory.The te
hnique of dynami
 initialization was introdu
ed by Miyakoda & Moyer (1968),and is dis
ussed in the initialization review arti
le by Lyn
h (1986). This involves inte-grating the raw observation data �rst forwards and then ba
kwards in time, using theHPEs with enhan
ed dissipation. This forward/ba
kward 
y
le is repeated several timesto obtain �elds in whi
h the high frequen
y 
omponents have been damped out by thedissipation, and the �elds so obtained are used as the initial 
onditions for the fore
ast.Initialization te
hniques based on normal mode de
ompositions are dis
ussed in thereview arti
le by Daley (1980). The te
hnique of linear normal mode initialization(LNMI) was tested by Williamson (1976). The initial �elds are separated into Rossbyand inertia-gravity wave 
omponents (that is, proje
ted onto the linear normal modesas in Se
tion 1.3) and the amplitudes of the latter are set to zero. Unfortunately theinertia-gravity waves soon re-appear in the fore
ast: the primitive equations are nonlin-ear and evidently allow the Rossby 
omponents to intera
t in su
h a way as to generatenew inertia-gravity waves.The te
hnique of nonlinear normal mode initialization (NNMI) was suggested indepen-dently by Ma
henhauer (1977) and Baer (1977) and Baer & Tribbia (1977). This involvesnot setting the initial inertia-gravity wave 
omponents to zero, but instead setting theirinitial rate-of-
hange to zero. NNMI takes into a

ount the nonlinear nature of the equa-tions. It works very well: the fore
ast is very smooth and the spurious inertia-gravitywaves remain a

eptably small throughout the integration. NNMI is the most popularmethod of initialization today, and it is used in many fore
ast 
entres.Most re
ently, the te
hnique of digital �ltering has been suggested by Lyn
h (1991) as asimpler method than NNMI. It involves 
arrying out two short HPE model integrationsstarting with the raw data, one forwards in time and one ba
kwards. This gives a time20
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tionseries (of typi
ally 6 hours) 
entred on t = 0 for ea
h model variable at ea
h grid-point.A low-pass �lter is then applied to these time-series, and the resulting values at t = 0 areused as the initial 
onditions. An optimal �lter shape has been 
hosen and su

essfullyimplemented by Lyn
h (1996). Interestingly, Lyn
h (1999) has repeated Ri
hardson'smanual 
al
ulation on a 
omputer, and reprodu
ed the surfa
e pressure tenden
y of145 mb in 6 hours. In the same paper, he repeats the analysis after initialization of thestarting �elds with a digital �lter, and obtains a realisti
 pressure tenden
y of 3 mb in6 hours.
1.4.3 When might inertia-gravity waves be resolved?The resolution of operational numeri
al weather predi
tion models has improved dra-mati
ally sin
e the �rst ever 
omputer fore
asts were performed. The resolution is nowsuÆ
iently high that medium- to large-wavelength inertia-gravity waves 
an be partiallyresolved. Given a further redu
tion in the horizontal grid spa
ing by a fa
tor of 10, witha 
orresponding improvement in observations, su
h waves 
ould be fully resolved andpotentially in
luded expli
itly in a fore
ast, rather than through an impli
it parameter-ization of their e�e
ts.If latitudinal and longitudinal grid spa
ings were ea
h to drop by a fa
tor of 10, wewould also need to redu
e the timestep by a fa
tor of 10 to leave the Courant numberuna�e
ted. This would lead to an in
rease in 
omputer time for a fore
ast by a fa
torof around 1000, or alternatively, we would need an in
rease in pro
essing speeds by afa
tor of 1000 for the integration to take the same time. Sin
e this fa
tor 
orrespondsto 10 doublings of 
lo
k speeds (210 � 103) and sin
e 
lo
k speeds double around every18 months (Moore's law), this is expe
ted to be a
hievable in around 15 years.When this time 
omes, it would be useful for meteorologists to have a body of knowl-edge regarding the anti
ipated impa
ts of the inertia-gravity waves on the larger-s
ale
ow. It is hoped that this thesis will form a small part of that 
olle
tion of information,and that the present study will suggest dire
tions for the resear
h that will be neededbetween now and then to produ
e the rest.21
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tion1.5 Dynami
al similarity and laboratory experimentsIt is well-known (Douglas & Gasiorek, 2000) that, when written in non-dimensional form,the equations whi
h govern the evolution of seemingly di�erent 
uid dynami
al systems
an be very similar. The aim of laboratory experiments in geophysi
al 
uid dynami
s isto exploit this dynami
al similarity, to make inferen
es about atmospheri
 and o
eani
phenomena from observations of the analogous laboratory 
ows.As an example appropriate to this study, the shallow water equations (SWEs) appliedto an approximated two-layer atmosphere or o
ean, 
an very 
losely resemble the SWEsfor a rotating, two-layer laboratory experiment. This statement holds despite the fa
tthat typi
al length and time s
ales for 
orresponding geophysi
al and laboratory 
ows
an di�er by very many orders of magnitude. All that matters for dynami
al similarityis equality of the relevant non-dimensional dynami
al and geometri
al parameters, su
has the Rossby number and aspe
t ratio.Dynami
al similarity allows us to study geo
uids in the laboratory, as suggested byFigure 1.5. On
e we have solved a parti
ular 
uid 
ow problem by making observationsin the laboratory, we have a
tually solved an in�nite number of other 
uid 
ow prob-lems all of whi
h are dynami
ally and geometri
ally similar, in
luding on the planetarys
ale. For most of the remainder of this thesis, we study experiments in an isothermal,rotating, two-layer laboratory apparatus. In the �nal 
hapter we return the fo
us togeo
uids to 
onsider how portable our laboratory 
on
lusions are to the atmosphere ando
ean, mindful of the di�erent non-dimensional parameters and boundary 
onditions ween
ounter in the laboratory.Figure 1.6 shows a foretaste of the sort of 
ow we 
an observe using the present laboratoryapparatus. In the image, baro
lini
 instability has led to the growth of a slow, large-s
alemode with a dominant azimuthal wavenumber of two. Importantly for our purposes, twogroups of fast, small-s
ale waves have developed and are superimposed onto the larger-amplitude baro
lini
 wave. Note the striking resemblan
e between small-s
ale waves inthe laboratory experiment (Figure 1.6), and those in the atmosphere (Figure 1.2) anda numeri
al model (Figure 1.3). That waves on su
h dramati
ally di�erent s
ales 
anappear so similar in form is testament to the power of the 
on
ept of dynami
al similarity.22
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Figure 1.5: Diagram showing the analogy between (a) the 
uid in a rotatingannulus experiment in the laboratory, and (b) the 
uid bounded by two latitude
ir
les on a rotating planet. From Read et al. (1998).
23
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Figure 1.6: Sample laboratory experiment image. A large-s
ale baro
lini
 waveis shown to 
oexist with two groups of small-s
ale waves. There is a relationship,to be determined in Chapter 3, between the 
olour in the image and the height ofthe two-layer liquid interfa
e.
1.6 Previous laboratory workLaboratory investigations of non-rotating 
uid 
ows began in the nineteenth 
entury,and in
lude the 
lassi
 investigations of Reynolds (1883). At around the same time, Vet-tin (1884) be
ame probably the �rst person to exploit dynami
al similarity by 
arryingout rotating laboratory experiments as analogues of geophysi
al systems. He studiedthe surfa
e 
ow in a rotating dishpan of 
uid with a lump of i
e near the 
entre, repre-senting a polar i
e 
ap, and (to the s
orn of his 
ontemporaries) he drew meteorologi
al
on
lusions from his results.The main bene�ts of studying geo
uids indire
tly in the laboratory are that the systemis under the 
omplete 
ontrol of the experimenter, that global high-resolution measure-ments 
an be systemati
ally taken, and that experiments 
an be repeated as many timesas required. None of these statements hold when geo
uids are studied dire
tly ratherthan in the laboratory. A review of the role of laboratory experiments in geophysi
al24
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uid dynami
s is given in Hide (1977).As suggested by Vettin's experiment, for the 
losest resemblan
e between annulus andplanet in Figure 1.5 we should apply heating and 
ooling at the outer and inner verti
alsidewalls, respe
tively, to mimi
 the di�erential solar thermal for
ing between equatorand pole. The resulting rotating thermal annulus system with 
ontinuous 
uid strati�
a-tion has been extensively studied sin
e the early 1950s, in
luding the 
lassi
 experimentsof Hide et al. (1977).It follows from the thermal (and gradient) wind balan
e equations for a rapidly-rotatingannulus, that a radial temperature gradient will be a

ompanied by a verti
al shearin the zonal velo
ity (su
h as that asso
iated with the tropospheri
 jetstream in theatmosphere). Similar 
ows to those obtained in the thermal annulus 
an therefore beobtained in an isothermal annulus by imposing a velo
ity shear dire
tly. For studyinggeo
ows, an alternative to the thermal annulus is therefore the rotating two-layer annu-lus, with a shear provided a
ross the 
uid interfa
e by di�erentially-rotating top andbottom horizontal boundaries.The rotating, two layer annulus has also been studied extensively in the laboratory(e.g. Carrigan, 1978; King, 1979b; Appleby, 1982), and good agreement has been rea
hedbetween the properties of balan
ed 
ows in the thermal and two-layer annuli, and ofthose in the 
orresponding theoreti
al and numeri
al models (Klein, 1990). During thetwo-layer annulus laboratory experiments of Lovegrove (1997), whi
h were designed toinvestigate bifur
ations between di�erent large-s
ale modes, it was found under 
ertain
ir
umstan
es that fast, small-s
ale modes 
ould develop. This �nding, of se
ondaryinterest to Lovegrove's study and so not investigated in detail, has formed the startingpoint for the 
urrent work.
1.7 The 
urrent studyLovegrove's �ndings showed that the intera
tion between balan
ed large-s
ale and unbal-an
ed small-s
ale waves 
ould be studied, for the �rst time, in the laboratory. Previousinvestigations had been ex
lusively based on highly-idealized and trun
ated numeri
al25



Chapter 1. Introdu
tionand theoreti
al models, whose representation of reality was far from 
omplete.This thesis is a study of s
ale-separated intera
tions in 
uids in the laboratory, withthe underlying motive being to better understand su
h intera
tions in geo
uids su
has the atmosphere and o
ean. In the past, there have been laboratory investigationsof large s
ale intera
tions (Se
tion 1.6), and analyti
al investigations of s
ale-separatedintera
tions and the slow manifold (Se
tion 1.3). This study is believed to be the �rstlaboratory investigation of the slow manifold.
1.7.1 Aims of this investigationThe key s
ienti�
 questions we wish to answer are:� Under what 
ir
umstan
es do small-s
ale waves appear in the labora-tory experiments? We answer by undertaking a new series of experimentalinvestigations.� Whi
h me
hanism 
auses the small-s
ale waves to appear in the lab-oratory experiments? We answer by 
omputing several radiation diagnosti
sasso
iated with the 
andidate me
hanisms. We do this using velo
ity data from anumeri
al model.� What are the e�e
ts of the laboratory small-s
ale waves on the large-s
ale, balan
ed 
ow? We answer by 
omparing model (�ltered) and laboratory(un�ltered) regime diagrams, and by performing model runs both with and withouta sto
hasti
 inertia-gravity wave parameterization.� Having answered these questions for a laboratory experiment, what
an we infer about answers to the analogous questions for geo
uids? Weanswer by 
omparing and 
ontrasting the laboratory experiment with the atmo-sphere and o
ean, in
luding a 
omparison of nondimensional parameters and ofboundary 
onditions. 26



Chapter 1. Introdu
tion1.7.2 Thesis outlineThis thesis is split naturally into two parts. The �rst part des
ribes the out
ome of a lab-oratory investigation using the rotating, two-layer annulus. The apparatus is des
ribedin Chapter 2, and a method for 
alibrating interfa
e heights is developed and applied inChapter 3. In Chapter 4, the results of an extensive series of experiments are des
ribedand analyzed.The se
ond part of the thesis des
ribes the out
ome of a 
omplementary method forinvestigating the rotating annulus, by running a purpose-built numeri
al model. InChapter 5, we derive the model equations and obtain a reliable and fast integrations
heme. In Chapter 6, we des
ribe the results of the model runs, and 
ompare themwith the laboratory results. Then, in Chapter 7, we add a sto
hasti
 inertia-gravitywave parameterization to the model, and investigate its e�e
ts upon the large-s
ale 
ow.Finally, in Chapter 8, we summarize the present work, and give our 
on
lusions aboutthe s
ale-separated wave-wave intera
tion in the laboratory by stating answers to theabove four questions. We dis
uss the appli
ability of these 
on
lusions to the analogousintera
tion in geo
uids, and end by des
ribing some possible avenues for future work.

27



Chapter 2
Des
ription of the laboratoryapparatus \d-limonene ... 
an be harmful when vaporized and breathed."US Environmental Prote
tion Agen
y website\...the primary ingredient of Citrus Burst r, d-limonene, is plantderived. It is extremely safe..."Florida Chemi
al Company, In
. websiteIn this 
hapter, a des
ription is given of the rotating, two-layer annulus apparatus whi
hhas been used for the laboratory 
omponent of this study. The apparatus was built atthe U.K. Meteorologi
al OÆ
e in the early 1970s, where it was used in the studies ofKing (1979b) and Appleby (1982). The apparatus was later moved to the University ofOxford, where is was used most re
ently by Lovegrove (1997).In the following se
tions, we des
ribe some modi�
ations whi
h have been made tothe apparatus sin
e the experiments of Lovegrove. These in
lude an upgrade to ahigher-quality video format for image transmission and storage, and the installationof a higher-resolution frame-grabber in the laboratory 
omputer. We present some newresults regarding the sensitivity of the working 
uid properties to temperature 
u
tu-ations. Then we develop a simple method for redu
ing the mutual interfa
ial tension,and we dis
uss some previously unreported but important observed 
hanges as the 
uids28



Chapter 2. Des
ription of the laboratory apparatusage. Details of the employed 
ow visualization te
hnique are given, and of the extent towhi
h the visualization is distorted by refra
tion and parallax e�e
ts.
2.1 The rotating, two-layer annulusPhotos of the rotating, two-layer annulus apparatus are shown in Figures 2.1 and 2.2, andthe annulus is shown s
hemati
ally in Figure 2.3. The annulus 
onsists of a 
ylindri
alstainless steel tank of inner radius 125.00 mm and depth 250.00 mm, whi
h has a �xedglass base and a removable glass lid. A solid steel 
ylinder, of radius 62.50 mm anddepth 250.00 mm, is glued 
oaxially (to within an estimated 0.1 mm) to the base ofthe tank to form an annulus of gap width 62.50 mm. The annular region is �lled tothe brim with equal volumes of two immis
ible liquids, to give a two-layer liquid witha well-de�ned interfa
e and equal resting layer depths of 125 � 1 mm. Details of theparti
ular 
uids used are given in Se
tion 2.2.The tank is mounted 
entrally (to within an estimated 0.1 mm) above a paraboli
 
or-re
tion tank (dis
ussed in Se
tion 2.4) on a 
ir
ular turntable 1 m above the laboratory
oor, whi
h 
an be made to rotate under 
omputer 
ontrol with angular velo
ity 
. Theannulus lid, whi
h is in 
onta
t with the upper liquid, 
an be made to rotate under 
om-puter 
ontrol with angular velo
ity �
 relative to the tank. This is possible be
ausethe lid is 
onne
ted to the tank via a ball ra
e, allowing low-fri
tion relative motionpowered by a servo motor and drive wheel. Both 
 and �
 
an take either sign, andare stable to within 1% over a period of a few hours. The maximum a
hievable valuesare j
maxj = 6:3 rad s�1 and j�
maxj = 3:1 rad s�1.There is a 
entral 
ir
ular hole in the turntable, of radius equal to the tank radius, sothat white light from a bright 500 W tungsten-halogen sour
e lamp on the laboratory
oor may pass verti
ally into, through and out of the annular gap. The light is re
eivedby a 
olour 
harge-
oupled devi
e (CCD) video 
amera, whi
h is on the rotation axisand 
o-rotates with the turntable 2 m above it. Communi
ations between the laboratoryframe and the rotating turntable frame (namely the 
amera power and output signal,and the servo motor power) are a
hieved through a 
ommutator slip-ring, hidden from
amera view by the inner 
ylinder. 29



Chapter 2. Des
ription of the laboratory apparatus

Figure 2.1: The two-layer annulus apparatus and 
ontrol equipment. From left toright: the rotating turntable, mounted with the annulus and with a tall metal frameto support the video 
amera; an ampli�er whi
h powers the turntable rotation andlid rotation; a television and video re
order to wat
h and re
ord live images fromthe 
amera; and a 
omputer with a frame-grabber installed to digitize and savesele
ted images.

Figure 2.2: Close-up view into the annular tank from above.30



Chapter 2. Des
ription of the laboratory apparatus
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Figure 2.3: S
hemati
 
ross-se
tion through the two-layer annulus apparatus,showing the prin
ipal 
omponents. (Not to s
ale.)
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Chapter 2. Des
ription of the laboratory apparatus

(a) (b)Figure 2.4: Images 
aptured from a video tape of the two-layer annulus exper-iment, photographed by the CCD 
amera. Digitization of the images was doneusing (a) the 
urrent frame-grabber and S-VHS equipment, and (b) the previousframe-grabber and regular VHS equipment.The S-VHS signal1 output by the 
amera 
an be re
orded at 25 frames per se
ond ontohigh-quality, S-VHS video tapes, whi
h 
an be played ba
k for subsequent analysis. Thevideo signal 
an be input to a 
omputer with a frame-grabber, to produ
e 
olour 24-bitdigitized images measuring 768 pixels by 576 pixels. A sample image is shown in Fig-ure 2.4(a), showing a wavenumber 2 mode whi
h has grown due to baro
lini
 instabilityand whi
h slowly drifts around the annulus with a period of around one minute. Dif-ferent 
olours 
orrespond to di�erent depths of the lower liquid layer, for reasons to bedis
ussed fully in Se
tion 2.3. For referen
e, an image of a similar 
ow, 
aptured usingthe older frame-grabber and ordinary VHS equipment used by Lovegrove et al. (2000),is shown in Figure 2.4(b). The image size is 320 pixels by 240 pixels, and so the use ofthe new frame-grabber has multiplied the resolution by a fa
tor of 2.4 in ea
h dimension.
2.2 Fluid propertiesWe 
hoose to use water as the liquid for one of the layers. The water is �rst puri�edby being passed through a de-ionizing �lter, as this slows down mould growth in theapparatus. The liquid for the other layer must then be hydrophobi
, so that the twolayers are mutually immis
ible and give a well-de�ned interfa
e. It should be transparentand 
olourless, to allow the passage of light without signi�
ant absorption. It should1S-VHS, or Super-VHS, is a professional master grade version of regular VHS.32



Chapter 2. Des
ription of the laboratory apparatushave an opti
al a
tivity whi
h is non-zero and whi
h varies strongly with wavelength forvisible light, in order for the 
ow visualization te
hnique to be des
ribed in Se
tion 2.3to work. It would be advantageous if it had a density and vis
osity 
lose to that of waterfor 
omparison with theoreti
al two-layer models, many of whi
h make assumptions ofsmall strati�
ation and equal vis
osities (as dis
ussed in the review arti
le by Klein,1990).A liquid whi
h satis�es most of these requirements is limonene2, an organi
 oil whi
his distilled from orange peel. Unfortunately, its density (840 kg m3) is signi�
antly lessthan that of water. The limonene 
annot be used as the upper layer, as it is highlyvolatile and rapidly evaporates to produ
e a harmful vapour (WHO, 1998), and theapparatus is not airtight. For this reason, the limonene is mixed with CFC-113 3, aheavier-than-water, 
olourless, hydrophobi
, opti
ally-ina
tive solvent, in su
h propor-tions that the 
omposite liquid is slightly more dense than water. Water is then used asthe upper layer liquid, thereby preventing harmful vapours from es
aping into the lab-oratory. Some relevant physi
al properties of the liquids whi
h make up the two layersare given in Table 2.1. The liquids are the same as those used by Lovegrove.
2.2.1 Thermal expansivitiesIt is seen from Table 2.1 that the two layers have quite di�erent thermal expansivities.As the temperature rises, the lower layer be
omes less dense more qui
kly than theupper layer. A

ording to the values in the table, the ambient laboratory temperatureneeds to rise by only around 5 ÆC before the two layers have equal densities, leadingto a possible Rayleigh-Taylor instability (A
heson, 1990) and layer inversion. In orderto prevent this, the ambient laboratory temperature must be tightly 
ontrolled. An air
onditioning system was used to a
hieve this, and was found to keep the temperaturewithin 0.1 ÆC of 20.0 ÆC over a 24-hour period, as opposed to an observed 
u
tuationof 2.0 ÆC with the system swit
hed o�. The air 
onditioning system was permanentlyswit
hed on during the experiments des
ribed in this thesis, to keep variations in thefra
tional density di�eren
e tolerably low, both during and between experiments.2Limonene is also known by its synonyms 
arvene and methyl
y
lohexene.3The full name is 1,1,2-tri
hlorotri
uoroethane.33



Chapter 2. Des
ription of the laboratory apparatusde-ionized water limonene/CFC-113layer 1 layer 2(upper) (lower)density, � (kg m�3) 997� 1 1003� 1thermal expansivity, � (10�4 K�1) 2:07� 0:01 13:0� 0:1mutual interfa
ial tension, S (10�2 N m�1) 2:85� 0:1 2:85� 0:1kinemati
 vis
osity, � (10�6 m2 s�1) 1:27� 0:02 1:08� 0:02opti
al a
tivity, �, at 0.59 �m ( Æ m�1) 0 770� 10refra
tive index, n, at 0.59 �m 1:3328� 0:0001 1:4466� 0:0001Table 2.1: Physi
al properties of the freshly-prepared working liquids at theambient laboratory temperature (20.0 ÆC) and pressure. The densities and ther-mal expansivities were measured in the laboratory by the author using a densitymeter, whi
h times the period of os
illation of an ele
tromagneti
ally-ex
ited sam-ple tube in order to a

urately 
al
ulate density. The mutual interfa
ial tensionwas measured in the laboratory by the author using a torsion balan
e, whi
h mea-sures the for
e required to pull a thin wire loop through the interfa
e in order todetermine the tension. The sour
es for the other property values are Lovegrove(1997), Hart & Kittelman (1986), Lide (1995) and Kaye & Laby (1995).There is another problem asso
iated with the large temperature sensitivity of the two-layer liquid, namely that the 500 W lamp dire
tly beneath the annulus is not only ane�e
tive light sour
e but also an e�e
tive heat sour
e. During some of the initial exper-iments performed in this study, this heating was so strong that the liquids exhibited aspontaneous Rayleigh-Taylor inversion around two hours after the lamp was swit
hedon. Be
ause it was desired to run experiments whi
h lasted for longer than two hours,an ele
tri
 desktop fan was positioned on the laboratory 
oor to blow air a
ross thelamp, as shown in Figure 2.3. The aim was to inhibit and destroy 
onve
tion 
ells, inthe hope that the majority of the heat transfer from lamp to liquids was via 
onve
tionrather than radiation. This strategy worked, and experiments lasting three hours andlonger 
ould be 
arried out when the fan was swit
hed on.Lovegrove did not do
ument taking these measures to 
ontrol the liquid temperature,as he was probably not aware that the layer thermal expansivities were so di�erent.There is therefore a possibility of redu
ed gravity drift in his experiments, whi
h wasnot do
umented until now. 34



Chapter 2. Des
ription of the laboratory apparatus
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Figure 2.5: The path of a ray of light whi
h enters the annulus verti
ally at radiusr, where the interfa
e height is h(r) and the slope is dh=dr.2.2.2 Refra
tionThe di�erent refra
tive indi
es of the two layers (Table 2.1) will 
ause refra
tion to o

urat the 
uid interfa
e. The images from the 
amera will therefore show a distorted versionof the a
tual interfa
e height shape, whi
h means that the images output by the 
ameramust be interpreted with 
aution.Consider a ray of verti
ally-travelling light whi
h enters the base of the tank at radiusr, as shown in Figure 2.5. For this simpli�ed analysis, the interfa
e height h(r) is takento be a fun
tion of r only. The angle of in
iden
e 
2 is given bytan 
2 = dhdr ; (2.1)and is related to the angle of refra
tion 
1 by Snell's Law:n1 sin 
1 = n2 sin 
2 : (2.2)Eliminating 
2 between (2.1) and (2.2) givessin 
1 = n2n1 dh=drp1 + (dh=dr)2 : (2.3)35



Chapter 2. Des
ription of the laboratory apparatusThe angle through whi
h the ray is de
e
ted at the interfa
e is then 
 � 
1 � 
2. Lightwhi
h entered the base at radius r appears to the 
amera to have entered at apparentradius r0 � r � �, where � = h tan 
 : (2.4)The 
amera therefore gives a distorted image of the annulus: if we observe a 
ertain
olour at a parti
ular radius on a still from the 
amera, the radius at whi
h the lowerlayer a
tually has the height 
orresponding to that 
olour is o�set from the observationradius by an amount �.For a worst-
ase s
enario of interfa
ial slope dh/dr=1, equations (2.1) and (2.3) give
2 = 45:0Æ and 
1 = 50:1Æ, so that the de
e
tion angle is 
 = 5:1Æ. At a point whereh = 12:5 
m, equation (2.4) gives � = 1:1 
m, whi
h is almost 20% of the annular gapwidth. It is important to use a 
ertain amount of 
aution, then, when using images fromthe 
amera to infer distan
es in the annulus.In pra
ti
e there will also be azimuthal refra
tive distortion, negle
ted in this analysis,whi
h will make no di�eren
e to wavelength determination but whi
h will bias the kur-tosis (peakiness) of the inferred wave shape. There will also be refra
tion at the glasslid, negle
ted here.If it were ne
essary, we 
ould 
ompensate for radial refra
tive distortion by using equa-tions (2.1), (2.3) and (2.4) to derive the transformation from apparent radius seen bythe 
amera to a
tual radius. Su
h an analysis has not been 
arried out in this study,be
ause the 
al
ulation to obtain the mapping be
omes very involved; the maximumdistortion is only a 
entimetre; and we are not 
on
erned with lo
ating exa
tly wherethe fast waves appear in the annulus.
2.2.3 Interfa
ial tensionThe interfa
ial tension between the liquids (Table 2.1) is around four times as largeas the values en
ountered in the two-layer experiments of King (1979b) and Appleby(1982), who used di�erent working liquids from the present ones. The 
lassi
al theoreti-
al two-layer models �rst used by Phillips (1951) do not in
lude the e�e
ts of interfa
ial36



Chapter 2. Des
ription of the laboratory apparatusvolume of washing-upliquid per unit surfa
e 0 0.32 0.64 0.96area of water (ml m�2)interfa
ialtension 28:5� 1:1 5:3� 0:4 1:4� 0:4 1:3� 0:4(10�3 N m�1)Table 2.2: Dependen
e of interfa
ial tension on amount of added washing-upliquid, as measured in small samples of the working liquids using a torsion balan
ein the laboratory. A saturation limit is rea
hed at around 0.6 ml m�2. Thequantity of added surfa
tant is given as a volume per unit surfa
e area of theworking liquid, rather than per unit volume, as it is assumed that all surfa
tantmole
ules are attra
ted to the surfa
e rather than existing throughout the entireliquid volume, up to the saturation point.tension. Moreover, interfa
ial tensions are non-existent in the atmosphere and are 
om-pletely negligible in the o
ean (ex
ept for motions on the very smallest of length s
ales).Be
ause we would like to keep the laboratory experiment as 
lose as possible to the sim-ple two-layer models, and to atmospheri
 and o
eani
 
ows, it is desirable to attempt toredu
e it. We do this by adding a surfa
tant (surfa
e a
tive agent), a 
hemi
al whosemole
ules are made up of a water soluble and a water insoluble 
omponent, and whi
hredu
es the surfa
e tension of water.Various surfa
tants were tested in small (20 ml) samples of the working liquids.4 Smalladded quantities of Photo-Flo, a surfa
tant used in the photo-developing industry, hadthe unexpe
ted but reprodu
ible e�e
t of in
reasing the interfa
ial tension by around30%. This is not entirely unexpe
ted, as surfa
tants are de�ned with respe
t to a water-air interfa
e, whi
h is very di�erent from the liquid-liquid interfa
e in the annulus.Ordinary hand soap was tested but reje
ted, as it 
aused a signi�
ant 
loudiness. Theonly surfa
tant to be su

essfully tested was ordinary washing-up liquid, and the resultsare shown in Table 2.2.When washing-up liquid was added at 0.64 ml m�2, the interfa
ial tension was redu
ed4In situ measurements of interfa
ial tension in the annulus are not pra
ti
able using a torsion bal-an
e, and furthermore, we do not wish to 
ontaminate the a
tual working liquids with the 
andidatesurfa
tants. 37



Chapter 2. Des
ription of the laboratory apparatus

(a) (b)Figure 2.6: Digitized experimental images, showing 
olours 
orresponding to theresting interfa
e height shape (a) immediately before the addition of 0.12 ml ofsurfa
tant, and (b) a few se
onds after. The dark radial spoke is a shadow due tothe slip-ring 
onne
tion wires shown in Figure 2.3. When the experiment is runningand the interfa
e height is not 
at, this shadow is washed out by the dispersivee�e
ts of interfa
ial refra
tion (Se
tion 2.2.2).by more than an order of magnitude. However, this was found to fa
ilitate the formationof bubbles of the lower-layer liquid in the upper layer near the interfa
e, an e�e
t whi
h isundesirable. For all the experiments des
ribed in this thesis, washing-up liquid was addedto the water in the annulus at 0.32 ml m�2 (i.e. a total of 0.12 ml), whi
h we presumeto give an interfa
ial tension of 5:3� 10�3 N m�1. A few se
onds after the addition ofthe washing-up liquid, the resting interfa
e shape re
orded by the 
amera 
hanged asshown in Figure 2.6. The interfa
e be
ame noti
eably 
atter, and the menis
us widthsat the sidewalls were redu
ed, as expe
ted. However, we will see in Se
tion 2.2.4 thatthe interfa
ial tension will not ne
essarily remain at this redu
ed value as the 
uids age.
2.2.4 Slow evolution of 
uid properties with timeIt has been 
asually observed in this study that the properties of the interfa
e betweenthe layers in the annulus seem to exhibit a long-term evolution as time passes. Dire
tobservation into the tank through the lid revealed the slow formation of a skin at theinterfa
e, on times
ales of weeks to months. Often this skin was so strong that it resistedpier
ing even by a sharpened pen
il. This e�e
t, previously unreported, suggests long-term 
hemi
al 
hanges in the liquids, and possible a

ompanying variations in theirphysi
al properties. The values of the physi
al properties shown in Table 2.1 were allmeasured in freshly-prepared samples. 38



Chapter 2. Des
ription of the laboratory apparatusThis long term interfa
e evolution will be shown to have important 
onsequen
es inSe
tion 4.2. Various e�e
ts 
ould explain the observed trends in interfa
e properties:� the pH of the water may be evolving as CO2 and/or O2 are ex
hanged with thelaboratory air;� the lower-layer liquid may be di�using into the upper layer | both CFC-113 andlimonene are a
tually sparingly soluble in water and are therefore expe
ted toslowly di�use out over time. CFC-113 has a solubility of 200 mg/litre in waterat 20 ÆC (WHO, 2002), and limonene has a solubility of 13.8 mg/litre in water at25 ÆC (Massaldi & King, 1973). Limonene has a strong, 
hara
teristi
 fruity smellwhi
h was observed to be taken on by the water as the 
uids aged, 
onsistent withthe di�usion theory;� there may be slow lower-layer intera
tions with the steel 
ylindri
al 
ontainer;� the strong glue whi
h �xed the inner 
ylinder to the base of the tank, and thebla
k paint on the inner 
ylinder, were often found to have been 
orroded whenthe liquids were 
hanged. This implies that the lower layer liquid is 
apable ofslow dissolution of sealant and paint, whi
h would alter its 
omposition;� there may be slow ele
tro-
hemistry with the walls (espe
ially if the pH is 
hang-ing);� there may be 
hemi
al intera
tions with the added surfa
tant;� any parti
ulate matter in the laboratory air, su
h as dust, will tend to a

umulatein the liquids over time as 
ontaminants, and thereafter be possible 
andidates fordissolution.Further work is needed to investigate whi
h of these me
hanisms is responsible for theobservations.
2.3 Flow visualizationPrevious 
ow measurement te
hniques in two-layer annulus experiments have in
ludedthe 
apa
itative method of Hart (1972), in whi
h a thin verti
al wire is inserted into39



Chapter 2. Des
ription of the laboratory apparatusthe 
uid a
ross the interfa
e. One of the liquids is 
hosen to be an ele
tri
al 
ondu
-tor, so that 
hanges in interfa
e height 
ause 
hanges in the voltage drop along thewire, whi
h 
an be measured and 
alibrated. A potential problem is that the wire 
anhave a signi�
ant intera
tion with the 
ow (for example, as observed by Fr�uh & Read,1997). King (1979a) su

essfully applied a te
hnique whi
h exploited the absorption ofan infra-red light beam by one of the layers, by an amount dependent upon the layerdepth. This method is non-invasive, but like Hart's method, su�ers from only return-ing measurements of interfa
e height at one spatial lo
ation, rather than providing theglobal 
overage whi
h is desired. Shadowgraphy and S
hlieren te
hniques (Goldstein,1983) were the �rst to provide two-dimensional interfa
e height �elds, but were ina

u-rate and impra
ti
al.The 
urrent visualization te
hnique was �rst used by Hart & Kittelman (1986) in anopen-
ylinder experiment, and has sin
e been used by Lovegrove in his annulus experi-ment. It provides non-invasive, global measurements of interfa
e height whi
h are highly-resolved in both spa
e and time. The method relies on one of the liquid layers beingopti
ally a
tive, in our 
ase the lower layer due to the limonene. In order to understandhow the te
hnique works, we now tra
k the passage of light through the apparatus fromsour
e lamp to video 
amera, via the two immis
ible working liquids in the annulartank. This exer
ise is ne
essary to understand the relationship between the 
olour �eldre
orded by the 
amera, and the interfa
e height �eld.As quasi-white light emitted by the sour
e lamp travels verti
ally upwards through theapparatus shown in Figure 2.3, it �rst passes through a di�user. This is a translu
entplasti
 
ir
ular sheet of thi
kness 1 
m and radius equal to the tank radius, whi
h is
entrally mounted on the turntable. Its purpose is to di�use the in
oming light su
h thatit illuminates the base of the tank uniformly. Without the di�user, the video imageswould 
ontain 
ontrasting bright and dim regions, whi
h would make interpretation andanalysis more diÆ
ult.The di�use light next passes through an entran
e polaroid, �xed to the upper side of thedi�user. This is a thin (1 mm) 
ir
ular sheet of linearly-polarizing �lter, of radius equalto the tank radius. The dire
tion of its polarization ve
tor determines a verti
al plane40



Chapter 2. Des
ription of the laboratory apparatusof polarization for the emerging light. Importantly, the entran
e polaroid is �xed to therotating turntable. This means that the verti
al polarization plane of the light enteringthe 
uids will rotate in the laboratory frame, but is �xed in the 
amera frame.The plane-polarized light next en
ounters the paraboli
 
orre
tion tank, whose purposeis dis
ussed in Se
tion 2.4.Next, the light enters the main tank via its glass base, and travels through the opti
ally-a
tive lower layer liquid, whose e�e
t is to rotate the plane of polarization of the light.This happens be
ause limonene mole
ules are 
hiral, i.e. not superimposable on theirmirror image (Mar
h, 1992), whi
h is the 
ause of the opti
al a
tivity. The amountof rotation depends on both the wavelength of the light and the depth of the liquidtraversed (the latter dependen
y is one of proportionality, for depths greater than themole
ular s
ale).The rotation angle per unit depth for pure limonene has been determined experimentallyby Hart & Kittelman (1986), for a range of wavelengths spanning the visible part of thespe
trum. We 
an derive the rotation for the lower layer limonene/CFC-113 liquid byassuming that the rotation angle is redu
ed by a fra
tion equal to the volume-fra
tion ofCFC-113 in the 
omposite mix. This assumption is easily veri�ed theoreti
ally by takingthe total rotation angle to be the same whether the 
onstituent liquids are well-mixedor are separated into distin
t layers, and has also been veri�ed experimentally by Hart& Kittelman (1986). The resulting opti
al a
tivity 
urve is shown in Figure 2.7.Next, the light travels through the opti
ally-ina
tive upper layer and leaves the tankvia the glass lid, during whi
h its plane of polarization is un
hanged. The light thenpasses through an analyzing polaroid, whi
h is a se
ond thin sheet of linearly-polarizing�lter �xed in front of the 
amera lens. This polaroid only allows the transmission of a
ertain fra
tion of the in
ident light intensity. This fra
tion varies from 1 if the analyz-ing polaroid axis and in
ident light polarization axis are parallel (or anti-parallel), to 0if they are perpendi
ular (assuming perfe
t polaroids). For a given lower layer depth,therefore, only 
ertain wavelengths will be rotated into 
lose alignment with the analyz-ing polaroid and be transmitted to the 
amera. Other wavelengths will be extinguished41
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al rotary dispersion 
urve for the lower layer liquid of the presentlaboratory experiments, following Hart & Kittelman (1986).by the polaroid. This is the origin of the 
ausal relationship between lower layer depth,and 
olour re
orded in the video images.We now give an example whi
h should help to elu
idate the ideas of the previous para-graphs, by dedu
ing qualitatively whi
h 
olour will be the dominant one re
eived bythe 
amera for a given lower layer depth. Suppose that white light travels through adepth 10 
m of the lower layer (ignoring the paraboli
 
orre
tion tank). Then, fromFigure 2.7, the red light 
omponent (� � 0:70 �m) will be rotated through an angle ofabout 60Æ, the green light (� � 0:55 �m) through 90Æ and the blue light (� � 0:44 �m)through 160Æ. These angles are shown in Figure 2.8(a), where the angle between theaxes of the 
rossed entran
e and analyzing polaroids is taken to be 50Æ. Most of the redlight will be transmitted through the analyzing polaroid, plus some of the green light buthardly any of the blue light, and we therefore expe
t to see a red 
olour. Figure 2.8(b)shows the equivalent analysis for a lower layer depth of 15 
m, where we expe
t to see apredominantly blue 
olour. In Chapter 3, we quantify this analysis to derive the math-emati
al relationship between observed 
olour and height, allowing a 
alibration of theexperiment. 42
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(a) (b)Figure 2.8: The polarization axes of red, green and blue light, after travellingthrough (a) 10 
m, and (b) 15 
m of the limonene/CFC-113 mixture, as viewedfrom above by the video 
amera. The entran
e and analyzing polaroids are shownas dashed lines.By rotating the analyzing polaroid atta
hed to the 
amera lens, the angle between theaxes of the 
rossed entran
e and analyzing polaroids 
an be adjusted, whi
h varies the
olour observed for a given interfa
e height. For some angles, the relationship betweenheight and 
olour is more sensitive than for others, i.e. small 
hanges in height produ
erelatively large 
hanges in 
olour. Before any experiments were performed in this study,the di�erential angle was adjusted | by trial and error | to be su
h that the rela-tionship was at its most sensitive, so that even very small 
hanges in interfa
e heightprodu
e a signi�
ant signal in the 
olour �eld. This is important if we are to be able toregister the small-amplitude interfa
ial short waves.
2.4 The paraboli
 
orre
tion tankSuppose that the apparatus so far des
ribed | without the paraboli
 
orre
tion tank |were set into rotation with turntable angular velo
ity 
 6= 0 and di�erential lid rotation�
 = 0. After spin-up of both layers to angular velo
ity 
, a balan
e is establishedbetween the radial pressure gradient for
e and the 
entripetal for
e in the 
uid, and thenthe equilibrium height h(r) of the 
uid interfa
e above the base of the tank is given (seealso equations 3.6 and 5.22) byh(r) = 
2r22g + 
onstant ; (2.5)43



Chapter 2. Des
ription of the laboratory apparatuswhere r is the distan
e from the rotation axis and g is the a

eleration due to gravity(not the redu
ed gravity, as the 
entripetal e�e
t does not depend upon any density
ontrast between the layers). When the turntable is rotating at its maximum rateof 
 = 6:3 rad s�1, the asso
iated interfa
e height 
hange a
ross the annulus will beh(12:5 
m) � h(6:25 
m) � 2 
m. The interfa
e is therefore not horizontal and 
olourgradients are seen by the 
amera. If a velo
ity shear is applied by rotating the lid,the interfa
e height will be perturbed away from the paraboli
 shape given by equation(2.5), as des
ribed by equation (5.22). This manifests itself in the experiments of Hart& Kittelman (1986) as a reddening of their images at large radii.De
iding that this e�e
t was undesirable, Lovegrove (1997) devised a way of eliminatingthis ba
kground paraboli
 distortion from the view seen by the 
amera. His methodrelies on the fa
t that limonene exists in two di�erent opti
al isomers: a dextrorotaryisomer (d-limonene) whi
h rotates plane-polarized light in the 
lo
kwise sense, and alaevorotary isomer (l-limonene) whi
h rotates it by an equal angle in the anti-
lo
kwisesense.Lovegrove used d-limonene for the lower layer of the main tank, and introdu
ed a se
ond\paraboli
 
orre
tion" tank 
ontaining l-limonene and air, dire
tly beneath it as shownin Figure 2.3. In equilibrium with �
 = 0 and 
 6= 0, the surfa
e of the l-limonene layertakes up exa
tly the same 
on
ave upwards paraboli
 shape as the interfa
e in the maintank (equation 2.5), even though its domain is 
ylindri
al rather than annular and it is
overed with air rather than water. Clo
kwise light rotations in the main tank are thenexa
tly 
an
elled out by anti-
lo
kwise rotations in the paraboli
 
orre
tion tank, andso there are no 
olour gradients in the images output by the 
amera. When �
 6= 0,the 
amera then shows 
olours whi
h 
orrespond to the deviation of the interfa
e heightaway from this basi
 paraboli
 shape, avoiding the ba
kground 
olour gradients of Hart& Kittelman (1986).Sin
e the d-limonene is diluted with CFC-113 to in
rease its density, the opti
al a
tiv-ities of the 
omposite lower liquid in the main tank and the pure l-limonene in theparaboli
 
orre
tion tank will not be exa
t opposites, and the statement above will onlybe approximately true. It seems that the reason Lovegrove de
ided not to dilute the l-44



Chapter 2. Des
ription of the laboratory apparatuslimonene with CFC-113, whi
h would have given liquids with exa
tly equal and oppositeopti
al a
tivities, was that the CFC is highly volatile and would have qui
kly evaporatedwithout a prote
tive 
overing of water.
2.5 Parallax e�e
tsThe diameter of the inner 
ylinder in an experimental image (e.g. Figure 2.6) is 310pixels. We 
alibrate horizontal distan
es in the images by equating this to the physi
aldiameter of 125 mm. This gives the side length of the (square) pixels to be 0.40 mm,whi
h de�nes the horizontal resolution of the images.Importantly, this length 
alibration takes pla
e in the horizontal plane 
ontaining theannulus lid. Radii that we infer from an image, by 
onverting distan
es from the annulus
entre in pixels to distan
es in mm, will therefore 
orrespond to radii at the lid. Be
ausethe 
amera is a �nite distan
e away from the annulus (200 
m from the base), light pathsfrom annulus to 
amera are not exa
tly verti
al, and the radius at the lid rlid will notbe the same as the radius r at the 
uid interfa
e. Negle
ting refra
tion, the relationshipbetween them is given by geometry to berrlid = 200 
m� 12:5 
m200 
m� 25:0 
m = 1:07 : (2.6)Therefore, when we observe a 
olour at a parti
ular point in an image, we must in
reaseits apparent radius by 7% to obtain the real radius at whi
h the interfa
e height takesthe value 
orresponding to the observed 
olour.At the inner sidewall, rlid takes the value 6.25 
m. From equation (2.6), r is then6.70 
m, implying that when the interfa
e is 
at we will not be able to see the inner0.45 
m be
ause of a parallax e�e
t. A similar 
al
ulation shows that the outer 0.78 
mof the annular gap will likewise not be visible to the 
amera.45



Chapter 2. Des
ription of the laboratory apparatus2.6 Chapter summaryDes
riptions have been given of the rotating, two-layer annulus laboratory apparatus,
uid properties and 
ow visualization te
hnique.Useful information from the laboratory experiment images, e.g. wavelengths and propa-gation speeds, 
an be extra
ted using the 
ow visualization te
hnique. But the images
ontain mu
h more information whi
h has until now remained untapped, namely quan-titative data about the interfa
e height �eld, whi
h is en
oded in the image 
olours.In the next 
hapter we des
ribe a new method for 
alibrating interfa
e heights in theexperiment, to allow this information to be extra
ted for the �rst time.
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Chapter 3
Calibration of the laboratoryexperiment \Mere 
olour, unspoiled by meaning, and unalliedwith de�nite form, 
an speak to the soul in a thou-sand di�erent ways." Os
ar WildeIn this 
hapter, we des
ribe the 
alibration of the laboratory experiment, allowing thetransformation from raw laboratory images to quantitative maps of interfa
e height.Three 
andidate 
alibration s
hemes are des
ribed, and the one 
onsidered likely to bethe most a

urate is developed and implemented. The 
hosen s
heme involves solvinglayerwise torque balan
e equations to determine the equilibrium interfa
e height shapewhen the apparatus is in motion. This analysis is an extension of previous 
al
ulations,to in
lude new and important physi
al e�e
ts.The 
alibration attempt is su

essful, allowing the amplitudes of the interfa
ial fast andslow waves to be a

urately measured for the �rst time with this apparatus.
3.1 Motivation for 
alibrating the experimentThe unpro
essed 
olour video images from the laboratory experiment (e.g. Figure 1.6)are of limited use. Though they provide essential quantitative information about thehorizontal stru
ture of the 
ow (wavelengths and propagation speeds), the information47



Chapter 3. Calibration of the laboratory experimentregarding the verti
al dire
tion (in parti
ular, interfa
ial wave amplitudes) is only qual-itative. All we know so far is that 
hanges in interfa
e height 
orrespond to 
hanges inobserved 
olour, as dis
ussed in Se
tion 2.3. The exa
t quantitative relationship betweenheight and 
olour is not known, and so previous experimenters using this apparatus havehad to estimate interfa
ial wave amplitudes by visual observation through the annuluslid. This method is fraught with diÆ
ulty, due to the rotating metal stru
ture whi
hsupports the 
amera, ina

ura
ies due to refra
tion at the lid and, most of all, theinherent unreliability of guesswork. In this 
hapter, we develop a method for measuringinterfa
e height quantitatively.The images obtained from the 
amera are re
orded onto video tape, and 
an be subse-quently digitized by the frame grabber to produ
e red R(h), green G(h) and blue B(h)intensity 
omponents, whi
h depend upon the lower layer depth h(r; �; t). The task ofthis 
hapter is to determine the fun
tions R(h), G(h) and B(h), and hen
e their inversesso that we 
an 
ompute h given R, G and B. In the following se
tions we 
onsider threepossible approa
hes to this problem.
3.2 Theoreti
al approa
hSuppose that the angle between the axes of the entran
e and analyzing polaroids is�, and that the rotation angle per unit lower layer depth shown in Figure 2.7 is �(�).Negle
ting the liquid in the paraboli
 
orre
tion tank, if light of wavelength � travelsthrough a lower layer depth of h(r; �; t), then a fra
tion 
os2[�� h�(�)℄ of the in
identintensity will be transmitted through the analyzing polaroid to the 
amera. Assumingthat the sour
e lamp is perfe
tly emitting, the intensity spe
trum input into the liquidsis the Plan
k fun
tion I0(�) at the temperature of the lamp (given as 3200 K by Trundle,1987). Further assuming no absorption by the apparatus, the intensity spe
trum I(�)re
eived at the 
amera is given byI(�) = I0(�)
os2[�� h�(�)℄ : (3.1)48



Chapter 3. Calibration of the laboratory experimentThis spe
trum is sampled by the 
amera at three wavelengths (
orresponding to red,green and blue light), to give pixel intensities ofR(h) = A I0(�red) 
os2[�� h�(�red)℄ ; (3.2)G(h) = A I0(�green) 
os2[�� h�(�green)℄ ; (3.3)B(h) = A I0(�blue) 
os2[�� h�(�blue)℄ ; (3.4)where A is a 
onstant of proportionality. Equations (3.2){(3.4) 
ould ea
h be written asa weighted integral of (3.1) with respe
t to �, where the weighting fun
tions, or 
am-era response fun
tions, peak in the red, green and blue parts of the spe
trum. Theassumption is made here that the response fun
tions are delta-fun
tions, however. The
amera then simply samples the in
oming spe
trum at three dis
rete wavelengths ratherthan over three narrow bands of �nite width. We have su

eeded in determining thefun
tions R(h), G(h) and B(h). On
e we have determined R, G and B from an image,equations (3.2){(3.4) represent three equations in three unknowns: A, � and h. It istedious but straightforward to eliminate A and � to give an impli
it, nonlinear equa-tion for h in terms of R, G and B (Williams, 2000). However, this method is madeunreliable by the assumptions whi
h have been made (sour
e lamp being a perfe
t bla
kbody at an assumed temperature, 
amera response fun
tions being delta-fun
tions, zeroabsorption in working liquids), none of whi
h is parti
ularly well-justi�ed. We require aquantitatively a

urate 
alibration s
heme whi
h is more reliable than this approximatetheoreti
al method.
3.3 Dire
t experimental approa
hFor a

ura
y, it is desirable to take an experimental approa
h to the 
alibration prob-lem. There is an obvious and dire
t experimental method. One 
an imagine �lling upthe initially-empty annular tank with the limonene/CFC mixture, in a series of dis
retesteps so that ea
h time the depth rises by, say, 1 mm. A video re
ording 
ould be madeafter ea
h millimetre rise, allowing the 
olour in ea
h video image to be measured and
alibrated with interfa
e height.This method would require the limonene layer to be exposed to the laboratory air for asigni�
ant period of time. Be
ause of the harmful vapour released by limonene when not49



Chapter 3. Calibration of the laboratory experiment
overed by the water layer, this method would pose a health risk to the user. A Lo
alExhaust Ventilation (LEV) system 
ould be used to redu
e emissions into the labora-tory, but the LEV is an e�e
tive extra
tor only when it is positioned dire
tly above theannulus and therefore blo
king the 
amera �eld of view, whi
h would defeat the obje
t.For these reasons, the dire
t experimental approa
h was reje
ted.
3.4 Indire
t experimental approa
hWe have 
hosen for the present purposes to use an experimental 
alibration based onimages taken when the experiment is in operation, that is, when both the turntableand lid are rotating at di�erent rates. All that is needed is a method for obtaining theinterfa
e height �eld in just one spe
ial 
ase. The method must be independent, in thesense that it does not rely on the 
olour information in the images, sin
e that is whatwe wish to 
alibrate. Fortunately, it is possible to derive an analyti
al expression forthe equilibrium interfa
e height in the spe
ial 
ase of no baro
lini
 instability. In this
ase, zonal wave modes are 
ompletely absent and the interfa
e is axisymmetri
, but theheight 
an still vary strongly with radius.We plan to take interfa
e height as a fun
tion of radius from the analyti
al expression,and 
olour as a fun
tion of radius from a laboratory experiment, and to determine therelationship between interfa
e height and 
olour from the two. We derive the requiredanalyti
al expression over the following pages.
3.4.1 Equilibrium interfa
e height �eldWe begin the 
al
ulation by deriving an expression for the equilibrium lower layer depth�eld h(r), shown in Figure 3.1, in terms of the 
uid interior solid-body rotation rates�
1 and �
2. The pressures in ea
h layer are given bypi = 12�i
2i r2 � �igz + 
onstant ; (3.5)where i = 1 refers to the upper layer and i = 2 to the lower layer. This equationrepresents hydrostati
 balan
e in the z-dire
tion, and a balan
e between the radial pres-sure gradient for
e and the a

eleration experien
ed by a 
uid par
el exe
uting 
ir
ular50



Chapter 3. Calibration of the laboratory experiment

1∆ Ω

∆ Ω 2

I∆ Ω

������
������
������

������
������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������
������
������
������

������������
∆ Ω

r = a

δ S

δ S

δ S

δ S

δ E

δ E

δ E

δ E

z = h (r)

0

0

0

z = 2H

r = b = 2a
z = 0Figure 3.1: Variable de�nitions for the torque balan
e 
al
ulation. The boundarylayer widths, labelled in blue, are shown greatly exaggerated. The angular velo
i-ties of the lid, base, sidewalls, interfa
e and 
uid interiors, about the rotation axisand relative to the base frame, are labelled in red.
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Chapter 3. Calibration of the laboratory experimentmotion with angular velo
ity 
i = 
 +�
i in the laboratory frame.We may dedu
e the pressure di�eren
e between the annulus base and lid using thepressure �eld given by equation (3.5), and we 
an equate this pressure drop to the samequantity determined in an independent manner, namely by verti
al integration of thehydrostati
 equation. This gives12(�2
22 � �1
21)r2 + 
onstant = �2gh+ �1g(2H � h)� Sr2h ; (3.6)where the term in r2h represents the drop in pressure a
ross the interfa
e due to inter-fa
ial tension S. From this equation we 
an evaluate h(r). Using the fa
t that �1 � �2and negle
ting menis
us e�e
ts we obtainh(r) = (
22 � 
21)r22g0 + 
onstant ; (3.7)where g0 = g(�2 � �1)=[12(�2 + �1)℄. Finally, we determine the arbitrary 
onstant byapplying 
onservation of volume:r=bZr=a 2�rh(r) dr = �(b2 � a2)H ; (3.8)to obtain h(r) = H + (
22 � 
21)(r2 � 52a2)2g0 : (3.9)We will need the following three formulae for the torque balan
e 
al
ulation. The valuestaken by the interfa
e height at the sidewall boundaries areh(r = a) = H + 32a2�
21 � 
222g0 � � H+ (3.10)and h(r = b) = H � 32a2�
21 � 
222g0 � � H� ; (3.11)and the interfa
e slope at the outer sidewall isdhdr ����r=b = ��b(
21 � 
22)g0 � : (3.12)The substitution b = 2a has been used in equations (3.9){(3.11).52



Chapter 3. Calibration of the laboratory experiment3.4.2 Previous approa
hesAll that remains to be done, to 
omplete our derivation of the interfa
e height �eld, isto determine the 
i in terms of 
 and �
. In mu
h of Hart's work, in
luding Hart(1972), Hart (1973) and Hart (1985), as well as in other studies in
luding Bradford etal. (1981), these interior rotation rates are derived from the 2-layer quasi-geostrophi
(Q-G) equations with linear, parameterized Ekman velo
ities, negle
ting the in
uen
e ofthe sidewall boundaries and assuming a horizontal, 
at interfa
e. This 
al
ulation yieldsthe simple result �
2 = 14�
 and �
1 = 34�
 for the 
ase of exa
tly equal vis
osities(see equations 5.20 and 5.21). These values 
an be substituted into equation (3.9) toobtain an expli
it expression for h(r).The assumptions of geostrophy, non-intera
ting Stewartson layers and a horizontal inter-fa
e mean that this method 
an only be 
onsidered a �rst approximation. Therefore,King (1979b) extended the Q-G analysis to in
lude a non-horizontal interfa
e, by in
lud-ing fa
tors of 
os(mean interfa
e gradient) in the Ekman layer terms. This simple exten-sion made the 
al
ulation signi�
antly more diÆ
ult, as the formulae for �
i now in
ludethe mean interfa
e slope. Therefore, on substituting into (3.9) an impli
it, nonlinearequation for h(r) is obtained, whi
h must be solved numeri
ally. This approa
h wastaken in Williams (2001) to 
alibrate the present experiment, but it gave rotation rateswhi
h seemed too large due to the ex
lusion of Stewartson layer drag from this analysis.Stewartson layers and ageostrophy 
annot be 
aptured by the simple Q-G approa
h, andso King (1979b) went on to take a di�erent approa
h based on layer torque balan
e. Heargued that, in equilibrium, the 
uid interiors do not experien
e an angular a

eleration,and so the net external torque on the interiors due to the boundary layers must be zero.Stewartson layers and ageostrophy are both in
luded, but King resorted to using thehorizontal interfa
e assumption to make the 
al
ulation analyti
ally tra
table.In the present problem, we spe
i�
ally require a non-horizontal interfa
e, as we want the
alibration 
urve to span as wide a range of interfa
e heights as possible. We thereforepresent, in the following se
tion, an extension of King's torque balan
e 
al
ulation toin
lude non-horizontal interfa
e e�e
ts. A summary of the physi
al e�e
ts in
luded inthe previous and present 
al
ulations is shown in Table 3.1.53



Chapter 3. Calibration of the laboratory experimentQ-G method Ekman 
ux torque balan
e torque balan
eused by Hart 
al
ulation of 
al
ulation of 
al
ulationand Bradford King King in this thesisEkman layers X X X XStewartson layers � � X Xsloping interfa
e � X � Xageostrophy � � X XTable 3.1: A 
omparison of the physi
al e�e
ts taken into a

ount in various
al
ulations to determine the equilibrium interfa
e height in a rotating, two-layerannulus. The methods in the �rst two 
olumns are based on equating geostrophi
Ekman pumping and su
tion velo
ities at the top and bottom of ea
h layer. Themethods in the last two 
olumns are based on torque balan
e equations for ea
hlayer.
3.4.3 Torque balan
e 
al
ulationFor the torque balan
e 
al
ulation we model ea
h 
uid layer as an invis
id interior region,making up the vast majority of the volume of the layer, surrounded on all sides by thinvis
ous boundary layers whi
h serve to 
hange the 
uid velo
ity from its interior value toits no-slip boundary value. In the two-layer annulus, the boundaries are the lid, base and
uid interfa
e (at whi
h the boundary layers are Ekman (1905) layers), and the innerand outer 
ylindri
al sidewalls (at whi
h the boundary layers are Stewartson (1957) lay-ers). We assume that the interior 
ow in ea
h layer is hydrostati
 and 
olumnar, andin solid-body rotation with the angular velo
ities (to be determined) shown in Figure 3.1.We expe
t, when the imposed lid rotation �
 is positive, that0 < �
2 < �
I < �
1 < �
 ; (3.13)54



Chapter 3. Calibration of the laboratory experimentwhere �
I is the angular velo
ity of the interfa
e. Qualitatively, the upper layer interioris being a
ted upon by a prograde (anti-
lo
kwise) stress due to the Ekman layer at thelid, and by retrograde (
lo
kwise) stresses due to the Ekman layer above the interfa
eand both Stewartson layers. The boundary layer at the lid is tending to spin the layerup, and the remaining three boundary layers are tending to spin it down. In the lowerlayer, it is the interfa
ial boundary layer whi
h gives a positive angular velo
ity ten-den
y, and the remaining three whi
h give a negative 
ontribution.The larger the velo
ity shear a
ross a boundary layer, the larger the stress and the largerthe torque exerted on the 
uid interior by the boundary. If there is a non-zero net torquein either layer, there will be an angular a

eleration. We expe
t the interior rotationrates to adjust themselves so that, in equilibrium, the net torque is zero and the rotationrates remain 
onstant with time.We now quantify the ideas of the previous paragraphs by writing down equations forthe net torques in both layers in terms of the rotation rates, and then solving for theequilibrium rates by setting the torques equal to zero. To simplify the analysis we assumeequal layer vis
osities � and densities �, both of whi
h approximations are very good inthe present 
ontext (see Table 2.1). The Ekman and Stewartson layer widths are derivedin e.g. Read (1992b) to be, respe
tively,ÆE = � �
� 12 (3.14)and ÆS = �a2�
 � 14 : (3.15)There are two distin
t Stewartson layers at ea
h sidewall in the rotating annulus. Theone used here is that whi
h serves to take the horizontal 
uid velo
ity to zero at theboundary, and whi
h has a nondimensional width of the Ekman number to the power ofone-quarter. This is the appropriate layer for the present 
al
ulation, as it is the regionin whi
h the lateral velo
ity shear exists. The other Stewartson layer, of width equalto the Ekman number to the power of one-third, is responsible for returning verti
alEkman 
uxes. This layer is not asso
iated with a horizontal drag for
e at the sidewalls,and therefore does not make a 
ontribution to the torque about the rotation axis. Fora typi
al rotation rate of 
 = 1 rad s�1, we obtain ÆE = 1 mm and ÆS = 8 mm.55



Chapter 3. Calibration of the laboratory experimentRotation rate of interfa
eIn equilibrium, the interfa
e does not a

elerate, and therefore must feel no net torquedue to the thin Ekman layers above and below it. This means that the verti
al shear inhorizontal velo
ity a
ross the upper interfa
ial Ekman layer must equal that a
ross thelower one, giving �
I = 12(�
1 +�
2) : (3.16)
Torque due to Stewartson layersIn general, shear stresses within 
uids are given by the tensor Si; j = ���ui=�xj ; i 6= j.So, for example, the stress on the upper layer interior by the verti
al boundary r = b is��� b�
1ÆS ; (3.17)where the minus sign indi
ates that this stress represents a drag. A mean has been takenover the thin Stewartson layer, a
ross whi
h a velo
ity 
hange of b�
1 is a
hieved. TheStewartson layer has area 2�bH+ (equations 3.10 and 3.11) and is a distan
e b from therotation axis, and so it exerts a torque on the 
uid ofT Stewartsonlayer=1; r=b = �2����
1H+b3ÆS : (3.18)Similar expressions are obtained for the torques T Stewartsonlayer=1; r=a, T Stewartsonlayer=2; r=b and T Stewartsonlayer=2; r=adue to the remaining three Stewartson layers.Torque due to lid and base Ekman layersThe stress on the upper layer interior by the horizontal boundary z = 2H at radius r is�� r(�
��
1)ÆE : (3.19)In this 
ase the stress is dependent upon radius. An area element is r dr d� and thedistan
e from the axis is r, and so this Ekman layer exerts a torque on the 
uid ofTEkmanlayer=1; z=2H = 2�Z�=0 bZr=a ��(�
��
1)r3ÆE dr d� (3.20)= ���(�
 ��
1)(b4 � a4)2ÆE : (3.21)56



Chapter 3. Calibration of the laboratory experimentA similar expression is obtained for the torque TEkmanlayer=2; z=0 on the lower layer interiordue to the Ekman layer at the base.Torque due to interfa
ial Ekman layersThe stress on the upper layer interior by the interfa
e z = h(r) at radius r is��� r(�
1 ��
I)ÆE : (3.22)In this 
ase the area element is p1 + (dh=dr)2 r dr d� and the distan
e from the axis isr, and so this Ekman layer exerts a torque on the 
uid ofTEkmanlayer=1; z=h = � 2�Z�=0 bZr=a ��(�
1 ��
I)r3ÆE s1 + �dhdr�2 dr d� (3.23)� ����(�
1 ��
I)(b4 � a4)2ÆE s1 + �dhdr ����r=b�2 : (3.24)An approximation has been employed (without whi
h further analyti
al progress be
omesimpossible) to repla
e the surd in the integrand of equation (3.23) with its value at r = b,sin
e the r3 fa
tor heavily weights the integral towards larger r.A similar expression is obtained for the torque TEkmanlayer=2; z=h on the lower layer interiordue to the Ekman layer at the interfa
e.Torque balan
e equationsWe now write down expressions for the net torque in ea
h layer, and equate them tozero in equilibrium to giveT Stewartsonlayer=1; r=a + T Stewartsonlayer=1; r=b + TEkmanlayer=1; z=2H + TEkmanlayer=1; z=h = 0 (3.25)and T Stewartsonlayer=2; r=a + T Stewartsonlayer=2; r=b + TEkmanlayer=2; z=0 + TEkmanlayer=2; z=h = 0 : (3.26)Equations (3.25){(3.26) are two nonlinear equations in the two unknowns �
1 and �
2.Rearranging, we may write the equations in matrix form:2641 + 12q1 + �dhdr ��b�2 + � 415�� ÆEÆS�� 8H++H�a ��12q1 + �dhdr ��b�2 �12q1 + �dhdr ��b�21 + 12q1 + �dhdr ��b�2 + � 415�� ÆEÆS ��8H�+H+a �37557
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1�
2� = ��
0 � : (3.27)
The matrix equation is nonlinear be
ause H+, H� and dh=drjr=b all depend upon �
1and �
2 through equations (3.10){(3.12). If we now make the horizontal interfa
eassumption, whi
h is H+ = H� = H and dh=drjr=b = 0, the equations linearize andwe re
over the results of King's torque balan
e 
al
ulation. Additionally negle
ting theStewartson layers by letting ÆS !1 redu
es the matrix equation to� 3=2�1=2 �1=23=2 � ��
1�
2 � = ��
0 � ; (3.28)for whi
h the solution is ��
1�
2� = � 34�
14�
� ; (3.29)whi
h is the simple Q-G result, as expe
ted.Iterative solutionsWe use an iterative approa
h to solve the full, nonlinear matrix equation (3.27):1. 
hoose �
1 = �
2 = 0 as a �rst guess;2. evaluate H+, H� and dh=drjr=b for this �
1, �
2;3. evaluate the four matrix elements for this H+, H�, dh=drjr=b;4. invert the matrix equation to obtain an improved guess for �
1 and �
2;5. if the original and improved solutions are not equal to within the required pre
ision,return to step 2 for another iteration.The iterations were found to 
onverge in almost all 
ases. The ex
eptions o

urred whenboth 
 and �
 were very large, when a feature with a period of two iterations persistedin the equilibrated iteration series. In these 
ases there is presumably no equilibriumsolution to the torque balan
e equations.Figure 3.2 shows the results of the iteration 
al
ulation (performed using Matlab), bothwith the Stewartson layers swit
hed on and o�, for 
 = 3 rad s�1 and �
 = 1 rad s�1.58
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(b)Figure 3.2: Results of the iterative numeri
al solution of the nonlinear matrixequation for �
1;2, both (a) without and (b) with the Stewartson layer terms.59
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1 (rad s�1) horizontal interfa
e 
urved interfa
eStewartson layers swit
hed o� 0.75 0.61Stewartson layers swit
hed on 0.54 0.42(a)�
2 (rad s�1) horizontal interfa
e 
urved interfa
eStewartson layers swit
hed o� 0.25 0.39Stewartson layers swit
hed on 0.14 0.23(b)Table 3.2: Equilibrated values of (a) �
1 and (b) �
2 for the 
ase 
 = 3 rad s�1and �
 = 1 rad s�1. The values are based on a torque balan
e analysis whi
halways in
ludes Ekman layers, and whi
h 
an also additionally in
lude Stewartsonlayers and/or the in
reased drag e�e
ts of a 
urved interfa
e.The fourth de
imal pla
e of the solutions is stable after around the 20th iteration. Notefrom the above iteration plan that the �rst improved guess is a
tually the solution ofthe horizontal interfa
e problem, as when �
1 = �
2 = 0 we have H+ = H� = H anddh=drjr=b = 0, so we have solved this problem for every 
ombination of Stewartson layerspresent and absent, and interfa
e horizontal and 
urved. The �ndings are summarizedin Table 3.2.In both layers, and both with and without a non-horizontal interfa
e, the in
lusion ofStewartson layer drag has signi�
antly redu
ed the layer rotation rates. In the upperlayer, allowing for a non-
at interfa
e also redu
es the rotation rate, be
ause a 
urvedinterfa
e has a greater surfa
e area than a 
at one, and hen
e gives a greater drag for
e.In the lower layer, the rotation rate is in
reased when the non-
at interfa
e is in
luded,as the Ekman layer at the interfa
e provides the only positive torque in this layer.60



Chapter 3. Calibration of the laboratory experiment

Figure 3.3: Laboratory experiment image used for the 
alibration, showing theequilibrated 
ow in the 
ase �
 = 0:77 rad s�1, 
 = 1:87 rad s�1. The fourboxes, ea
h measuring 106 pixels by 40 pixels, indi
ate the areas from whi
h 
olourinformation was extra
ted.
We 
on
lude that both Stewartson layers and 
urved interfa
e e�e
ts are important fordetermining quantitatively a

urate layer rotation rates, whi
h justi�es the full analysisgiven above for the purposes of 
alibrating the laboratory experiment.
3.5 Implementation of the 
alibration s
hemeWe now des
ribe the implementation of the 
alibration s
heme. An image from a labo-ratory experiment, showing the equilibrated axisymmetri
 
ow whi
h is attained in thebaro
lini
ally-stable 
ase �
 = 0:77 rad s�1 and 
 = 1:87 rad s�1, is shown in Figure 3.3.In this 
ase, the 
onverged iterative solution to equation (3.27) with Stewartson layersand a sloping interfa
e is found to be �
1 = 0:34 rad s�1 and �
2 = 0:14 rad s�1.Figure 3.4 shows the interfa
e height shape thereby obtained, 
al
ulated using equa-tion (3.9). There are 106 pixels a
ross the annular gap in Figure 3.3, and there willtherefore be 106 points on the 
alibration 
urve we obtain.61
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Figure 3.4: Lower layer depth h(r) as a fun
tion of radius, 
al
ulated analyti
allyfor the 
ow shown in Figure 3.3.

Figure 3.5: Azimuthally-averaged red, green and blue 
omponents as fun
tions ofradius, derived from Figure 3.3. The abs
issa is drawn to span the entire annulargap, even though parallax e�e
ts dis
ussed in Se
tion 2.5 prevent the extra
tionof data near the sidewalls. 62



Chapter 3. Calibration of the laboratory experiment3.5.1 Choi
e of 
olour 
alibration variableNow that we know the 
olour �eld and the interfa
e height �eld, we are in a position toderive a 
alibration 
urve. The R, G and B values of the pixels in Figure 3.3 have beenextra
ted by loading the jpeg image into IDL, from whi
h they are ea
h given as integersbetween 0 and 28 � 1 = 255 in
lusive (be
ause the 
olour digitization is 8-bit for ea
hof the three 
olour 
hannels). The mean radial dependen
e of the R, G and B �elds isshown in Figure 3.5, where the parallax e�e
ts of Se
tion 2.5 have been in
luded to givean unbiased measurement of the radius. As indi
ated in Figure 3.3, averages have beentaken over the azimuthal angles 
orresponding to \3 o'
lo
k", \6 o'
lo
k", \9 o'
lo
k"and \12 o'
lo
k", in 
ase the 
ow is not perfe
tly axisymmetri
. Also as indi
ated inthe �gure, averages have been taken over 40 azimuthally-neighbouring pixels at ea
h ofthese four angles, to redu
e 
ontamination of the signal by noise.We 
an eliminate radius between the 
urves in Figures 3.4 and 3.5 to obtain the redR(h), green G(h) and blue B(h) 
omponents as fun
tions of interfa
e height h. Then inthe three-dimensional spa
e (R;G;B), the most 
omplete 
alibration 
urve we 
an de�neis given parametri
ally by (R(h); G(h); B(h)). To �nd h for a given point (R�; G�; B�),we would simply need to �nd the point on the 3-D 
alibration 
urve whi
h is 
losestto the given point. We 
ould do this by, for example, minimizing the 
ost fun
tion[R(h)�R�℄2 + [G(h)�G�℄2 + [B(h)�B�℄2 with respe
t to h. This 
al
ulation is quite
omputationally-expensive, espe
ially if interfa
e heights are required at the majority ofpoints on a 768 by 576 spatial grid, 25 times per se
ond.We would prefer a one-dimensional 
alibration 
urve, so that we 
an use simple linearinterpolation to inexpensively return interfa
e heights. For example, we 
ould 
hooseto use R(h) as the 
alibration 
urve, abandoning G(h) and B(h), though it would seemwasteful to dis
ard two-thirds of the available 
olour information. To avoid this redun-dan
y, any fun
tion of R(h), G(h) and B(h) 
ould be used.There are other 
olour systems apart from the (R;G;B) system, and there is no guaran-tee that R, G and B are in any way optimized as 
alibration variables. A 
ommonly-usedalternative is the (H;S; I) system (e.g. Foley & Van Dam, 1982), where H is the hue, Sis the saturation and I is the total intensity. The transformation from (R;G;B) 
oor-63
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Figure 3.6: Azimuthally-averaged hue 
omponent as a fun
tion of radius.dinates to (H;S; I) 
oordinates is outlined in Appendix A. The H, S and I �elds inFigure 3.3, 
al
ulated from the R, G and B �elds, are shown in Figures (3.6){(3.8).
3.5.2 Derivation of 
alibration 
urveIn theory, any of the six variables R, G, B, H, S, I 
ould be used to derive a 
alibration
urve. However, the hue H is the most suitable, for two important reasons. Firstly, hueis the only 
olour variable of the six whi
h is a one-to-one fun
tion of interfa
e heightover the height range being 
onsidered. The other �ve are many-to-one fun
tions, andhen
e are not uniquely invertible. If any one of these �ve were to be used as the 
ali-bration variable, there would often be an ambiguity over whi
h height had given rise tothe observed 
olour 
omponent. This is 
learly an undesirable feature of any 
alibrations
heme.Se
ondly, it follows from the de�nition of hue (equation A.9) that if R, G and B areall redu
ed in equal proportions then H will be una�e
ted. This is be
ause hue is inde-pendent of the total intensity. The impli
ation is that any lo
al absorption in the 
uidsdue to 
ontamination by small parti
les, will be visible in all the 
olour �elds ex
ept64
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Figure 3.7: Azimuthally-averaged saturation 
omponent as a fun
tion of radius.

Figure 3.8: Azimuthally-averaged intensity 
omponent as a fun
tion of radius.65
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Figure 3.9: Calibration 
urve showing the relationship between the hue 
ompo-nent and lower-layer depth. A slight smoothing has been applied to the 
urve, bytaking a moving average, to remove the last remnants of noise.hue (assuming equal absorption at all wavelengths). This explains why the hue �eldin Figure 3.6 is less noisy than the red, green and blue �elds in Figure 3.5. A furthersour
e of light absorption in the 
uids is a 
loudiness that is often found to form in theliquids whenever the laboratory temperature 
ools slightly, possibly due to 
ondensationof tra
e quantities of lower-layer liquid in the upper layer. Calibration 
urves using R,G, B, S, I would therefore be expe
ted to return heights whi
h varied from one day tothe next, unlike a 
alibration 
urve using H.Hue being a monotoni
 fun
tion of depth, 
oupled with its robustness to absorptione�e
ts, makes it the ideal 
alibration variable. The hue 
alibration 
urve, obtained byeliminating the radius from Figures 3.4 and 3.6, is shown in Figure 3.9. The 
urve isnonlinear, whi
h means that interpretation of the raw experimental images must be donewith 
aution. The regions of largest 
olour gradient do not ne
essarily 
orrespond tothe regions of steepest interfa
e slope.Stri
tly, we should 
alibrate hue against path length rather than interfa
e height. Thetwo are not exa
tly the same be
ause of the paraboli
 
orre
tion tank, whi
h is asso-66
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Figure 3.10: Family of 
alibration 
urves, ea
h derived from di�erent experimen-tal 
onditions, as labelled. The 
urve shown in Figure 3.9 is in
luded, togetherwith eight others.
iated with negative path lengths whi
h vary spatially be
ause of the paraboli
 shapetaken up by the l-limonene. It follows from Se
tion 2.4 that when 
 = 2 rad s�1 the
hange in l-limonene depth a
ross the gap is only 2 mm. This is suÆ
iently small that itis negle
ted here, i.e. we assume that the l-limonene surfa
e is perfe
tly horizontal, andtherefore has the same e�e
t as simply altering the orientation of the entran
e polaroidaxis.The method used to obtain the 
alibration 
urve in Figure 3.9 from the image in Fig-ure 3.3 has been 
arried out eight further times, ea
h time using a laboratory experimentimage 
orresponding to a di�erent 
ombination of 
 and �
. The 
hoi
es for these twovariables were limited be
ause only those 
ombinations whi
h give an axisymmetri
,baro
lini
ally-stable equilibrated 
ow will do. A 
alibration 
urve was derived in ea
h
ase, and the nine 
urves are shown over-plotted in Figure 3.10.Deriving su
h a family of 
alibration 
urves, for a range of values of 
 and �
, is animportant test of the validity and a

ura
y of the 
alibration s
heme. If the torquebalan
e analysis had been an in
omplete representation of the shear stresses a
ting on67



Chapter 3. Calibration of the laboratory experimentthe annulus liquids, or if a mistake had 
rept into the 
al
ulation, we would expe
t asigni�
ant disagreement between di�erent 
urves in the family. This is not the 
ase, asthe �gure shows that all the 
urves have the same 
hara
teristi
 S-shape, and that thereis good quantitative agreement between them. This implies that the error in the torquebalan
e analysis is small, and that the analysis is a good representation of torques in theannulus. We 
on
lude that the derived 
alibration 
urves are reasonably reliable anda

urate. We may now pro
eed to use the 
urves to re
onstru
t interfa
e height �eldsfrom given experimental images, in
luding images in whi
h the 
ow is not axisymmetri
.There is a spread in interfa
e heights asso
iated with any given hue, when inferred usingthe nine 
urves in Figure 3.10. This spread 
an be used to de�ne an error in the inferredheights, whi
h is less than �3 mm a
ross most of the range. It is important to notethat errors in inferred wave amplitudes will be mu
h less than this value, however. Thisis be
ause inferred wave amplitudes are determined by the gradients of the 
alibration
urves, rather than their absolute values, and there is ex
ellent agreement a
ross mostof the range between gradients within the family of 
urves. In Se
tion 3.6, we studyanother, mu
h greater, sour
e of error in inferred wave amplitudes.
3.6 Noise analysisThere is noise in the laboratory experiment images due to a phenomenon known aspixel jitter, whi
h has 
ontributions from the 
amera, the video re
order and the framegrabber. Pixel jitter 
auses the 
olour properties of ea
h pixel to vary randomly in timeabout some mean value, even when the s
ene being shot by the 
amera remains exa
tlythe same. It is the e�e
ts of this, and of the 8-bit 
olour quantization, whi
h ultimatelylimit the verti
al resolution of the inferred interfa
e heights.To estimate the size of the noise, 
olour information was extra
ted from a 
ertain �xedpixel in 25 di�erent frames, ea
h showing the same resting interfa
e in the annulus.Sin
e there are no interfa
e height 
hanges between the frames, any varian
e in the
olour properties is due entirely to pixel jitter. The standard deviations in the R, G, B,H, S and I data are shown in Table 3.3 for two 
ases: �rstly, using images from a videore
ording, and se
ondly, using live images dire
t from the 
amera.68



Chapter 3. Calibration of the laboratory experimentvideo re
ording dire
t from 
amerared, R 3.6 2.5green, G 4.2 2.9blue, B 6.6 4.6hue, H 9.6Æ 5.2Æsaturation, S 3.4 1.9intensity, I 10.3 9.0Table 3.3: Noise in ea
h of the six 
olour 
omponents, 
al
ulated as the standarddeviation of the pixel jitter in 25 frames.It is evident from the table that the noise 
an be redu
ed by about one third by usinglive images rather than video re
ordings, though video images were used in this thesisfor reasons of 
onvenien
e. In both 
ases the noise in the R, G and B signals is greaterthan one. This means that the a

ura
y of the inferred interfa
e heights is ultimatelylimited by pixel jitter, rather than the dis
retization of R, G and B to integers.A 
ru
ial issue is whether or not the signature of the small amplitude, small-s
ale waveswill be visible through the noise in the hue �eld. We 
an investigate this by proje
tingthe noise in the hue �eld onto the 
alibration 
urve to 
al
ulate the expe
ted noise inthe interfa
e height �eld. For a 
alibration 
urve h(H) giving interfa
e height h in termsof hue H, we have h(H + �H) � h(H) + �H dhdH ; (3.30)where �H is the noise in the hue �eld. The predi
ted pixel jitter noise �h in the inferredinterfa
e height �elds is therefore given by�h � �H dhdH ; (3.31)whi
h is plotted against interfa
e height for the 
alibration 
urve of Figure 3.9 in Fig-ure 3.11, assuming images from a video re
ording with �H = 9:6Æ (see Table 3.3). Weassume that �H is independent of interfa
e height.We 
an interpret the noise plotted in Figure 3.11 as the error in inferred heights, oralternatively as the smallest 
hange in height that we 
an dete
t. A wave of amplitude69
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Figure 3.11: Resolution asso
iated with the hue 
alibration 
urve, when usedwith images from a video re
ording.1 mm 
ould therefore be marginally resolved if it was superimposed on a ba
kgroundinterfa
e height of around 130 mm, but away from this height the resolution deterioratesrapidly.If we average over a group of N neighbouring pixels in a frame, the noise de
reases by afa
tor of pN . For example, if we averaged over a box measuring 20 pixels by 20 pixels
entred on the pixel of interest, we would have N = 400 and noise redu
tion by a fa
torof 20. This would mean that we 
ould resolve 1 mm amplitude waves at any observedinterfa
e height in the range of Figure 3.11, but the 
ost of this in
rease in verti
al res-olution is a de
rease in horizontal resolution. 20 pixels 
orresponds to 8 mm, and so inthis thesis the N = 20�20 box averaging is performed only for inferring interfa
e heightfeatures with large horizontal s
ales (the large-s
ale waves). Fortunately, the small-s
alewaves tend to o

ur near interfa
e heights of 130 mm, and so for these we 
hoose a boxaverage of N = 3�3 whi
h gives adequate resolution in both the horizontal and verti
al.Another possible way to over
ome the e�e
ts of pixel jitter would be to average overa number of frames whi
h are sequential in time. The small-s
ale waves are so rapidlyevolving that we 
ould not average over more than around �ve frames (0.2 s) without70



Chapter 3. Calibration of the laboratory experimentlosing resolution, and even then the signal-to-noise gain would be only p5 � 2:2, sotime-averaging was not attempted in this study.
3.7 Sample re
onstru
ted height �eldAn example of an appli
ation of the 
alibration s
heme is shown in Figure 3.12. Theannulus rotation rates in this 
ase were 
 = 0:46 rad s�1 and �
 = 3:70 rad s�1,at whi
h there is a rotationally-modi�ed Kelvin-Helmholtz instability but no baro
lini
instability. The equilibrated 
ow is a Kelvin-Helmholtz mode of azimuthal wavenumber9. The wave has a parti
ularly large wavelength and amplitude due to the very large lidrotation. The �gure shows the re
onstru
ted 2-D interfa
e height, as well as an azimuthal
ross-se
tion at radius r = 100 mm, in whi
h the angle in
reases in the anti-
lo
kwisedire
tion and has its zero at \3 o'
lo
k". Parallax e�e
ts des
ribed in Se
tion 2.5 weretaken into a

ount to produ
e these images, and all other re
onstru
ted interfa
e heightimages in this thesis. We dedu
e that the amplitude of the interfa
e height displa
ementis around 10 mm, at this radius.Be
ause there are still slight remnants of pixel jitter noise present, a �ltered versionof the azimuthal 
ross-se
tion is shown over-plotted on the un�ltered 
urve. The �l-tering method used involves proje
ting the 
urve onto the Daube
hies (1988) Dis
reteWavelet Transform (DWT) fun
tions, setting those 
oeÆ
ients asso
iated with randomnoise equal to zero, and then re
onstru
ting the 
urve from the remaining (non-zero)basis fun
tions. This is implemented using the IDL routine wtn. The DWT fun
tionsare lo
alized and 
ompa
t (hen
e the term wavelet) and therefore optimized for noiseremoval, unlike �ltering based on the Fast Fourier Transform (FFT) basis fun
tions(global sine and 
osine waves). The re
onstru
ted height �elds in this thesis are all�ltered in this way.Further interfa
e height re
onstru
tions are performed in Se
tion 4.8, after a 
ompre-hensive series of laboratory experiments has been 
arried out.71
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(a)

(b)

(
)Figure 3.12: (a) Raw experimental image; (b) re
onstru
ted 2D interfa
e height;and (
) un�ltered (solid) and �ltered (dashed) azimuthal interfa
e height pro�le.72



Chapter 3. Calibration of the laboratory experiment3.8 Chapter summaryWe have su

essfully implemented a 
alibration s
heme for interfa
e height in the labo-ratory experiment. By iterative solution of the nonlinear layer torque balan
e equations,we have found that Ekman layers and Stewartson layers both exert a signi�
ant dragfor
e on the layer interiors, and that allowing for sloping interfa
e heights is also impor-tant for an a

urate result. We have identi�ed hue as an optimal 
olour 
alibrationvariable, and have used a multi-layer torque balan
e analysis to derive a 
alibration
urve.By proje
ting hue onto the 
alibration 
urve we have been able to make a

urate re
on-stru
tions of interfa
e height maps, and thereby derive wave amplitudes in the annulusfor the �rst time. The verti
al resolution of the inferred interfa
e heights is limited bypixel jitter, but it 
an be better than 1 mm if live images are used and an average istaken over a number of pixels whi
h are neighbouring in spa
e or time.In the next 
hapter, we des
ribe the parti
ular laboratory experiments whi
h have been
arried out in this study, and analyze the results.
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Chapter 4
Results of the laboratoryexperiments \Are you ready to ki
k it into a
tion yet?"\Oh, I'm ready to ki
k it alright!"
We begin this 
hapter by summarizing the experimental results obtained by Lovegrove(1997) and Lovegrove et al. (2000) using the rotating, two-layer annulus apparatus. Wethen des
ribe three new series of experiments whi
h have been 
arried out in the presentstudy, mentioning some preliminary experimental diÆ
ulties whi
h frustrated progressduring the �rst year. The new series are designed to extend Lovegrove's results, bothby exploring a more extreme range of parameters in
luding the hitherto uninvestigatedageostrophi
 regime, and by investigating the e�e
ts of three parti
ular system 
hanges.The new experiments prove to be fruitful, as large- and small-s
ale waves are found to
oexist at a greater number of regions in parameter spa
e than reported by Lovegrove.The lo
ations of the major transition 
urves in the present experiments are shown to
ompare well with the predi
tions of simple theory.With one parti
ular set-up, we �nd that we 
an make video re
ordings of the waves witha horizontal spatial resolution of better than one �fth of a millimetre, 
orresponding toaround 100 measurements per small-s
ale wavelength.74



Chapter 4. Results of the laboratory experiments

Figure 4.1: Regime diagram obtained by Lovegrove et al. (2000). The paths ofthe four s
ans are shown. In all 
ases the dire
tion of the paths was towards higherFroude number. Categorization of the equilibrated large-s
ale 
ow was performedat ea
h of the 48 points marked with a diamond, allowing the approximate lo
ationsof the transition 
urves to be inferred (thin 
urves). The diagram is also dividedinto regions a

ording to the dominant azimuthal wavenumber (thi
k 
urves).4.1 Findings of LovegroveLovegrove performed a general survey of the di�erent equilibrated large-s
ale 
ow typesa
hieved in the baro
lini
ally-unstable rotating, two-layer annulus. His results are givenin terms of two dimensionless parameters: the internal Froude number (F ) and dissipa-tion parameter (d), whi
h are de�ned byF = f 2L2g0H (4.1)and d = p�
H�
 ; (4.2)where L = 6:25 
m is the radial gap width, H = 12:5 
m is the layer depth, f = 2
 isthe Coriolis parameter, g0 = 2g(�2� �1)=(�1+ �2) = 6 
m s�2 is the redu
ed gravity and� = (�1 + �2)=2 = 1:18� 10�6 m2 s�1 is the mean kinemati
 vis
osity.75



Chapter 4. Results of the laboratory experimentsLovegrove performed four s
ans in the (d; F ) parameter spa
e, in ea
h one keeping�
 > 0 
onstant, and in
reasing 
 > 0 in twelve dis
rete steps over a six hour period.This meant that 30 minutes was spent at ea
h of the 48 visited points of parameterspa
e, suÆ
iently longer than the spin-up time of around ten minutes, and thereforeallowing a reliable post spin-up 
ow 
ategorization to be determined.
The results of Lovegrove's experiments are shown in Figure 4.1. The 
ow types aredenoted by a number followed by one or more letters. The number refers to the domi-nant azimuthal wavenumber(s), and the letters refer to how the 
ow evolves with time:Ax denotes axisymmetri
 
ow of azimuthal wavenumber zero; S denotes a steady wavewhose amplitude is 
onstant with time; Av denotes an amplitude va
illation wave whoseamplitude periodi
ally grows and de
ays with time. There are further, more 
ompli
ated
ow types present in the regime diagram whi
h are not studied in this thesis.
The main fo
us of Lovegrove's work was transitions between these di�erent large-s
ale
ow types, and he found good agreement between the laboratory regime diagram, andone based on a bifur
ation analysis of a theoreti
al model using spe
tral amplitudeequations. However, he also reported the presen
e of small-s
ale waves during ampli-tude va
illation (Av) 
ows only. The small-s
ale waves would develop near the inner
ylinder during de
aying phases of the va
illation, and would be 
ompletely absent dur-ing growth phases.
This was the �rst time that a systemati
 small-s
ale wave presen
e had been reportedin a rotating, two-layer annulus experiment. Read (1992a) had reported the presen
e ofweak, high-frequen
y wave a
tivity in the signal from a thermo
ouple probe embeddedin a thermally-driven, 
ontinuously-strati�ed rotating annulus 
ow. The re
orded fre-quen
y was 
lose to the buoyan
y frequen
y, suggesting that the origin of the signal wasan inertia-gravity wave. However, the inertia-gravity wave 
ould well have been gener-ated by an intera
tion between the probe and the 
ow, and so this 
annot be regardedas eviden
e of spontaneous emission. 76



Chapter 4. Results of the laboratory experiments4.2 Preliminary diÆ
ulties with 
urrent experimentsDiÆ
ulties were en
ountered in this study, when an attempt was made to reprodu
e theresults of Lovegrove. In preliminary experiments, the �t between the observed regimediagram transition 
urves and those shown in Figure 4.1 was unsatisfa
tory. In parti
u-lar, even though points a
ross the entire regime diagram were sampled, equilibration wasfound to be nearly always to a wavenumber two 
ow. The 
uid displayed a relu
tan
e toundergo transitions to di�erent states with wavenumbers other than two. Furthermore| in stark 
ontrast with Lovegrove's �ndings | all 
ows were 
ompletely devoid ofsmall-s
ale waves.1 In an attempt to �x this problem, the working liquids were repla
edwith fresh preparations on a number of o

asions, but the small-s
ale waves remainedabsent.After almost a year of failed experiments, some time was spent working on a non-experimental part of the proje
t. Surprisingly, when the experiments were attemptedagain after this break, the small-s
ale waves appeared in abundan
e. The only 
hange inthe apparatus between the unsu

essful and su

essful experiments, was that the 
uidswere six weeks older. We therefore infer a 
hange in the liquids' physi
al and/or 
hemi
alproperties over time, as previously suggested in Se
tion 2.2.4. It is not surprising thatsu
h 
hanges might a�e
t small-s
ale waves more than large-s
ale ones, sin
e vis
ousand interfa
ial tension e�e
ts are both s
ale-sele
tive. Changes in the liquid properties
ould therefore make the di�eren
e between presen
e and absen
e of small-s
ale waves,whilst simultaneously exerting a signi�
ant but lesser impa
t upon the large-s
ale waves.Figure 4.2 shows a 
omparison between the equilibrated 
ows obtained with fresh andaged 
uids. The experimental details are otherwise identi
al, with 
 = 2:3 rad s�1 and�
 = 0:62 rad s�1. A train of short waves is present in the experiment with old 
uids,but with the fresh preparation no short waves are visible, even in the original videofootage. In both 
ases, an experiment was performed in whi
h �
 was held 
onstantat the value just given, but 
 was slowly and 
ontinuously in
reased from its startingvalue at a rate of 4 � 10�4 rad s�2, in anti
ipation of the experiments to be des
ribedin Se
tion 4.3. In the system with short waves present, the 
ow underwent a transi-1An undergraduate using the annulus had also previously failed to produ
e a 
ow with small-s
alewave a
tivity, during her Masters proje
t. 77
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(a) (b)Figure 4.2: Raw laboratory images showing the post-transient 
ow obtained inexperiments whi
h used (a) fresh working liquids, and (b) aged working liquids,but whi
h were otherwise dynami
ally identi
al. During the many weeks whi
hpassed between the two experiments, the sour
e lamp broke and was repla
edwith a brighter one, the automati
 gain 
ontrol (AGC) feature of the 
amera wasswit
hed o�, and the orientation of the analyzing polaroid was altered. Thesemodi�
ations explain the qualitative di�eren
es between the two images.tion to a wavenumber 3 state when 
 rea
hed 2.7 rad s�1. The same transition wasobserved in the system without short waves, but it did not o

ur until 
 had rea
hed3.4 rad s�1, suggesting that the short waves play a role in en
ouraging transitions. It wasdiÆ
ult to study this phenomenon systemati
ally, be
ause the 
uid properties 
hangein an un
ontrolled and unknown way. Furthermore, the observation 
ould be due to thedire
t impa
t of the 
hanging 
uid properties upon the large-s
ale, balan
ed dynami
s,rather than to the impa
t of the short waves | whose generation is permitted by the
hanging 
uid properties | on the balan
ed dynami
s. Be
ause of these diÆ
ulties,this phenomenon is not investigated further here, but is studied more 
arefully using anumeri
al model in Chapter 7.There is a need for further work to determine exa
tly how the 
uid properties 
hangewith age. Dis
repan
ies between the results of this study and those of Lovegrove aredis
ussed, in the 
ontext of evolving 
uids, in Se
tion 4.9. To explore the impa
t of theun
ertain 
uid properties, simulations using a numeri
al model with varying vis
osityand interfa
ial tension are des
ribed in Se
tions 6.2 and 6.3, respe
tively.The rest of this 
hapter des
ribes the laboratory experiments whi
h were 
arried outwhen the working liquids had been together in the annulus for between two and six78



Chapter 4. Results of the laboratory experimentsexperiment number �
 (rad s�1)1 0.622 0.693 0.774 0.855 0.956 1.067 1.198 1.319 1.4610 1.6111 1.8012 2.0313 2.2414 2.5115 2.7316 3.14Table 4.1: The magnitude of the 
onstant di�erential lid rotation �
 used inea
h of the present experiments, measured by timing the rotation period using astopwat
h. The error in the measurements is around 1%.months. At this age, dire
t observation of the liquids and interfa
e suggested that the
uid properties had be
ome relatively stable.
4.3 Des
ription of 
urrent experimentsIn the 
urrent study, four series of laboratory experiments have been performed, ea
husing a slightly di�erent 
on�guration of the two-layer annulus. Ea
h series involvesmany s
ans a
ross (d; F ) parameter spa
e, though the range of parameters 
overed ismu
h greater here than in Lovegrove's experiments. Also, we are interested here notso mu
h in determining the pre
ise large-s
ale 
ow type, but primarily in lo
ating theregions of existen
e and 
oexisten
e of large-s
ale and small-s
ale waves.All experiments had 
 > 0 so that, when viewed from above, the turntable rotation wasanti-
lo
kwise in the laboratory frame. In the �rst series, denoted PAI (prograde, annu-79



Chapter 4. Results of the laboratory experimentslus, in
reasing), the lid rotation was prograde (�
 > 0), the geometry was annular, andthe runs were performed with in
reasing 
 (and therefore in
reasing Froude number).This series 
orresponds to the experiments of Lovegrove. In the se
ond series, denotedRAI (retrograde, annulus, in
reasing), the lid rotation was retrograde (�
 < 0), thegeometry was annular, and the runs were performed with in
reasing Froude number.This is an interesting 
ase to study as there is an asymmetry between the large-s
aledynami
s of prograde and retrograde 
ow, as we will see in Se
tion 4.5. In the thirdseries, denoted PAD (prograde, annulus, de
reasing), the lid rotation was again progradeand the geometry annular, but the runs were performed with de
reasing Froude number,whi
h allows us to investigate the e�e
ts of hysteresis. In the fourth series, denoted PEI(prograde, e

entri
, in
reasing), the lid rotation was prograde and the Froude numberwas in
reasing, but the inner 
ylinder was displa
ed horizontally to give an e

entri
annular geometry. The purpose of reversing the lid rotation and the dire
tion of theparameter spa
e s
an, and of modifying the geometry, is to see whether any of thesesystem 
hanges a�e
ts the produ
tion of small-s
ale waves.Ea
h of the four series 
onsisted of 16 experiments, in whi
h the di�erential lid rotation�
 was held 
onstant at the magnitude shown in Table 4.1. In ea
h experiment, last-ing three hours, the voltage supplied to the turntable motor was linearly in
reased orde
reased with time under 
omputer 
ontrol. This 
aused the turntable rotation rate
 to vary slowly as shown in Figure 4.3. The angular a

eleration/de
eleration d
=dtprodu
ed was 
losely 
onstant at 4� 10�4 rad s�2. By holding �
 
onstant and gradu-ally in
reasing 
, a 
urve is tra
ed out in the (d; F ) parameter spa
e. In 
ontrast withLovegrove's experiments, in whi
h 48 dis
rete points in parameter spa
e were sampled,in the present experiments we perform 
ontinuous s
ans.We now look, in turn, at the results from ea
h of the four series of laboratory experiments.
4.4 Experimental results: PAI seriesDuring a typi
al experimental run in the prograde, annulus, in
reasing PAI series, the
ow types observed fell into the following four distin
t 
lasses, when 
ategorized a

ord-ing to the presen
e and absen
e of large- and small-s
ale waves. The 
ow types are80



Chapter 4. Results of the laboratory experiments

Figure 4.3: Measured temporal variation of the turntable rotation 
 used inthe laboratory experiments. In the PAI, RAI and PEI experiments the 
omputer-generated voltage, input to an ampli�er whi
h supplies power to the turntablemotor, was linearly in
reased from zero to 3 V over three hours, to give the dotted
urve. In the PAD experiments, the voltage was linearly de
reased over three hours,to give the dashed 
urve. The 
urves were derived by making measurements of therotation period every 10 minutes, by ele
troni
ally timing su

essive breakings ofa light beam by a tab �xed to the turntable at its 
ir
umferen
e.
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(a) 5 min (b) 35 min

(
) 70 min (d) 93 min 00 se


(e) 93 min 30 se
 (f) 94 min 15 se


(g) 95 min 00 se
 (h) 142 minFigure 4.4: Images from experiment number PAI5, at the indi
ated times.82



Chapter 4. Results of the laboratory experimentsillustrated in Figure 4.4 by representative images from experiment number PAI5.� Axisymmetri
 
ow regime, AX. Absen
e of both large-s
ale and small-s
alewaves, e.g. Figure 4.4(a) and (
).� Kelvin-Helmholtz regime, KH. Absen
e of large-s
ale waves with global pres-en
e of small-s
ale waves, e.g. Figure 4.4(b) [and also Figure 3.12(a)℄.� Mixed Regular Wave regime, MRW. Presen
e of regular large-s
ale wavestogether with lo
al presen
e of small-s
ale waves, e.g. Figures 4.4(d){(g) whi
hshow a large-s
ale amplitude va
illation 
y
le.� Mixed Irregular Wave regime, MIW. Presen
e of irregular large-s
ale wavestogether with lo
al presen
e of small-s
ale waves, e.g. Figure 4.4(h).In general, during a three hour run, the order in whi
h the 
ow types were en
ounteredwas AX, KH, AX, MRW, MIW, so that there were four transitions in total. The KHregime is so-
alled in anti
ipation of eviden
e to be presented in Se
tion 4.4.1 that thesmall-s
ale waves in that regime are, indeed, Kelvin-Helmholtz waves. For pra
ti
alpurposes, wavenumbers below �ve were 
ounted as large-s
ale waves, and all others assmall-s
ale waves, though typi
ally the spe
tral gap was mu
h larger than permitted bythis de�nition.In all 
ow regimes, the large- and small-s
ale waves des
ribed are superimposed ontoa ba
kground paraboli
 interfa
e shape given by equation (3.9), as radial pressure gra-dients are established to provide the required 
entripetal a

eleration. The transitionbetween the AX and KH regimes marks the onset of a rotationally-modi�ed Kelvin-Helmholtz instability whi
h gives rise to the observed global small-s
ale waves, as wewill show shortly. The return to the AX regime marks an instability boundary, at whi
hthe turntable rotation is suÆ
iently large to re-stabilize the system against these waves.The start of the MRW regime 
orresponds to the onset of baro
lini
 instability whi
hgives rise to the observed large-s
ale waves, with 
oexisting lo
alized trains of small-s
alewaves. The transition to the MIW regime marks the point at whi
h the for
ing is sostrong that the spatio-temporal regularity of the large-s
ale waves breaks down to leavea 
haoti
 
ow. 83



Chapter 4. Results of the laboratory experiments

Figure 4.5: Close-up of the small-s
ale waves radiated during the de
ay phaseof a 2Av large-s
ale 
ow in a laboratory experiment with �
 = 1:46 rad s�1 and
 = 1:94 rad s�1, 
orresponding to experiment PAI9 at a time of 90 minutes.The annular gap width (62.5 mm) measures 334 pixels in the image, and so thehorizontal resolution in this 
lose-up view is 0.19 mm. The small-s
ale wavelengthis around 20 mm, so the waves are very well resolved.Small-s
ale waves were observed during almost every baro
lini
ally-unstable 
ow (theMRW and MIR regimes) in the present experiments, in
luding 
ows in whi
h the large-s
ale wave amplitude was 
onstant in time. This is in 
ontrast with Lovegrove's experi-ments, in whi
h small-s
ale waves were reported to appear only during amplitude va
il-lation 
ows. Possible reasons for this apparent in
onsisten
y are give in Se
tion 4.9.As a one-o�, a spe
ial experiment was performed in whi
h the 
amera zoom lens was usedto zoom in to the annulus as far as possible. The 
amera was also shifted horizontallyby around 10 
m, so that the �eld of view was 
entred not on the rotation axis but onthe annular gap. This removes the parallax e�e
t dis
ussed in Se
tion 2.5, whi
h blo
ksfrom view a signi�
ant portion of the interfa
e height adja
ent to the inner 
ylinder,whi
h is exa
tly where the small-s
ale waves tend to appear. A 
lose-up of the radiatedsmall-s
ale wave �eld so obtained is shown in Figure 4.5. Only an azimuthally-restri
tedpart of the 
ow 
an be seen, but the advantage is that the horizontal stru
ture of thewave-train 
an be seen at ex
eptionally high resolution (0.19 mm | see �gure 
aption).84



Chapter 4. Results of the laboratory experiments
For ea
h of the 16 experiments in the PAI series, the times of transitions between thefour 
ow 
lasses (in minutes sin
e the start of the experiment) were re
orded. �
 isknown from Table 4.1 and 
 
an be determined from the transition time using Fig-ure 4.3, allowing the Froude number (F ) and dissipation parameter (d) 
orrespondingto ea
h transition to be 
al
ulated using equations (4.1) and (4.2). The results therebyobtained are summarized in the regime diagrams of Figure 4.6. Contours of 
onstantRossby number Ro = �
=(2
) are shown in Figure 4.6(b) for referen
e, showing thatwe have investigated 
ows in whi
h this parameter varies by three orders of magnitude,en
ompassing the geostrophi
 Ro < 1 and ageostrophi
 Ro > 1 regimes. No attemptwas made during this study to reprodu
e Lovegrove's detailed sub-
lassi�
ation withinthe MRW regime. The full Froude number span was not always a
hieved, as some of thehigher-numbered experiments were terminated before the full three hours had elapsed.This was be
ause the 
uid interfa
e had be
ome so steep that it began to interse
t the lid.As regards the large-s
ale waves, there is good agreement between the lo
ation ofthe marginal baro
lini
 instability 
urve in the present and Lovegrove experiments.The Phillips model (e.g. Pedlosky, 1987) predi
ts a Froude number for this 
urve ofF
riti
al = �2=2 � 4:9, independent of the shear (i.e. the dissipation parameter). Thisis in reasonable agreement with the Froude numbers for the transitions to the MRWregime in Figure 4.6. There seems to be a weak dependen
e on shear in the laboratorywhi
h is not 
aptured by the model, possibly be
ause the model is for a 
hannel ratherthan an annulus, and be
ause of ageostrophi
 e�e
ts not 
aptured by the model.The small-s
ale modes of main interest have di�erent 
hara
teristi
 properties when theyappear in the MRW and MIW regimes rather than in the KH regime. This 
an be seenby 
omparing Figures 4.4(b)&(h), for example. In the MRW and MIW regimes, theshort waves are generally smaller in amplitude and wavelength, and are radially andazimuthally 
on�ned unlike in the KH regime. This suggests that di�erent generationme
hanisms may be responsible in the two 
ases, a possibility whi
h we investigate inSe
tions 4.4.1 and 4.4.2. 85
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Chapter 4. Results of the laboratory experiments4.4.1 Analysis of small-s
ale waves in the KH regimeWe now show that the KH regime small-s
ale waves are Kelvin-Helmholtz modes gener-ated by a shear instability, as anti
ipated by the label. The transfer of energy from thelarge-s
ale basi
 
ow to the small-s
ale growing waves is a
hieved in this 
ase through awave-mean 
ow intera
tion, unlike the wave-wave triad intera
tion me
hanism dis
ussedin Se
tion 1.1. Kelvin-Helmholtz modes are expe
ted to be generated whenever the ver-ti
al shear in horizontal velo
ity ex
eeds a parti
ular value. This 
riterion is expressedin non-dimensional terms as the Ri
hardson number dropping below some 
riti
al value,usually taken to be 14 or 1 depending upon the exa
t de�nition of the Ri
hardson number(A
heson, 1990).The gradient Ri
hardson number for a 
ontinuously strati�ed 
ow is de�ned byRi = �(g=�)(��=�z)(�u=�z)2 ; (4.3)where �(z) and u(z) are the density and horizontal velo
ity pro�les, respe
tively. For anaxisymmetri
 two-layer annulus 
ow, with solid-body rotation rates in layers 1 and 2 of�
1 and �
2 relative to the turntable, the bulk Ri
hardson number, verti
ally-averagedover the interfa
ial Ekman layers | both of widthp�=
 from equation (3.14) | is, atradius r, Ri = 2g0p�=
r2(�
1 ��
2)2 : (4.4)
The Ri
hardson number 
riterion stated above stri
tly only applies to non-rotating sys-tems. The appli
ability of non-rotating Kelvin-Helmholtz instability theory to rotatingsystems has been investigated by James (1977). He derives an impli
it fourth orderpolynomial dispersion relation for a rotating, two-layer 
hannel, and numeri
ally solvesit to plot Kelvin-Helmholtz growth rate 
urves for both the rotating and non-rotating
ases. A 
omparison of the 
urves leads him to 
on
lude that\the Kelvin-Helmholtz instability is but little a�e
ted by rotation . . . broadly,this [rotating 
ase℄ instability is adequately des
ribed by the non-rotatingtheory."This statement holds be
ause the laboratory small-s
ale waves evolve on times
ales ofmu
h less than the rotation period. We 
on
lude that we may pro
eed to apply the87
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Figure 4.7: Variation of angular velo
ity di�eren
e a
ross the 
uid interfa
ewith turntable angular velo
ity 
, for various �xed values of the di�erential lidrotation �
. The 
urves are obtained from solutions of the annulus torque balan
eequations (3.27) derived in Chapter 3. For 
ombinations where both 
 and �
were large, the iterative solution des
ribed in that 
hapter failed to 
onverge, andso these points are missing from the �gure.non-rotating 
riterion to the rotating annulus system.To a �rst approximation, �
1 and �
2 are both proportional to the di�erential lidrotation �
 and independent of the turntable rotation 
. We developed, in Chapter 3,an iterative method for 
al
ulating �
1 and �
2 (and hen
e the shear �
1��
2) forgiven �
 and 
. We 
an use the same torque balan
e analysis here, too, to improve onthe �rst approximation for the shear. The results of this 
al
ulation for ea
h 
ombina-tion of 7 di�erent values of �
 and 16 di�erent values of 
, are shown in Figure 4.7.Both Stewartson layers and 
urved interfa
e e�e
ts are in
luded in the torque balan
e
al
ulation, for a

ura
y. It 
an be seen that the shear a
tually shows a signi�
antvariation with turntable rotation for �xed di�erential lid rotation. This variation isunreported in the annulus literature, and is due to two e�e
ts. Firstly, as the turntableangular velo
ity is in
reased the 
uid interfa
e be
omes more 
urved, resulting in agreater area over whi
h interfa
e drag for
es a
t. Se
ondly, the Stewartson and Ekman88
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Figure 4.8: Variation of mid-radius Ri
hardson number averaged over the inter-fa
ial Ekman layers, with turntable angular velo
ity, for various �xed values of thedi�erential lid rotation. Dashed lines 
orresponding to 
riti
al Ri
hardson numbersof 1/4 and 1 are also drawn.layer thi
knesses shrink a

ording to di�erent powers of 
 a

ording to equations (3.14)and (3.15), resulting in a shift in the balan
e of drag for
es due to these boundary layers.As anti
ipated by Table 3.2, the shear is around half that whi
h would be obtained bythe simpler 
al
ulation, with an assumed-horizontal interfa
e and negle
ted Stewartsonlayers.For ea
h of the points plotted in Figure 4.7 we 
an 
al
ulate the Ri
hardson numberusing equation (4.4). The results of this 
al
ulation at mid-radius r = 9:4 
m are shownin Figure 4.8. Be
ause of the 
hara
teristi
 shapes of the velo
ity shear 
urves we 
an seethat, as 
 is in
reased with �
 held 
onstant, we en
ounter Ri
hardson numbers �rstgreater than the 
riti
al values required for Kelvin-Helmholtz instability, then less than,and then greater than again. This is exa
tly what we observed during the transitionsto and from the AX and KH regimes in the experiments of Se
tion 4.4, with the onsetof Kelvin-Helmholtz instability being followed shortly after by a re-stabilization, as seenin Figure 4.6(b). 89
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Figure 4.9: Regime diagram showing the predi
ted regions of Kelvin-Helmholtzstability and instability in the (d; F ) plane. Instability is expe
ted wherever theRi
hardson number drops below a 
riti
al value, whi
h is shown in this plot as 0.25and 1.
To further test the ability of this simple model to predi
t Kelvin-Helmholtz instabilityin the laboratory, we evaluate the dissipation parameter d and Froude number F at ea
hof the points in Figure 4.8, and plot a point in (d; F ) spa
e a

ording to whether theRi
hardson number is sub- or super-
riti
al. The results are shown in Figure 4.9. Thereis good qualitative agreement between regions of Kelvin-Helmholtz instability in this�gure and in the experimental regime diagram of Figure 4.6(b). The AX and KH 
owtypes are both reprodu
ed by this simple analysis for the two shown values of 
riti
alRi
hardson number. Their detailed shapes are not reprodu
ed exa
tly, probably due tothe negle
t of interfa
ial tension in the analysis.We are now in a position to explain the shape of the AX and KH regions in Fig-ure 4.6(b). The initial AX regime is missing from experiments 7{16 be
ause the shear isso large that the system is Kelvin-Helmholtz unstable even at the start of these exper-iments. Similarly, the larger Froude number AX regime is missing from experiments90



Chapter 4. Results of the laboratory experiments12{16 be
ause the shear is so large that the system does not re-stabilize with respe
t tothe Kelvin-Helmholtz me
hanism before baro
lini
 instability o

urs.
4.4.2 Analysis of small-s
ale waves in the MRW and MIWregimesWe will 
ondu
t an investigation of the produ
tion of the MRW small-s
ale waves inChapter 6, using velo
ity �elds from a numeri
al model. However, there is a simpleanalysis that does not require velo
ity data, whi
h 
an be done now. The analysis isbased on the ship wave problem studied by Lighthill (1978), in whi
h an obje
t movingin a straight line at speed V in a 
uid generates a wake of deep water surfa
e gravitywaves. It is shown in that analysis, using geometri
al arguments based on the phasespeed being twi
e the group speed, that waves at the edge of the wake will have a wave-length of � = (4�=3)(V 2=g), and that their 
rests will meet ea
h other at an angle of� = 90Æ + sin�1 �13� � 109Æ.This suggests a model for the MRW and MIW small-s
ale wave generation in the lab-oratory experiments, in whi
h the entire large-s
ale wave is taken to be the extendedmoving obje
t whi
h 
auses inertia-gravity wave generation. The Lighthill theory is non-rotating, but as in Se
tion 4.4.1 we assume that the laboratory small-s
ale waves are notstrongly in
uen
ed by rotation. Sin
e the speed at whi
h the the large-s
ale wave travelsaround the annulus is proportional to �
, the model would suggest a small-s
ale wave
rest interse
tion angle whi
h does not vary between experiments, and a wavelengthwhi
h in
reases with in
reasing experiment number.A 
omparison between Figures 4.4(h) and 4.5, from mixed wave 
ows in experimentsPAI5 and PAI9 respe
tively, reveals that these predi
tions are 
onsistent with observa-tions. The wave 
rest angle is around 90Æ in ea
h 
ase, reasonably 
lose to the predi
tedangle. The drift period of the large-s
ale wave in Figure 4.5 was measured to be 33 susing a stop-wat
h. Converting to an angular phase speed and then to a velo
ity at mid-radius, r = 9:4 
m, gives V = 1:78 
m s�1. With this velo
ity, and using the redu
edgravity in pla
e of g, the Lighthill theory predi
ts � = 23 mm, in ex
ellent agreementwith the observed wavelength given Lighthill's assumptions of no rotation and a point91



Chapter 4. Results of the laboratory experimentsgenerating obje
t. The same analysis for the 
ow in Figure 4.4(h), for whi
h the driftperiod is 45 s, gives � = 12 mm, whi
h is also in good agreement with observations.The small-s
ale waves in the Lighthill theory are not Kelvin-Helmholtz waves generatedby a shear instability, but inertia-gravity waves generated by the motion of an obje
t inthe 
uid. This gives our �rst indi
ation that the observed laboratory small-s
ale wavesin the MRW and MIW regimes may not be Kelvin-Helmholtz waves like those in theKH regime. This possibility is explored more fully in Se
tions 4.7 and 6.6.
4.5 Experimental results: RAI seriesThe same four regime types en
ountered in the PAI series were also observed in the ret-rograde, annulus, in
reasing RAI series, as illustrated in Figure 4.10 by representativeimages from experiment number RAI5. Note that the ba
kground radial 
olour gradi-ents are di�erent from those in Figure 4.4, be
ause the equilibrium paraboli
 interfa
eheight h(r) is now oppositely oriented in the z-dire
tion. For prograde lid rotations inthe PAI series we had h � �r2, but for the present retrograde series we have h � +r2(see equation 5.22).Figures 4.10(a), (b) and (
) show images from the AX, KH and AX regimes, respe
tively.Figures 4.10(d){(g), ea
h separated by 10 s, show a steady (non-va
illating) azimuthalwavenumber 1 
ow (1S in Lovegrove's notation) 
orresponding to the MRW regime.The large-s
ale wave drifts around the annulus with a period of around 40 s. Small-s
alewaves are barely visible in these images, but 
an be seen in the original video re
ordings| they are easier to dete
t when a moving sequen
e of images is wat
hed, rather thana single snapshot. They have amplitudes whi
h are smaller than in the 
orrespondingPAI experiments. Figure 4.10(h) shows an irregular large-s
ale wave 
orresponding tothe MIW regime, with small-s
ale waves whi
h are again barely dete
table. The bottompart of the inner 
ylinder has been refra
ted into the �eld of view in this image, 
ausingthe dark feature at mid-radius and making the image diÆ
ult to interpret.Figure 4.11 shows the regime diagram for the RAI series. It is broadly the same as thediagram for the PAI series shown in Figure 4.6(b), ex
ept that the shapes of the AX92
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(a) 5 min (b) 40 min

(
) 70 min (d) 119 min 50 se


(e) 120 min 00 se
 (f) 120 min 10 se


(g) 120 min 20 se
 (h) 179 minFigure 4.10: Images from experiment number RAI5, at the indi
ated times.93
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Figure 4.11: Experimental regime diagram for the RAI series. Ea
h multi-
oloured line 
orresponds to one 3-hour experiment, with experiment number 1furthest to the right and experiment number 16 furthest to the left. The dissi-pation parameter, whi
h is negative a

ording to equation (4.2) sin
e �
 < 0, isplotted with its sign reversed for 
omparison with the other regime diagrams.
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Chapter 4. Results of the laboratory experimentsand KH regions have been modi�ed slightly.The most likely explanation for the redu
ed small-s
ale wave amplitudes in this series,
ompared with the PAI series, is that interfa
ial tension e�e
ts are larger in the present
ase. The quasi-geostrophi
 equilibrium paraboli
 interfa
e height shape will shortlybe shown to be given by equation (5.22). There are two 
ontributions: the external
entripetal e�e
t 
2r2=(2g) is always positive, whereas the internal 
entripetal e�e
t�
�
r2=(2g0) is positive for retrograde 
�
 < 0 
ow and negative for prograde
�
 > 0 
ow. In the 
urrent series of experiments, then, the external and internal
entripetal e�e
ts 
ombine 
onstru
tively to give an interfa
e of larger 
urvature than inthe PAI series, where there was partial 
an
ellation between the two terms. This seemsto have reinfor
ed the e�e
ts of interfa
ial tension | whi
h are proportional to 
urvature| to su
h an extent that the growth of small-s
ales waves has been suppressed in this
ase.
4.6 Experimental results: PAD seriesFigure 4.12 shows the equivalent regime diagram for the prograde, annulus, de
reasingPAD series. Individual frames from a typi
al experiment are not shown in this 
ase, asthey are almost identi
al to those from the PAI series ex
ept that their order is reversedin time. The small-s
ale wave amplitudes seemed to be generally the same as for thePAI series.The regime diagram is almost exa
tly the same as the diagram for the PAI series shownin Figure 4.6(b), ex
ept that the AX regime at larger Froude numbers has vanished.The boundary between the AX and KH region is very well predi
ted by Figure 4.9 witha 
riti
al Ri
hardson number of 1. The only dynami
al di�eren
e between the largeFroude number KH regions in the PAI and PAD series is the dire
tion of approa
h inparameter spa
e. Sensitivity to dire
tion of approa
h is a manifestation of intransitiv-ity and is a 
onsequen
e of hysteresis in the system. Intransitivity has been observedbefore in experimental studies of the rotating annulus (e.g. Hide & Mason, 1975). Theimpli
ation is that for a given (d; F ) there are many possible equilibrated 
ows, and theparti
ular one whi
h is observed depends to an extent upon the system's memory of its95
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Figure 4.12: Experimental regime diagram for the PAD series. Ea
h multi-
oloured line 
orresponds to one 3-hour experiment, with experiment number 1furthest to the right and experiment number 16 furthest to the left.previous state.
4.7 Experimental results: PEI seriesFor the prograde, e

entri
, in
reasing PEI 
on�guration, we displa
e the inner 
ylinderhorizontally so that it is no longer aligned with the rotation axis. The 
on
entri
 annulusthus be
omes an e

entri
 annulus, with a distorted geometry in whi
h the annular gapwidth and Froude number vary with azimuth. Streamlines be
ome more tightly pa
kedin the region of smallest gap width, enhan
ing the shear there and allowing an inves-tigation into whether there are preferential azimuthal angles for short wave generationnow that the azimuthal symmetry is broken.Be
ause of time 
onstraints, the full set of 16 PEI experiments 
ould not be 
arried out,and so a regime diagram 
ould not be drawn. Representative stills from experimentPEI3 are shown in Figure 4.13, however. The same four 
ow types previously des
ribed96
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(a) 5 min (b) 40 min

(
) 70 min (d) 95 min

(e) 115 min (f) 131 min

(g) 132 min (h) 161 minFigure 4.13: Images from experiment number PEI3, at the indi
ated times.97



Chapter 4. Results of the laboratory experimentswere observed. The AX 
ow type is shown in (a) and (
), and the KH regime in (b).The MRW regime is shown in (d){(g), with (d) showing a 2S 
ow, (e) showing a 3S 
ow,and (f) and (g) showing times of maximum and minimum amplitude in the 
y
le of a4Av 
ow. TheMIW regime is shown in (h). Unlike in the KH regime of this preliminaryexperiment, in the mixed wave regimes there was no eviden
e of preferential short waveemission regions 
orrelated with regions of large shear (i.e. regions near \9 o'
lo
k").This adds weight to the 
on
lusion from Se
tion 4.4.2 that the short waves in the MRWand MIW regimes are not generated by a shear instability.
4.8 Cal
ulation of wave amplitudesWe now use the 
alibration s
heme of Chapter 3 to determine the amplitudes of wavesin the MRW regime of the PAI experiments (Se
tion 4.4), following the example of Se
-tion 3.7. Figures (4.14){(4.16) show the amplitude 
al
ulation for large-s
ale, baro
lini
waves of azimuthal wavenumbers 1, 2 and 3. The wave amplitudes in the middle ofthe annular gap (at r = 94 mm) are found to be around 25 mm, 8 mm and 7 mm,respe
tively. The azimuthal pro�les show that the waves are not perfe
tly regular, andso the wave amplitudes read-o� by eye and quoted here are approximate. This spatialirregularity 
an be seen in the raw images, and suggests the presen
e of azimuthal modesother than the dominant one. For example, the presen
e of a sub-dominant wavenumber1 mode 
an be seen in the raw image of Figure 4.15(a). The amplitudes determined herewill be 
ompared with amplitudes from a numeri
al simulation in Se
tion 6.1.2.Figure 4.17 shows a similar analysis for the image shown in Figure 1.6, 
onsisting oflarge-s
ale waves superimposed with two trains of small-s
ale waves. The amplitude ofthe small-s
ale waves near the inner 
ylindri
al boundary (at r = 70 mm) is around3 mm. This is around a third of the mid-radius baro
lini
 wave amplitude, implyingthat these small-s
ale waves are signi�
antly larger, relative to the large-s
ale mode,than those reported by Read (1992a). The small-s
ale wave amplitude de
reases quiterapidly with in
reasing radius, dropping below 1 mm at mid-radius (not shown).98
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(a)

(b)Figure 4.14: Large-s
ale baro
lini
 wave with azimuthal wavenumber 1. (a) Rawexperimental image, and (b) re
onstru
ted mid-radius azimuthal pro�le of interfa
eheight.
99
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(a)

(b)Figure 4.15: Large-s
ale baro
lini
 wave with azimuthal wavenumber 2. (a) Rawexperimental image, and (b) re
onstru
ted mid-radius azimuthal pro�le of interfa
eheight.
100
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(a)

(b)Figure 4.16: Large-s
ale baro
lini
 wave with azimuthal wavenumber 3. (a) Rawexperimental image, and (b) re
onstru
ted mid-radius azimuthal pro�le of interfa
eheight.
101
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Figure 4.17: Re
onstru
ted azimuthal pro�le of interfa
e height near the inner
ylindri
al boundary of Figure 1.6.4.9 Dis
ussionThe small-s
ale waves in the 
urrent experiments are more ubiquitous than those inLovegrove's experiments. In parti
ular, whereas Lovegrove reported small-s
ale wavegeneration only during amplitude va
illating large-s
ale modes, we have observed themin almost all non-va
illating large-s
ale 
ows, though their amplitudes are generallysmaller when the large-s
ale amplitude is 
onstant. The large-s
ale 
ow types duringwhi
h small-s
ale waves were observed to be generated in Lovegrove's experiments, aretherefore a subset of those in the present experiments.This apparent dis
repan
y 
an be explained in either (or both) of two ways. We 
ouldassume that small-s
ale waves were a
tually just as ubiquitous in Lovegrove's experi-ments as in the present ones, but that his 
ow visualization had suÆ
ient resolutionto 
apture only those with the largest amplitude. This 
ould be due to his lower-gradevideo signal or frame-grabber (Figure 2.4), or to a non-optimized 
rossed polaroid angle(Se
tion 2.3). Alternatively it may have been that the di�eren
es in 
uid properties,whi
h evolve in time as inferred in Se
tions 2.2.4 and 4.2, have had a signi�
ant impa
tupon the small-s
ale wave produ
tion me
hanism. It is not 
lear whi
h of these two102



Chapter 4. Results of the laboratory experimentsexplanations is responsible, though it seems more likely to be the latter.
4.10 Chapter summaryThe wave modes o

urring in the rotating two-layer annulus equations fall into twodistin
t 
lasses, both of whi
h we have observed in the present series of laboratoryexperiments. We have identi�ed those regions of the prin
ipal 2-D parameter spa
ein whi
h the large-s
ale and small-s
ale modes exist and 
oexist, and labelled themappropriately. Kelvin-Helmholtz shear instability theory, based on a 
riti
al Ri
hardsonnumber, appears to explain the lo
ations of the AX ! KH and KH ! AX transition
urves, and baro
lini
 instability theory based on a 
riti
al Froude number su

essfullya

ounts for the lo
ations of the AX !MRW and KH !MRW transition 
urves.The me
hanism by whi
h the MRW and MIW small-s
ale waves are generated remainsto be explained, though we have shown that the waves are robust to various system
hanges, appearing in four di�erent experimental 
on�gurations, and are therefore notjust a feature pe
uliar to the parti
ular 
on�guration used by Lovegrove. The gener-ation me
hanism responsible will be investigated in detail using a numeri
al model inChapter 6.This 
hapter marks the end of the �rst part of the thesis. Though we have been ableto derive wavelengths and amplitudes in the experiment, there is no pra
ti
able wayto measure velo
ity �elds. These are needed to investigate the produ
tion of short,fast waves in baro
lini
ally-unstable 
ow regimes. Motivated by this, in the following
hapters we develop and run a numeri
al model of the laboratory experiment, whi
h willallow us to derive high-resolution velo
ity data for this purpose. It will also give interfa
eheights and azimuthal wavenumbers for 
omparison with those in the laboratory annulus.
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Chapter 5
Des
ription of the numeri
al model\quagmire (noun) 1. an area of soft wet groundwhi
h you sink into if you try and walk on it.2. a diÆ
ult and dangerous situation."Cambridge Advan
ed Learner's Di
tionary,2003.In this 
hapter, we des
ribe the design and 
onstru
tion of a new numeri
al model forsimulating 
uid 
ows in rotating annulus laboratory experiments. Having dis
ussed avariety of 
andidate model types, ea
h with di�erent dynami
al assumptions, we de
ideto use a multi-layer quasi-geostrophi
 model. A model with a full representation of theannular geometry is preferable to a Cartesian 
hannel model, for a number of importantreasons whi
h are dis
ussed.The two-layer 
ontinuous quasi-geostrophi
 equations in 
ylindri
al 
oordinates are derived,and are de
omposed into verti
al and azimuthal normal mode form to simplify their solu-tion. Suitable sidewall boundary 
onditions are derived by 
onsidering integral propertiesof the governing equations. Then the equations are 
arefully dis
retized in su
h a way asto preserve dis
rete analogues of the integral properties. Suitable numeri
al parametervalues and initial 
onditions are given, and the model 
ode units are tested to ensurethat they are free from errors.The model has be
ome known as QUAGMIRE, the QUAsi-Geostrophi
 annulus Modelfor Investigating Rotating 
uids Experiments.104



Chapter 5. Des
ription of the numeri
al model5.1 Motivation for running numeri
al simulationsIn this, the se
ond part of the thesis, we embark upon an investigation of the rotating,two-layer annulus using a numeri
al model. This 
omputational approa
h is 
omplemen-tary to the laboratory investigation undertaken in the previous 
hapters, and is intendedto enhan
e and extend our understanding of the dynami
al me
hanisms at play. The keyaims are to determine the 
uid velo
ity �elds (unavailable from the laboratory experi-ments) in order to investigate sour
es of the observed small-s
ale wave emission in theMRW regime, and to run simulations both with and without a representation of the fastwaves in order to investigate their impa
ts on the large-s
ale 
ow.One possible numeri
al approa
h would be to 
arry out a dire
t numeri
al simulation(DNS) of the Navier-Stokes equations for the system, and to examine the model's abilityto simulate the produ
tion of short waves as observed in the laboratory. DNS 
odes havebeen developed for the rotating 
ontinuously-strati�ed thermal annulus (e.g. White,1986; Hignett et al., 1985) but these would require signi�
ant modi�
ation in order tobe appli
able to the dis
rete-layer isothermal system. Furthermore, DNS 
odes are 
om-putationally expensive, and 
ould be used to examine not more than a few 
ase studiesat the resolution required to simulate the fast, small-s
ale waves.As an alternative to a DNS for the numeri
al simulations, it was de
ided to use a bal-an
ed model, in whi
h small-s
ale waves are �ltered out by 
onstru
tion (Se
tion 1.1).Be
ause of the �ltering of unbalan
ed modes, balan
ed models have fewer dynami
aldegrees of freedom and therefore run mu
h more qui
kly than DNS models, allowinglarge numbers of simulations to be performed.A key additional bene�t is that a 
omparison of the laboratory and numeri
al resultsallows us to assess the ability of a �ltered model to simulate a system in whi
h motionso

ur on a wider spe
trum of s
ales than that permitted by the �ltering. This is equiv-alent to an assessment of the impa
t of the small-s
ale waves upon the large-s
ale bal-an
ed 
ow. If there are found to be dis
repan
ies between model and laboratory systembehaviour, and if the only signi�
ant di�eren
e between model and laboratory is thepresen
e of small-s
ale waves in the laboratory, then we 
an infer that those dis
repan-
ies are likely to be due to the presen
e of the small-s
ale waves.105



Chapter 5. Des
ription of the numeri
al model
5.2 Review of �ltered modelsThe relative merits of three 
andidate �ltered models and two 
andidate geometries arenow dis
ussed.
5.2.1 Candidate �ltered modelsThree 
ommonly-used �ltered models for simulating rapidly-rotating, two-layer 
ows arethose based on the quasi-geostrophi
 equations, the balan
e equations and the slow equa-tions. These three equation sets 
an ea
h be derived from the shallow water equations,whi
h in turn are derived from the Navier-Stokes equations under the assumptions ofhydrostati
 balan
e and 
olumnar 
ow. Dis
ussions of these and other �ltered modelsare given by M
Williams & Gent (1980) and by M
Intyre & Norton (2000).The main assumptions made in the derivation of the quasi-geostrophi
 equations, �rstused by Charney et al. (1950), are that the potential vorti
ity is adve
ted only by thegeostrophi
 
omponent of the 
ow, and that the amplitudes of perturbations to the
uid surfa
es are mu
h smaller than the mean 
uid depths. A list of the 
omplete setof approximations is given in Se
tion 5.3.The balan
e equations (Charney, 1955) are derived by performing a horizontal velo
-ity de
omposition into rotational and divergent 
omponents, and then trun
ating withrespe
t to the divergent 
omponent. The balan
e that they des
ribe is more 
ompli-
ated, but also more a

urate, than geostrophi
 balan
e, and eÆ
ient pro
edures havebeen developed to integrate them (Daley, 1982). However, it has been pointed out byMoura (1976) that, in their most general form, the balan
e equations have spuriousnon-physi
al wave solutions with phase speeds mu
h larger than those of inertia-gravitywaves.The slow equations (Lyn
h, 1989) are derived in a similar way to the balan
e equations,ex
ept that the velo
ity trun
ation is performed in a more systemati
 manner (based106



Chapter 5. Des
ription of the numeri
al modelon normal mode initialization, dis
ussed in Se
tion 1.4), whi
h results in the vanishingof the spurious solutions. Numeri
al integrations of the slow equations show ex
ellentagreement with initialized numeri
al integrations of the shallow water equations.Of these three 
andidate models, the quasi-geostrophi
 (Q-G) model was sele
ted to sim-ulate 
ows in the annulus. This is be
ause only one s
alar fun
tion of horizontal positionis needed per layer to uniquely de�ne the state of the system using a Q-G model (stream-fun
tion), whereas three are needed per layer using a balan
e or slow equations model(streamfun
tion, velo
ity potential and geopotential). With three times fewer indepen-dent variables, the 
omputational advantages gained from using a Q-G model were feltto outweigh the disadvantages of its slightly lower formal a

ura
y.
5.2.2 Candidate geometriesA number of numeri
al Q-G models have been developed for systems 
onsisting of super-posed immis
ible 
uid layers in a re
tangular 
hannel (e.g. Brugge et al., 1987). Before
onstru
ting a new numeri
al model, we �rst 
onsidered whether any of these Cartesianmodels 
ould meet our requirements. For the following reasons, it was de
ided that they
ould not.Firstly, the 
hannel equations with periodi
 boundary 
onditions are a good approxi-mation to the annulus equations only if the ratio of the width of the annular gap toits mean radius is mu
h smaller than unity (King, 1979b). With this geometry, the
urvature be
omes negligible, and we would be justi�ed in using a 
hannel model tosimulate the 
ow in the annulus. For the present laboratory apparatus, though, theratio is 6:25 
m=9:375 
m � 0:7, whi
h is only slightly smaller than 1.Se
ondly, 
hannel models have additional, shift-re
e
t symmetries (Cattaneo & Hart,1990) not present in annulus models. This is the 
ase be
ause, though the annulus andperiodi
 
hannel are topologi
ally similar, the geometry of their boundaries is fundamen-tally di�erent. For example, there is a re
e
t symmetry in the 
hannel in the plane whi
his equidistant from the sidewall boundaries, but there is no analogous symmetry in theannulus. Kwon & Mak (1988) show that the existen
e of su
h additional symmetries107



Chapter 5. Des
ription of the numeri
al modelin the periodi
 
hannel leads to 
ertain large-s
ale wave-wave intera
tion 
oeÆ
ientsbeing identi
ally zero. Importantly, an annular model would allow the 
omplete set oflarge-s
ale wave-wave intera
tions that take pla
e in the laboratory experiments, to bein
luded in the model, whi
h is important for quantitative agreement.Furthermore, a model in 
ylindri
al 
oordinates would be more general, and potentiallyappli
able to laboratory experiments other than the present one. For example, it wouldkeep open the possibility of running simulations in an open 
ylinder with no inner side-wall, as well as in an annulus, though it would then be ne
essary to in
lude an innersidewall of small nominal radius in the model, to avoid the singularity at r = 0. Wewould need to assume that the 
ow is insensitive to the in
lusion of this additionalboundary.There are ba
kground potential vorti
ity (PV) gradients present in both the 
hanneland the annulus, due to the sloping of equilibrium geopotential height surfa
es in thepresen
e of a verti
al shear in horizontal velo
ity. In the 
hannel, these geopotentialheights and PV gradients are linear in the a
ross-
hannel dire
tion (giving an e�e
tive�-e�e
t), whereas in the annulus they are quadrati
 be
ause of the paraboli
 equilibriuminterfa
e height shape (Se
tion 2.4). This gives a quadrati
 �-e�e
t, with the possibil-ity of qualitatively di�erent dynami
s than in the presen
e of the usual linear �-e�e
t.Furthermore, the quadrati
 �-e�e
t 
an be quite large (Se
tion 5.3).As a �nal point, not 
onne
ted with geometry, few of the existing Q-G layer 
hannelmodels in
lude the e�e
ts of interfa
ial tension, whi
h are not ne
essarily always negli-gible in the laboratory (Se
tion 2.2.3).Sin
e we desire quantitative agreement with the laboratory experiments, we 
on
ludefor these reasons that we need to 
onstru
t a new multi-layer Q-G model whi
h takesinto a

ount the 
ylindri
al geometry and interfa
ial tension. Su
h a model is des
ribedin the remaining se
tions of this 
hapter. 108
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Figure 5.1: S
hemati
 diagram showing a verti
al 
ross-se
tion through the two-layer annulus system being modelled. The dashed line shows the resting interfa
eheight. See text for de�nitions.5.3 Derivation of model equationsThe system to be modelled is shown s
hemati
ally in Figure 5.1. Su
h a model is ofteninformally referred to as two-and-a-half dimensional, as the representation of the verti
alis a
hieved through only two dis
rete layers. Cylindri
al polar 
oordinates r = (r; �; z)are used, the z-axis being 
oin
ident with the verti
al rotation axis. The 
uid is boundedby a 
at base at z = 0, a 
at lid at z = 2H > 0 and 
ylindri
al walls at r = a andr = b > a. The two immis
ible layers have densities �i, kinemati
 vis
osities �i andmutual interfa
ial tension S. The undisturbed layer depth is H and the disturbed lowerlayer depth is H + �. The a

eleration due to gravity is g. The annulus base and wallsrotate about the axis of symmetry with angular velo
ity 
, and the lid with angularvelo
ity 
 +�
.Working in the frame of the base, the four fundamental equations for the pressure pi(r; t)109



Chapter 5. Des
ription of the numeri
al modeland the velo
ity ui(r; t) in layer i = 1; 2 are the Navier-Stokes equations:�ui�t + (ui �r)ui + 2
� ui +
� (
� r) = � 1�irpi + �ir2ui + g (5.1)and the equation of volume 
onservation for the in
ompressible liquid:r � ui = 0 : (5.2)We take the 
url of equation (5.1) and use ve
tor identities to obtain an equation forthe layer vorti
ities !i =r� ui :�!i�t + (ui �r)!i = [(2
+ !i) �r℄ui + �ir2!i ; (5.3)the z-
omponent of whi
h, in the layer interiors where the 
ow is assumed to beverti
ally-
olumnar and invis
id, is��i�t + (ui �r)�i = (f + �i)�ui; z�z ; (5.4)where �i is the z-
omponent of !i, f = 2
 is the Coriolis parameter and ui; z is theverti
al velo
ity.We next verti
ally integrate equation (5.4) over the 
uid interiors, parameterizing verti-
al Ekman pumping/su
tion velo
ities at the lid, base and interfa
e (Gill, 1982). Assum-ing that the Ekman layer depths are mu
h smaller than the total layer depths, andmaking the quasi-geostrophi
 assumptions � � H and �i � f , we obtain, after rear-rangement: � ��t + u1 �r� q1 = �p
�1H [�1 + �2(�1 � �2)℄ + 2�
p
�1H ; (5.5)� ��t + u2 �r� q2 = �p
�2H [�2 + �1(�2 � �1)℄ ; (5.6)where �i = p�i=(p�1+p�2), and qi(r; �; t)=H are the perturbation potential vorti
ities(PPVs), given by q1(r; �; t) = �1 + f�H (5.7)and q2(r; �; t) = �2 � f�H : (5.8)
110



Chapter 5. Des
ription of the numeri
al modelTo 
omplete the derivation, we write all of the independent variables (ui, �i and �) inequations (5.5){(5.8) in terms of the layer streamfun
tions  i(r; �; t) de�ned byui; � = � i�r (5.9)and ui; r = �1r � i�� : (5.10)The streamfun
tions  1 and  2 are de�ned only to within arbitrary additive 
onstants,whi
h will be dis
ussed in Se
tion 5.4.2. The vorti
ities are given by�i = r2 i : (5.11)Assuming hydrostati
 balan
e and nearly equal layer densities, the interfa
e height per-turbation is given in terms of the streamfun
tions (to within an additive 
onstant) by� � Æ2mr2� = fg0 ( 2 �  1) + r2
22g ; (5.12)where g0 = 2g(�2��1)=(�2+�1) is the redu
ed gravity. The term in Æm =pS=[g(�2 � �1)℄represents the e�e
ts of interfa
ial tension for an interfa
e of small 
urvature. Æm isthe 
hara
teristi
 stati
 menis
us width, as 
an be seen by 
onsidering solutions toequation (5.12) when the tank is at rest (
 = 0) and the 
uid velo
ities are zero( i = 
onstant). The equation is a for
ed Helmholtz equation for � given  i, wherethe boundary 
onditions are the slopes ��=�r at the annulus walls, whi
h are related tothe interfa
e 
onta
t angle. We require an expli
it formula for �, and so we seek a �rstorder solution to the Helmholtz equation for weak interfa
ial tension, by estimating ther2� term using the solution for � when Æm = 0. This gives� = fg0 (1 + Æ2mr2)( 2 �  1) + r2
22g ; (5.13)where 1 and Æ2mr2 are the �rst two terms in a power series solution. On simple grounds,the series would be expe
ted to 
onverge rapidly if Æ2mr2� � �, whi
h is the 
ase ifÆ2m � �2 for waves of wavelength �. We expe
t waves to form on the s
ale of the inter-nal Rossby radius pg0H=jf j, so the 
onvergen
e 
riterion be
omes Æ2mf 2=g0H � 1. Thisis equivalent to FI � 1 where F is the Froude number, given by equation (4.1), and thenon-dimensional parameter I = Æ2m=(b� a)2 is the interfa
ial tension number (Appleby,1982). 111



Chapter 5. Des
ription of the numeri
al modelWe �nally substitute equations (5.9), (5.10), (5.11) and (5.13) into (5.5) and (5.6) toobtain the two 
oupled partial di�erential equations governing the evolution of quasi-geostrophi
 motions in the two-layer annulus:� DDt�1 q1 = �p
�1H �r2 1 + �2r2( 1 �  2)�+ 2�
p
�1H (5.14)and � DDt�2 q2 = �p
�2H �r2 2 + �1r2( 2 �  1)� : (5.15)The total derivative operators are given by� DDt�i = ��t � 1r � i�� ��r + 1r � i�r ��� (5.16)and the horizontal Lapla
ian operator is given byr2 = �2�r2 + 1r ��r + 1r2 �2��2 : (5.17)From equations (5.7) and (5.8), the quantities q1 and q2 are given in terms of  1 and  2by q1 = r2 1 + f 2g0H (1 + Æ2mr2)( 2 �  1) + fH r2
22g (5.18)and q2 = r2 2 � f 2g0H (1 + Æ2mr2)( 2 �  1)� fH r2
22g : (5.19)
On the right side of equation (5.14), the �rst term represents spin-down by the fri
tionalEkman layers at the lid (r2 1) and interfa
e (r2( 1 �  2)). The se
ond term is the(
onstant) for
ing term, and represents generation of PV by the rotating lid, 
ommu-ni
ated to the 
uid interior by the Ekman layer. The terms on the right side of (5.15)have a similar interpretation, ex
ept that there is no for
ing term in this 
ase.Equations (5.18) and (5.19) are similar to the PV-streamfun
tion relationships in the
hannel model of Brugge et al. (1987), ex
ept that the present equations in
lude aninterfa
ial tension modi�
ation, and Brugge's �y term has been repla
ed with our ��r2term. This is the quadrati
 �-e�e
t dis
ussed in Se
tion 5.2.2. It is equal and oppositein the upper and lower layers, 
orresponding to the fa
t that depth in
reases in onelayer are a

ompanied by equal de
reases in the other layer. The radial interfa
e height
hange a
ross the annulus, asso
iated with these quadrati
 �-e�e
t terms, 
an be up to112



Chapter 5. Des
ription of the numeri
al model20 mm (Se
tion 2.4). Sin
e mid-radius large-s
ale wave amplitudes rea
h only 25 mm(Se
tion 4.8), interfa
e perturbations due to the quadrati
 �-e�e
t are not small 
om-pared to those due to large-s
ale waves, and 
an therefore not be negle
ted.Upon non-dimensionalization of equations (5.14), (5.15), (5.18) and (5.19), using a times
ale (�
)�1 and horizontal length s
ale (b � a), the de�nitions of Froude numberand dissipation parameter given in Se
tion 4.1 appear naturally. We 
hoose to 
odethe model using dimensional units, however, and therefore do not 
arry out the non-dimensionalization here.We now summarize the assumptions whi
h were required to derive equations (5.14){(5.19). It is important to bear these approximations in mind, sin
e they limit theappli
ability of the model:� in
ompressible 
uids� verti
ally-
olumnar 
uid interiors� invis
id 
uid interiors (Reynolds number Re � 1)� linear Ekman pumping/su
tion� Ekman layer depths ÆE � H � �� � � H� �i � f (Rossby number Ro � 1)� hydrostati
 balan
e Dw=Dt� g� g0 � g� jr� � 1j� FI � 1� passive Stewartson layers whi
h do not ex
hange 
uid with the interiors� Stewartson layer widths ÆS � b� aThe �nal two assumptions are dis
ussed in Se
tion 5.4, but are in
luded here for 
om-pleteness. 113



Chapter 5. Des
ription of the numeri
al model5.3.1 Perturbation equationsThere is an equilibrium solution to equations (5.14){(5.19) of the form ui;r = 0, ui;� =r�
i. Substituting allows us to determine the interior solid-body rotation rates:�
1�
 = 2 + �2(1 + �) (5.20)and �
2�
 = 12(1 + �) ; (5.21)where � = p�2=�1. For � = 1 this is the same result as the solution obtained fromthe torque balan
e analysis of Chapter 3 in the absen
e of Stewartson layers and witha horizontal interfa
e (see Se
tion 3.4.2 and Table 3.2). The 
orresponding interfa
eheight (to within an additive 
onstant) is given by equation (5.13) to be� = 
2r22g �1� �
=
g0=g � : (5.22)Equations (5.20){(5.22) des
ribe the basi
, equilibrium state upon whi
h baro
lini
ally-unstable perturbations may grow. We refer to this as the mean 
ow and label the
orresponding streamfun
tions and PPVs as  i(r) and qi(r), respe
tively.Governing equations for perturbations to the streamfun
tion  0i(r; �; t) and PPV q0i(r; �; t)are obtained by substituting  i =  i(r) +  0i(r; �; t) and qi = qi(r) + q0i(r; �; t) intoequations (5.14){(5.19) to obtain� DDt�10 q01 = �p
�1H �r2 01 + �2r2( 01 �  02)���
1 �q01�� + f 22H �
g � �
g0 � � 01��(5.23)and� DDt�20 q02 = �p
�2H �r2 02 + �1r2( 02 �  01)���
2�q02�� � f 22H �
g � �
g0 � � 02�� ;(5.24)where q01 = r2 01 + f 2g0H (1 + Æ2mr2)( 02 �  01) (5.25)and q02 = r2 02 � f 2g0H (1 + Æ2mr2)( 02 �  01) : (5.26)The total derivatives now adve
t a

ording to the perturbation streamfun
tions, i.e.� DDt�i0 = ��t � 1r � 0i�� ��r + 1r � 0i�r ��� : (5.27)114



Chapter 5. Des
ription of the numeri
al modelEquations (5.23){(5.26) are the fully nonlinear model equations whi
h we solve. The
onstant for
ing term in equation (5.14), whi
h represents for
ing of the full 
ow by thelid rotation, has been repla
ed in equations (5.23) and (5.24) with more 
ompli
atedterms whi
h represent for
ing of the perturbation 
ow by the equilibrium state. Ananalyti
al assessment of the stability of small perturbations 
ould begin by linearizingequations (5.23){(5.26), but for the model we retain all of the nonlinear terms.The perturbation velo
ity �elds are given in terms of the perturbation streamfun
tionsby u0i; � = � 0i�r (5.28)and u0i; r = �1r � 0i�� ; (5.29)whi
h are the perturbation forms of equations (5.9) and (5.10). The perturbation inter-fa
e height �eld is given (to within an additive 
onstant) by�0 = fg0 (1 + Æ2mr2)( 02 �  01) ; (5.30)whi
h is the perturbation form of equation (5.13).
5.3.2 Normal mode de
omposition of diagnosti
 equationsGiven the �elds  0i and q0i at any time, we 
an evaluate �q0i=�t at that time using theprognosti
 equations (5.23) and (5.24), and thereby determine q0i at a short time in thefuture. We may then use this to invert the diagnosti
 Helmholtz equations (5.25) and(5.26) to obtain  0i at that time, and then begin the loop again using the updated �elds.The Helmholtz equations are 
oupled, and the inversion is made easier by �rst writingthem in verti
al normal mode form to remove the 
oupling. We take the sum anddi�eren
e of the equations to obtain, respe
tively,r2( 01 +  02) = q01 + q02 (5.31)and r2( 02 �  01)� Cit

 2f 2g0H ( 02 �  01) = Cit

(q02 � q01) ; (5.32)115



Chapter 5. Des
ription of the numeri
al modelwhere Cit

 is an interfa
ial tension 
orre
tion 
oeÆ
ient given byCit

 = 11� (2f 2Æ2m)=(g0H) : (5.33)We know that f 2Æ2m=g0H � 1 (Se
tion 5.3), and so Cit

 is slightly larger than unity,and is exa
tly equal to unity if the interfa
ial tension is zero.De�ning the barotropi
 (bt) and baro
lini
 (b
) verti
al normal mode variables to be	0bt =  01 +  02 ; (5.34)	0b
 =  02 �  01 ; (5.35)Q0bt = q01 + q02 ; (5.36)Q0b
 = Cit

(q02 � q01) ; (5.37)equations (5.31) and (5.32) both be
ome un
oupled Helmholtz equations of the formr2	0m � �m	0m = Q0m (5.38)for m = bt; b
. The eigenvalues are �bt = 0 and �b
 = 2Cit

f 2=g0H.We now perform a se
ond normal mode de
omposition, this time into azimuthal modes,to further simplify the solution of the Helmholtz equations. At ea
h timestep, we expand	0m(r; �) = 1Xn=�1 	̂0nm(r)ep�1n� ; (5.39)Q0m(r; �) = 1Xn=�1 Q̂0nm(r)ep�1n� : (5.40)The 
omplex fun
tions 	̂0nm and Q̂0nm satisfy 	̂0nm = 	̂0�nm � and Q̂0nm = Q̂0�nm �, wherethe asterisk represents 
omplex 
onjugation, be
ause 	0m(r; �) and Q0m(r; �) are real.The n = 0 term is 
alled the mean 
ow 
orre
tion (a 
orre
tion to the zonal 
owthat is generated by nonlinear self intera
tions of the waves), and is equal to the zonalaverage of the perturbation quantities as 
an be seen from the zonal integration ofequations (5.39) and (5.40). The n 6= 0 terms represent eddy (wave) 
omponents.Substituting equations (5.39) and (5.40) into (5.38) gives the radial stru
ture equation:d2	̂0nmdr2 + 1r d	̂0nmdr � ��m + n2r2� 	̂0nm = Q̂0nm(r) : (5.41)This 
omplex ordinary di�erential equation must be solved for ea
h 
ombination ofverti
al modes m 2 fbt; b
g and azimuthal modes n 2 f0;�1;�2; : : :g to determine116



Chapter 5. Des
ription of the numeri
al model	̂0nm(r) given Q̂0nm(r). The inversion pro
ess required to obtain  0i(r; �) from q0i(r; �),whi
h are linked by equations (5.25) and (5.26), is summarized as:q0i (5:36) & (5:37)�! Q0m (5:40)�! Q̂0nm (5:41)�! 	̂0nm (5:39)�! 	0m (5:34) & (5:35)�!  0iWe 
ould now perform a third normal mode de
omposition, this time in the radial 
oor-dinate, by proje
ting 	̂0nm(r) and Q̂0nm(r) onto the eigenfun
tions of the linear operatoron the left side of equation (5.41). The baro
lini
 eigenfun
tions are modi�ed Besselfun
tions of order n in the s
aled radial 
oordinate ~r = p�b
r (Boas, 1983), and thebarotropi
 eigenfun
tions are of the form r�n. However, this approa
h would for
e thestreamfun
tion and PPV to satisfy the same boundary 
onditions, for whi
h there is nojusti�
ation. In the present model, we therefore solve the dis
retized radial stru
tureequation dire
tly rather than proje
ting onto radial modes.
5.4 Perturbation streamfun
tion boundary 
onditionsfor the 
ontinuous equationsWe must now 
hoose boundary 
onditions to apply to the perturbation streamfun
tionwhen integrating equation (5.41). The equation was derived under the assumption ofinvis
id 
ow. It therefore 
annot des
ribe the vis
ous Stewartson layers of width ÆS, andso applies only to the 
uid interior a+ ÆS < r < b� ÆS . We assume ÆS � a; b so that wemay still write the integration range as a < r < b, but when we refer to r = a or r = bwe now mean the boundary between the 
uid interior and Stewartson layer, rather thanthe physi
al lateral boundary itself.1There are a number of 
andidate boundary 
onditions. To impose passive Stewartsonlayers whi
h do not anywhere ex
hange 
uid with the interior, we would apply theimpermeability 
ondition on the radial perturbation velo
ity u0i; rjr=a; b = 0 8 �; i, whi
h1An alternative method for keeping the Stewartson layers out of the analysis would be to imaginethat our laboratory apparatus is equivalent to a gedanken experiment in whi
h, at all times in ea
hlayer, the lateral boundaries rotate at the same rate as the 
uid interiors, so that the Stewartson layersvanish. 117



Chapter 5. Des
ription of the numeri
al modelin the normal mode variables 
orresponds to Diri
hlet boundary 
onditions	̂0nmjr=a; b = 0 8 n 6= 0; m : (5.42)The mean 
ow 
orre
tion n = 0 velo
ity is purely zonal, and so this 
omponent automati-
ally satis�es impermeability. Impermeability alone is therefore not a suÆ
ient 
onditionto uniquely spe
ify a solution. No-slip boundary 
onditions for the zonal perturbationvelo
ity u0i;�jr=a; b = 0 8 �; i 
orrespond to the Neumann 
onditionsd	̂0nmdr ����r=a; b = 0 8 n;m : (5.43)The equilibrium solid-body rotation 
ow about whi
h we perturb satis�es impermeabil-ity, but is not no-slip.Sin
e we are solving a se
ond order di�erential equation, only two independent bound-ary 
onditions are required. We 
annot therefore impose both impermeable and no-slip
ow at both boundaries, as that would require four independent 
onditions. This over-
onstrained nature of the PPV inversion in Q-G models is dis
ussed in Williams (1979).A 
omprehensive study of the 
omparative e�e
ts of using no-slip boundary 
onditionsrather than the more traditional free-slip 
onditions is des
ribed by Mundt et al. (1995).We are therefore for
ed to use a redu
ed set of boundary 
onditions, but we must 
hoose
arefully and 
onsistently whi
h 
onditions to retain and whi
h to abandon, to avoidany possibility of non-physi
al behaviour. We are, of 
ourse, free to employ di�erentboundary 
onditions for the di�erent normal mode 
omponents spe
i�ed by m and n.The debate over suitable lateral Q-G boundary 
onditions has had a long and 
ontentioushistory in the literature. In the 
lassi
 periodi
 
hannel models of Phillips (1954) andPhillips (1956), boundary 
onditions 
orresponding to equation (5.42) are used for thewave n 6= 0 terms, and equation (5.43) is used for the mean 
ow 
orre
tion n = 0
omponent only. The latter 
ondition was not imposed (but the former was retained)in the studies of Phillips (1963) and Pedlosky (1964), but M
Intyre (1967) showed thatrelaxing this mean 
ow 
orre
tion boundary 
ondition leads to a spurious, unspe
i�edenergy 
ux through the sidewalls. The 
ondition was in
luded again in Pedlosky (1970),but repla
ed in Pedlosky (1971) and Pedlosky (1972) with an ad-ho
 
ondition 
hosenfor mathemati
al 
onvenien
e. Smith (1974) points out that the resulting non-physi
al118



Chapter 5. Des
ription of the numeri
al modelenergy sour
e might well invalidate Pedlosky's results, and repeats Pedlosky's 
al
u-lations with the proper boundary 
ondition retained (Smith & Pedlosky, 1975; Smith,1977). More re
ent studies (Appleby, 1982; Yoshida & Hart, 1986; Lewis, 1992; Stephen,1998) have avoided the spurious energy and asso
iated unreliable 
on
lusions by apply-ing both 
onditions in full, as in Phillips' original paper.A useful interpretation of Phillips' mean 
ow 
orre
tion boundary 
ondition has beengiven by Davey (1978). For non-zero zonal perturbation velo
ities u0i; �jr=a; b at theboundary between the interior and a Stewartson layer, there will be a 
orrespondingreturn volume 
ux between the Ekman layers and the Stewartson layer due to theasymmetry of the Ekman spiral (Pedlosky, 1987), whi
h will have a non-zero radial
omponent proportional to u0i; �jr=a; b. We 
an therefore ensure that there is no netbuild-up of mass in the Stewartson layers by settingZ 2�0 u0i; �jr=a; b d� = 0 8 i : (5.44)This 
ondition is automati
ally satis�ed for the wave n 6= 0 
omponents, and is equiv-alent to equation (5.43) with n = 0, whi
h is the 
ondition used by Phillips. With this
ondition, there is no net ex
hange of 
uid due to the perturbation 
ow between ea
hEkman layer and the Stewartson layers, though lo
al ex
hange is allowed.Next, we attempt to derive a 
onsistent and plausible set of boundary 
onditions for theannulus, whi
h do not lead to non-physi
al behaviour, by 
onsidering integral propertiesof both the prognosti
 and diagnosti
 model equations.
5.4.1 Integral properties of the prognosti
 equationsConsider the area-integral of the perturbation PPV tenden
ies over the annular domain:Z 2��=0 Z br=a �q0i�t r dr d� ; (5.45)as given by the prognosti
 equations (5.23) and (5.24). The linear �=�� for
ing termsintegrate to give zero un
onditionally. The adve
tion terms in the total derivativesintegrate to give zero (Salmon & Talley, 1989) if� 0i�� ����r=a; b = 0 ; (5.46)119
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ription of the numeri
al modeland the Lapla
ian (r2) terms integrate to give zero ifZ 2�0 � 0i�r ����r=a; b d� = 0 : (5.47)The two 
onditions (5.46) and (5.47) are equivalent to impermeability for the waves andno-slip for the mean 
ow 
orre
tion, as originally used by Phillips. With these 
ondi-tions, the mean layer PPVs are 
onserved by the 
ontinuous equations and there is nospurious energy 
ux. We 
hoose to apply these 
onditions to the present model, ex
eptthat the se
ond 
ondition leads to an ill-posed PPV inversion for the spe
ial 
ase n = 0,m = bt, as we will see in Se
tion 5.4.2.
5.4.2 Integral properties of the diagnosti
 equationsEquation (5.41) for the barotropi
 mean 
ow 
orre
tion isd2	̂00btdr2 + 1r d	̂00btdr = Q̂00bt : (5.48)Sin
e �bt = 0 and n = 0 for this 
ase, one of the terms in the radial stru
ture equationhas vanished, making the left side an exa
t di�erential. Equation (5.48) 
an thereforebe integrated analyti
ally between r = a and r = b to givebd	̂00btdr ����r=b � ad	̂00btdr ����r=a = Z ba Q̂00bt r dr : (5.49)We 
hoose initial 
onditions for whi
h the right side of this equation is zero, i.e. thebarotropi
 PPV averaged over the 2-D annular domain is zero, and it is then guaranteedto remain so for all time, as shown in Se
tion 5.4.1. This means that we need onlyexpli
itly set d	̂00btdr ����r=a = 0 (5.50)and we will automati
ally have d	̂00btdr ����r=b = 0 (5.51)from equation (5.49). If we expli
itly set both (5.50) and (5.51) when solving (5.48), wehave an under
onstrained problem. We need to �nd an additional 
onstraint, therefore,to 
lose the solution.We have de�ned two streamfun
tions in the model | one per layer or, equivalently, oneper verti
al normal mode | and ea
h of these has an integration 
onstant asso
iated120
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ription of the numeri
al modelwith it (Se
tion 5.3). Just be
ause these two arbitrary 
onstants have no physi
al mean-ing does not mean that they do not need to be de�ned in the numeri
al model. Now thatwe know that equations (5.50) and (5.51) are not independent boundary 
onditions, andtherefore that to expli
itly impose both would lead to an under
onstrained PPV inver-sion, we 
hoose to expli
itly impose only equation (5.50). We then take the opportunityto use the remaining degree of freedom asso
iated with the solution of equation (5.48)to de�ne one of the streamfun
tion integration 
onstants, by arbitrarily setting	̂00btjr=b = 0 ; (5.52)whi
h 
ompletes the set of two boundary 
onditions for the m = bt, n = 0 
ase, andgives a well-posed problem.In
identally, the se
ond streamfun
tion integration 
onstant is de�ned by requiring themean interfa
e perturbation to be zero using equation (5.13), whi
h follows from volume
onservation for either layer. This requirement is imposed by adding a suitably-
hosen
onstant to one of the streamfun
tion �elds after the PPV inversion, and not as a bound-ary 
ondition during the inversion.A summary of the boundary 
onditions whi
h we must expli
itly set when integratingequation (5.41) is given in Table 5.1. With these 
onditions, the sidewall boundaries areimpermeable to ea
h 
omponent of the full 
ow | the solid-body rotation equilibrium
ow, the mean 
ow 
orre
tion and the eddy 
omponents. The boundaries are slipperyto the solid-body rotation 
ow and the eddies, but no-slip to the mean 
ow 
orre
tion.
5.5 Dis
retization of model equationsWe have derived a set of model partial di�erential equations and boundary 
onditionswhi
h are both sensible and well-posed. We now dis
retize the equations so that theyare suitable for numeri
al solution on a 
omputer. We must take great 
are to ensurethat the dis
retized equations and boundary 
onditions retain the important propertiespossessed by the 
ontinuous equations. In parti
ular, it is important that they satisfydis
retized analogues of the integral properties dis
ussed in Se
tion 5.4.121



Chapter 5. Des
ription of the numeri
al model
n = 0 n 6= 0d	̂0nmdr ����r=a = 0 	̂0nmjr=a = 0m = bt 	̂0nmjr=b = 0 	̂0nmjr=b = 0d	̂0nmdr ����r=a = 0 	̂0nmjr=a = 0m = b
 d	̂0nmdr ����r=b = 0 	̂0nmjr=b = 0Table 5.1: Summary of suitable boundary 
onditions to apply to the streamfun
-tion when integrating the 
ontinuous equations. Be
ause the diagnosti
 Helmholtzequation relating  and q is se
ond order, two 
onditions (one at ea
h boundary)are required for ea
h 
ombination of verti
al and azimuthal normal modes, denotedby m and n respe
tively.
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Figure 5.2: De�nition of the model grid. Grid-points are marked with a \�" sign,grid-boxes with dashed lines, and the two 
ylindri
al boundaries with solid lines.The dimensions of typi
al grid-boxes, both in the interior and at the boundary, areshown. 122



Chapter 5. Des
ription of the numeri
al modelThe grid on whi
h we dis
retize the equations is shown in Figure 5.2. The grid 
onsistsof Nrad points in the radial dimension (in
luding one point on ea
h boundary r = a andr = b), and Nazim points in the azimuthal dimension. We de�ne�r = b� aNrad � 1 (5.53)and �� = 2�Nazim ; (5.54)and then we have r(i) = a+ (i� 1)�r ; i = 1; 2; : : : ; Nrad (5.55)and �(j) = j� ; j = 1; 2; : : : ; Nazim : (5.56)The point (i; Nazim + 1) is equivalent to the point (i; 1). We de�ne the perturbationstreamfun
tion  0(i; j; k) and PPV q0(i; j; k) at ea
h of these points in ea
h layer k = 1; 2,so that  0 and q0 are 
o-lo
ated on the grid. The area of the gridbox with 
oordinates(i; j) is approximately [1 � 12Æi; 1 � 12Æi; Nrad ℄r(i)�r��, where Æ is the Krone
ker deltafun
tion.
5.5.1 Prognosti
 equationsIn the 
ontinuous 
ase, we 
hose perturbation streamfun
tion boundary 
onditions su
hthat ea
h of the three 
ontributions to the area-integrated perturbation PPV tenden
ywas zero. We would now like to 
hoose dis
retizations of these 
ontributions, togetherwith dis
retizations of the boundary 
onditions, for whi
h this statement still holdsexa
tly. If our dis
retization only 
onserves mean PPV approximately, then there isthe possibility of a non-physi
al and explosive in
rease in the PPV, even if the error issmall, due to the 
ompound e�e
ts of very many timesteps. Following Se
tion 5.4.1, wetherefore next examine the dis
retizations and boundary 
onditions ne
essary to ensurethat NradXi=1 NazimXj=1 [1� 12Æi;1 � 12Æi;Nrad℄ f(i; j; k)r(i)�r�� = 0 (5.57)for k = 1; 2, where f(i; j; k) is, in turn, the dis
retized azimuthal derivative, Ja
obianand Lapla
ian. 123
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ription of the numeri
al modelAzimuthal derivativeThe 
entred, se
ond order dis
retization of the azimuthal derivative:f(i; j; k) =  0(i; j + 1; k)�  0(i; j � 1; k)2�� (5.58)satis�es equation (5.57) un
onditionally, as in the 
ontinuous 
ase.
Ja
obianThe se
ond order Arakawa (1966) dis
retization of the Ja
obian satis�es equation (5.57)if  0(i; j + 1; k)�  0(i; j; k)�� = 0 8 j; k; i = 1; Nrad ; (5.59)whi
h is a dis
retized version of the 
ondition (5.46) for the 
ontinuous 
ase.
Lapla
ianIt is tedious but straightforward to show that the �ve-point dis
retization of the Lapla-
ian (whose 
ontinuous de�nition is given in equation (5.17) for referen
e):f(i; j; k) =  0(i+ 1; j; k)� 2 0(i; j; k) +  0(i� 1; j; k)(�r)2+  0(i+ 1; j; k)�  0(i� 1; j; k)2r(i)�r+  0(i; j + 1; k)� 2 0(i; j; k) +  0(i; j � 1; k)[r(i)��℄2 ; (5.60)with ghost point values  0(0; j; k) and  0(Nrad + 1; j; k) given by linear extrapolation: 0(2; j; k)�  0(1; j; k) =  0(1; j; k)�  0(0; j; k) (5.61) 0(Nrad + 1; j; k)�  0(Nrad; j; k) =  0(Nrad; j; k)�  0(Nrad � 1; j; k) ; (5.62)satis�es equation (5.57) ifNazimXj=1  0(2; j; k)�  0(1; j; k)�r = 0 8 k (5.63)and NazimXj=1  0(Nrad; j; k)�  0(Nrad � 1; j; k)�r = 0 8 k ; (5.64)124



Chapter 5. Des
ription of the numeri
al modelwhi
h are dis
retized versions of the 
ondition (5.47) for the 
ontinuous 
ase. There willbe a small error in the value of the dis
retized Lapla
ian at the boundaries due to theassumption of linearly-extrapolated ghost points, but there seems to be no other simpleway to dis
retize the Lapla
ian in su
h a way that analogues of its integral propertiesare fully preserved.
5.5.2 Diagnosti
 equationsThe dis
retized versions of equations (5.39) and (5.40) are	0m(i; j) = Nazim�1Xn=0 	̂0nm(i)e2�p�1nj=Nazim ; (5.65)Q0m(i; j) = Nazim�1Xn=0 Q̂0nm(i)e2�p�1nj=Nazim : (5.66)The summations have been trun
ated, 
ompared to equations (5.39) and (5.40), be
ausethere are onlyNazim independent Fourier 
omponents asso
iated with the dis
rete Fouriertransform of a series of Nazim numbers.Be
ause 	0m(i; j) is real, we have	̂0Nazim�nm (i) = [	̂0nm(i)℄� ; n = 1; 2; : : : ; Nazim � 1 : (5.67)We 
hoose Nazim to be even, and then we need only expli
itly solve equation (5.41) forn = 0; 1; 2; : : : ; Nazim=2. Solutions for n = Nazim=2 + 1; : : : ; Nazim � 1 are given in termsof solutions for n = Nazim=2 � 1; : : : ; 1 by equation (5.67), halving the pro
essing timerequired for the PPV inversions. The maximum resolvable wavenumber is the Nyquistwavenumber, Nazim=2.In terms of the normal mode variables, the dis
retized boundary 
onditions (5.59), (5.63)and (5.64) redu
e, on substitution into equations (5.65) and (5.66), to	̂0nm(1) = 0	̂0nm(Nrad) = 0 9=; 8 m;n 6= 0 (5.68)and 	̂00m(1) = 	̂00m(2)	̂00m(Nrad) = 	̂00m(Nrad � 1) 9=; 8 m : (5.69)125



Chapter 5. Des
ription of the numeri
al modelWe now 
onsider the dis
retization of the radial stru
ture equation (5.41). Using 
entredthree-point �nite di�eren
es at the interior points i = 2; 3; : : : ; Nrad � 1, we obtain	̂0nm(i� 1)� 2	̂0nm(i) + 	̂0nm(i + 1)(�r)2+	̂0nm(i + 1)� 	̂0nm(i� 1)2r(i)�r� ��m + n2[r(i)℄2� 	̂0nm(i) = Q̂0nm(i) : (5.70)Re-grouping terms a

ording to grid-points gives��(i)	̂0nm(i� 1) + 
(i)	̂0nm(i) + �+(i)	̂0nm(i+ 1) = Q̂0nm(i)(�r)2 ; (5.71)where the dimensionless quantities �� and 
 are given by��(i) = 1� �r2r(i) (5.72)and 
(i) = �2� ��m + n2[r(i)℄2� (�r)2 : (5.73)In Cartesian geometry we would have ��(i) = 1.The Nrad� 2 equations (5.71), together with 2 boundary 
onditions, 
omplete the set ofNrad equations in the Nrad unknowns 	̂0nm(i); i = 1; 2; : : : ; Nrad. These linear equations
an be written in matrix form:0BBBBBBBBBBBB�
bdy bdy : : :��(2) 
(2) �+(2) : : :��(3) 
(3) �+(3) : : :��(4) 
(4) �+(4) : : :��(5) 
(5) : : :... ... ... ... ... . . .

1CCCCCCCCCCCCA
0BBBBBBBBBBBB�

	̂0nm(1)	̂0nm(2)	̂0nm(3)	̂0nm(4)	̂0nm(5)...
1CCCCCCCCCCCCA =

0BBBBBBBBBBBB�
0Q̂0nm(2)(�r)2Q̂0nm(3)(�r)2Q̂0nm(4)(�r)2Q̂0nm(5)(�r)2...

1CCCCCCCCCCCCA(5.74)where the zero elements in the tridiagonal Nrad by Nrad matrix have been left blank.The two elements labelled \bdy" are boundary 
ondition elements, dependent upon mand n, and there are two more su
h elements in the �nal two 
olumns of the bottom row.126
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ription of the numeri
al model5.6 Perturbation streamfun
tion boundary 
onditionsfor the dis
retized equationsIn the 
ontinuous 
ase, we found that the boundary 
onditions for the barotropi
 mean
ow 
orre
tion 
omponent (m = bt, n = 0) were ill-posed as originally stated, andremained so until we repla
ed a redundant boundary 
ondition with an equation tode�ne an integration 
onstant (Se
tion 5.4). This happens in the dis
retized 
ase, too:the square matrix in equation (5.74) is singular for the barotropi
 mean 
ow 
orre
tion,when the boundary 
ondition elements \bdy" are (�1; 1) in the top row and (1;�1)in the bottom row. The analyti
al proof of this, whi
h involves showing that a 
ertainlinear 
ombination of rows is zero, is tedious but straightforward. By analogy with the
ontinuous 
ase, we repla
e the two boundary 
ondition elements in the bottom rowwith (0; 1) to de�ne the integration 
onstant by setting the streamfun
tion for this 
om-ponent to zero on the outer boundary, and then the matrix is no longer singular (typi
al
ondition numbers are given in Se
tion 5.9).In the 
ontinuous system, we set the n = 0, m = bt normal streamfun
tion deriva-tive to zero at one boundary and found that, if the mean barotropi
 PPV was zero,the streamfun
tion derivative would automati
ally be zero at the other boundary (Se
-tion 5.4.2). Importantly, in 
ontrast with the 
ontinuous system, this statement doesnot hold exa
tly for the dis
retized system. This is be
ause Q̂0nm(1) and Q̂0nm(Nrad) donot appear in equation (5.74); we do not apply the dis
retized di�erential equation atthe boundaries, as we need to use these two degrees of freedom to set the boundary
onditions.The error 
orresponding to this PPV leak is small (� (�r)2), but even small errors 
angrow to dominate the solution after a large number of timesteps. To �x this problemwith the barotropi
 mean 
ow 
orre
tion, we dis
ard the outer boundary streamfun
tion	̂00bt(Nrad) obtained through inversion of equation (5.74) and de�ne a new value for it bysetting 	̂00bt(Nrad) = 	̂00bt(Nrad � 1). This ensures that the boundary 
onditions (5.69)required for 
onservation of mean PPV are satis�ed, but the 
onsequen
e is that thedis
retized di�erential equation (5.70) is not exa
tly satis�ed at the point Nrad� 1. Theimposed boundary 
onditions are summarized in Table 5.2.127



Chapter 5. Des
ription of the numeri
al modeln = 0 n 6= 0	̂0nm(2)� 	̂0nm(1) = 0 	̂0nm(1) = 0m = bt 	̂0nm(Nrad) = 0y 	̂0nm(Nrad) = 0	̂0nm(2)� 	̂0nm(1) = 0 	̂0nm(1) = 0m = b
 	̂0nm(Nrad)� 	̂0nm(Nrad � 1) = 0 	̂0nm(Nrad) = 0Table 5.2: Summary of the boundary 
onditions applied to the streamfun
tionwhen integrating the dis
retized equations. The analogous 
onditions for the forthe 
ontinuous 
ase are given in Table 5.1. yAfter the inversion, 	̂00bt(Nrad) isrede�ned by 	̂00bt(Nrad)� 	̂00bt(Nrad � 1) = 0, as dis
ussed in the text.
5.7 Details of the numeri
al s
hemesTime steppingFor the time-stepping we use a leapfrog s
heme with a Robert (1966) 3-level time �lterapplied at ea
h timestep, to suppress the 
omputational mode splitting between evenand odd numbered steps (Mesinger & Arakawa, 1976). At ea
h step, of size �t, qt+1 isdetermined at ea
h grid point using the leapfrog s
heme:qt+1 = qt�1 + 2�t qttenden
y ; (5.75)and then the value of qt is adjusted in su
h a way as to move it 
loser to the mean ofqt�1 and qt+1: qt ! qt +R�qt�1 + qt+12 � qt� : (5.76)The old value of qt is abandoned and the new, �ltered value is used in its pla
e. TheRobert �lter parameter R > 0 is 
hosen to be as small as possible whilst still suppressingthe leapfrog de
oupling. 128



Chapter 5. Des
ription of the numeri
al modelTime-lagged di�usionNumeri
al solutions of the simple di�usion equation, using the leapfrog s
heme forthe time-dis
retization and a time-
entred three-point �nite di�eren
e for the spa
e-dis
retization, are un
onditionally unstable due to a 
omputational mode (Haltiner &Williams, 1980). To avoid this in the present model, we time-lag the di�usion termsby one timestep when evaluating the right sides of the dis
retized analogues of equa-tions (5.23) and (5.24). This means that, when evaluating the PPV tenden
y at timestept, we 
al
ulate the for
ing (�=��) and adve
tion terms using the �elds at timestep t, but
al
ulate the di�usion (r2) terms using the �elds at timestep t� 1.
Hyperdi�usionTo represent sub-grids
ale e�e
ts we add a hyperdi�usion term to the right sides of theprognosti
 equations (5.23) and (5.24), as is usual in numeri
al models (e.g. Lewis, 1992).At �rst, a fourth-order streamfun
tion hyperdi�usion term �hyperr4 0i was tried, but sig-ni�
ant grids
ale features were always found to form at the lateral boundaries wheneverthe model was run. This is be
ause during the PPV inversion, any grids
ale featuresin the PPV �eld will give rise to 
orresponding grid-s
ale features in the perturbationstreamfun
tion �eld, and then the �hyperr4 0 
ontribution to the PPV tenden
y willtend to damp out these features in the PPV �eld. Unfortunately this does not happenat the boundaries in the dis
retized system, be
ause boundary values of the PPV arenot used when performing the inversion. As already dis
ussed, Q̂0nm(1) and Q̂0nm(Nrad)are missing from equation (5.74). Values of PPV therefore are able to feed ba
k into thePPV tenden
y �eld only at interior points, and there is nothing to suppress grid-s
alefeatures in the PPV �eld at the boundaries.To avoid this, we instead use se
ond-order hyperdi�usion applied to the PPV, by addinga term �hyperr2q0i to the prognosti
 equations. This term is also time-lagged by onetimestep, as dis
ussed above. The hyperdi�usion term does not exa
tly satisfy equa-tion (5.57), though the error is small. In order to keep the model solutions as 
lose aspossible to the 
ontinuous equations solutions, we reset the mean PPV to zero after ea
htimestep, by adding a very small 
onstant whose value is 
hosen to �t this requirement.129
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al model
Summary of numeri
al integration s
hemeA 
ow 
hart summarizing the details of the numeri
al integration s
heme is shown inFigure 5.3. Given the PPV �elds at times t � 1 and t, we invert to obtain the stream-fun
tion �elds at those times, whi
h then allows us to 
al
ulate all the 
ontributions tothe PPV tenden
y. We perform a leapfrog time integration to obtain the PPV �eld attime t + 1, and then modify the PPV �eld at time t by applying a Robert �lter. On
ewe have obtained q0(t) and q0(t + 1) from q0(t � 1) and q0(t), we dis
ard q0(t � 1) and 0(t� 1), we dump q0(t) and  0(t) to disk, then we re-label t! t� 1 and begin the loopagain.The system state is 
ompletely determined by  0. Note that it is also 
ompletely deter-mined by q0 together with the boundary 
onditions, be
ause equations (5.25) and (5.26)are uniquely invertible. It is not ne
essary to dump both  0 and q0 to disk in order tohave a 
omplete des
ription of the system, therefore. Nevertheless, we 
hoose to saveboth �elds, in order to redu
e the need for further 
al
ulations when plotting modeldiagnosti
s.
5.8 Initial 
onditionsA feature of the leapfrog timestepping s
heme is that initial 
ondition �elds are requiredat two separate times, in order to begin the integration. As shown in Figure 5.3, we
hoose to spe
ify the PPV �elds as initial 
onditions. We use small amplitude randomnoise for these �elds, seeding the system to permit the growth of unstable perturbationsof any azimuthal and radial wavenumber. The intrinsi
 Fortran fun
tion RANDOM NUMBERis used to generate random numbers with a uniform distribution whi
h are shifted to a
hosen interval 
entred on zero. We then subtra
t the mean PPV in ea
h layer at bothtimesteps, whi
h makes the �elds satisfy the zero mean barotropi
 PPV 
ondition ofSe
tions 5.4.2 and 5.6. 130
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Figure 5.3: Organigram showing how the the model integrations progress, start-ing with initial 
onditions q0(0) and q0(1). Ea
h timestep has inputs q0(t� 1) andq0(t) and outputs q0(t) and q0(t+1), shown shaded. J( 0; q0) = [(� 0=�r)(�q0=��)�(� 0=��)(�q0=�r)℄=r is the Ja
obian. The sto
hasti
 term, designed to representthe e�e
ts of small-s
ale waves, is introdu
ed in Chapter 7 and is left swit
hed o�until then. 131



Chapter 5. Des
ription of the numeri
al modelm=bt m=b
n = 0 389 59n = 1 112 35n = 2 99 33n = 3 82 31n = 4 67 29n = 5 54 26n = 6 44 24n = 7 36 21n = 8 31 19n = 9 26 17Table 5.3: Estimates of the 
ondition numbers (in the in�nity-norm) of the tridi-agonal matri
es in equation (5.74), 
orresponding to the �rst 10 azimuthal modesfor both of the verti
al modes. Values given are rounded to the nearest integer.5.9 Suitable values for numeri
al parametersCode to 
arry out the numeri
al integrations des
ribed in this 
hapter has been writ-ten in Fortran 95 by the author and his supervisors, and 
ompiled using the Numeri
alAlgorithms Group (NAG) f95 
ompiler for Linux. Routines from the NAG library wereemployed: nag fft for the transformations between real and spe
tral spa
e des
ribedby equations (5.65) and (5.66), and nag gen bnd lin sys for solving the 
omplex bandmatrix equation (5.74) a large number (� Nazim) of times ea
h timestep.All model runs des
ribed in this thesis were performed using double numeri
al pre
i-sion (retaining 16 signi�
ant �gures) for the 
al
ulations, and single numeri
al pre
ision(retaining 8 signi�
ant �gures) for the dumps to disk. The fa
tor by whi
h relativeerrors in the perturbation streamfun
tion are greater than relative errors in the PPVis known as the 
ondition number of the 
orresponding matrix. Some typi
al 
onditionnumbers for the matri
es in equations (5.74) are shown in Table 5.3. The largest 
ondi-tion number in the system has a value of a few hundred, implying that only the last twosigni�
ant �gures of the inferred perturbation streamfun
tions will be un
ertain, andthat errors due to rounding are therefore small.The azimuthal derivative, Lapla
ian and Ja
obian routines were ea
h tested using input132
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Figure 5.4: Gridpoint positions used for the model runs in this thesis. There are96 points in the azimuthal dire
tion and 16 in the radial dire
tion, giving gridboxeswhi
h are approximately square near the inner boundary.�elds 
onsisting of random numbers satisfying the boundary 
onditions. The mean PPVtenden
y due to ea
h 
ontribution was found to be zero to within numeri
al pre
ision,implying that the 
ode for these routines is free from errors. The Helmholtz solver wastested by �rst using the forward formulae (5.25) and (5.26) with our dis
retized Lapla-
ian (5.60){(5.62) to 
al
ulate the PPV �elds 
orresponding to given random perturba-tion streamfun
tion �elds, and then using the Helmholtz solver routine to re
onstru
tthe streamfun
tion �elds from the 
al
ulated PPVs. The root-mean-square di�eren
ebetween the original and re
onstru
ted streamfun
tion �elds was around 0.1%, imply-ing that the solver 
ode was also free from errors. The reason that the agreement isnot exa
t, to within numeri
al pre
ision, is that we assume linearly-extrapolated ghostpoints to evaluate the Lapla
ian in the forward formulae | an assumption whi
h is notmade during the inversion.For all the model runs des
ribed in this thesis (unless stated otherwise), the annulusdimensions a, b and H have the values indi
ated in Figure 2.3, the 
uid properties �i, �iand S are as indi
ated in Table 2.1, and the a

eleration due to gravity is g = 9:81 m s�2.The FFT is mu
h faster if the only prime fa
tors of Nazim are 2, 3 and 5, and so we133



Chapter 5. Des
ription of the numeri
al modeluse a grid de�ned by Nazim = 25 � 3 = 96 and Nrad = 16, as shown in Figure 5.4. TheRobert �lter parameter is R = 0:01. For given 
 and �
, we take the amplitude ofthe random initial PPV perturbation to be �
=100 so that we are assessing the growthof very small perturbations, we 
hoose the timestep �t to be su
h that the azimuthalCourant number 12�
�t=�� is 0:01, and we 
hoose the hyperdi�usion 
oeÆ
ient �hyperto be su
h that the e-folding time 1=(�hyperk2Nyquist) for damping of mid-radius grids
alewaves with the Nyquist wave ve
tor kNyquist = Nazim=(a+ b) is equal to one lid rotationperiod.In order to demonstrate insensitivity to the numeri
al parameters, 
omparative runswere done with (separately) the hyperdi�usion 
oeÆ
ient de
reased by a fa
tor of 10,the Robert �lter parameter de
reased by a fa
tor of 10 and the gridspa
ing doubledin both dire
tions, but all other parameters unmodi�ed. The equilibrated wave num-ber was the same in ea
h 
ase, and the mid-radius wave amplitude and phase speeddi�ered by at most 0.3%. We have therefore demonstrated that both rounding errorsand dis
retization errors are small, and that the equilibrated state is insensitive to thevalues of the numeri
al parameters, implying that the model output gives an a

uraterepresentation of the true solutions of the 
ontinuous model equations.The 
ode is very eÆ
ient: on a Linux workstation with a 1.4 GHz AMD Athlon pro
essorand 100% of the CPU usage, and with Nazim = 96 and Nrad = 16, a model integrationspeed of 120 timesteps per se
ond is attained. Sin
e timesteps of up to around 0.1 s 
anbe used stably, the model 
an run ten times faster than the laboratory annulus. Therun-time memory requirement is 3.1 MB.
5.10 Chapter summaryWe have 
onstru
ted a multi-layer 
ylindri
al quasi-geostrophi
 numeri
al model of therotating annulus laboratory experiment, and named it QUAGMIRE. Great 
are has beentaken to 
hoose dis
retizations and boundary 
onditions whi
h are both physi
ally sen-sible and 
omputationally stable, and as a result the model gives reliable solutions of the
ontinuous equations. Large series of model runs have been 
arried out for 
omparisonwith the laboratory results, and are des
ribed in the next 
hapter.134



Chapter 6
Results of the numeri
alexperiments \The purpose of models is not to �t the data but tosharpen the questions." Samuel Karlin,11th R. A. Fisher Memorial Le
ture,The Royal So
iety, 20 April 1983.
A large number of annulus 
ows have been simulated using QUAGMIRE, and the resultsare des
ribed in this 
hapter. A Matlab diagnosti
s pa
kage has been written by theauthor, to read in the raw data dumped to disk and plot it and other derived quantities.Comparisons are made between 
ow properties in the model and the laboratory, both asa 
he
k that the model works properly and reliably, and to investigate whether we 
anattribute any di�eren
es to short waves present in the laboratory but not in the model.A major advantage of the numeri
al model is that velo
ity �elds | unavailable in thelaboratory | 
an easily be derived from the streamfun
tions. The model velo
ity �eldsare used in this 
hapter to 
ompute various diagnosti
s, ea
h of whi
h is expe
ted tohave some ability in predi
ting regions of generation of small-s
ale waves, either due toa shear instability or to spontaneous emission. By identifying the indi
ator with thebest predi
tive skill, we draw 
on
lusions about the me
hanism whi
h is most likely tobe responsible for the observed mixed-wave short emissions in the laboratory.135



Chapter 6. Results of the numeri
al experiments6.1 Model runs with zero interfa
ial tensionThe main series of model simulations 
arried out during this study 
onsisted of 210separate runs, one for ea
h 
ombination of 10 values of 
 and 21 values of �
 given by
=rad s�1 2 f1:00; 1:50; 1:75; 2:00; 2:25; 2:50; 2:75; 3:00; 3:25; 3:50gand �
=rad s�1 2 f0:01; 0:02; 0:03; 0:04; 0:05; 0:06; 0:08; 0:10; 0:12; 0:15;0:20; 0:23; 0:30; 0:40; 0:50; 0:60; 0:70; 0:85; 1:06; 1:31; 1:61g:These values were 
hosen to give a roughly uniform density of sampled points in the(log[d℄; F ) parameter spa
e. The interfa
ial tension S was set to zero for these runs,a 
ondition whi
h will be relaxed for the runs to be des
ribed in Se
tion 6.4. Startingfrom noisy initial 
onditions (Se
tion 5.8), ea
h run was 
ontinued for an integrationtime equal to 60 lid rotation periods, whi
h was usually found to be suÆ
ient for wavesarising from any baro
lini
 instability to have equilibrated at �nite amplitude. In afew 
ases full equilibration was not a
hieved within this time and so the integrationwas 
ontinued for a further 60 lid rotation periods. The 210 runs required around sixdays of 
omputer time to 
omplete, and took up 3 GB of disk spa
e dumping both thestreamfun
tion and PPV �elds on
e every 500 timesteps.A di�eren
e between the QUAGMIRE runs and the laboratory s
ans of Chapter 4 is thatfor the model simulations the state was reset to the appropriate initial 
ondition (small-amplitude noise superimposed onto the ba
kground equilibrium state) before ea
h newrun. In 
ontrast, in the 
ontinuous laboratory experiment s
ans, the previously attained
ow served as the e�e
tive initial 
ondition. We do this so that for ea
h parameter
ombination, we are examining the stability of small perturbations to the axisymmetri
equilibrium state, rather than the stability of an equilibrated �nite amplitude large-s
alemode 
orresponding to a neighbouring point of parameter spa
e. Though this approa
hmaintains a 
lose asso
iation between the model and the theoreti
al studies of baro
lini
instability, it does mean that the model and laboratory experiments do not 
orrespondto exa
tly the same problem. 136



Chapter 6. Results of the numeri
al experiments6.1.1 Sample diagnosti
sWe now show some sample model diagnosti
s for the simulation with �
 = 0:08 rad s�1and 
 = 3:50 rad s�1, demonstrating how we 
an diagnose azimuthal wavenumbers,interfa
ial wave amplitudes and wave phase speeds from the raw model data.Figure 6.1 shows the perturbation interfa
e height �eld (
al
ulated from equation 5.30)at six di�erent timesteps, showing how the system evolves from the noisy initial statein (a), via an azimuthal wavenumber 5 mode with initial largest growth rate in (b){(e), to the equilibrated wavenumber 3 mode in (f). Note that the sele
ted mode is notthat with the initial largest growth rate, whi
h was quite a 
ommon o

urren
e in themodel runs. This is due to the development of a radial mode between timesteps 10,000and 14,000 as seen in (
), (d) and (e), whi
h seems to alter the relative stability ofthe azimuthal wavenumber 3 and 5 modes. Appleby (1988) has dis
ussed the diÆ
ultyof predi
ting, in a two-layer 
ow simultaneously baro
lini
ally-unstable to two dis
retewavelengths, whi
h of the two modes will eventually predominate. Note the 
lose resem-blan
e between the wave shapes in Figures 6.1(f) and 4.16(a), giving our �rst eviden
ethat the simulated 
ows are reasonable. A quantitative model/laboratory 
omparisonis 
arried out in Se
tion 6.1.2.Azimuthal wavenumbers 
an easily be read o� by eye from the interfa
e height plots, butit is 
onvenient to automate this pro
edure when it needs to be done for many hundredsof model runs. To this end, the azimuthal Fourier 
omponent amplitudes 
orrespondingto the �eld in Figure 6.1(f) are plotted in Figure 6.2. The wavenumber 3 
omponent isthe largest, as expe
ted, but the azimuthal pro�les are not perfe
tly sinusoidal. Thereare signi�
ant wavenumber 6 and 9 harmoni
s, with amplitudes around a fa
tor of 10smaller than the dominant 
omponent. There is only slight eviden
e of an energy build-up at the grids
ale (wavenumbers of around Nazim=2 = 48), showing that the numeri
alhyperdi�usion term (Se
tion 5.7) is su

essfully suppressing any spurious growth.In order to determine wave amplitudes, Figure 6.3 shows azimuthal pro�les of full(i.e. mean plus perturbation) interfa
e height 
orresponding to Figure 6.1(f), at ea
hof the 16 model radii. The height shows no variation with azimuth at the two sidewallboundaries, a 
onsequen
e of both layer streamfun
tions being 
onstant there. Wave137
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(e) 14,000 steps (f) 200,000 stepsFigure 6.1: Evolution of the perturbation interfa
e height �eld �0, from ran-dom small-amplitude initial 
onditions to an equilibrated large-s
ale mode withazimuthal wavenumber 3. Note that the 
olourbar s
ales vary between the plots.
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Figure 6.4: Time series of amplitude of mid-radius perturbation interfa
e height�0 up to timestep 300,000, starting at time zero with random small-amplitudeinitial 
onditions.amplitudes at ea
h radius 
an be 
omputed from diagrams su
h as this, by halving thedi�eren
e between the maximum and minimum displa
ements. In this 
ase the ampli-tude is largest near the middle of the annular gap, where it rea
hes around 1 mm.Figure 6.4 shows a timeseries of mid-radius wave amplitude for the entire model run.The wavenumber 5 mode is seen to grow very rapidly at the start of the run, but thengives way to the sele
ted wavenumber 3 mode after around 300 s. The mode 3 amplitudetemporarily va
illates as it de
ays towards its equilibrated value of 1.1 mm, after whi
hit remains 
onstant.By wat
hing the equilibrated wave as it drifts around the annulus, we 
an derive itsphase speed. Figure 6.5 shows a post-equilibrium timeseries of perturbation interfa
eheight displa
ement at a �xed mid-radius point, from whi
h we 
an verify our previous�nding that the wave amplitude is 1.1 mm. By taking a temporal Fourier transformwe �nd the predominant period to be 51.7 s, whi
h we must multiply by the azimuthalwavenumber to obtain the drift period of 155 s. This is 
losely equal to double the lid140
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Figure 6.5: Time series of mid-radius perturbation interfa
e height displa
ement�0 at a �xed azimuthal point, between timesteps 200,000 and 300,000. The threelobes of the large-s
ale wave, whi
h pass the measurement point in turn, haveslightly di�erent amplitudes suggesting that perfe
t equilibration has not quitebeen rea
hed.
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Figure 6.6: Contour plot of perturbation streamfun
tion  01 in the upper layer attimestep 200,000. Perturbation velo
ity ve
tors u01, derived from the streamfun
-tion �eld, are over-plotted. The largest perturbation velo
ity ve
tor in the plothas a magnitude of 2.1 mm s�1.rotation period 2� 2�=�
 = 157 s, so that the wave angular phase speed is half the lidrotation speed in this 
ase.We 
an derive the perturbation velo
ity 
omponents from the perturbation streamfun
-tions, using equations (5.28) and (5.29). These two �elds in the upper layer, after equi-libration, are shown over-plotted in Figure 6.6. The streamfun
tion is 
onstant alongthe boundaries, meaning that the radial velo
ity 
omponent is zero there. Both 
on-stants have adjusted to take di�erent values, however, meaning that there is a non-zeroradially-averaged azimuthal velo
ity 
omponent, whi
h 
orresponds to the mean 
ow
orre
tion (Se
tion 5.3.2). Six eddies have developed: three with rotation in the 
lo
k-wise sense and three in the anti-
lo
kwise sense. The net azimuthal 
uid transport dueto the perturbation velo
ities of these eddies is in the retrograde (
lo
kwise) dire
tion,though this transport is weaker than that of the mean 
ow and so the overall transport isstill in the prograde dire
tion. In the lower layer, the net perturbation transport is in theprograde (anti-
lo
kwise) dire
tion (not shown). The wave arising from the baro
lini
instability has therefore tended to redu
e the mean velo
ity shear a
ross the interfa
ewhi
h 
aused the instability. 142
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Figure 6.7: Time series of radially-averaged zonal perturbation velo
ity u� 0 inboth layers, up to timestep 300,000.
We 
an evaluate the radially-averaged azimuthal velo
ity 
omponents responsible forredu
ing the shear, by taking the di�eren
e between the streamfun
tions at r = a andr = b and dividing by b� a. The results of this for both layers are shown in Figure 6.7as fun
tions of time. The series are almost exa
tly equal and opposite, implying thatthe mean azimuthal velo
ity is almost purely baro
lini
, with a mu
h smaller barotropi

omponent. This �nding is 
onsistent with the highly-trun
ated two-layer model ofLovegrove (1997), in whi
h 
ertain intera
tion 
oeÆ
ients are shown to be zero be
auseof an additional symmetry introdu
ed due to the layer depths being equal. This leads tothe equilibrated barotropi
 mean 
ow 
orre
tion 
omponent being zero (see Lovegrove'sequation (1.17) and following 
omments).As an example of an amplitude va
illation simulated by QUAGMIRE, Figure 6.8 showsa timeseries of post-transient amplitude from the run with �
 = 0:70 rad s�1 and
 = 3:25 rad s�1. In this 
ase, the equilibrated state is a 1AV, with an amplitude enve-lope that is not sinusoidal. The va
illation period is 47.5 s and the wave drift period inthis 
ase is 17.3 s (not shown), so that the wave drifts 
ompletely around the tank about143
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Figure 6.8: Time series of amplitude of mid-radius perturbation interfa
e height�0, after the initial transients have de
ayed away, showing an amplitude va
illationenvelope.three times between su

essive peaks of the va
illation 
y
le. This is in good agreementwith typi
al va
illation periods observed in the laboratory experiment.
6.1.2 Comparison between model and laboratoryWe have shown how wavenumbers, amplitudes and phase speeds 
an be derived from theraw data generated by the QUAGMIRE numeri
al experiments. These three quantitiesare also readily available from the 
alibrated laboratory experiments, and we now under-take a 
omparison between the two as an important test of QUAGMIRE's reliability.
Wavenumber 
omparisonThe dominant azimuthal wavenumber after equilibration has been determined for ea
hof the 210 model runs des
ribed in Se
tion 6.1, and the resulting numeri
al regime dia-gram is shown in Figure 6.9. There are well-de�ned regimes everywhere, apart from atlow d and high F where the wavenumber 1 and 2 regions be
ome entangled and 
onfused.144
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Chapter 6. Results of the numeri
al experimentsA small number of 10-member ensemble runs was 
arried out, in order to test sensitivityto initial 
onditions. The runs within ea
h ensemble had the same run parameters, butdi�erent random numbers for the noise in the initial state. All ten members gave equi-librated 
ows whi
h were identi
al in terms of wavenumber, wave speed and amplitude,ex
ept in the low-d and high-F 
orner where there was a probability partition betweenwavenumber 1 and 2. In this region there is high sensitivity to initial 
onditions, whi
hhelp to determine the �nal state, whereas elsewhere in the regime diagram there is insen-sitivity to the pre
ise details of the noise in the initial 
onditions. We return to examinethe response of the model to small-s
ale random noise in Chapter 7, when we use a noisyfor
ing term to represent the laboratory small-s
ale waves.The laboratory regime diagram 
orresponding to Figure 6.9 is shown in Figure 4.1.There is ex
ellent qualitative agreement between the shapes of the model and labo-ratory wavenumber transition 
urves. Quantitative agreement is limited by a shift inthe regime features in the (d; F ) plane between the two diagrams. For example, 
on-sideration of the 
oordinates of the m = 0; 1; 2 and m = 0; 2; 3 transition 
urve triplepoints shows that the model overestimates F by a fa
tor of 1{2 and d by a fa
tor of5{10. The error in F is small, and 
an be attributed to the many approximations madewhen deriving the model Q-G equations. The error in d is signi�
antly larger. In thenon-dimensionalized governing equations, d is the 
oeÆ
ient of the Ekman layer terms.The mismat
h between QUAGMIRE and laboratory regime diagrams therefore suggeststhat the model assumption of linear, parameterized Ekman layers is inadequate. Thisis perhaps not surprising, as the Ekman velo
ity formulae used in the model equationsare derived under the assumption of geostrophy, but the Rossby numbers rea
hed in thelaboratory MRW regime 
an be as large as 1 (see Figure 4.6(b)).
Wave speed 
omparisonThe post-transient angular phase speed of the waves has been determined for ea
h ofthe baro
lini
ally-unstable model runs, and is shown in Figure 6.10. The wave speedshows no variation with turntable speed 
, as in the laboratory experiments, and inea
h 
ase it is 
lose to half the lid rotation speed �
. These two statements hold even146
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Figure 6.10: Angular phase speed of the model waves after equilibration, plottedagainst 
 for various �
, for ea
h model run whi
h exhibited baro
lini
 instability.as wavenumber transition 
urves are 
rossed. Sin
e the equilibrium Q-G rotation ratesare 
losely one-quarter and three-quarters of the lid rotation speed (Se
tion 5.3.1), we
on
lude that the model waves travel at the mean of the equilibrium layer rotation rates.The variation of model wave speed with lid speed is shown in Figure 6.11 for the 
ase
 = 2:0 rad s�1. Over-plotted on the same �gure is the equivalent laboratory data,obtained from experiments PAI1{10 after 90 minutes by timing drift periods with astopwat
h. The model overestimates the wave speeds by a fa
tor of four, presumablydue (at least in part) to the importan
e of Stewartson layer drag dis
ussed in Se
-tion 3.4.3, whi
h is present in the laboratory but absent in the model, and also to theun
ertainty in the 
uid properties, to be investigated in Se
tions 6.2 and 6.3.
Wave amplitude 
omparisonA systemati
 model/laboratory amplitude 
omparison is diÆ
ult be
ause a given 
 and�
 will 
orrespond to di�erent wavenumber regimes in the laboratory and model, dueto the shift of features in the (d; F ) parameter spa
e, dis
ussed above. Whilst wave147
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Figure 6.11: Angular phase speed of the wave after equilibration, plotted against�
 for 
 = 2:0 rad s�1. Data from both the model and laboratory experimentsare shown, together with straight lines (dotted) of gradient 0.50 and 0.12 passingthrough the origin.speeds are independent of wavenumber, as shown above, we might expe
t that waveamplitudes are not. Instead, the mid-radius wave amplitudes after equilibration weredetermined for ea
h of the baro
lini
ally-unstable model runs, and typi
al values wereused for the 
omparison, be
ause amplitude variations within wavenumber regimes weresmall. Typi
al amplitudes of wavenumber 1, 2 and 3 
ows in the model were foundto be around 5 mm, 2 mm and 1 mm respe
tively, a fa
tor of a few smaller than thelaboratory amplitudes reported in Se
tion 4.8. We investigate this mismat
h, togetherwith the phase speed mismat
h, in Se
tions 6.2 and 6.3.
6.2 Variation of model vis
ositySuÆ
ient eviden
e has been a

umulated (Se
tions 2.2.4 and 4.2) to suggest that theremay be slow 
hanges in the physi
al properties of the working liquids. In this se
tionand the next, we vary the model vis
osities and interfa
ial tension, respe
tively, to inves-tigate whether these 
hanges 
an help to explain the observed dis
repan
ies between the148
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Figure 6.12: Timeseries of mid-radius wave amplitude, showing how the ampli-tude responds to six dis
ontinuous in
reases in lower layer vis
osity.amplitudes and phase speeds of the large-s
ale waves reported above. Preliminary labo-ratory eviden
e for 
hanges in the large-s
ale waves with time, and therefore with 
uidproperties, has been presented in Se
tion 4.2. On these grounds we expe
t the modelwaves to display a variation with 
uid properties also.The experiment with �
 = 0:60 rad s�1 and 
 = 2:25 rad s�1 was repeated with thelower layer vis
osity �2 varying throughout the run. Starting with a wave whi
h hadequilibrated with the measured laboratory vis
osity (Table 2.1), �2 was in
reased dis-
ontinuously to a new value and the system was allowed to re-equilibrate, and then �2was in
reased again, et
. The in
rease was by a fa
tor of around two in ea
h 
ase, andthe 
ow remained 1S throughout. The resulting amplitude tra
e is shown in Figure 6.12.There is a ringing e�e
t as the system adjusts to ea
h of the six 
hanges. Though thevis
osities rea
hed by the end of the run were unrealisti
ally large, just a single doublingof �2 from its assumed value produ
es a signi�
ant in
rease in wave amplitude, of around25%.The vis
osity s
an experiment des
ribed above was repeated on
e more, this time with149
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Figure 6.13: Variation of equilibrated mid-radius wave amplitude with vis
osityratio, given as a multiple of its value when the vis
osities are equal.six dis
ontinuous de
reases in lower layer vis
osity. The equilibrated wave amplitudesobtained from ea
h of the 13 vis
osities investigated are shown in Figure 6.13, as afun
tion of � =p�2=�1. There are two distin
t bran
hes of the 
urve 
orresponding toin
reasing and de
reasing �. If �2 were twi
e as large as its assumed value, and �1 werehalf as large, then � would be twi
e its assumed value and the wave amplitude wouldbe over 50% larger.The reason that wave amplitudes vary with vis
osity seems to be that vis
osity a�e
tsthe energeti
s of the system. From equations (5.20) and (5.21), as � ! 0, �
1 ! �
and �
2 ! 12�
, whereas as � ! 1, �
1 ! 12�
 and �
2 ! 0. Therefore, as �in
reases, the kineti
 energy of the 
uids de
reases. There seems to be a 
orrespondingin
rease in the gravitational potential energy, whi
h manifests itself as an in
rease in theinterfa
ial wave amplitude.The wave angular phase speed was also determined for ea
h of the 13 vis
osities investi-gated, and is plotted as a fun
tion of � in Figure 6.14. There is a strong variation with150
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Figure 6.14: Variation of equilibrated wave angular phase speed with vis
osityratio, given as a fra
tion of the angular lid speed. The dotted line represents themean of the equilibrium layer rotation rates (see text).�. Over-plotted is a 
urve 
orresponding to the mean of the equilibrium layer rotationrates, 12(�
1 +�
2), determined theoreti
ally as a fun
tion of � from equations (5.20)and (5.21). There is a good �t between the 
urve and the 13 points, showing thatQUAGMIRE waves travel at the mean layer speed for all vis
osities in this range. Anin
rease in � from 1 to 2 would de
rease the model wave speeds by around 20%.The in
rease in model wave amplitude and de
rease in model wave speed as � is doubleddo not fully a

ount for the laboratory/model disagreement reported in Se
tion 6.1.2.Sin
e un
ertainties in the vis
osity 
an only partially a

ount for the dis
repan
y, in thefollowing se
tion we investigate the e�e
ts of un
ertainties in the interfa
ial tension.
6.3 Variation of model interfa
ial tensionThe experiment with �
 = 0:60 rad s�1 and 
 = 2:25 rad s�1 was repeated with theinterfa
ial tension S varying throughout the run. Starting with a wave whi
h had equili-brated with zero tension, S was in
reased dis
ontinuously to a new value and the system151
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Figure 6.15: Timeseries of mid-radius wave amplitude, showing how the ampli-tude responds to ten dis
ontinuous jumps in interfa
ial tension.was allowed to re-equilibrate, and then S was in
reased again, et
. The in
rease was by10�3 N m�1 in ea
h 
ase, and the 
ow remained 1S throughout. The resulting amplitudetra
e is shown in Figure 6.15. As with the vis
osity s
ans, there is a ringing e�e
t asthe system adjusts to ea
h 
hange.The equilibrated wave amplitudes obtained from ea
h of the 11 interfa
ial tensions inves-tigated are shown in Figure 6.16, as a fun
tion of S. The interfa
ial tension rea
hed atthe end of the run was 10�2 N m�1, only around a third of the assumed laboratory valuein the absen
e of a surfa
tant (Table 2.1), but the produ
t FI had rea
hed 0:47 by thisstage and QUAGMIRE requires FI � 1 (Se
tion 5.3). We therefore do not expe
t therapid amplitude growth with S shown in the �gure to be 
ontinued as FI approa
hesunity, but we 
an infer that the assumed interfa
ial tension 
an in
rease QUAGMIREamplitudes by at least a fa
tor of �ve relative to the S = 0 
ase.The wave angular phase speed was also determined for ea
h of the 11 interfa
ial ten-sions investigated, and is plotted as a fun
tion of S in Figure 6.17. There is no variationwith S, the speed taking on the mean layer speed 0:5�
 for all investigated interfa
ial152
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Figure 6.16: Variation of equilibrated mid-radius wave amplitude with interfa
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Chapter 6. Results of the numeri
al experimentstensions.We have been unable to �nd detailed studies of the impa
t of interfa
ial tension onbaro
lini
 instability in the geophysi
al literature, and so it is diÆ
ult to 
orroboratethe above �ndings. The e�e
ts of interfa
ial tension on Kelvin-Helmholtz instabilityhave been more widely studied, however. From equation (9.3) of A
heson (1990), theamplitude growth rate of a Kelvin-Helmholtz mode in
reases with interfa
ial tension,and the wave phase speed is independent of it. In this se
tion, we have 
ome to similar
on
lusions about waves due to baro
lini
 instability | equilibrated amplitudes growwith in
reased tension, but speeds are una�e
ted | and so the 
omparison with Kelvin-Helmholtz instability makes our �ndings plausible.The model/laboratory inter
omparison has been improved by in
reasing the model inter-fa
ial tension. The 
omparison is dis
ussed in more detail in Se
tion 6.5.
6.4 Model runs with non-zero interfa
ial tensionA se
ond series of 210 model runs has been 
arried out, identi
al to the �rst series (Se
-tion 6.1) ex
ept that the interfa
ial tension is now set to be S = 5:0 � 10�3 N m�1,
lose to the assumed laboratory value in the presen
e of a surfa
tant (Se
tion 2.2.3).The resulting wavenumber regime diagram is shown in Figure 6.18. The 21 runs with
 = 3:50 rad s�1 all 
rashed due to an arithmeti
 ex
eption before the 500th timestep,as the produ
t FI was then 0:57 and the interfa
ial tension 
orre
tion 
oeÆ
ient Cit

 =1=(1� 2FI) was negative, and so there are no points 
orresponding to these runs in thediagram. When 
 is 3.25 rad s�1, 3.00 rad s�1 and 2.75 rad s�1, the produ
t FI is 0:49,0:42 and 0:35 respe
tively. None of these is mu
h smaller than unity, and so wavenum-bers in the top three rows of points in the regime diagram are likely to be unreliable.Negle
ting these top three rows, there is good agreement between QUAGMIRE wavenum-ber transition 
urves both without and with small interfa
ial tension (Figures 6.9 and 6.18,respe
tively). We 
on
lude, based on the present regime diagram and the analysis of Se
-tion 6.3, that small model interfa
ial tension has no impa
t upon equilibrated wavenum-bers or wave speeds, but signi�
antly in
reases wave amplitudes.154
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Chapter 6. Results of the numeri
al experimentslaboratory numeri
al modelS = 0 S = 0 S = 5 mN m�1� = 1 � = 2 � = 1(d, F) 
oordinatesof triple pointsm = 0, 1, 2 (0:01; 4:8) (0:06; 6) ? (+0%, +0%)m = 0, 2, 3 (0:02; 5:5) (0:25; 11) ? (+0%, +0%)mid-radiuswave amplitudem = 1 25 mm 5 mmm = 2 8 mm 2 mm +55% +75%m = 3 7 mm 1 mmangular wave speed 0:12 �
 0:50 �
 �20% +0%Table 6.1: Comparison of three important wave properties between the laboratoryexperiments and the QUAGMIRE runs with model parameters S = 0 and � = 1.The 
hanges in the properties when � is in
reased to 2 and S is in
reased to5:0 � 10�3 N m�1 are also shown. The 
hange in the triple point 
oordinates as� is doubled has not been investigated, and a

ordingly these entries are labelledwith \?".
6.5 Dis
ussion of model/laboratory 
omparisonA summary of the �ndings of Se
tions 6.1.2, 6.2, 6.3 and 6.4, regarding the quantita-tive 
omparison between large-s
ale waves in the laboratory and the model, is given inTable 6.1. In the present se
tion, we 
onsider in turn ea
h of the 
omparisons in thetable, with the aim of investigating whether or not it is possible to 
on�dently assignreasons for the dis
repan
ies. In parti
ular, laboratory/model di�eren
es 
ould be dueto (a) un
ertainties in the 
uid parameters; (b) unreasonable model assumptions apartfrom the negle
t of fast modes; and (
) the negle
t of fast modes in the model. Before156



Chapter 6. Results of the numeri
al experimentswe 
an attribute the dis
repan
ies to reason (
), and thereby 
laim that we have foundeviden
e of an observable fast wave impa
t upon the slow wave dynami
s, we must �rstbe able to reje
t the hypotheses that the dis
repan
ies are due to reasons (a) and (b).Model and laboratory Froude numbers agree to within a fa
tor of up to 2, whi
h seemsreasonable given the many model approximations, in
luding the small Rossby numberassumption. The signi�
ant disagreement between dissipation parameters, by a fa
tor ofup to around 10, 
an probably be put down to un
ertainties in layer vis
osities (whi
happear in the dissipation parameter formula), and to the assumption of geostrophi
parameterized Ekman velo
ities and other model approximations, in
luding boundary
onditions. Lovegrove (1997) 
onstru
ted a spe
tral, 
hannel model of the annulus, and
ame to very similar 
on
lusions about the laboratory transition 
urve 
omparison. Henotes that:\... while the Froude numbers of experimental runs are of the same magnitudeas those present in the theoreti
al regime diagram, the experimental values ofthe dissipation parameter are a
tually about an order of magnitude smallerthan the predi
ted theoreti
al values."He a

ounts for the dis
repan
y as being due to system di�eren
es, and without re
ourseto short waves.Model wave amplitudes with zero interfa
ial tension are a fa
tor of up to 7 times smallerthan those measured in the laboratory. Realisti
 errors in the vis
osity 
ould in
reasethe model amplitudes by one-half. Interfa
ial tensions smaller than the assumed labo-ratory value in the absen
e of a surfa
tant 
ould almost double model wave amplitudes.Though we have been unable to run the model with a realisti
ally large tension, it seemsbelievable from Figure 6.16 that the measured tension 
ould give the required amplitudeampli�
ation to a

ount for this dis
repan
y.Finally, the model waves travel around four times faster than those in the laboratory.This 
ould partially be explained by un
ertainties in the vis
osities, to whi
h model wavespeeds are moderately sensitive: a realisti
 vis
osity error 
ould redu
e model speeds by20%. The dominant me
hanism, though, is the negle
t of Stewartson boundary layersin the model. We know that su
h boundary layers exist in the laboratory experiment,157



Chapter 6. Results of the numeri
al experimentsand we have seen in Se
tion 3.4.3 that they exert a signi�
ant drag for
e on the layers,slowing down waves by up to an additional 40% (Table 3.2). Further allowing for theapproximation in equation (3.24), and the model assumptions, is probably enough toexplain this dis
repan
y.Despite the model/laboratory dis
repan
ies reported in the above paragraphs, manyaspe
ts of the 
omparison are positive. The model gives a realisti
 variety of sele
tedwavenumbers, waves of reasonable shape and form, and va
illations with reasonableperiods. We 
on
lude that it seems likely that the dis
repan
ies 
an be attributed tome
hanisms (a) and (b). It follows that, sin
e we are unable to reje
t these me
hanisms,the dis
repan
ies are not proof of an observable fast wave impa
t upon the balan
edmodes.
6.6 Radiation indi
atorsIn the �rst part of this 
hapter, we have found reasonable agreement between the numer-i
al and laboratory experiments, in terms of wave speeds, amplitudes and wavenumbers.It is therefore reasonable to assume that QUAGMIRE is also adequately simulatingvelo
ity �elds. In the remainder of this 
hapter, we use the model velo
ity �elds to
ompute �ve diagnosti
s of small-s
ale wave generation in the MRW regime. Some ofthe diagnosti
s are predi
tors of small-s
ale waves due to a shear instability me
hanism,and others due to a nonlinear spontaneous emission me
hanism. By investigating whi
hof the �ve indi
ators best predi
ts the spatial lo
ations of the laboratory small-s
alewaves, we will be able to infer whi
h of the two generation me
hanisms is responsible.
6.6.1 Indi
ator de�nitionsWe now review, in turn, ea
h of the �ve radiation indi
ators to be diagnosed using themodel velo
ity �elds. 158



Chapter 6. Results of the numeri
al experimentsHorizontal divergen
e, ÆTo �rst order in the Rossby number, the velo
ity �elds in any quasi-geostrophi
 modelare horizontally non-divergent, permitting the introdu
tion of a streamfun
tion. Athigher order, though, there must be a small non-zero horizontal divergen
e Æ = rh:uhin order to allow the interfa
e height to slowly evolve. In a velo
ity de
omposition, vorti-
al 
omponents 
orrespond to balan
ed modes and divergent 
omponents to unbalan
edmodes, whi
h suggests that Æ may be a good indi
ator of small-s
ale wave generation.From mass 
onservation r:u = 0 for an in
ompressible 
uid, we haveÆ = ��w�z : (6.1)Integrating over the lower layer (in
luding Ekman layers), at the top and bottom ofwhi
h the verti
al velo
ities are (D=Dt)2h and 0 respe
tively, givesÆ2 = �1h � ��t � 1r � 2�� ��r + 1r � 2�r ���� h ; (6.2)with a similar expression for the upper layer. The horizontal divergen
e is a generalindi
ator of short wave emission, i.e. it is not spe
i�
 to either the shear or spontaneousemission me
hanisms.Lo
al Ri
hardson number, RiThe Ri
hardson number dis
ussed in Se
tion 4.4.1 is expe
ted to be a good indi
atorof small-s
ale wave generation by a shear instability me
hanism. In that se
tion wederived an expression for the Ri
hardson number in terms of the velo
ity �elds. Inthe baro
lini
ally-stable regime these velo
ity �elds were simply those asso
iated withsolid-body rotation, for whi
h we 
ould write down analyti
al expressions. By doingthis we were able to show that the Ri
hardson number was a good indi
ator of the pro-du
tion of small-s
ale waves in the KH regime. We were unable to repeat the analysisfor the small-s
ale waves in the MRW regime as we 
ould not determine the velo
ity�elds. However, these �elds are now known from the model, enabling us to 
ompletethis avenue of inquiry.The general de�nition of Ri
hardson number for the annulus isRi = 2g0p�=
(�u)2 ; (6.3)159



Chapter 6. Results of the numeri
al experimentswhere (�u)2 = (�ur)2 + (�u�)2 is the velo
ity shear a
ross the interfa
e, whi
h 
an bediagnosed from the streamfun
tion. Equation (6.3) is a generalization of equation (4.4),whi
h applies only to the axisymmetri
 equilibrium 
ow.Brown indi
ator, �, and turbulent energy dissipation rate, �A number of shear instability indi
ators have been developed as 
omplementary alterna-tives to the Ri
hardson number. Two of these are the Brown indi
ator � and turbulentenergy dissipation rate �, �rst studied by Roa
h (1970) as indi
ators of Clear Air Tur-bulen
e (CAT) in the atmosphere. CAT o

urs in 
loudless 
onditions at altitudes ofaround 10 km, and is due to small-s
ale Kelvin-Helmholtz billows. It is o

asionallysevere enough to lift aeroplane passengers from their seats and 
ause injury or death(Roa
h & Bysouth, 2002), and so there are important pra
ti
al reasons for developinga reliable indi
ator.Roa
h begins his analysis by noting that, on the one hand, there are dynami
al pro-
esses whi
h tend to in
rease the verti
al shear in horizontal velo
ity, e.g. thermal windbalan
e giving a tropospheri
 jetstream in the atmosphere, or the imposed di�erentiallid rotation in the annulus. On the other hand, vis
ous energy dissipation due to small-s
ale waves tends to redu
e the shear. Roa
h makes an assumption of approximatebalan
e between these two 
ompeting e�e
ts on short times
ales, leaving the shear (andRi
hardson number) 
onstant.Roa
h pro
eeds by imagining a thought experiment in the atmosphere in whi
h thedissipation e�e
t is swit
hed o�, destroying the balan
e and allowing an in
rease inshear. He argues that the rate at whi
h the small-s
ale features were dissipating energyjust before the swit
h-o� must equal the rate of energy in
rease of the system just after,whi
h is analyti
ally derivable from the dynami
al equations by setting the vis
osity tozero. Using this approa
h, he 
al
ulates an energy dissipation rate of� = 8<: (�u)224 � : � > 00 : � < 0 (6.4)where � = � 1Ri DRiDt : (6.5)160



Chapter 6. Results of the numeri
al experiments�u is the vertial shear in horizontal velo
ity asso
iated with the tropospheri
 jetstream,taken to be the shear a
ross the interfa
e in the annulus, and Ri is the Ri
hardson num-ber for the large-s
ale 
ow, de�ned for the annulus by equation (6.3). D=Dt is the totalderivative operator 
al
ulated from equation (5.16). The indi
ator � takes its name fromBrown (1973), who derived an approximate form whi
h was more pra
ti
al for opera-tional diagnosis of CAT, though in the present study we use the dire
t de�nition (6.5)involving Ri. In Brown's paper, both � and � are shown to be better indi
ators of CATthan Ri, and so we might expe
t the same to be true in the annulus.
Lighthill radiation term, LRTLighthill (1952) has presented a theory for the generation of sound waves by large-s
alemotions in a 3-D 
ompressible adiabati
 gas. The governing equations for Lighthill'ssystem are isomorphi
 to the non-rotating shallow water equations, with a 
orrespon-den
e between a
ousti
 and gravity modes, and so the problem of generation of puregravity waves had also unintentionally been solved by Lighthill. Ford (1994) extendedthe theory to in
lude rotation, and thereby derived an inertia-gravity wave radiationterm. The generation me
hanism in this 
ase is an evolving vorti
al motion rather thana velo
ity shear, making this indi
ator fundamentally di�erent from the previous three.Ford's derivation begins by taking the f -plane invis
id barotropi
 shallow water equa-tions, in 
ux form. Two equations, obtained by taking the 
url and the divergen
e ofthe momentum equation, are 
ombined to produ
e a single equation:� �2�t2 + f 2 � gHr2� �h�t = ��tr:F + fk:r� F + g2 ��tr2h2 ; (6.6)where F = ur:(hu) + (hu:r)u (6.7)and k is the unit verti
al ve
tor. The left side of equation (6.6) is the linear shallow-water inertia-gravity wave operator a
ting on �h=�t, whi
h turns out to be a more
onvenient variable than h. The right side 
ontains all of the nonlinear terms, whi
h werefer to 
olle
tively as the Lighthill Radiation Term (LRT). The linear normal modesof equation (6.6) are shallow-water inertia-gravity waves, for whi
h the intrinsi
 angular161



Chapter 6. Results of the numeri
al experimentsfrequen
y ! and total wave ve
tor K are related by dispersion equation:!2 = f 2 + gHK2 : (6.8)The right side of Ford's original equation is written expli
itly in Cartesian 
oordinates,but we retain the ve
tor form here as we would like to diagnose LRT in the 
ylindri
algeometry of the annulus. Ford goes on to derive an approximate form for LRT based onsmall Froude number, though Froude numbers are larger than unity for 
ows of interestin the present system, and so we use the unapproximated form given in equations (6.6)and (6.7).Ford argues that inertia-gravity waves will be generated in any region for whi
h LRTis non-zero, so that all vorti
al 
ows will emit freely-propagating inertia-gravity waves,disproving the existen
e of a stri
t slow manifold. The radiation me
hanism is termedspontaneous-adjustment emission radiation (SER) by Ford et al. (2000). SER is a gen-eralization of geostrophi
 adjustment radiation (GAR), as it in
ludes GAR as a sub-
lassbut does not ne
essarily take the 
ow towards a state of geostrophi
 balan
e.It is important to note that Ford's theory is based on the shallow water equations,and so the expression for LRT given by equation (6.6) is an indi
ator of shallow-waterinertia-gravity wave emission by an evolving shallow-water large-s
ale mode. Thoughthe large-s
ale modes in the present system 
an reasonably be 
lassi�ed as shallow, itappears that the small-s
ale modes 
annot. Their typi
al wavelengths (around 20 mm,from Se
tion 4.4.2) are signi�
antly smaller than the layer depth (125 mm), suggestingthat the observed short waves are in the deep-water regime with a di�erent dispersionrelation from that above. Nevertheless, Lovegrove (1997) was able to demonstrate goodagreement between short wave periods measured in the laboratory, and those predi
tedby the shallow water dispersion relation (6.8), suggesting that the boundary betweenthe shallow and deep limits is determined by more than just the wave aspe
t ratio. Wetherefore spe
ulate that Ford's theory is appropriate to the 
urrent system, even thoughthe system seems to be in a regime whi
h is formally outside the limits of the theory'sappli
ability.An approximation needs to be made before we 
an apply Ford's one-layer theory tothe two-layer annulus. We approximate rp1 = 3rp2, whi
h enables us to write the162



Chapter 6. Results of the numeri
al experimentsindi
ator name de�nition me
hanism radiation 
onditionhorizontal divergen
e Æ =rh:uh not spe
i�
 Æ 6= 0Ri
hardson number Ri / 1(�u)2 KH Ri < 1Brown indi
ator � = � DDt lnRi KH � large and positiveenergy dissipation rate � / �(�u)2 KH � > 0Lighthill radiation term non-linear IGW terms SER jLRTj > 0Table 6.2: Summary of the �ve radiation indi
ators to be diagnosed using datafrom QUAGMIRE. The parti
ular generation me
hanism asso
iated with ea
h indi-
ator is listed (Kelvin-Helmholtz shear KH, or Spontaneous Emission RadiationSER) together with the 
ondition whi
h needs to be satis�ed in order for radiationto be expe
ted.horizontal pressure gradient for
e in the lower layer as (1=�2)rp2 = �(g0=2)rh. Thisassumption applies be
ause equilibrium zonal velo
ities in the upper layer are threetimes those in the lower layer (for equal vis
osities, from Se
tion 5.3.1) and so threetimes the radial pressure gradient is required to support them. The impli
ation is thatequation (6.6) holds for the lower layer in the rotating annulus, so long as we repla
eg with �g0=2. All of the terms in the expression for LRT 
an be 
al
ulated from theQUAGMIRE output.Table 6.2 gives a summary of the properties of the �ve radiation indi
ators dis
ussed inthis se
tion, in
luding the 
onditions under whi
h short wave emission is expe
ted.
6.6.2 Indi
ator plots using model dataFigure 6.19 shows plots of the �ve radiation indi
ators as 
al
ulated from the main seriesQUAGMIRE experiment (S = 0) with �
 = 0:15 rad s�1 and 
 = 3:00 rad s�1, for163
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Figure 6.19: Plots of interfa
e height (top left), lower layer horizontal velo
itydivergen
e (top right), Ri
hardson number (middle left), lower layer Brown indi-
ator (middle right), lower layer energy dissipation rate (bottom left) and lowerlayer Lighthill radiation term (bottom right) from a 2S QUAGMIRE simulation.The 
orresponding plots for the upper layer are similar.
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Chapter 6. Results of the numeri
al experimentswhi
h the equilibrated 
ow is 2S, denoting a steady (non-va
illating) wavenumber two
ow in the notation of Se
tion 4.1. The interfa
e height �eld is also shown in the �gure.If we observed this interfa
e height �eld in the laboratory experiment, we would expe
tsmall-s
ale wave generation at low- to mid-radii near � = 0Æ (\3 o'
lo
k") and � = 180Æ(\9 o'
lo
k"), as 
an be seen by 
omparison with Figure 1.6 rotated through 90Æ. Weare therefore interested in whi
h (if any) of the �ve indi
ators would predi
t radiationat these (and only these) angular positions, based on the radiation 
riteria in Table 6.2.The horizontal divergen
e indi
ator shows four large amplitude regions, but this in
ludestwo at whi
h small-s
ale waves are not observed in the laboratory. The Ri
hardson num-ber shows lo
al minima with respe
t to azimuth at the two expe
ted regions, but is atits smallest 
lose to the outer sidewall whi
h is not a laboratory generation region. TheBrown indi
ator has large positive maxima exa
tly where the short laboratory wavesappear, but there are two equally large maxima elsewhere in the annulus. Similarly, theenergy dissipation rate has two maxima too many to be a reliable indi
ator, and bothof the unwanted maxima are larger than the maxima in the expe
ted lo
ations. TheLighthill radiation term has large global maxima at the two expe
ted regions, and twoweaker lo
al maxima at other lo
ations in the annulus.Figure 6.20 shows a similar analysis for an equilibrated 1S (steady wavenumber one)
ow with �
 = 0:50 rad s�1 and 
 = 2:75 rad s�1. In this 
ase, based on the laboratoryexperiments, we would expe
t small-s
ale radiation at � = 90Æ (\12 o'
lo
k").The Lighthill radiation term formulae (6.6) and (6.7) 
ontain terms with up to fourderivatives in them, whi
h amplify small-s
ale features relative to large-s
ale features.This heavy di�erentiation gives rise to the high level of noise present in the LRT plots.The three Kelvin-Helmholtz instability indi
ators have ea
h over-predi
ted regions ofsmall-s
ale wave generation, in both the 2S and 1S 
ases. The Lighthill diagnosti
,an indi
ator of spontaneous emission radiation, gives the best �t with the laboratoryobservations. It has large values exa
tly where the short waves appear in the laboratory.There are smaller subsidiary lo
al maxima in other regions, but the values taken thereare presumably not large enough for the laboratory short waves to over
ome the e�e
ts165
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Figure 6.20: Plots of interfa
e height (top left), lower layer horizontal velo
itydivergen
e (top right), Ri
hardson number (middle left), lower layer Brown indi-
ator (middle right), lower layer energy dissipation rate (bottom left) and lowerlayer Lighthill radiation term (bottom right) from a 1S QUAGMIRE simulation.The 
orresponding plots for the upper layer are similar.
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Chapter 6. Results of the numeri
al experimentsof vis
ous dissipation | not in
luded in Ford's theory | and grow to an amplitudewhi
h would make them visible. We 
on
lude that the SER me
hanism is likely to beresponsible for the MRW regime small-s
ale wave generation in the laboratory.As regards the baro
lini
ally-stable 
ow regime, Æ, � and � are ea
h identi
ally zero sin
ethe 
ow is then steady and axisymmetri
. Most of the 
ontributions to LRT are alsozero, and those whi
h aren't are very small due to the heavy di�erentiation, giving anLRT whi
h is around 106 times smaller than in Figures 6.19 and 6.20 (not shown). OnlyRi is non-negligible, reinfor
ing the 
on
lusions of Se
tion 4.4.1 that the laboratory shortwaves in the baro
lini
ally-stable regime are generated by a shear instability.
6.7 Chapter summaryIn this 
hapter we have investigated the results of simulations using the rotating, twolayer annulus model des
ribed in Chapter 5. The basi
 model behaviour is the same asthat seen in the laboratory, 
on�rming that the model is reliable and that the 
ode isfree from errors. For example, the model displays baro
lini
 instability with a variety ofrealisti
 equilibrated wavenumbers for super-
riti
al Froude numbers, and stability withrelaxation ba
k to an axisymmetri
 state otherwise.We have shown how wave amplitudes, phase speeds and wavenumbers 
an be derivedfrom the raw data produ
ed by the model. These quantities are in reasonable agree-ment with measurements from the laboratory annulus. Spe
i�
ally, we have found thatit seems likely that all observed laboratory/model dis
repan
ies 
an be attributed to
uid property errors and model approximations other than the negle
t of fast modes.This means that we are able to state, based on the 
omparisons that have been 
arriedout in this 
hapter, that we have found no eviden
e of an observable small-s
ale waveimpa
t upon the large-s
ale balan
ed 
ow in the laboratory.By diagnosing �ve 
andidate radiation indi
ators using the model velo
ity �elds, we havebeen able to 
on
lude that the observed short laboratory waves in theMRW regime (andpresumably also the MIW regime) are best explained by the spontaneous emission radi-ation me
hanism. This is be
ause shear me
hanisms predi
t short wave generation at167



Chapter 6. Results of the numeri
al experimentsregions other than those observed.There were many di�eren
es between model and laboratory | apart from the negle
tof the fast modes in the model | in the 
omparison des
ribed in this 
hapter. In thefollowing 
hapter, we in
orporate a sto
hasti
 inertia-gravity wave parameterization intothe model. This allows us to run 
omparative simulations in whi
h the only di�eren
eis the presen
e and absen
e of inertia-gravity waves, allowing a stronger test of theirimpa
ts than has been a
hieved here.
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Chapter 7
A sto
hasti
 parameterization of thefast waves \D�emons et merveillesVents et mar�eesAu loin d�ej�a la mer s'est retir�eeMais dans tes yeux entrouvertsDeux petites vagues sont rest�eesD�emons et merveillesVents et mar�eesDeux petites vagues pour me noyer."Sables Mouvants, Ja
ques Pr�evert.
In this 
hapter, we design and implement a simple parameterization of inertia-gravitywaves in QUAGMIRE. Having �rst justi�ed the need for a parameterization, we reviewprevious deterministi
 and sto
hasti
 parameterization s
hemes, and give details of the
hosen present s
heme. We then des
ribe numeri
al runs designed to measure the depen-den
e of the equilibrated wavenumber, wave amplitude and phase speed of the large-s
alewaves on the amplitude of the parameterized inertia-gravity waves. We are parti
ularlyinterested in investigating di�eren
es between runs with the parameterization swit
hedon and o�. The short wave parameterization proves to be fruitful, as we are able to iden-tify regions of parameter spa
e in whi
h the parameterized waves exert a large in
uen
eon the balan
ed 
ow, in parti
ular by for
ing spontaneous transitions between regimesof di�erent azimuthal wavenumber. 169



Chapter 7. A sto
hasti
 parameterization of the fast waves7.1 Parameterizations of inertia-gravity wavesBased on the 
omparison between laboratory experiments and numeri
al model runs inChapter 6, we were able to draw the 
on
lusion that no eviden
e had been found of anobservable small-s
ale wave impa
t upon the large-s
ale 
ow. However, sin
e the modeldi�ers from the laboratory experiments in more ways than just through the absen
eof small-s
ale waves, this 
on
lusion was ne
essarily weak. Any dis
repan
y betweenlaboratory and model 
ould be put down to these di�eren
es, in
luding un
ertain 
uidproperties and model approximations, rather than to the �ltering out of small s
ales.We would like to design a stronger test of the s
ale-separated intera
tion. Ideally, wewould like to run two laboratory experiments, one with and one without small-s
alewaves, but identi
al in all other ways. Unfortunately this is impossible, as the labora-tory small-s
ale waves 
annot easily be swit
hed o� at will, and so the next best thingis to in
lude them in the numeri
al model. QUAGMIRE is a quasi-geostrophi
 model,and so by 
onstru
tion 
annot expli
itly 
apture the evolution of the short ageostrophi
waves. It 
an, however, represent them impli
itly by in
luding a parameterization oftheir e�e
ts on the balan
ed 
ow. Su
h a parameterization for the two-layer annulus isdes
ribed in this 
hapter, and model runs are 
ompared both with the parameterizationswit
hed on and o�.Most 
onventional parameterization s
hemes are deterministi
, i.e. they des
ribe thee�e
ts of sub-grids
ale pro
esses by deterministi
 bulk formulae whi
h depend uponlo
al resolved s
ale variables and a number of adjustable parameters (Palmer, 2001). Forexample, a well-known deterministi
 parameterization is that for the momentum depo-sition due a 
ontinuous spe
trum of gravity waves developed by Hines (1997). Re
ently,Piani & Norton (2003) have shown that the deterministi
 Hines parameterization, whi
hhas one adjustable parameter a, signi�
antly underestimates the variability of the quasi-biennial os
illation in simulations using the UK Meteorologi
al OÆ
e Uni�ed Model.They have shown that a sto
hasti
 parameterization, in whi
h a is allowed to vary ran-domly a

ording to some 
hosen probability distribution, gives an in
reased variabilityand better agreement with observations.Following Piani, we in
lude a sto
hasti
 parameterization of small-s
ale waves in QUAG-170



Chapter 7. A sto
hasti
 parameterization of the fast wavesMIRE, by adding a random noise term to the right side of the prognosti
 model equa-tions (5.23) and (5.24) for ea
h layer. To do this, we must assume that the pre
ise detailsand stru
ture of the laboratory small-s
ale waves are irrelevant, and that they have thesame impa
t on the balan
ed 
ow as would random noise.
As previously noted, QUAGMIRE 
annot 
apture the evolution of the small-s
ale waves.However, we 
an reasonably expe
t it to 
apture the response of the balan
ed modesto PV anomalies indu
ed by the small-s
ale modes. Inertia-gravity waves have zero PVanomaly only in the linear limit, and so any �nite amplitude inertia-gravity waves will
arry a non-zero PPV. It is this quantity whi
h we parameterize in the model equations,as a sto
hasti
 perturbation to the PPV tenden
y �elds. It was pointed out in Se
-tion 5.7 that the system state is 
ompletely spe
i�ed by the PPV �eld. By perturbingthe PPV tenden
y �eld with noise, therefore, we are e�e
tively perturbing all of thedynami
al �elds, in
luding the horizontal divergen
e �eld whi
h we expe
t the labora-tory inertia-gravity waves to perturb dire
tly.
We 
hoose the simplest possible form for the sto
hasti
 noise terms. At ea
h gridpointand at ea
h timestep, a random number is drawn from the uniform distribution on theinterval [0; 1℄, and then shifted to the interval [�amp; amp℄ before being used as an addi-tive 
ontribution to the PPV tenden
y as shown in Figure 5.3. The 
onstant amp is agiven amplitude with units s�2, and is related to interfa
e height wave amplitudes in away to be determined in Se
tion 7.2.2. The noise �elds are 
hosen to be purely baro-
lini
, i.e. equal and opposite in both layers, as any in
rease in the depth of one layer dueto an interfa
ial small-s
ale wave is mat
hed by a 
orresponding redu
tion in the depthof the other layer. The dis
retized noise �elds so de�ned 
ontain no 
orrelations in eithertime or horizontal position. An important di�eren
e between laboratory and model isthat the parameterized short model waves are present throughout the entire annulardomain, whereas the laboratory short waves are lo
alized in spa
e and time, appearingonly where the Lighthill radiation term is large (Se
tion 6.6.2). This strengthens theanalogy between the model and the atmosphere, where inertia-gravity waves are moreubiquitous than in the laboratory annulus.171



Chapter 7. A sto
hasti
 parameterization of the fast waves7.2 Model runs with the sto
hasti
 parameteriza-tionIn the following se
tions we show the results of some model runs with the sto
hasti
terms swit
hed on, for 
omparison with the runs des
ribed in Chapter 6.
7.2.1 Reprodu
ibility of the equilibrated stateIn this se
tion, we investigate the possible role that small-s
ale features play in large-s
ale wavenumber sele
tion. We use an experiment with �
 = 0:23 rad s�1 and
 = 2:25 rad s�1, whi
h is quite 
lose to the wavenumber m = 1; 2 transition 
urve. A30-member ensemble was 
arried out for ea
h of 21 values of the noise tenden
y ampli-tude parameter, ranging from 0 to 2.0 s�2 in steps of 0.1 s�2. Within ea
h ensemble,the only di�eren
e between the 30 members was the random numbers in the sto
hasti
for
ing �elds. In ea
h 
ase, the equilibrated azimuthal wavenumber m was noted, andfound to be either 1 or 2.Typi
al post-transient model �elds are shown in Figure 7.1, for a noise amplitude of0.5 s�2, giving an indi
ation of the relative amplitudes of the large-s
ale wavenumber 2mode and the small-s
ale sto
hasti
 noise. Sin
e the model gridspa
ing is approximatelyequal to the wavelengths of the laboratory short waves (see Figures 1.6 and 5.4), thereis a reasonable mat
hing of lengths
ales between laboratory and sto
hasti
 model shortwaves. At �rst sight, the plots of PPV in Figures 7.1(a) and (b) appear unrealisti
allynoisy 
ompared to the laboratory, but this is simply be
ause the Lapla
ian operator |whi
h ampli�es small s
ales relative to large s
ales | is required to obtain the PPVfrom the streamfun
tion. For this reason, the plot of interfa
e height in Figure 7.1(
)is mu
h less noisy. We will show in Se
tion 7.2.2 that there is a good mat
hing of theamplitudes of interfa
e perturbations between the laboratory and model short waves.For ea
h ensemble of 
onstant noise amplitude, the probability of equilibration to wavenum-ber 2 was 
al
ulated and is plotted in Figure 7.2. There is a 
lear and strong dependen
eof probability partition on noise amplitude. The results are 
onsistent with a linear drop-o� in the probability of m = 2 as the noise in
reases to around 1.0 s�2, followed by a172



Chapter 7. A sto
hasti
 parameterization of the fast waves

q 
’ (

r,
 θ

, l
ay

er
=

1,
 t=

15
01

.9
5s

) 
  (

s−
1 )

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

x (m)

y 
(m

)

/stochastic−runs−repro/0p23−2p25/0p5/5   (F, d) = (10.7511, 0.056555)

(a)

q 
’ (

r=
m

id
−

ra
di

us
, θ

, l
ay

er
=

1,
 t)

   
(s

−
1 )

−0.6

−0.4

−0.2

0

0.2

1440 1460 1480 1500 1520 1540 1560
0

60

120

180

240

300

360

t (s)

θ 
(d

eg
re

es
)

/stochastic−runs−repro/0p23−2p25/0p5/5   (F, d) = (10.7511, 0.056555)

(b)
h 

(r
=

m
id

−
ra

di
us

, θ
, t

) 
  (

m
m

)

127

127.5

128

128.5

129

129.5

130

130.5

131

1440 1460 1480 1500 1520 1540 1560
0

60

120

180

240

300

360

t (s)

θ 
(d

eg
re

es
)

/stochastic−runs−repro/0p23−2p25/0p5/5   (F, d) = (10.7511, 0.056555)

(
)Figure 7.1: Model output with a sto
hasti
 PPV tenden
y term of amplitude0.5 s�2, showing (a) PPV as a fun
tion of radius and azimuth, (b) mid-radiusPPV as a fun
tion of azimuth and time, and (
) mid-radius interfa
e height as afun
tion of azimuth and time. 173
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Figure 7.2: Probability of equilibration to azimuthal wavenumber two as a fun
-tion of sto
hasti
 noise amplitude. The error bars 
orrespond to plus and minusthe standard deviation of the appropriate binomial distribution.saturation at a probability of around 10% up to a noise of 2.0 s�2.We will see in Se
tion 7.2.2 that, as suggested by the interfa
e height plot in Figure 7.1(
),the interfa
ial wave amplitude for the noise is mu
h smaller than for the large-s
ale mode.The addition of small-amplitude noise has therefore had a very signi�
ant impa
t uponthe system's predi
tability, at this point in parameter spa
e. An extensive investigationof the e�e
ts of the sto
hasti
 parameterization at other points in parameter spa
e hasnot been performed, due to 
onstraints on time and 
omputational resour
es. 10-memberensembles at the 
entres of the m = 1; 2; 3 regions demonstrated 100% equilibration tothe given wavenumber, irrespe
tive of noise amplitude up to 2.0 s�2. This suggests thatthe regions of parameter spa
e in whi
h inertia-gravity waves 
an exert a strong in
uen
eon the large-s
ale modes, are 
on�ned to �nite width strips adja
ent to transition 
urves.The model wave phase speeds were measured and found to be 
ompletely una�e
ted bythe introdu
tion of noise up to 2.0 s�2 (not shown).174
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hasti
 parameterization of the fast waves7.2.2 Diagnosis of amplitude of sto
hasti
 small-s
ale featuresFigure 7.3(a) shows azimuthal interfa
e height pro�les after equilibration, from one ofthe ensemble runs des
ribed in the previous se
tion with a noise amplitude of 1.0 s�2.Figure 7.3(b) shows the same pro�les after �ltering by taking a running mean in theazimuthal dire
tion with a window size of 8 gridpoints. This is suÆ
iently large toremove features at the s
ale of the sto
hasti
 for
ing, and is suÆ
iently small to leaveinta
t the large-s
ale features.We 
an derive interfa
ial wave amplitudes (de�ned as half the di�eren
e between maxi-mum and minimum displa
ements) from Figure 7.3. The amplitude so 
al
ulated from(b) is interpreted as the amplitude of the underlying large-s
ale wave, and that from (a)as the sum of the large-s
ale and small-s
ale wave amplitudes. By taking the di�eren
e,we 
an infer the amplitude of the sto
hasti
 small-s
ale waves. The results of this anal-ysis at mid-radius, for ea
h of the 21 noise amplitudes used and for both wavenumbers1 and 2, are shown in Figure 7.4.For a sto
hasti
 noise tenden
y amplitude of zero, the un�ltered and �ltered amplitudesare almost identi
al, implying that the �ltering has not modi�ed the stru
ture of thelong modes. The amplitudes of the large-s
ale waves (\�ltered" 
urves in the �gure)in
rease signi�
antly with sto
hasti
 noise amplitude. This is be
ause the parameter-ized inertia-gravity waves have added energy to the system, whi
h is expe
ted be
ausean interfa
e height �eld 
ontaining short ripples has more gravitational potential energythan the same �eld with the ripples smoothed out. Importantly, the amplitudes of thesmall-s
ale sto
hasti
 features (\un�ltered{�ltered" 
urves) are 
onsistent between thelarge-s
ale wavenumber 1 and 2 
ases, validating the analysis and giving us a dire
tlinear 
orresponden
e between the sto
hasti
 noise tenden
y parameter in the model(in s�2) and the 
orresponding interfa
ial amplitude of the sto
hasti
 small-s
ale fea-tures (in mm).It is 
lear from Figure 7.4 that the sto
hasti
 small-s
ale features whi
h 
aused there-partitioning of the probability distribution in Figure 7.2 were many times smaller inamplitude than the large-s
ale wave with whi
h they 
oexisted. Their typi
al amplitudesare similar to those observed in the laboratory.175



Chapter 7. A sto
hasti
 parameterization of the fast waves

0 60 120 180 240 300 360
105

110

115

120

125

130

135

140

145

θ (degrees)

h 
(r

, θ
, t

=
17

10
s)

   
(m

m
)

/stochastic−runs−repro/0p23−2p25/1p0/0   (F, d) = (10.7511, 0.056555)

(a)

0 60 120 180 240 300 360
105

110

115

120

125

130

135

140

145

θ (degrees)

h 
(r

, θ
, t

=
17

10
s)

   
(m

m
)

/stochastic−runs−repro/0p23−2p25/1p0/0   (F, d) = (10.7511, 0.056555)

(b)Figure 7.3: (a) Interfa
e height pro�les after equilibration, showing an azimuthalwavenumber 2 mode with superimposed small-s
ale noise representing inertia-gravity waves. (b) Same pro�les but with inertia-gravity waves �ltered out. Thelegend relating 
olour to radius (not shown here to allow the full pro�les to beseen) is identi
al to that in Figure 6.3. 176
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7.2.3 Continuous variation of amplitude of sto
hasti
 small-s
ale featuresIn Se
tion 7.2.1 we investigated the stability of an equilibrium axisymmetri
 annulus
ow 
ontinuously seeded with sto
hasti
 noise, whi
h is in many ways a simple model ofan axisymmetri
 atmospheri
 jetstream in the presen
e of inertia-gravity waves. A morelikely s
enario in the atmosphere is for a parti
ular large-s
ale azimuthal mode to havealready equilibrated, and so there are good geophysi
al reasons to be more interested inthe stability of an equilibrated large-s
ale wave in the presen
e of inertia-gravity waves,rather than the stability of an axisymmetri
 jetstream upon whi
h a large-s
ale wave issoon to grow in the presen
e of inertia-gravity waves.In order to investigate this, we now take a wavenumber 2 
ow with �
 = 0:23 rad s�1and 
 = 2:25 rad s�1, whi
h has equilibrated at �nite amplitude in the absen
e ofsto
hasti
 for
ing. As with the investigation of Se
tion 7.2.1, whi
h also used theseparameters, the system is quite 
lose to the wavenumber m = 1; 2 transition 
urve. Inthe present investigation, we 
ontinue the model integrations but in
rease the sto
hasti
noise amplitude from 0 to 2.0 s�2, by 10�6 s�2 ea
h timestep so that the in
rease isquasi-
ontinuous.When this numeri
al experiment is performed, the wavenumber 2 mode persists untilthe noise rea
hes a 
ertain threshold level, at whi
h point a spontaneous transition isobserved to a wavenumber 1 mode. A Hovm�uller diagram showing the transition, whi
htakes pla
e over around 100 s, or the time taken for the large-s
ale wave to travel aroundthe annulus twi
e, is shown in Figure 7.5. This kind of transition was never observedwithout the inertia-gravity wave parameterization swit
hed on, and so we 
an 
on
ludethat the transition was 
aused by the parameterization. At the time of the transition,the sto
hasti
 noise parameter had rea
hed a value of 1.1 s�2, 
orresponding from Fig-ure 7.4 to an interfa
e perturbation of amplitude of 0.3 mm.After the transition to wavenumber 1, the sto
hasti
 noise amplitude was de
reased ba
kto zero by 10�6 s�2 ea
h timestep, but the reverse transition ba
k to wavenumber 2 did178
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Figure 7.5: Hovm�uller diagram, showing a mid-radius azimuth-time 
ontour plotof PPV in the upper layer around the time of a spontaneous wavenumber transition.
not o

ur. At the end of the integration, when the noise had rea
hed zero, the wavenum-ber 1 mode was still dominant, indi
ating the presen
e of hysteresis in the system. Ifthese 
on
lusions are portable to the atmosphere (Chapter 8) then the impli
ation isthat a short but suÆ
iently intense burst of small-amplitude inertia-gravity waves 
ouldfor
e a large-s
ale regime 
hange whi
h 
ould persist long after the inertia-gravity waveshave been dissipated away.This result suggests a simple s
hemati
 model for explaining the spontaneous transitions,in whi
h the stable equilibrium states m = 1 and m = 2 are represented by minima ofthe potential well shown in Figure 7.6. With the system in the m = 2 state, a shortburst of suÆ
iently large amplitude sto
hasti
 for
ing permits the system to over
omethe transition barrier and thereby undergo an irreversible transition to the m = 1 state,in whi
h the system will remain after the end of the burst.As in Se
tion 7.2.1, when the above experiment was repeated with parameters 
orre-sponding to the 
entre of a wavenumber regime in parameter spa
e, spontaneous tran-sitions were not observed. 179
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m = 2 m = 1

Figure 7.6: S
hemati
 double-well potential for a bistable system, whi
h 
anexplain the observed model regime transitions 
lose to the m = 1; 2 transition
urve in (d; F ) parameter spa
e.7.3 Dis
ussionWe have seen that the addition of small-amplitude noise has had a very signi�
antimpa
t on the system. This phenomenon is a form of sto
hasti
 resonan
e (Pikovsky etal., 2001). This is a nonlinear resonan
e whi
h is not dependent upon any mat
hing oftimes
ales, as is the familiar 
riterion required for linear resonan
e. The phenomenonallows a small (sto
hasti
) for
ing to produ
e a large (resonant) response. If sto
hasti
resonan
e is exhibited by a nonlinear system, then the introdu
tion of very small ampli-tude noise 
an dramati
ally a�e
t the system state.Sto
hasti
 resonan
e has been observed before in 
uid systems. De Swart & Grasman(1987) have studied the e�e
ts of adding a sto
hasti
 for
ing term to a low-order atmo-spheri
 spe
tral model based on the barotropi
 potential vorti
ity equation, and foundthat the noise for
es the system to alternately visit di�erent regimes due to a sto
hasti
resonan
e. The phenomenon is widely observed a
ross the entire spe
trum of the nat-ural s
ien
es. For example, the human eye 
an dete
t signals otherwise too faint to beseen if random noise is added to the �eld of vision (Hogan, 2003). And, as dis
ussed inSe
tion 1.2, Chua's ele
troni
 
ir
uit displays an altered temporal regularity upon theintrodu
tion of small amplitude noise.The addition of noise terms to the governing model equations has led to a better agree-ment between one of the the laboratory/model 
omparisons. We found in Se
tion 6.1.2180
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hasti
 parameterization of the fast wavesthat model wave amplitudes were signi�
antly lower their laboratory 
ounterparts. How-ever, we see from Figure 7.4 that the in
lusion in the model of parameterized short wavesof less than 1 mm in amplitude in
reases the long wave amplitudes by up to 60%, givinga better �t with the laboratory results. This amplitude in
rease is due to energy fromthe short modes �ltering ups
ale into the long modes.Our �ndings regarding sto
hasti
 resonan
e mirror an observation we made in the lab-oratory. In the 
urrent 
hapter, we found that the presen
e of small-amplitude, fastwaves 
ould in
rease the likelihood of a model state transition. Correspondingly, wefound in the preliminary laboratory experiments of Se
tion 4.2 that the annulus witha 
omplete absen
e of fast waves exhibited a strong relu
tan
e to undergo a transitionaway from the wavenumber 2 mode. We are not in a position at the moment to beable to fully attribute this relu
tan
e to the absen
e of fast modes, as there were alsounknown 
hanges in the 
uid properties whi
h 
ould have been responsible. However,we 
an state with 
ertainty that the short waves do appear to have an in
uen
e onwavenumber transitions, in both the laboratory and the model.
7.4 Chapter summaryBy implementing a simple sto
hasti
 inertia-gravity wave parameterization in the numer-i
al model, we have shown that short modes 
an play a 
ru
ial role in large modewavenumber sele
tion. This �nding seems to apply only to regions of parameter spa
ewhi
h are some �nite distan
e away from a wavenumber transition 
urve. These shortmodes also signi�
antly in
rease the long wave amplitudes, but leave their propagationspeeds unaltered.Via the phenomenon of sto
hasti
 resonan
e, the sto
hasti
 inertia-gravity wave parame-terization has the ability to indu
e spontaneous azimuthal wavenumber transitions whi
hwould not o

ur if the inertia-gravity waves were absent.
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Chapter 8
Con
lusions and future work\Habe nun, a
h! Philosophie,Juristerei und Medizin,Und leider au
h TheologieDur
haus studiert, mit hei�em Bem�uhn.Da steh' i
h nun, i
h armer Tor,Und bin so klug als wie zuvor."Faust, J. W. von Goethe.
8.1 Summary of �ndingsThe �rst part of this thesis fo
used on the results of laboratory experiments using a rotat-ing, two-layer annulus, in whi
h relative motion was for
ed between the two isothermaland immis
ible layers by a di�erentially-rotating lid in 
onta
t with the upper layer.The natural interfa
ial tension between the liquids was redu
ed by the addition of a sur-fa
tant. Based on dire
t observations of the 
uid interfa
e, and on an initial inability toreprodu
e the results of previous experimental studies, we spe
ulated that the physi
alproperties of the liquids were exhibiting slow 
hanges with time.Be
ause the lower-layer liquid was opti
ally a
tive and the apparatus was seen through
rossed polaroids, a video 
amera viewing the 
uids from above registered 
olours whi
hwere related to the depth of the lower layer. The relationship between hue and interfa
eheight was quanti�ed by deriving a 
alibration 
urve, based on a torque balan
e 
al
u-lation whi
h gives an analyti
al expression for the equilibrium interfa
e height �eld in182



Chapter 8. Con
lusions and future workthe absen
e of any instability. An upgrade of the 
ow visualization hardware, togetherwith the implemented 
alibration s
heme, allowed two-dimensional maps of interfa
eheight to be inferred with a horizontal resolution of up to 0.2 mm, a verti
al resolutionof up to 1 mm and a temporal resolution of 1=25 s. The verti
al resolution 
ould befurther improved as long as a redu
tion in the horizontal or temporal resolution 
ouldbe tolerated.Four series of new laboratory experiments were performed: one with prograde di�eren-tial rotation in an annulus with in
reasing Froude number (PAI); one with retrogradedi�erential rotation in an annulus with in
reasing Froude number (RAI); one with pro-grade di�erential rotation in an annulus with de
reasing Froude number (PAD); and onewith prograde di�erential rotation in an e

entri
 annulus with in
reasing Froude num-ber (PEI). As predi
ted by standard theory, the motions observed in the 
uids fell intotwo distin
t 
ategories and were robust to the 
hanges in experimental 
on�guration.The short, fast waves had wavelengths of around 20 mm and interfa
ial amplitudes ofaround 3 mm, and the long, slow waves had wavelengths of around 200 mm and inter-fa
ial amplitudes of up to 25 mm.Ea
h 
ow observed 
ontained either no waves at all (the axisymmetri
 
ow regime, AX ),short waves only (the Kelvin-Helmholtz regime, KH ), or both long and short waves
oexisting (the mixed regular and irregular wave regimes, MRW and MIR). Flows 
on-taining long waves only, with a 
omplete absen
e of short waves, were observed only inpreliminary experiments with fresh preparations of the working liquids, and were notinvestigated in detail in this thesis. These experimental results are in 
on
ordan
e withthe assertion by Ford et al. (2000) that every single evolving vorti
al 
ow emits inertia-gravity waves, whi
h in our 
ase are large enough to be visible if the 
uid properties arepermitting.The me
hanism whi
h gives rise to the long waves is well understood from previous stud-ies to be baro
lini
 instability. The me
hanism whi
h gives rise to the short waves whenthey develop in the absen
e of long waves was shown in this study to be 
onsistent witha Kelvin-Helmholtz instability based on a 
riti
al Ri
hardson number. Su
h a simpleanalysis was not possible for the 
ase when the short waves develop in the presen
e of183



Chapter 8. Con
lusions and future worklong waves, as the long waves perturb the layer velo
ity �elds to an extent whi
h 
annotbe predi
ted by simple linear theory.In order to assess the me
hanism by whi
h the laboratory short waves are generatedin the presen
e of a large-s
ale mode, and to examine the feedba
k impa
t of the shortwaves on the long waves, a quasi-geostrophi
 numeri
al model of the laboratory exper-iment was developed in the se
ond part of the thesis and named QUAGMIRE. Shortwaves are permitted in the laboratory experiment but not the model. There was foundto be ex
ellent agreement, regarding the shapes of azimuthal wavenumber regimes in thesystem parameter spa
e, between numeri
al and laboratory experiments. Quantitativeagreement was not perfe
t but, due to model approximations and suspe
ted un
ertaintiesin assumed laboratory 
uid properties, this was not thought to be due to the presen
eof short waves in the laboratory.The model velo
ity �elds were used to address the question of the generation me
hanismof the short waves in the presen
e of long waves. Kelvin-Helmholtz instability theory,whi
h su

essfully predi
ted the generation of laboratory short waves in the absen
e oflong waves, 
ould not explain the 
oexisting short waves, and neither 
ould three otherindi
ators of shear instability. The best predi
tor was found to be the Lighthill radiationterm, whi
h is an indi
ator of spontaneous emission radiation whi
h 
ould take pla
eeven in a purely barotropi
 
uid with no verti
al shear.Finally, we in
orporated a simple sto
hasti
 parameterization of the short waves intothe numeri
al model. In general, the e�e
t of the parameterized short waves on thelong waves was limited to an in
rease in the long wave amplitude. SuÆ
iently 
lose toa wavenumber transition 
urve, however, a sto
hasti
 resonan
e e�e
t allowed the shortwaves to exert a dominant in
uen
e over long mode wavenumber sele
tion. In parti
-ular, spontaneous transitions were observed between di�erent azimuthal modes, whi
hwere dire
tly attributable to the presen
e of the sto
hasti
 short waves. This �ndingsupported a similar observation we made in the laboratory, in whi
h a 
ow devoid ofshort waves displayed a relu
tan
e to undergo state transitions whi
h o

urred if theshort waves were present. 184
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lusions and future work8.2 Con
lusionsWe are now in a position to return to the four questions posed in Se
tion 1.7.1, and togive answers based on the investigations of this thesis.
Under what 
ir
umstan
es do small-s
ale waves appear in the laboratoryexperiments?In the laboratory investigations of Chapter 4, we found that if the 
uids were baro
lini
ally-stable, short waves were globally generated whenever the Ri
hardson number droppedbelow a 
riti
al value. Short waves were lo
ally generated in every single observedbaro
lini
ally-unstable 
ow with aged 
uids, superimposed in the nodal regions of thelong baro
lini
 mode. The short wave amplitudes were larger if the long mode was under-going an amplitude va
illation, but were still generally present with redu
ed amplitudes(sometimes barely visible in stills but 
learly present in the video footage) even whenthe long mode amplitude remained 
onstant.
Whi
h me
hanism 
auses the small-s
ale waves to appear in the laboratoryexperiments?Two di�erent generation me
hanisms are both responsible for short wave emissions inthe laboratory experiments, though the 
ir
umstan
es under whi
h they are responsibledi�er between the me
hanisms. As shown in the laboratory investigations of Chapter 4,a Kelvin-Helmholtz shear instability is responsible for small-s
ale wave generation inthe absen
e of long waves. When the short waves appear lo
ally in the nodes of longwaves, the generation me
hanism was shown using the numeri
al model in Chapter 6to be spontaneous emission by the evolving large-s
ale 
ow. This 
on
lusion is furthersupported by the ship wake analysis of Chapter 4, whi
h is an alternative way of ana-lyzing emission of short waves by a moving \obje
t" long wave. Further independent
orroboration for this 
on
lusion 
omes from the e

entri
 annulus laboratory experi-ments of Chapter 4, in whi
h an azimuthally-varying velo
ity shear was not asso
iatedwith azimuthally-varying short wave emission.185



Chapter 8. Con
lusions and future workWhat are the e�e
ts of the laboratory small-s
ale waves on the large-s
ale,balan
ed 
ow?A 
omparison of the laboratory regime diagram of Chapter 4, derived from experimentswhi
h in
luded short waves, and the numeri
al regime diagram of Chapter 6, derivedfrom experiments whi
h did not in
lude short waves, leads us to 
on
lude that thelaboratory short waves do not have a dominant impa
t upon the large-s
ale 
ow, in gen-eral. Though we found signi�
ant dis
repan
ies between the numeri
al and laboratoryresults, in terms of equilibrated wavenumbers, amplitudes and phase speeds, it was feltthat these di�eren
es 
ould be explained by other fa
tors su
h as model approximationsand un
ertain 
uid properties.For example, laboratory wave speeds are around a fa
tor of four smaller than modelwave speeds. Though it might be tempting to partially attribute this to inertia-gravitywave drag on the balan
ed 
ow, the dis
repan
y is adequately explained by Stewartsonlayer drag and vis
osity un
ertainty. This is not to say that we have found eviden
e ofabsen
e of a fast wave impa
t upon the slow modes, but rather that this parti
ular testhas given an absen
e of eviden
e.However, the more expli
it tests des
ribed in Chapter 7, based on model runs with asto
hasti
 inertia-gravity wave parameterization swit
hed on, did �nd eviden
e of animpa
t. The results showed that, suÆ
iently 
lose to a regime transition 
urve, shortwaves play a key role in wavenumber sele
tion, and 
an for
e spontaneous long wavetransitions whi
h would otherwise not o

ur. The preliminary laboratory experimentsof Chapter 4, based on a 
omparison between 
ows with and without small-s
ale waves,give further independent eviden
e to 
orroborate this 
on
lusion.
Having answered these questions for a laboratory experiment, what 
an weinfer about answers to the analogous questions for geo
uids?If the laboratory annulus system and the atmosphere on a rotating planet were exa
tlydynami
ally and geometri
ally similar, then the 
uid 
ows would also be mathemati-
ally similar (Se
tion 1.5) and our 
on
lusions about the laboratory system would beportable to the atmosphere. 186



Chapter 8. Con
lusions and future workGeometri
al similarity is limited by di�ering horizontal/verti
al aspe
t ratios; by thepresen
e of annular sidewall boundaries and a rigid lid in the annulus whi
h have no
ounterpart in the atmosphere; by the dis
retization of the 
uid in the annulus to twodis
rete homogeneous layers, rather than a single 
ontinuously-strati�ed layer; and bythe absen
e of bottom topography in the annulus. Additionally, the atmosphere is for
eddi�erently and is 
oupled to other 
omponents of the 
limate system whi
h are not rep-resented in the annulus, whi
h 
auses the 
ow in the atmosphere to be generally moreirregular and 
haoti
.Mindful that geometri
al similarity does not hold exa
tly, whi
h will limit any 
ompari-son, we 
an determine the extent to whi
h dynami
al similarity holds by evaluating thenon-dimensional system parameters for an approximated two-layer atmosphere. Refer-ring ba
k to Figure 1.5, we take the annular gap width L of the \atmospheri
 annulus"to be a quarter of the 
ir
umferen
e of the Earth, and H to be the s
ale height of around10 km. We take the redu
ed gravity g0 to be 2 m s�2 in value1, and the kinemati
 vis-
osity � to be the turbulent eddy value of 5 m2 s�1. We take the ba
kground rotationrate 
 to be the lo
al 
omponent of the Earth's rotation ve
tor at latitude 45Æ, and thedi�erential rotation rate �
 to be the zonal tropospheri
 jetstream speed | typi
ally40 m s�1, from Figure 1 of O'Sullivan & Dunkerton (1995) | divided by the radius ofthe 45Æ latitude 
ir
le.A 
omparison between non-dimensional parameters in the laboratory experiment andin the two-layer annulus approximation to the atmosphere is shown in Table 8.1. Theatmosphere is seen to explore a signi�
antly di�erent regime from that explored in thelaboratory experiments. The atmospheri
 Froude number and dissipation parameterare both larger, 
orresponding to the fa
t that the atmosphere typi
ally exhibits higherwavenumber states, and more irregularity, than the laboratory annulus. The Rossbynumbers are similar. Vis
ous e�e
ts are mu
h more signi�
ant in the laboratory thanin the the atmosphere, though they are still relatively weak in both systems 
ompared1We 
ould na��vely 
ompute the redu
ed gravity using g0 = g��=�, where the densities at the surfa
eand the s
ale height are �2 = 1 kg m�3 and �1 = e�1 kg m�3, respe
tively. Most of this densitydi�eren
e is due to stati
 
ompressibility rather than stati
 stability, however, giving an over-estimateof g0. It is more appropriate to use g0 = g��=�, where � is potential temperature. We use � = 300 Kand �� = 60 K, from Figure 1 of O'Sullivan & Dunkerton (1995), to obtain the quoted value for theredu
ed gravity. 187



Chapter 8. Con
lusions and future work

laboratory atmosphereF = 4
2L2g0H 9 50d = p�
H�
 0:02 0:2Ro = �
2
 0:1 0:09Re = L2�
� 2� 103 2� 108Ek = �2
L2 6� 10�5 5� 10�10I = Sg(�2 � �1)L2 0:1 0Table 8.1: A 
omparison between typi
al values of the Froude number, dissipationparameter, Rossby number, Reynolds number, Ekman number and interfa
ial ten-sion number in the laboratory experiment and a two-layer annulus approximationto the atmosphere.
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Chapter 8. Con
lusions and future workto other dynami
al e�e
ts, as demonstrated by the large Reynolds and small Ekmannumbers. Interfa
ial tension e�e
ts, 
ompletely absent in the atmosphere, are also rea-sonably signi�
ant in the laboratory, as indi
ated by the size of the interfa
ial tensionnumber.The results of this thesis are not expe
ted to depend upon whether the observed zonalwavenumbers are 1, 2 or 3 su
h as in the laboratory, or around 6 as in the atmosphere.Furthermore, though the non-dimensionalized vis
osity and interfa
ial tension are quitedi�erent for the two systems, these e�e
ts remain small 
ompared to other e�e
ts inboth 
ases. Therefore we expe
t these other dynami
al e�e
ts | whi
h are similar forboth systems | to be the ones whi
h determine the system 
hara
teristi
s.An expli
it 
omparison between inertia-gravity wave properties in the laboratory andthe atmosphere is also possible. In both 
ases, the amplitudes are generally aroundan order of magnitude smaller than that of the main, large-s
ale mode. Atmospheri
pure gravity waves are suÆ
iently short in wavelength to be in the deep regime, like thelaboratory short waves, though larger wavelength inertia-gravity and pure inertial wavesin the atmosphere are in the shallow regime. In terms of the 
omparison of short waveimpa
ts, this di�eren
e is unlikely to alter our 
on
lusions. If anything, the impa
t ofa short wave in a shallow 
uid would be expe
ted to be greater than the impa
t of ashort wave in a deep 
uid, be
ause in the latter 
ase the region of dynami
al in
uen
e isverti
ally-
on�ned. This suggests that the laboratory short waves, whi
h are in a deep
uid, are not able to exert as great an in
uen
e on the balan
ed 
ow as are short wavesin a shallow atmosphere. This means that, if anything, our laboratory investigation mayhave underestimated the strength of the atmospheri
 intera
tion.Based on the above 
omparisons, there is every reason to suspe
t that the 
on
lusions ofthis study regarding rotating laboratory experiments, will have 
ounterparts regarding
ows in the atmosphere. For example, the sto
hasti
 resonan
e phenomenon dis
ussedhere would also be expe
ted to be observed in an atmospheri
 general 
ir
ulation model.The impli
ation is that, in a region of the atmosphere whi
h is simultaneously unstableto two di�erent modes with approximately equal growth rates, a lo
al burst of inertia-gravity wave a
tivity 
ould determine whi
h mode grows to equilibration, or 
ould alter-189
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lusions and future worknatively for
e a spontaneous transition from one mode to the other. The me
hanismwhi
h permits su
h behaviour is not 
aptured by any weather fore
asting model whi
hdoes not in
lude inertia-gravity modes, either expli
itly or through a sto
hasti
 param-eterization.
8.3 Future workWe 
on
lude the thesis by giving some possible avenues for future work suggested bythe results.
Experimental workIn addition to the PAI, RAI, PAD and PEI experimental runs des
ribed in Chapter 4,there is a further 
on�guration whi
h warrants investigation. The inner 
ylinder 
ouldbe removed, so that the 
uid o

upies a 
ylindri
al domain rather than an annular one.This 
hange would make the apparatus very similar to that used by Hart (1972). Losingthe inner sidewall boundary has the advantage that the geometri
al similarity betweenlaboratory and atmosphere is stronger. Also, in pra
ti
al terms, it has the bene�t ofremoving the parallax e�e
t whi
h blo
ks from view the short wave generation region.Experimental runs in an open 
ylinder would allow an investigation of the role of theinner sidewall boundary in lo
ally enhan
ing the verti
al shear a
ross the interfa
e.QUAGMIRE runs 
ould also be done for this 
on�guration, as long as we insert a modelinner sidewall of very small radius to avoid the singularity in the model equations onthe rotation axis.
Numeri
al modelling workA possible extension of the numeri
al modelling work would be to lo
alize the inertia-gravity wave parameterization, so that the sto
hasti
 terms are only a
tive in thoseregions where the magnitude of the Lighthill radiation term is large. This would help usto investigate whether the sto
hasti
 resonan
e phenomenon still o

urs when the noiseis lo
alized. Spatio-temporal 
orrelations 
ould also be in
luded in the noise terms, with190
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lusions and future workrealisti
 auto-
orrelations based on the observed short wave frequen
ies and wavelengths.A se
ond avenue for future resear
h might be to fo
us on improving the laboratory/modelagreement, for example by running a more a

urate dynami
al model whi
h expli
itlypermits the short, fast waves. An extensive set of simulations, su
h as that presented inthis thesis, 
ould not be performed due to the 
omputational expense. However, a smallset of 
ase studies should still provide enough material for a fruitful analysis.A further important investigation would be to determine how 
lose to a transition 
urvethe system needs to be in order for sto
hasti
 resonan
e to take pla
e, for a givennoise amplitude. We would expe
t that as distan
e from a transition 
urve in
reases,the threshold noise amplitude for resonan
e would in
rease as the potential barrier inFigure 7.6 be
omes taller. It would be useful to quantify this by performing numeri-
al experiments to determine the threshold amplitude as a fun
tion of position in theparameter spa
e. Su
h an investigation would allow us to make a balan
ed assessmentof how frequently short waves in the atmosphere are expe
ted to resonantly intera
twith long waves, an issue whi
h should be of signi�
ant interest to the meteorologi
al
ommunity due to the potential for fore
ast error that this phenomenon 
ould in
i
t.
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Appendix A
The HSI 
olour system
There are three di�erent types of 
ones in the retina of the human eye, ea
h 
ontain-ing di�erent photosensitive pigments. Therefore every 
olour whi
h is per
eivable byhumans is de�ned by only three independent quantities, and is representable by a singlepoint in a three-dimensional spa
e.1 This is known as Young's tri
hromati
 theory of
olour vision (Longhurst, 1973). One of the most 
ommon 
olour systems uses (R;G;B)
oordinates to de�ne this spa
e. Respe
tively, these are the red, green and blue 
ompo-nents whi
h, if 
ombined, would give a 
olour whi
h was indistinguishable to the normalhuman eye from the 
olour being represented.Another 
ommon 
olour system uses (H;S; I) 
oordinates. The intensity (I) gives anindi
ation of the total brightness of the 
olour, the hue (H) gives an indi
ation of thedominant wavelength, and the saturation (S) gives an indi
ation of the strength of thedominan
e. We now derive the transformation from the (R;G;B) to the (H;S; I) 
oloursystem, following Foley & Van Dam (1982).Figure A.1 shows a general 
olour represented by the 
oordinates C = (R;G;B). Thea
hromati
 axis (or grey axis) is de�ned by the unit ve
tor â = 1p3(1; 1; 1). To deter-mine (H;S; I) we �rst de
ompose C into a 
omponent along the a
hromati
 axis and a
omponent perpendi
ular to it:C = [(C:â)â℄ + [C�(C:â)â℄ : (A.1)The greater the proje
tion onto the a
hromati
 axis, the brighter the 
olour. The greater1Colour-blind people have only two di�erent types of 
ones, and every 
olour they 
an per
eive 
anbe represented in a two-dimensional spa
e. 192
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olour system

â

R

B

G

achromatic axis

C

I

H

S

Figure A.1: The relationship between the Cartesian (R;G;B) and 
ylindri
al(H;S; I) 
olour systems, shown geometri
ally. Hue des
ribes the 
olour in termsof its angular position on a \
olour wheel".the distan
e from the a
hromati
 axis, the more saturated and pure the 
olour (
oloursexa
tly on the axis are grey). In the plane perpendi
ular to the a
hromati
 axis, theangle measured anti-
lo
kwise from the ve
tor pointing in the G-dire
tion (�1; 2;�1)determines the dominant wavelength, as shown in Table A.1. In this de�nition, greenis arbitrarily assigned a hue of zero. This is the most useful de�nition for our purposes,as green hues are rarely (if ever) observed in the laboratory experiment images, and sothere is no need to worry about the 
onne
tion between H = 0Æ and H = 360Æ in the
alibration 
urve.Correspondingly, we de�ne I = p3 C:â ; (A.2)S = j C�(C:â)â j ; (A.3)and H = 
os�1 � (�1; 2;�1)j(�1; 2;�1)j : C�(C:â)âj C�(C:â)âj� ; (A.4)where, for uniqueness, we require0Æ < H < 180Æ if R < B ; (A.5)180Æ < H < 360Æ if R > B : (A.6)193



Appendix A. The HSI 
olour systemhue, H (degrees)green 0
yan 60blue 120magenta 180red 240yellow 300green 360Table A.1: Hue, given as an angular position on a 
olour wheel. The zero of hueis here arbitrarily assigned to green, though it is more 
ommon to assign it to redso that the 
olours of the rainbow are 
y
led through in order as hue in
reasesfrom 0Æ to 360Æ.Evaluating the expressions in (A.2){(A.4) leads toI = R +G+B ; (A.7)S =r13 [(R�G)2 + (R �B)2 + (G� B)2℄ ; (A.8)and H = 
os�1 " 2G�R� Bp2[(R�G)2 + (R� B)2 + (G�B)2℄# : (A.9)The de�nitions (A.7){(A.9) are used in the 
alibration analysis of Chapter 3.
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