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Abstract
Atmospheric numerical models play a crucial role in operational weather fore-
casting, as well as in improving our understanding of atmospheric dynamics via
research studies. Maximising their accuracy is of paramount importance. Use of
advective flux schemes greater than O7 in atmospheric models is largely undocu-
mented, with no studies considering O3–O17 fluxes with formal accuracy-preserving
high-order interpolation, pressure gradient/divergence, and subgrid-scale (SGS)
turbulent fluxes. Higher-order numerical approximations can reduce truncation,
amplitude and phase errors, and potentially improve model accuracy and effec-
tive resolution. Here, simulations are presented using very-high-order O3–O17
fluxes, with/without high-order O2–O18 Lagrangian interpolations, pressure gra-
dient/divergence approximations, and SGS turbulent fluxes for a two-dimensional,
highly-viscous (Re∼ 100) diffusion-limited, nonlinear colliding-plumes problem
using 25–200 m spatial resolutions. The highest-order flux schemes coupled with
higher-order interpolations, pressure gradient/divergence and SGS flux approxi-
mations produced the best solutions, with higher-order fluxes and interpolations
being most important. Overall solution convergence of order about O1–O2 with
mode-split (fast sound/slow advective waves) O3 Runge–Kutta temporal schemes
was negatively impacted by order at most O1 temporal convergence with SGS fluxes,
divergence damping, and especially spatial filters, compared to about order O3
convergence with these inactivated. While very-high-order schemes were shown
to improve solution accuracy, few cost-effective higher-order highly-viscous test
problem solutions (higher order vs finer resolution) were found using theoreti-
cal floating-point operations (FPO) with Courant-Friedrichs-Lewy (CFL)-limited
or constant stable Courant number-based time steps. However, employing central
processing unit (CPU) time, rather than FPOs, demonstrated there was reduced com-
putational burden using higher-order approximations. We conclude that O9–O17
flux schemes with or without high-order (≥O4) interpolations, pressure gradient/di-
vergence approximations, and SGS fluxes can improve atmospheric model solution
accuracy, without prohibitive computation costs, compared to O3–O7 flux with O2
interpolations, pressure gradient/divergence approximations, and SGS fluxes.

K E Y W O R D S

analysis, large-eddy and turbulence modelling, numerical methods and NWP, regional and
mesoscale modelling, very-high-order numerical methods

Q J R Meteorol Soc. 2024;150:663–705. wileyonlinelibrary.com/journal/qj © 2023 Royal Meteorological Society 663

https://orcid.org/0000-0003-3672-5858
https://orcid.org/0000-0002-9713-9820
https://orcid.org/0000-0003-3479-9669
http://wileyonlinelibrary.com/journal/QJ


664 STRAKA et al.

1 INTRODUCTION

An important aspect of developing numerical models of
physical phenomena in the atmosphere, ocean, or any
fluid is to improve numerical accuracy of solutions and
better simulate important features that are marginally
resolved in space and/or time. This can be achieved,
at least in part, by developing and using more accu-
rate physical representations, finer grid resolution and/or
more accurate numerical techniques. High-order numer-
ical approximations can increase accuracy and effective
resolution for complex fluid flows with multiple sharp
gradients, although if care is not taken, such techniques
can sometimes be detrimental to solution accuracy. One
of the greatest foci concerning numerical techniques in
the reviewed literature, has been on improving the accu-
racy of advection/flux terms by employing schemes with
higher-order approximations (high order is defined as≥O3
according to Wang et al., 2013), along with improving
their conservation and monotonic properties. One driving
motivation for more accurate advection schemes is that
higher-order numerical approximations are often more
cost-effective in producing accurate solutions compared
to lower-order numerical approximations with compara-
ble and/or finer resolution (e.g., Kreiss & Oliger, 1972;
Haltiner & Williams, 1980; Jameson, 2000; Shi et al., 2003
[SZS03]; Latini et al., 2007). While higher-order numerical
approximations generally can improve solutions for com-
plex nonlinear fluid flows, they might not be needed as
much (or improvements are not as readily seen) for some
very smooth, more linear flows.

In contrast to the significant efforts to improve advec-
tion approximations, little effort in the atmospheric sci-
ences has been made (at least in the reviewed literature) to
examine the effect of high-order accurate pressure gradi-
ent acceleration approximations in the velocity equations
and high-order divergence approximations in the pressure
equation (e.g., Straka & Anderson, 1993; Klemp 2007 in
the atmospheric sciences; and Desjardins et al., 2008 and
numerous others in other areas of fluid flows). Addition-
ally, high-order approximations for the mass divergence
term, which is subtracted from the flux divergence to
obtain the advection term to improve mass and energy
conservation (e.g., Tripoli & Cotton, 1980 [CSU-RAMS
model] and Bryan, 2021 [CM1 model]) is not tradition-
ally computed with velocities and density with high-order
interpolation. Higher-order approximations also can be
made for the advection velocities in the velocity equation
on a staggered grid (Pressel et al., 2015) and all variables
for unstaggered grids. Likewise, there has been little effort
to examine the impact of higher-order interpolations
(besides in the computation of fluxes in the advection
term) for state and other quantities not available at

necessary locations (e.g., density at velocity points, buoy-
ancy in the equation for vertical motion, etc., on a stag-
gered grid), which occurs with staggered, unstaggered, and
unstructured grids.

Finally, the authors know of only a few attempts to
use high-order approximations for subgrid-scale (SGS)
turbulent-flux parametrisations in atmospheric models.
For example, Anderson (1989) and Straka and Ander-
son (1993) used constant-eddy mixing coefficients and
Pressel et al. (2015) used turbulence kinetic energy-based
eddy mixing coefficients with high order approximations
for SGS turbulent fluxes. A few examples in other fluid
flow studies include those by Zhang et al., 2003, SZS03,
Desjardins et al. (2008), Sari et al. (2010), and Shen and
Zha (2010). Given the generally diffusive nature of tur-
bulence, the impact of the high-order approximations
SGS turbulent fluxes could be minimised and errors with
these approximations could be damped more than errors
with advective approximations (e.g., personal communi-
cation B. Fornberg). However, SGS turbulent-flux clo-
sures that permit nonlinear kinetic energy backscatter
(e.g., Kosović, 1997 and Mirocha et al., 2010; backscatter
causes an upscale transfer of unresolved kinetic energy
to resolved-scale kinetic energy) may not have damped
numerical approximation errors at small scales.

The lowest order of accuracy for any numerical approx-
imation used in a model limits the model’s overall formal
accuracy. For example, use of an O6 advection scheme
that requires some information that is computed with
an O2 approximation is limited to O2 overall accuracy.
Kalnay and Hoitsma (1979), Purser and Leslie (1988)
(PL88), Xue and Lin (2001), and others discussed the loss
of any improved accuracy using fourth-order advection
on staggered grids by putting them on unstaggered grids
by the use of midpoint interpolation (averaging) of gra-
dient and fluxes to grid points where they are needed.
Additionally, many researchers use implicit solvers for the
vertical pressure gradient and vertical component of diver-
gence associated with fast modes (e.g., sound waves) using
O2 spatial differencing for efficiency and O1 or O2 (e.g.,
Crank–Nicholson) temporal accuracy.

The behaviours of advection schemes have been thor-
oughly discussed in the literature for O1–O7, with a few up
to O17, for many linear and some nonlinear problems (e.g.,
Crowley, 1968; O4 Gerrity Jr., 1976; O4 Klemp & Wilhelm-
son, 1978; O6 Kaplan et al., 1982; O3 Schlesinger, 1985; O4
Gadd, 1980; O2–O10 Tremback et al., 1987 T87; O2–O6
PL88; O2–O10 Anderson, 1989; O1–O9 Leonard, 1991;
O2–O6 Tripoli, 1992; O2–O10 Straka et al., 1993 [S93];
O2–O10 Straka & Anderson, 1993; ≤O8 Costa & Sam-
pio, 1997; O3–O11 Shu, 1997; O3–O11 Balsara &
Shu, 2000 [BS00]; O4 Xue & Lin, 2001, O4–O6 Wicker &
Skamarock, 2002 [WS02]; O3–O9 Shu, 2003 [S03]; O5 and
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O9 SZS03; O7 Kusaka et al., 2005; O3–O9 Latini et al., 2007;
O5–O17 Gerolymos et al., 2009 [G09]; O4–O11 Pressel
et al., 2015 [P15]; O3–O9 Norman, 2021 [N21]; 05–O17 Wu
et al., 2021 [W21]; O2–O10 Williams et al., 2022 [WSK22];
etc.). Only a few studies have examined the use of schemes
of order above O9, with results including improvement
from O5–O17 by both G09 and W21 for a number of
linear and nonlinear problems, and improved results by
using O5 and O11 weighted essentially non-oscillatory
(WENO) compared to O4 and O6 constant-grid flux by
P15 for both the S93 two-dimensional density current
problem and the Bryan and Fritsch (2002) (BF02) satu-
rated two-dimensional plume problem, although P15 did
not compare their O11 WENO solutions with above O6
odd-order, high-order constant-grid flux solutions.

Importantly, the highest order of accuracy for advec-
tion/flux reported for many atmospheric models is O3–O7
approximations for horizontal advection/flux, sometimes
without an increase in the order of accuracy for verti-
cal advection/flux (presumably the vertical resolution is
finer than in the horizontal). Also, very few, if any, use
higher-order interpolations, and/or pressure gradient/di-
vergence approximations (exceptions are PL88 and Kaplan
et al., 1982). Interpolation accuracy that does not match
advection order can lead to errors in overall accuracy
and convergence rates (e.g., Kalnay & Hoitsma, 1979;
PL88; Xue & Lin, 2001; Desjardins et al., 2008; WSK22;
etc.). High-order interpolation for necessary off-grid point
information was recently demonstrated to be essential
for attaining theoretical convergence rates by WSK22 in
simulations of the two-dimensional linear rotating cone
problem, although they did not look at this for the
nonlinear problems they included in their study. How-
ever, Desjardins et al. (2008) examined the importance
of high-order interpolation for nonlinear Rayleigh–Taylor
instability simulations. Virtually all atmospheric mod-
els known to the authors use O2 numerical approxima-
tions for pressure gradient acceleration in the velocity
equations and divergence in pressure equations except for
Klemp et al. (2003), who showed that higher-order pres-
sure gradient terms and grid staggering for higher-order
advection and metric terms for sloping surfaces in moun-
tain wave simulations did not always produce better
solutions. Additionally, almost all atmospheric mod-
els use second-order numerical approximations for SGS
turbulent-flux parametrisations.

Even though solutions may look rather similar, visual
similarity does not guarantee that mass and energy con-
servation are better preserved, or measures associated
with mean and fluctuations of velocities in large-eddy
simulation are better represented, when comparing lower
versus higher numerical temporal or spatial accuracy or
finer versus coarser resolution for advective and SGS-scale

turbulent fluxes, pressure gradients, and interpolations
(e.g., Desjardins et al., 2008). Moreover, simplifica-
tions to the Navier–Stokes equations may result in very
similar-looking solutions, compared to more complete
equations sets for shorter integrations, while having sig-
nificant mass and energy conservation errors (e.g., Bryan
& Fritsch, 2002).

Solutions with higher-order temporal or spatial accu-
racy or those with finer spatial resolution may look similar
visually to those with less accuracy or spatial resolution,
but this does not guarantee better mass or energy con-
servation (e.g., Desjardins et al., 2008) or more accurate
large-eddy simulation statistics (mean and fluctuation
velocity measures). Moreover, solutions using forms of
the Navier–Stokes equations with simplifications may
also look visually similar to those without such simpli-
fications for shorter integrations, while having signifi-
cant mass and energy conservation errors (e.g., Bryan &
Fritsch, 2002).

Higher-order schemes can sometimes cause unde-
sirable effects. For example, in trying to preserve rela-
tionships of tracers, two or more passive tracers gen-
erally will not be advected individually as accurately
compared to advection of their sum in the absence
of interactions (e.g., cloud aerosol number concentra-
tion maybe be reduced from sticking upon collision;
Pardo et al., 2022). In this case, Pardo et al. (2022)
recommended corrective normalisation procedures with
high-order schemes (Ovtchinnikov & Easter, 2009) with
acceptable results. Pardo et al. also comment that smooth-
ing from diffusiveness with lower-order advection can
generate other undesirable side-effects, especially when
the tracers are physically–dynamically relevant (e.g.,
with cloud microphysics variables). Additionally, as sum-
marised by Wu et al. (2021), high-order schemes (a)
require a more restrictive CFL for stability, (b) tend to pro-
duce weaker dissipation, that can damp numerical errors,
(c) may lose accuracy when long stencils include two
or more marginally resolved waves or gradients, and (d)
can be subject to well-known Runge phenomena with
Lagrangian-based interpolation/reconstruction polynomi-
als, including those in flux calculations. Durran (2010)
commented that high-order Lagrangian-based schemes
(up to O16) have smaller weight solutions at remote stencil
locations than comparable remote locations for 17-point
spectral-method schemes, based on results from Merilees
and Orzag (1979), and noted that larger weights at remote
grid locations in spectral schemes might be of concern
for linear problems, but did not seem to be problem-
atic for more practical problems. If significant remote
location influence is not much of a practical issue for
spectral-method schemes (Durran, 2010) with nonlinear
problems, it seems plausible that excessive influence and
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resulting problems from remote stencil locations for long
stencil finite-difference schemes, as described by point (c),
might be less for high-order Lagrangian schemes than with
spectral methods.

As SZS03 astutely state, ‘a natural question is whether
it is worthwhile to use such high order methods’. They also
note that in many situations, the cost effectiveness of
high-order methods depends on whether the problem is
complex enough, with perhaps multiple sharp gradients,
to warrant higher-order numerical approximations. For
example, some studies (e.g., T87) have suggested that
O6 flux/advection is a good compromise between accu-
racy and computational cost based on a two-dimensional
linear cone advection problem and a two-dimensional
cone in a constant-in-time deformation flow problem.
Norman (2021), however, states, in the context of
atmospheric-science-related problems, ‘why one should
bother with high order accuracy… is that even though
high-order convergence is not observed, the constant on
the error term still goes down with higher-order accuracy,
particularly if suitable limiting is used’. These statements
made by SZS03 and N21 are relevant to the current study,
as dependent variable fields can be either weakly or highly
complex and linear or nonlinear in different regions of the
solutions.

The following four points related to high-order
numerical approximations motivate this study. First, the
widespread use of spectral and pseudo-spectral methods
for advection are evidence of considerable use of highly
accurate schemes in the atmospheric sciences, especially
but not exclusively in global weather prediction and
research models. Boyd (1994, 2001) and Fornberg (1996)
have gone to great lengths to promote the high accuracy
of pseudo-spectral approaches. As noted by Boyd (1994),
‘Fornberg (1975, 1987, 1990) has shown that the limit
of high order finite differences is the pseudo-spectral
method… ’. The high degree of success of spectral,
pseudo-spectral, and other schemes such as high-order
local spectral advection (Anderson, 1989; Straka & Ander-
son, 1993), all of which are very accurate for linear and
nonlinear problems, supports further investigation of
the impact of advection accuracy of order above O7 in
atmospheric models.

Second, it is well known (e.g., Haltiner &
Williams, 1980) that higher-order advection numerical
approximations can provide more accurate solutions
for a given grid than a lower-order solution with finer
resolution for many simple linear problems. The com-
putational physics community, among others, also has
shown repeatedly (e.g., PL88; BS00; S03; SZS03; Latini
et al., 2007; G09; P15; etc.) that complex gas dynamics
simulations, large-eddy simulations, and others, often
can be made more accurate by improving the resolution

or the numerical approximations beyond O3, often above
O9, and as high as O17, or both resolution and numerical
approximations, with increasing order of accuracy often
being more computationally efficient for comparable
solutions compared to low-order solutions with finer grid
resolution.

Third, different very-high-order finite-difference
schemes, including those often used for high-order
numerical approximations (e.g., WENO, Crowley, tra-
ditional finite difference) with various orders, need to
be objectively compared for multidimensional, non-
linear atmospheric flow problems. Very few studies in
the atmospheric sciences have done this for numerical
approximations at higher order than O7. Further-
more, the impacts of very-high-order advection/flux
numerical approximations, especially when combined
with comparable-order interpolations (e.g., Kalnay &
Hoitsma, 1979 or PL88), pressure gradient/divergence
(e.g., PL88 and Klemp et al., 2003) in simulating complex
kinematical aspects (vorticity, deformation, divergence,
and translation), and SGS turbulent fluxes are rarely if
ever considered for evolving multidimensional nonlin-
ear atmospheric flows. The degree to which the use of
higher-order schemes can (a) most importantly produce
better solutions, and (b) be computationally less expen-
sive/more cost-effective needs to be further explored.
Additionally, which higher-order approximations achieve
the most economically accurate solutions should be better
established.

Fourth, many studies of very-high-order advection in
gas dynamics for non-viscous or very weakly viscous flows
(in a physical sense as well as numerical), often with multi-
ple shocks, demonstrate very convincing results. However,
very few of these studies attempted to make objective-error
measure estimates as they are difficult to interpret. Signif-
icantly fewer studies of very-high-order advection make
use of diffusion-limited problems that incorporate a suffi-
ciently large constant-eddy mixing coefficient in the SGS
turbulence closure, as in S93 or Zhang et al. (2003), in
order to reasonably provide a nearly grid-converged solu-
tion, which makes both visual and objective-error mea-
sure comparisons possible. A rigorous determination of
whether results based on the use of very-high-order advec-
tion are as convincing for viscous flows, as they have been
shown to be for non-viscous or very weakly viscous flows,
has not been well documented.

These points help motivate the demonstration in
this paper of the accuracy improvement possible in
numerical simulation solutions by using very-high-order
(O9–O17) upwind-biased spatial numerical flux approx-
imations, above those traditionally used (O3–O7). The
impact of many other advection and flux schemes such
as WENO, Crowley, compact, flux-corrected transport,
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finite-element, finite volume, piecewise parabolic
schemes, and so forth, is not explored in this paper
(WENO and Crowley are compared with upwind-biased
flux in Straka et al 2023). Simulations are presented for
high- and very-high-order upwind-biased advective-flux
schemes coupled with comparably high-order (next higher
even order) spatial filters, Lagrangian interpolations/re-
constructions, and staggered-grid finite differences for
pressure gradient accelerations in the velocity equations,
and divergence in the pressure equation. The importance
of the use of higher-order interpolations and pressure
gradient/divergence approximations is evaluated by com-
parison with solutions using O2–O18 approximations
for these terms. In addition, the use of high-order SGS
turbulent-flux approximations is also evaluated and
discussed. Objective-error measures based on an approxi-
mately grid-converged solution are used to help evaluate
the test solutions. A summary of the model is presented
in Section 2. Results and discussion for both a simple,
idealised example using an analytical function for flux,
interpolations, and pressure gradient accelerations, as
well as for two-dimensional nonlinear, diffusion-limited,
atmospheric simulations are presented in Section 3,
followed by conclusions in Section 4.

2 MODEL

The three-dimensional model used in this study
integrates the flux form of the fully compressible
Navier–Stokes equations, which are cast on a Cartesian
staggered Arakawa C-grid (Arakawa & Lamb, 1977) with
three-dimensional stretched grids and terrain options.
The model is based on equations for the three components
of velocity ui (m⋅s−1), potential temperature (K), moisture
and microphysical variables such as vapour, cloud, rain,
snow, graupel, and so forth, turbulence kinetic energy
(TKE or E [m2⋅s−2] or square root of turbulence kinetic
energy [m⋅s−1] used by Deardorff, 1980), density (kg⋅m−3),
perturbation pressure p’ (kg⋅m−1⋅s−2; or non-dimensional
Exner function as is used in this study), and any number
of additional scalar fields. The simulations in this study
are dry with no other scalars than potential temperature
and no passive scalar tracers. The equations are cast in
a flux-conservative form that numerically improves con-
servation of mass and energy and can be used for dry
or moist dynamics (Klemp & Wilhelmson, 1978; Tripoli
& Cotton, 1980; Bryan & Fritsch, 2002 [BF02]; Cotton
et al., 2011; Morrison & Bryan, 2012; and Bryan, 2021
[B21]).

With a fast/slow mode-split system of equations (Ska-
marock & Klemp, 1992), the slow modes (advection, tur-
bulence, etc.) are integrated with a forward-in-time O3
(O2 for nonlinear problems; Baldauf, 2010), three-stage

Runge–Kutta scheme (RK3; WS02) and fast modes are
integrated with the O2 in a time forward–backward
scheme (e.g., Mesinger, 1977). Divergence damping (Ska-
marock & Klemp, 1992) is used to help keep mode-split
solutions stable, and is computed with O1 temporal and
O2 spatial numerical approximations on the fast (sound)
mode time step. Errors introduced by the low order of
accuracy for divergence damping are kept at bare mini-
mum by using a very small divergence damping coefficient
as use of more traditional values can adversely impact solu-
tion accuracy for higher-order solutions (Lian et al., 2022),
as was seen in the course of this study. Values of the diver-
gence damping coefficient up to 20 times more than the
very small value used in this study had almost no impact
on the behaviours of the solutions in this study.

The model dynamics and physics activated for the
simulations in this study included advection, pressure
gradient, divergence, buoyancy, and constant-eddy mix-
ing coefficient SGS turbulence. Schemes were constructed
for low- and high-order (O1/2–O17/18, and higher) flux
and SGS turbulent-flux computations using ‘constant
grid’-based coefficients (T87) for these flux interpolation
(first derivative) calculations. These coefficients were pro-
duced so that they have the same order of error as pure
advective (diffusion) schemes when the advective veloc-
ity (mixing coefficient), grid increment, and density (when
it is incorporated in fluxes) are constant (explained in
T87 and Table S2a). In contrast, integrated-flux versions
based on differences of traditional Lagrangian interpola-
tion flux values (explained in T87 and Table S2a), for either
unstretched or stretched/irregular grids, while high-order
in terms of grid stencil points used, are not exactly equiva-
lent to pure advective schemes when the advective velocity
and grid increment are constant (T87), with accuracy lim-
ited even though the interpolation polynomials and first
derivative are high-order. In other words, the flux differ-
ence of the interpolated flux values at locations i+ 1/2 and
i− 1/2 results in reduced accuracy as the integrated-flux
and first derivative coefficients are found from a polyno-
mial of one point less than the advective and diffusion
forms. For the cases of l;ess than O3 accuracy, both inte-
grated and constant-grid flux coefficients are the same for
the advective and diffusion-related fluxes. Interestingly,
some (e.g., Bott, 1989; Crowley, 1968) have used and con-
tinue to use the integrated-flux form. As discussed later, it
appears that advective fluxes are sensitive to the form used,
but not the SGS turbulent fluxes.

Values for CFL based on linear stability criteria for RK3
time integration with odd-order one point upwind-biased
advective fluxes are generated following methods by Bal-
dauf (2008) and are given by CFL (O1–O19)= 1.256373,
1.625891, 1.434983, 1.243779, 1.127174, 1.049315,
0.9935351, 0.9514629, 0.9184809, 0.8918446. Values
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generated for RK3 time integration with even-order SGS
turbulent fluxes are given by CFL (O2–O20)= 0.6281864,
0.4711398, 0.4157116, 0.3864818, 0.3680779, 0.3552619,
0.3457371, 0.3383294. 0.3323715, 0.3274550. In contrast,
the Euler forward linear stability criteria for even-order
SGS turbulent fluxes are smaller, and are given by CFL
(O2–O20)= 0.5, 0.375, 0.3308827, 0.3076172, 0.2929688,
0.2827679, 0.2751868, 0.2692906, 0.2645485, 0.2606353.

High-order O2–O18 pressure gradient and divergence
terms were calculated using staggered grid stencils and
coefficients from PL88 and Fornberg (1988), while spa-
tial filters use 3–19 points in each direction, and the
latter are denoted hereafter simply as O2–O18 spatial
filtering (PL88). Importantly, an Nth even-order filter
does not imply Nth order accurate, rather Nth order
here implies O2 numerical approximations for the Nth
even-order derivatives (Fornberg, 1988). An NAth-order
accurate NDth-order even derivative filter would require
(ND +NA − 1) stencil points to compute, thus, for example,
an O10 accurate O10 derivative-based filter would require
19 grid points versus nine grid points for an O2 accu-
rate O10 derivative. The divergence damping is computed
with O2 staggered-grid spatial differencing, although it can
be made any order using any even-order staggered-grid
scheme. For example, a higher-order divergence damp-
ing scheme can be obtained by using very-high-order
staggered-grid differencing for divergence and then com-
puting the differences of these values of divergence with
the high-order staggered-grid coefficients, which was con-
sidered, but was not used, as the impact with a very small
divergence damping coefficient was miniscule (e.g., differ-
ences were in the fifth or sixth digit for vertical velocity).
Finally, turbulence and spatial filtering are often employed
with forward or backward time differencing using tem-
poral order of accuracy of O1 on the last stage of RK3
(e.g., WS02). In this study, O2 temporal accuracy is main-
tained for nonlinear RK3 time integrations by updating
these tendencies on each of the three RK3 stages. The
subgrid-stress terms in the momentum equations and
turbulent fluxes for the potential temperature equation
and other scalar equations generally follow those given
by Deardorff (1980), P15, Cotton et al. (2011), and B21.
Slight differences in the theoretical formulation of these
subgrid-stress terms times density in the momentum
equations (e.g., 𝜏 ij =−𝜌 2 Km dij + 𝜌 2/3 𝛿ij E in, e.g., Dear-
dorff [1980], Wyngaard [2004], and Cotton et al. [2011],
and herein, where the second term is required for physical
consistency, or 𝜏 ij =−2 𝜌 Km dij in, e.g., P15 or B21, with
the second term for 𝜏 ij dropped assuming 𝜕 uk/𝜕 xk = 0) in
approximations for some scales (e.g., mesoscale, Mirocha
et al., 2010) results in relative differences of up to less than
1× 10−4% for maximums and minimums of the velocity
components, and even smaller differences in root mean

square (RMS) errors against a reference simulation, for
the test problem used in this study when Km is either a
function of E or a specified constant. Use of a constant
Km effectively eliminates the dependence of 𝜏 ii on the sec-
ond term, except for the effect of density, as E is constant
and its difference in xi is zero. Tests with these different
SGS closure formulations (not shown) resulted in the same
conclusions based on objective errors and visual behaviour
of the solutions. Further discussion is beyond the scope of
this study.

An abbreviated summary of the dynamics, physics,
and numerical approximations used in the model is pro-
vided in Table S1, as are the equations solved for the
basic dynamic core, (additional details and codes avail-
able from the authors). All high-order numerical approx-
imation coefficients used in this paper are provided in
Table S2a–d, including notes on how coefficients can be
calculated.

Results for O1, O7, O11, O15, and O19 flux solutions
were not shown to save space. All of these orders of fluxes
are used in the telescoping stencils near the vertical bound-
aries. All solutions were made with 64-bit mathematics
and storage as round-off errors can limit solution improve-
ment for schemes with approx. more than O17 numerical
approximations. Hardware for 128-bit arithmetic is not
available on most computers, but is available for some
compilers at the software level; however, it is excessively
computationally expensive. Additionally, as 128-bit mem-
ory is not available on most computers that use the latest
Intel or GNU FORTRAN compilers that were freely avail-
able in the year 2022, all solutions in this study are made
with 64-bit mathematics and storage and are compara-
ble with those made with 32-bit mathematics and storage.
Solutions herein were produced using code compiled with
the Intel compiler.

3 RESULTS AND DISCUSSION

3.1 Idealised one-dimensional
accelerations

First, before examining the nonlinear test solutions,
continuous one-dimensional analytical functions of an
arbitrary coordinate, z, and their derivatives are used to
compare various order difference forms of the pressure
gradient acceleration (midpoint) and interpolations (mid-
point) assuming constant Δz. The RMS error (Conte &
de Boor, 1980), a commonly used ‘bulk’ objective-error
measure in numerical analysis, is used to demonstrate the
accuracy of the difference forms of an analytical function
using three gradients and three resolutions. The func-
tion provides representative approximations of some of
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the relevant features in simulations used in this study.
While the exercise is trivial, the results support the use
of higher-order numerical schemes at least for linear
problems, and provide a performance basis for high-order
schemes for a simple test problem from which complexity
can be added. Furthermore, only evaluation of the spa-
tial differencing is considered to avoid time-differencing
errors.

A perturbation pressure function is given by

p(i) = Po
[
1–cosn ( 𝜋 z∕Lz)

]
,

and its analytical spatial derivative (pressure gradient
acceleration PGA) is given by

1/𝜌 dp(i)∕dz = PGA(i) = (1∕𝜌) (𝜋/Lz) (Po n)
[
cos(n–1) (𝜋 z∕Lz)

]
sin (𝜋 z∕Lz),

where the index i is a grid location in z defined by z(i)= i
Δz, Po = 100 kg⋅m−1⋅s−2 (Pa), 𝜌= 1 kg⋅m−3;Δz= 25, 50, and
100 m and wavelength Lz = 600 and 1200 m or wavenum-
ber kz = 4 and 2, respectively. Similarly, a buoyancy func-
tion (b) is defined, as buoyancy is defined at the mass grid
points and needs to be interpolated to the vertical wind
locations for the staggered C-grid, and it is also used to
examine flux divergence of buoyancy (BFLX), where b(i)
is given by

b(i) = Bo
[
1–cosn (𝜋 z∕Lz)

]
,

where Bo = 0.1 m⋅s−2, which is roughly g (𝜃 – 𝜃o)/𝜃o ∼
10 m⋅s−2⋅3 K/300 K for gravity g= 9.81 m⋅s−2 and Lz = 600
and 1200 m, or kz = 4 and 2 respectively. The analytical
solution for linear flux divergence of buoyancy BFLX (the
difference of the fluxes) is the same as linear advection
assuming constant velocity and non-divergent flow, and is
given by

–w db(i)∕dz = –d(wb)∕dz + b dw∕dz = BFLX(i)

= –w (𝜋/Lz) (Bo n)
[
cos(n–1) (𝜋 z∕Lz)

]

sin (𝜋 z∕Lz),

where w= 10 m⋅s−1 is the constant advection velocity, and
b dw/dz= 0.

The values for p(z) and 100⋅PGA(z) are plotted in
Figure 1a (PGA is multiplied by 100 for plotting), while
those for b(i) and 10⋅BFLX(z) are shown in Figure 1b
(BFLX is multiplied by 10 for plotting). The width of the
O18 stencils for pressure gradient acceleration, and inter-
polation examples, and O17 for flux examples, using 25-,
50-, 100 m grid resolutions are also provided in Figure 1a,b
respectively. The calculated convergence rates are pro-
vided in Table S3a,b.

As expected, the use of increasingly higher-order
approximations improved the idealised pressure gradient
accelerations, buoyancy flux accelerations, and buoyancy
interpolation RMS errors and the resulting convergence
rates, within computational limitations, for the exam-
ples shown (Figure 1c–k). The limit to computational
accuracy is reached in several cases at higher resolu-
tions and high-order schemes, even with 64-bit arithmetic,
owing to error saturation/round-off error accumulation,
Runge phenomena, stencils extending beyond the range
for which they are useful, or a combination of some or
all of these. The RMS errors (as well as absolute errors,
not shown) for fluxes, derivatives, and interpolations for
all orders of accuracy also were approx. 6–12 orders of
magnitude better for the highest-order approximations
and/or finer resolutions, especially with the smoother
function examples, in comparison to lowest-order approx-
imations. In contrast to the constant-grid flux results,
the integrated-flux results, regardless of the order of the
integrated-flux stencil, converged at approx. O2. Finally,
the high-order constant-grid flux form approximation for
linear diffusion converges at the order of the approxi-
mation like advective flux (not shown), especially when
there are very sharp gradients, while the integrated-flux
form approximation for linear diffusion only converges at
approx. O2 regardless of the order of the stencil for the
integrated flux.

Extrapolating these general results for linear prob-
lems, especially the order-of-convergence results, to expec-
tations for nonlinear problems, even diffusion-limited
problems, is not clear-cut, although, importantly, the
absolute errors for solutions probably can be expected
to improve with higher-order numerical approxima-
tions (e.g., Norman, 2021; Park & Lee, 2009). Whether
or not constant-grid flux schemes are more accurate
than the integrated-flux schemes for nonlinear prob-
lems when the wind fields are not constant is discussed
later.

3.2 Two-dimensional colliding plumes

Results from a comprehensive suite of simulations of a dry
nonlinear two-dimensional test problem are presented
to demonstrate the impact of very-high-order finite dif-
ference using O3, O5, O9, O13 and O17 upwind-biased
advection/flux approximations (same approximation
orders were also used by G09 and Wu et al., 2021 for
various WENO flux schemes), coupled with compara-
ble even-order Lagrangian interpolations for information
required at off-grid point locations and even-order stag-
gered pressure gradient/divergence approximations
(one order higher for odd-order schemes; e.g., for O17
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(a)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(b)

F I G U R E 1 Analytical function for pressure (p; kg⋅m−1⋅s−2) and pressure gradient acceleration (PGA m⋅s−2; panel a), buoyancy
acceleration function (b; m⋅s−2) and buoyancy flux divergence (BFLX m⋅s−3; panel b). The spatial width of the O18 (panel a) and O17 (panel
b) stencils for 25-, 50-, 100 m grid resolutions also are provided. The second, third, and fourth rows have, from left to right, root mean square
(RMS) errors for Δz= 25, 50, and 100 m and orders for PGA, interpolation of b (b INT), and integrated advective flux for b (In BFLX) and
constant grid advective flux for b (Cg BFLX). Subscript symbol n denotes the power of the analytical function, kz = 2 for Lz = 1200 m, and
kz = 4 for Lz = 600 m. Second row results are for n= 2 and kz = 2, third row, n= 10, kz = 2, and bottom row, n= 10 and kz = 4.
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T A B L E 1 Domain and time step parameters.

𝚫x (m) 𝚫z (m) Lx (m) Lz (m) Nx Nz Nx⋅Nz Nt 𝚫t (s)

200.00 200.00 20,000 10,000 101 51 5151 1600 0.625

166.66… 166.66… 20,000 10,000 121 61 7381 1920 0.520833…

133.33… 133.33… 20,000 10,000 151 76 11,476 2400 0.4166…

100.00 100.00 20,000 10,000 201 101 20,301 3200 0.3125

66.66… 66.66… 20,000 10,000 301 151 45,451 4800 0.20833…

50.00 50.00 20,000 10,000 401 201 80,601 6400 0.15625

33.33… 33.33… 20,000 10,000 601 301 180,901 9600 0.104166…

25 25 20,000 10,000 801 401 321,201 12,800 0.078125

Note: Nx (Nz) is equal to the number of scalar grid points in x (z) directions for a staggered grid. The total number of grid points is Nx⋅Nz, and N t is the number
of time steps for 1000 s of integration. The x-direction velocity (u) has one extra point in the x direction, and the z-direction velocity (w) has one extra point in
the z direction for the staggered C-grid. The time steps for each resolution are found using Δt=C⋅Δx/V max (s), where Courant number C= 0.046875, values of
Δx are grid resolutions, and approximate maximum velocity V max = 15 m⋅s−1.

T A B L E 2 Orders of accuracy for all odd-order upwind-biased constant-grid advective flux (FLX; Sets A–J) and integrated
advective flux (IFLX; Set A.IF).

Sets Expt. name 𝚫x=𝚫z (m) FLX (IFLX) I/P/D SF

A Ic/Pc/D2 25, 33.33… , 50, 66.66… , 100,
133.33… , 166.66… , 200

O3, O5, O9, O13, O17 Oc/Oc/O2 O18

A.IF Integrated flux
Ic/Pc/D2

25, 33.33… , 50, 66.66… , 100,
133.33… , 166.66… , 200

O3, O5, O9, O13, O17 Oc/Oc/O2 O18

B Set A with mean wind
Ut =−20 m⋅s−1

25, 33.33… , 50, 66.66… , 100,
133.33… , 166.66… , 200

O3, O5, O9, O13, O17 Oc/Oc/O2 O18

C Ic/P2/D2 100 O3, O5, O9, O13, O17 Oc/O2/O2 O18

D I2/Pc/D2 100 O3, O5, O9, O13, O17 O2/Oc/O2 O18

E I2/P2/D2 100 O3, O5, O9, O13, O17 O2/O2/O2 O18

F I4/P4/D2 100 O3, O5, O9, O13, O17 O4/O4/O2 O18

G I6/P6/D2 100 O3, O5, O9, O13, O17 O6/O6/O2 O18

H I18/P18/D2 100 O3, O5, O9, O13, O17 O18/O18/O2 O18

I Ic/Pc/D4 100 O3, O5, O9, O13, O17 Oc/Oc/O4 O18

J Ic/Pc/D10 100 O3, O5, O9, O13, O17 Oc/Oc/O10 O18

Note: Ut is the added wind, which is Ut = 0 m⋅s−1 for all experiments, except Set B which has Ut =−20 m⋅s−1. The meaning of Oc is comparable order (one
order higher than used for odd-order advective flux); for example, in Set A, O3 fluxes are coupled with comparable-order (next order higher) O4
interpolations, O4 pressure gradient/divergence, O18 spatial filter, and O2 subgrid-scale (SGS) turbulent fluxes (diffusion).
Abbreviations: c, comparable-order; D, diffusion (all O2 for Sets A–H and O4 and O10 for Set I and J respectively); I, interpolations; P, pressure
gradient/divergence; SF, spatial filter (all O18 for Sets A–J and Set A.IF).

advection, O18 interpolation/pressure gradient/diver-
gence is used). A summary of the grid resolutions (200,
166.66… [hereafter 166.67], 133.33… [133.33], 100,
66.66… [66.67], 50, 33.33… [33.33], 25 m) and domain
parameters used in this study are in Table 1, while orders
of accuracy for fluxes, interpolations, pressure gradien-
t/divergence, diffusion, and spatial filters are given in
Table 2. Flux/advection numerical approximations of
O3–O7 combined with O2 interpolation and pressure

gradient/divergence are approximately comparable to the
highest-order numerical approximations that most stud-
ies in the atmospheric sciences use, and thus O3 is the
lowest order of flux/advection numerical approximations
shown in this paper.

To accomplish the main goals of this paper, a compre-
hensive suite of solutions that simulate two-dimensional
warm and cold spheroidal/circular plumes collid-
ing with each other above the ground are produced
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(Norman, 2021). (Technically the simulations are
quasi–three-dimensional as the plumes initially are
infinitely long cylinders in the model, though energy
cannot cascade downscale in the infinite dimension.) As
the plumes approach each other, vertical gradients of state
variables are enhanced, and both cold and warm air spread
out laterally while thermal and shear instabilities result in
the development of rotors about a horizontally oriented
axis. The solutions are not symmetric in the vertical owing
to asymmetric vertical gradients in density, temperature,
pressure, and sound speed. Horizontally symmetric rotors
develop as the plumes spread laterally and tend to grow
upscale owing to the two-dimensional slab-symmetric
geometry of the domain (e.g., Fjortoft, 1953; Soong &
Ogura, 1973). The two-dimensional colliding-plume
problem was chosen as it produces steep gradients with
strong deformation, rotation, divergence, and transla-
tion kinematic characteristics, which can significantly
challenge different numerical schemes in different ways
(e.g., S82; Schlesinger, 1985). As with the S93 density cur-
rent problem, the colliding-plumes problem has physical
features with various degrees of resolvability, including
marginally resolved scales, defined here as ≤10Δ.

The two plumes were placed initially in the horizontal
centre (x= 10 km) of a Lx = 20 km by Lz = 10 km horizon-
tally periodic domain with the rising warm plume initially
centred at z= 3050 m and the sinking cold plume ini-
tially centred at z= 7050 m. The warm and cold plumes
were initialised in an adiabatic (300 K) atmosphere with
cosine-squared functions with maximum and minimum
potential temperature an excess and a deficit of 2.5 K and
−2.5 K respectively. The warm and cold plume both have
the same geometry with radii given by 2000 m in both x
and z directions.

An attempt was made to keep time-differencing errors
for mode-split RK3 time integrations at a minimum
by using the smallest number of small steps possi-
ble (six) and a small value for the Courant number
C= uΔt/Δx= 0.046875, where u= 15 m⋅s−1 was roughly
the fastest wind in the simulations. Note that all solu-
tions were stable with at least C= 0.1–0.12 and six small
(fast-mode) time steps. Stable solutions were also possible
for all orders of schemes with C∼ 0.375 (e.g., Δt= 2.5 s for
Δx= 100 m) and 18 small time steps with Δ𝜏 ∼ 0.13888…
s assuming sound speed cs ∼ 330 m⋅s−1 and Δx= 100 m
(sound speed Courant number ∼0.45833… ) to keep the
integration of sound modes stable. Larger values of Δt
would have required even more small time steps (24
small steps would be the next number divisible by 2
and 3 for RK3 time integration) with somewhat higher
values of C possible with additional small time steps
for lower-order approximations. A constant-eddy mixing
coefficient (Km = 10.0 m2⋅s−1; use of Km = 4 m2⋅s−1 was

attempted and provided a more complex colliding-plumes
solution, but also required a very fine grid reference solu-
tion) was applied to all variables except pressure to provide
an approximate grid-converged diffusion-limited solution
at Δx=Δz= 25 m resolution. Finally, a weak O18 spatial
filter (S82; Purser, 1987 P87; PL88; Knievel et al., 2007
[K07]; etc.) with a coefficient of α= 0.03 so that 2Δx waves
were damped 3% every time step, was applied in both x and
z directions to perturbations of all variables from their base
state (except pressure). The spatial filter coefficients were
time-step-dependent (K07) and use of very large or small
values can adversely impact solutions. The optimal grid
resolutions and orders of accuracy of numerical approxi-
mations for efficiently achieving reasonable solutions were
dependent on the values of Km and α for a given problem.
The value for α was chosen in order to not overly smooth
the odd-order flux scheme solutions. For comparison, the
value of α used in this study was eight times smaller than
the value of 0.24 (though K07 state the value of α was
effectively 0.2 with the Xue, 2000 flux-limited form of the
filter) used in the Weather Research Forecast (WRF) model
(K07), and ∼11.1 and 3.3 times smaller than the corre-
sponding value for α in the 17-point (O16) Shapiro filter
applied once every three, or 10, time steps respectively, in
the study by S82]. Filter coefficients herein were chosen to
be selective for higher wavenumber (small Δx) by choos-
ing appropriate values for two parameters, R (rolloff) and S
(smoothness), (R, S)= (18, 0) for the O18 filter, as described
by P87 and PL88, noting that PL88 employed slightly more
damping of smaller wave numbers and a filter that had a
higher order than the advection order.

The best solutions for a given resolution, based on lin-
ear theory, theoretically should be those produced using
the high-order approximations for all interpolations and
finite differences. A summary of the suites of experiments
to demonstrate the impact of very-high-order fluxes, SGS
turbulent fluxes, interpolations, and pressure gradient/di-
vergence terms is summarised in Table 2. The evaluation
of the results is derived from both visual comparisons and
objective-error measures. The names of the structures in
the colliding-plume solutions (regions of the solution) that
are discussed herein are depicted in a schematic in the
Appendix.

3.2.1 Very-high-order solutions without a
mean wind

Reference solution
The importance of finer resolution to produce more
accurate viscous solutions was well summarised by
Ooyama (2001 O01) who stated, ‘… at finer resolu-
tions, where the diffusion is dominant in the small-scale
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dynamics, the model solutions converge toward the
ultimate solutions… ’ (i.e., a reference solution). In
much coarser-resolution solutions, when artificial
viscosity is unable to control errors, which can be from
high-frequency ‘noise’ associated with many types of
schemes, solutions begin to lose integrity. Solution per-
formance evaluation at intermediate resolutions (no
consensus about a rigorous definition for intermediate) is
often useful to compare solutions when diffusion is not
excessively dominant and does not overwhelm the effect
of any improvement in errors by high-order schemes (as
is well known, for linear problems, numerical schemes
that are both stable and consistent [regardless of the order
of accuracy] theoretically will converge as Δx and Δt go
to zero [e.g., Durran, 2010, Haltiner & Williams, 1980,
Richtmyer & Morton, 1994]).

Objective comparisons of test solutions with
finer-resolution reference solutions are more difficult
when solutions are generated on staggered grids, as one
of the solutions has to be interpolated to the grid points
of the others. If O2 interpolations are used to compare
solutions on a common grid, as done in this study, com-
parisons can still be useful, although they might be less
accurate (WSK22) than if higher-order interpolation were
used (Zhang et al., 2003). Re-computation of the objective
errors using O4–O18 interpolations to compare solutions
on a common grid surprisingly produced very little impact
on the objective-error calculations and no impact what
soever on the conclusions. With regard to the concept of
nearly grid-converged solutions, flow and scalar fields
generally will become sufficiently resolved and smooth for
increasing resolution such that the higher-order deriva-
tives become increasingly well posed and well behaved,
largely as a result of the constant-eddy-mixing turbu-
lent diffusion (or in other studies by flux limiters; e.g.,
N21). In this paper convergence of solutions using any
higher-order scheme for nonlinear problems means that
the objective-error measures are generally improving, as
the nonlinearity significantly reduces convergence rates
below the theoretical rates usually found for linear prob-
lems, and typically is at best O(1) to O(2) as discussed by,
for example, Henrick et al. (2005), and N21.

Comparisons of the perturbation potential tem-
perature fields for the Δx=Δz= 25-, 50-, 66.67-, 100-,
and 200 m resolution constant-grid flux solutions inte-
grated with time step Δt= 0.078125, 0.15625, 0.20833… ,
0.3125, 0.625 s, O17 constant-grid flux numerical approx-
imations for advection (the highest order shown),
and comparable-order interpolation and pressure gra-
dient/divergence (Figure 2), show, as expected, that
finer-resolution solutions have smaller maxima and
minima, less apparent numerical noise, and better rep-
resentation of smaller-scale features, some of which

are marginally resolved or more marginally resolved at
coarser resolutions. (A more complete suite of solutions,
with Δx=Δz= 25, 33.33, 50, 66.67, 100, 133.33, 166.67,
and 200 m, for potential temperature and KE, are pro-
vided in Figures S1 and S2 respectively.) Figure 2 shows
most of the whole domain for the highest-order (O17)
solutions, and only O17 solutions are shown as they gen-
erally are the most accurate. These solutions converged
much slower than the theoretical convergence rate as
previously discussed (calculated convergence rates for
the nonlinear problem for all orders and resolutions are
provided in Table S7). Wicker and Skamarock (2002)
commented that their density current simulations with a
free-slip lower boundary ‘should remain perfectly sym-
metric’ with an added mean wind, and should not change
the solution; their experience shows that adding a mean
wind (a) ‘is a more stringent test of splitting methods’ and
(b) ‘translation magnifies numerical phase errors asso-
ciated with the advection scheme’, which more strongly
challenges the numerical scheme. The wind speed added
was determined from one perfect transit to the west of
the plume systems around the periodic domain with
U t =−20 m⋅s−1 =−20,000 m/1000 s, which was roughly
the same speed as the fastest winds, which were∼15 m⋅s−1

in the solutions without an added wind. The O17 solu-
tions with the added mean wind converged more slowly
than those without the added mean wind, suffered from
significant asymmetries for spatial resolutions of 66.67 m
or higher, especially in the region of the upwind side
of the upper rotor. The solutions were increasingly less
asymmetric for resolutions of 50 m or less, and not until
resolutions were 33.33 m or less were asymmetries not
readily visible in both perturbation potential temperature
and KE fields. Lower-order solutions not shown have
more significant asymmetries as discussed later.

Finer resolutions also produced, as expected, better
potential temperature and KE RMS errors and L∞ error
norms computed against the 25 m nearly grid-converged
solution (Figure 3). The RMS error, L∞, L2, and L1 error
norms (e.g., Shu, 1997), are commonly used in numer-
ical analysis to provide bulk error measures of solu-
tions against a reference, although they provide no direct
information about phase and amplitude errors. Based on
RMS errors (Figure 3a,b) against the O17, Δx=Δz= 25 m,
which is considered the reference solution, both the per-
turbation potential temperature and KE field solutions
for this nonlinear problem converge at roughly O1–2 at
coarser resolutions of 66.67 m or higher and roughly O2
for some of the higher-order and higher-resolution sim-
ulation measures. The convergence rates also are slightly
greater than O2 for some finer and coarser resolutions.
There was overall slightly slower convergence for KE
than for perturbation potential temperature in both the
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F I G U R E 2 Sets A and B perturbation potential temperature (T – Tb; K) fields at t= 1000 s using Δx=Δz= 200, 100, 66.67, 50, and 25 m
for simulations made with odd-order O17 upwind-biased constant-grid advective flux schemes, O18 interpolations and pressure
gradient/divergence, same O18 spatial filter, same Courant number, and same constant-eddy mixing coefficient of Km = 10 m2⋅s−1.
Additionally, the O17 kinetic energy per unit volume (KE; J⋅m−3) using Δx=Δz= 25 m is shown in the last row. The left and right columns
have simulations made without (Set A; left), and with (Set B; right), an added mean wind Ut =−20 m⋅s−1. Maximum (Max), minimum (Min),
and contour interval (Cint) values are on each plot, as is Ut =−20 m⋅s−1 for simulations with an added mean wind (Ut = 0 m⋅s−1 is omitted for
the simulations without an added mean wind). The bold solid line is the 0.2 K perturbation potential temperature contour of the simulation
in the plot. Only a sub-domain from x=−8 to 8 km and z= 1–9 km is shown. See Figures S1 and S2 for a plot with all resolutions used
between 200 m and 25 m for both perturbation potential energy and KE respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

F I G U R E 3 Set A objective error measures. (a) Perturbation potential temperature (𝜃’=T – Tb) root mean square error (RMS; K) and
kinetic energy per unit volume (KE) RMS error (J⋅m−3) of the O3, O5, O9, O13, and O17 test solutions versus resolution Δx=Δz (m) and (b)
𝜃’ L∞ error norm (K) and KE L∞ error norm (J⋅m−3) versus resolution Δx=Δz (m) calculated against the O17, 25 m reference solution. In the
two lower graphs, (c) shows normalised RMS error and (d) shows the normalised L∞ error norm. The RMS errors and L∞ error norms are
normalised to unity by the maximum value for each variable (shown in parentheses in the legends) in order to plot all the curves on a common
y-axis for ease of comparison for 𝜃’ (K), KE (J⋅m−3), enstrophy (ENS; s−2), and deformation squared (S2; s−2) versus order for the O3, O5, O9,
and O13, Δx=Δz= 100 m test solutions calculated against the O17, 100 m solution. [Colour figure can be viewed at wileyonlinelibrary.com]

RMS and L∞ error measures (Figure 3a,b) with KE L∞
having the slowest convergence overall of the objective
measures shown (see also Table S7 for computed con-
vergence rates). Diffusion and filter errors, which are O2
in both space and O2 in time as they are integrated on
each stage for RK3 time integration, also might be con-
tributing by an unknown amount to reduced convergence

rates. Clearly, and unsurprisingly, none of the nonlin-
ear solutions converge at the theoretical rate predicted
by linear theory for any given order of accuracy. These
convergence rates were much lower than the rates for
the other scheme orders, which is consistent with results
described by N21 (see table 7 in N21) for comparisons
between test solutions and a grid-converged solution using

http://wileyonlinelibrary.com
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a nonlinear, shock-producing, one-dimensional Euler
problem.

The maxima and minimums of perturbation poten-
tial temperature do not approach the 25 m solutions
within 10% until solutions are made with resolutions
below 133.33 m (not shown; see Figure S1), while resolu-
tions of below 66.67 m are required for the solutions to
become more visually comparable (Figure 2). Additionally,
while the visual appearance of generally smooth veloc-
ity and pressure fields is more similar amongst solutions
with different resolutions (not shown; see Figure S2 for
KE fields), the errors and convergence rates of all the
state quantities (not shown) were comparable to those
for perturbation potential temperature and KE (Figure 3),
and as expected, errors improved with increasingly finer
resolution. The L1 error norm (absolute error norm for
perturbation potential temperature, which is order of one
magnitude and relative and absolute errors are of similar
order; not shown) between the O3–O17 33.33-m simula-
tions and the O17, 25 m simulation, all at t= 1000 s, ranged
from ∼4.12× 10−3 to 1.16× 10−3 K. Additionally, L1 error
norms between the O3–O17, 50 m solutions and the O17,
25 m solutions, all at t= 1000 s, ranged from ∼4.81× 10−3

to 3.79× 10−3 K. These two sets of resolution comparisons
show that all L1 errors between 50 and 25 m and 33.33
and 25 m met the Zhang et al. (2003) L1 error norm less
than 0.01 criterion to indicate convergence for their vis-
cous Rayleigh–Taylor problem. In contrast, the L1 error
norm between the 100- and 50 m solutions was 3.71× 10−2

to 2.64× 10−2 K, demonstrating these solutions were not
converged according to the L1 error criterion.

Importantly, the colliding-plume problem was chosen
as it remains in the middle of the domain, in contrast
to the density current problem which impinges on the
lower boundary where lower-order numerical approxima-
tions are traditionally employed (in contrast to the inverse
Lax–Wendroff procedure, discussed by Tan & Shu, 2013, to
produce high-order boundary and near-boundary fluxes).
The popular rising single-plume problem also does not
impinge on the lateral or vertical boundaries for over
1000 s, and could have been used; however, a single plume
does not produce the very complex flow features as the
S93 density current or the colliding-plumes problems for
the values of eddy mixing used herein. To affirm the inde-
pendence of the colliding-plumes problem on the speci-
fication of the boundary conditions, test solutions made
using either free-slip or semi-slip boundary conditions for
the bottom boundary and especially the top boundary for
the test problem were remarkably indistinguishable both
visually, and objectively in terms of maximum and min-
imums of perturbation potential temperature differing in
the third to fifth or larger digit at 1000 s with a resolu-
tion of 100 m and decreasing to only the fifth to seventh

digit at 1000 s with a resolution of 33.33 m. The primary
reason for such small differences included that at 1000 s,
perturbation potential temperatures were generally below
2× 10−3 K within approx. 2000 m of the boundaries, and
that horizontal (vertical) winds were generally 0–2.2 m⋅s−1

(<0.5 m⋅s−1) within about 500 m of the boundaries with
the largest values only in regions of horizontal extent of
roughly about 2500 m above and below the rotors.

As a note, an O17, 16.66… m (denoted as 16.67 m)
solution was produced, which resulted in very small abso-
lute differences of 6.30× 10−3 and 1.97× 10−3 K for the
maximum and minimum from the O17, 25 m potential
temperature solution against the O17, 16.67-m solution,
absolute differences of 8.93× 10−3 m⋅s−1 for the u veloc-
ity (u velocities were anti-symmetric), and 8.75× 10−4

and 3.40× 10−3 m⋅s−1 for the maximum and minimum
for w velocity. Interestingly, the differences for vorticity
and deformation maxima and minimums were much less
closely converged, and relative errors (not shown) were
more than an order of magnitude larger than those for
the velocities. Comparisons of the O17, 25 m solutions
using Richardson extrapolation solutions produced from
the O17, 33.33- and 25 m solutions (not shown) further
demonstrated a nearly converged solution for the state
variables in the 25 m reference solution.

Finally, O17, 25 to 200 m solutions (reference solution
numerical approximations) with O18 accurate SGS turbu-
lent fluxes based on constant-grid flux and integrated-flux
formulations (see Figure S3 for solution made at 25–200 m)
produced very similar results to the simulations made
with O2 accurate SGS turbulent fluxes (Figure 2, and
S4). At 25 m resolution the differences were very small
with maximum (minimum) amplitude differences of
4.14× 10−3 K (2.64× 10−3 K) for potential temperature,
7.57× 10−4 m⋅s−1 for the u velocity (maximum and min-
imum are equal because u is perfectly anti-symmetric),
and 2.95× 10−3 m⋅s−1 (1.22× 10−2 m⋅s−1) for the w veloc-
ity respectively, using O18 accurate constant-grid flux
SGS turbulent fluxes. These same differences were con-
sistently about twice the amplitude of those found using
high-order integrated-flux formulations for SGS fluxes as
integrated-flux approximations are only ∼O2 accurate,
regardless of stencil length and implied order, as were the
SGS fluxes in the reference solution. In summary, the find-
ings of this study were not sensitive to the use of either
O2 SGS fluxes, or the either form of very-high-order SGS
fluxes, in the 25 m reference solution.

Effect of resolution and order or accuracy for flux approx-
imations (Set A)
The O3–O17 upwind-biased, constant-grid flux schemes
solutions made without an added mean wind (Set A)
using spatial resolutions of 25, 33.33, 50, 66.67, 100,
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133.33, and 166.67 m, all with the same spatial filter and
Courant number C, are now compared more closely,
both visually and objectively. Perturbation potential tem-
perature (Figures 4 and 5 show zoomed-in and more
zoomed-in views on the left side of the domain with res-
olutions of 33.33, 66.67, 100, and 133.33 m), perturbation
potential temperature difference between reference and
test solutions (Figure 6, zoomed as in Figure 5), kinetic
energy per unit volume [KE= 0.5 ρ [ui•ui]; Figure 7;
zoomed as in Figure 5), vorticity (two-dimensional
vorticity in the xz-plane= (Δu/Δz–Δw/Δx); hereafter
vorticity; Figure 8, zoomed as in Figure 5), and defor-
mation (two-dimensional deformation in the xz-plane,
S= [(Δw/Δx+Δu/Δz)2+(Δu/Δx–Δw/Δz)2]1/2; here-
after deformation; Figure 9, zoomed as in Figure 5) at
t= 1000 s show the importance of very-high-order numer-
ical approximations as a function of resolution for the
colliding-plumes problem.

Based on visual appearance of the perturbation poten-
tial temperature, kinetic energy, and vorticity, and defor-
mation, the authors conclude that the solutions, with
increasing order of numerical approximations, are close
between O3 and O5 and almost indistinguishable between
O5 and O9 at 25 and 33.33 m; close between O5 and O9
and almost indistinguishable between O9, 13, and 17, at
66.67 m; close between O9 and O13 and very close between
O13 and O17, at 100 m; and close between O13 and O17, at
133.33 m. This descriptive assessment is based on regions
of the perturbation potential temperature fields that com-
pared well for various orders and resolutions especially in
the regions with flow structures defined in the Appendix.
Zoomed-in views (Figures 4–9) are shown for the spatial
portion of the solutions where the largest errors gener-
ally occurred in the simulations at t= 1000 s, which was in
the vicinity of the marginally resolved upper rotor and the
front and back side of the potential temperature leading
and trailing edge fronts with the larger scale circulation.
These regions also had strong gradients of all variables, as
well as strong rotation and deformation. Cross-sections at
z= 6850 m through the upper rotor for the 100 m solutions
are included in Figures 5–9 for the variables and their dif-
ferences from the reference solution (note the differences
for deformation and vorticity should not be considered
in an absolute sense, rather they should only be used
as indicators of the regions of largest absolute values as
these variables are grid-scale dependent; although when
the solutions become nearly grid-converged they should
not depend so much on resolution). The cross-sections for
all variables clearly showed that the O3–O5, 100 m solu-
tions had pronounced phase and amplitude errors, while
O9–O17 schemes generally perform much better.

The results in Figures 2–9 show the higher-order
schemes and/or finer-resolution solutions better matched

the 25 m, O17 reference solution as expected. The visual
appearance and cross-sections show that the solutions also
were increasingly closer to the reference solution, as each
incremental increase to higher-order accuracy improved
the solutions, although from a visual perspective, the
rate of improvement decreases for the ≥O9 schemes with
increasing order of accuracy (consistent with Shu, 2020).
The weaker performance of some solutions at very coarse
resolutions (e.g., 200 and 166.67 m; see Figures 2 and
4, respectively) was due to the lack of spatial resolu-
tion to resolve relevant flow features with spatially large
difference stencils that spanned multiple features and
sharp gradients (e.g., O13 and O17; Durran, 2010 and
Wu et al., 2021), increased aliasing and dispersion errors
(e.g., Durran, 2010), and the excitation of unrealistic phys-
ical shear and buoyancy instabilities associated with over-
shoots produced by these errors, which then can then
amplify in a positive feedback (Grabowski & Clark, 1991).
At the lowest orders of accuracy, odd-order upwind-biased
schemes are well known to inherently damp all wave-
lengths as they are diffusive, although they tend to damp
shorter wavelength features more than longer wavelength
features (e.g., compare O3 and O5 solutions in Figures 2,
4–9). In addition, small phase errors in the solutions
often resulted in very large difference errors, especially in
and near strong gradients. At the highest resolutions, the
lowest-order schemes performed reasonably well except
that there were still rather small visually detectable dif-
ferences. Overall, the errors in the simulations are evi-
dent to varying degrees in the RMS errors and L∞ error
norms (Figure 3a,b), as well as differences in the maxi-
mum and minimum values (Figure 2). The actual phase
errors are difficult to compute (not attempted), however,
phase error effects can be inferred visually, to some extent,
when higher potential temperature bands of the rotors are
spatially offset in such a way that if the solution were
shifted left or right, or up or down, and so forth, one sees a
substantial drop in the errors. Overall, compared to the ref-
erence solution, the results show visually that resolutions
≤133.33 m, and ≥O9 accuracy were needed to at least very
marginally resolve the gross flow structures, while reso-
lutions ≤66.67 m were needed to highly resolve the rotor
bands and state variable gradient details for all orders of
accuracy (e.g., Figures 2 and 4–9).

The root mean square (RMS) error and L∞ error
norm measures (Figure 3a,b) for the O3–O17 order of
accuracy and resolutions of 25–166.67 m can be used
to establish improved accuracy beyond that which can
detected by visual appearance. The appearance differences
between test and reference potential temperature solu-
tions (Figure 6) and objective-error measures for perturba-
tion potential temperature and KE (Figure 3a,b) demon-
strated, as expected, that finer resolution and higher-order
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F I G U R E 4 Set A perturbation potential temperature (T – Tb; K) fields at t= 1000 s for simulations with odd-order O3, O5, O9, O13,
and O17 upwind-biased constant-grid advective flux schemes, comparable order interpolations and pressure gradient/divergence, same O18
spatial filter, same Courant number, and same constant-eddy mixing coefficient of Km = 10 m2⋅s−1. From top to bottom the resolutions are
Δx=Δz= 166.67, 133.33, 100, 66.67, 50, 33.33, and 25 m. Maximum (Max), minimum (Min), and contour interval (Cint) values are on each
plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m reference solution interpolated to
each grid resolution. Only the left side of the subdomain from x=−6.7 to −2.7 km and z= 3.6–7.6 km is shown. [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 Set A perturbation potential temperature (T – Tb; K) fields at t= 1000 s for simulations made with odd-order O3, O5, O9,
O13, and O17 upwind-biased constant-grid advective flux schemes, comparable order interpolations and pressure gradient/divergence, same
O18 spatial filter, same Courant number, and same constant-eddy mixing coefficient of Km = 10 m2⋅s−1. From top to bottom the resolutions
are Δx=Δz= 133.33, 100, 66.67, and 33.33 m. Maximum (Max), minimum (Min), and contour interval (Cint) values are on each plot. The
bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m reference solution interpolated to each grid
resolution. Only a zoomed in subdomain from x=−5.2 to −3.6 km and z= 6.4–7.6 km on the left side of the simulation domain is shown.
Bottom row shows cross-sections of perturbation potential temperature (K; left) and differences from the reference (REF; O17, 25 m) solution
(K; right) for Δx=Δz= 100 m solutions. Cross-sections for the various orders of accuracy (legend) are taken from x=−6.0 to −3.2 km across
the span of the left rotor at z= 6850 m, indicated by the line on the inset subplot in the right-most column, with the REF perturbation potential
temperature solution denoted by the thin solid black line. Vertical lines in the cross-section panels (bottom row) at x=−5.2 km and x=−3.6 km
show the x-axis extent of the contour panels (rows one through four). Notice the larger differences in the O3–O5 solutions compared to the
O9 or higher solutions, especially at intermediate and coarser resolutions. [Colour figure can be viewed at wileyonlinelibrary.com]

numerical approximations produce better results when
compared to the reference solution.

Additionally, objective errors from O3–O13, 100 m
solutions computed against the O17, 100 m solution (a ref-
erence solution specifically for the 100 m solutions) for
perturbation potential temperature, KE, and the deriva-
tive quantities, enstrophy and deformation squared, show

expected improvements with each increase in order of
accuracy (Figure 3c,d). The O17, 100 m solution was used
to compute errors in this manner for the un-converged
scale-dependent derivative in the intermediate to coarse
grid resolution ranges. Note however that error improve-
ments of the 100 m solutions against the errors of the
O3–O13, 100 m solutions are better than against the

http://wileyonlinelibrary.com
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F I G U R E 6 As in Figure 5, except for Set A perturbation potential temperature difference fields between the reference (Set A O17,
25 m) solution (TRef) and test solutions (ΔTR =TRef – T; K). There are no cross-sections. The bold dashed line is the 0.2 K perturbation
potential temperature contour of the Set A O17, 25 m reference solution interpolated to each grid resolution. The bold solid line is the 0.2 K
perturbation potential temperature contour of the solution in the plot. Notice the larger differences in the O3–O5 solutions compared to the
O9 or higher solutions, especially at intermediate and coarser resolutions. [Colour figure can be viewed at wileyonlinelibrary.com]

25 m solution as the errors of the 100 m, O17 solutions
have at least part of the O17, 100 m solution error com-
puted against the 25 m solution removed. The 25 m wind
solutions could have been coarse-grained, which has
some troublesome caveats, including how representative
a coarse-grained 25 m solution would be of the reference
solution. Importantly, the objective error measures show
measurable improvements all the way to O17 as a function
of resolution and/or as a function of accuracy.

Most of the simulations herein captured the impor-
tant resolvable gross characteristics such as the upper
and lower rotors as well as the leading and trailing
frontal gradients with resolutions of 100 and 133.33 m
(e.g., Figure 4). However, for these resolutions, the differ-
ences between test and reference potential temperature
solutions (Figure 6) were often as large as ∼0.1–1 K, but
near the upper rotor and near fronts/strong gradients there
were often local differences of very large absolute values
>2.0 K (or>80% of the initial maximum/minimum pertur-
bation potential temperature excess/deficit), in some solu-
tions with finer resolution and/or higher-order numerical
approximations. Comparisons of maxima and minimums
of the velocity components with the reference solutions

(not shown) had differences of∼8%–10% between adjacent
ordered schemes, and as high as ∼15% amongst all of the
orders considered. Differences of this type for the pressure
fields were generally <5%–8%. Unsurprisingly, the differ-
ence fields were generally the smallest with the finest reso-
lutions overall for a given order of accuracy as well as with
highest-order accuracy for a given resolution. At coarser
resolutions with lower-order numerical approximations,
some of the visual differences (Figures 4–9) and error mea-
sures (Figure 3) were smaller only because the solutions
(e.g., O5 vs. O9) were more damped by the lower-order
flux schemes and not impacted as much by ‘overshoots’
(effectively numerical noise) from the flux computations.
Damping of small-scale overshoots and undershoots with
lower-order schemes could be seen to be somewhat advan-
tageous, however, the whole solution is also affected, thus
reducing the overall solution accuracy.

Improvements based on visual appearances were most
apparent between O3 and O5, and to a lesser extent
between O5 and O9, and so on (e.g., Figures 2 and
4–9), consistent with behaviour Shu (2020) discusses for
WENO schemes. The visual errors for ≤O9 numerical
approximations in most solutions were likely associated

http://wileyonlinelibrary.com
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F I G U R E 7 As in Figure 5, except for Set A kinetic energy per unit volume (KE; 1/100 J⋅m−3) fields. The bold contour is for the 0.2 K
perturbation potential temperature contour of the solution in the plot. Notice the larger, lesser, and least differences in the O3–O5, O9, and
O13–O17 solutions respectively, especially at intermediate and coarser resolutions. [Colour figure can be viewed at wileyonlinelibrary.com]

with both amplitude and phase errors that improved
quickly as order of accuracy was improved from O3 to
O9, while visual errors for >O9 numerical approxima-
tions improved more slowly (e.g., Figures 2, 3, 4–9). Both
visual comparisons and objective-error measures demon-
strated that solutions continue to improve as order of
accuracy was increased toward O17. Improvements for
O19 or higher-order solutions (not shown) were very small
and sometimes there was degradation, presumably, in
part, because round-off error becomes more important for
extremely high-order finite differences. While the degree
of visual improvements decreases for each successive order
of accuracy increase, resolution refinement, or both, the

improvements relative to the previous refinements con-
tinue to be seen in the error measures (Figure 3). Inter-
estingly, the objective-error measures for ≤O13 schemes
did not improve as much as expected when resolutions
were refined to ≤50 m. In contrast, objective measures
improved quickly for the O17 scheme, especially for reso-
lutions ≤66.67 m. This might have to do with the fact that
O17 was used in producing the 25 m nonlinear reference
solution.

A possible, well-known contributing factor for
convergence-rate plateaus that can occur with finer tem-
poral resolution, higher-order accuracy temporal schemes,
and/or multifunction/multistage temporal schemes, is

http://wileyonlinelibrary.com
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F I G U R E 8 As in Figure 5, except for Set A Vorticity (Vor_xz; 100 s−1) fields. The bold solid line is the 0.2 K perturbation potential
temperature contour of the solution in the plot. Notice the larger differences in the O3–O5 solutions compared to the O9 or higher solutions,
especially at intermediate and coarser resolutions. [Colour figure can be viewed at wileyonlinelibrary.com]

round-off error accumulation/saturation, both with and
without double precision computational arithmetic (e.g.,
WSK22, their Figures 5 and 6). As seen in WSK22, this
seems to be more prominent with multifunction/multi-
stage time schemes, which require more computations
per time step at each grid point. Obviously, higher-order
numerical approximations can be helpful to produce more
accurate solutions both objectively, and in some regards
visually, when flow structures, scalar field characteristics,
and physics are not excessively under-resolved. Finer
resolutions also can be helpful as long as the schemes
are not excessively impacted by, for example, various
numerical errors and inherent damping, such as in the

lowest-order schemes in this study. Unsurprisingly, there
is only so much improved accuracy, if at all, that can
be obtained with high-order numerical schemes when
coarser resolution is used.

Integrated flux versus constant-grid fluxes (Set A.IF)
High-order (≥O2) integrated-flux schemes are O2 at best,
both theoretically and experimentally based on linear
analysis for advection, while constant-grid flux schemes
for advection retain the accuracy of a pure advective
scheme (Figure 1). These behaviours were also demon-
strated in T87 for the rotating cone problem. One might
expect that high-order integrated-flux and constant-grid

http://wileyonlinelibrary.com
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F I G U R E 9 As in Figure 5, except for Set A Deformation (magnitude of deformation; Def_xz; 100 s−1) fields. The bold solid line is the
0.2 K perturbation potential temperature contour of the solution in the plot. Notice the larger differences in the O3–O5 solutions compared to
the O9 or higher solutions, especially at intermediate and coarser resolutions. [Colour figure can be viewed at wileyonlinelibrary.com]

flux schemes might perhaps perform comparably for
nonlinear problems, however, experiments in Set A.IF
(Figure 10, zoomed as in Figure 5 and Figure S4, zoomed
as in Figure 4) showed the significant negative impact
on all solutions using the integrated flux scheme. Clearly,
the integrated-flux schemes did not perform as well
as the constant-grid flux scheme for the nonlinear test
problem, especially near the stronger upper rotor, where
the strongest gradients and smallest structures evolved.
In contrast to constant-grid flux solutions, integrated-flux
solutions, especially at resolutions of 133.33, 100, 66.67 m,
and to a lesser but still substantial degree with 50 and
33.3 m, had excessively large magnitudes of perturbation
potential temperatures (Figures 10 and S4), especially

near the marginally resolved upper rotor, consistent with
T87 for linear rotating cone experiments. The errors in
these regions resulted in perturbation potential temper-
atures differences from the O17, 25 m reference solution
of >30% in the O3–O17, 50 m integrated-flux solutions,
while in comparison these were generally <9% (1.5)%
for the O3–O9 (O13–O17) constant-grid flux solutions.
Additionally, the potential temperature RMS errors for
the 100 m, integrated-flux solutions were (RMS= 0.1568,
0.1531, 0.1404, 0.1367, 0.1376) for the odd-order O3–O17
integrated-flux solutions, which were worse than those
of the O3–O17, 100 m odd-order constant-grid flux solu-
tions (RMS= 0.1424, 0.1072, 0.07800, 0.07088, 0.07026).
Furthermore, the RMS errors for the O5 or higher, 100

http://wileyonlinelibrary.com
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F I G U R E 10 As in Figure 5, except for Set A.IF (integrated advective flux instead of constant-grid advective flux schemes) perturbation
potential temperature (T – Tb; K) fields. The bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m
reference solution interpolated to each grid resolution. Bottom row shows cross-sections of perturbation potential temperature (K; left) and
differences from the reference (REF; O17, 25 m) solution (K; right) for Δx=Δz= 100 m solutions taken at z= 6850 m indicated by a line in
the subplot in the right–most column, for the various orders (legend), with the REF perturbation potential temperature solution denoted by
the thin solid black line; the Set A, O17, 100 m solution is indicated with bold stars. Notice all solutions have substantial overshoots and
undershoots, as well as more significant shape differences and larger perturbation potential temperature deviations in the maximums and
minimums from the reference simulation as compared to constant-grid advective flux solutions shown in Figure 5. [Colour figure can be
viewed at wileyonlinelibrary.com]

m (and also O9 or higher, 133.33 m) constant-grid flux
solutions were better than all integrated-grid-flux RMS
errors for any order with the same resolution. In contrast,
both schemes performed comparably where the flow struc-
tures were well resolved, such as near the lower rotor and
distant from the disturbed flow regions. The reasons for
these differences seemed to be associated with somewhat
better performance of constant-grid flux in regions with

smoother flow, as well as higher accuracy in marginally
resolved flow structure.

In summary, the integrated-flux solutions improved
much more slowly from O3 through O17 for any given res-
olution, when compared to constant-grid flux solutions,
which was consistent with the convergence behaviour
for the linear problem as shown earlier. In addition,
integrated-flux scheme objective errors were notably

http://wileyonlinelibrary.com
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worse than those produced by constant-grid flux schemes
for any of the resolutions considered, even with 33.33-
and 25 m (not shown) resolution (e.g., the integrated-flux
scheme with O17 approximations, had RMS errors for
33.33- and 25 m resolutions of 0.02055 and 0.01182 K, L∞,
norm errors of 0.7986 and 0.4599 K, and maximum and
minimum potential temperature values that were 2%–4%
and 5%–10% in error respectively, compared to the ref-
erence). Henceforth, all remaining simulations discussed
herein use only constant-grid flux.

Computational effectiveness
Historically, cost-effective comparisons and assessments
of high-order numerical approximations for complex
nonlinear solutions by, for example, SZS03 and Latini
et al. (2007) for O5, and O9, and two-dimensional
non-viscous nonlinear Rayleigh–Taylor (a problem with
much more detailed flow structure compared to sim-
ple rising plumes that are often used in atmospheric
sciences) solutions, and N21 for colliding-plumes solu-
tions for O3, O5, O7, and O9, were based largely on
visual comparisons. The non-viscous and very highly non-
linear nature of their solutions precluded meaningful
objective-error comparisons, as obtaining reference solu-
tions is not feasible without diffusion. In particular, SZS03
and Zhang et al. (2003) demonstrated that an O9 WENO
flux scheme could produce cost-effective, by a factor of
two, comparably complex fluid flow solutions compared to
an O5 WENO advection solution made with finer resolu-
tion. Their O9 coarser-resolution solutions were 66%–80%
less expensive in computational costs compared to their
O5 finer-resolution solutions. Zhang et al. (2003) also
found similar cost effectiveness when the Rayleigh–Taylor
problem used in SZS03 was solved with various levels of
viscosity with Reynold numbers Re≥ 25,000. They found
the largest errors near the fine-scale structures and exam-
ined these regions ‘to observe visually the convergence of
the numerical solutions’. More recently, Wu et al. (2021)
attempted both visual and objective comparisons for their
O5, O13, and O17, two-dimensional highly nonlinear,
non-viscous Rayleigh–Taylor solutions, and expectedly
showed slower order of convergence than the order of the
numerical approximations for all orders of accuracy con-
sidered, as was found herein for a smoother nonlinear
problem. Moreover, they showed that O9 solutions occa-
sionally had better L1 and L∞ error norm measures than
their O11, O15, or O17 solutions.

The issue of cost effectiveness for higher-order fluxes
with coarser resolutions compared to lower-order fluxes
with finer resolutions has not been as well demon-
strated for very viscous diffusion-limited problems (e.g.,
Re∼ 100) as it has been for simple linear problems and to
some degree with complex non-viscous or weakly viscous

nonlinear problems. Improvements were not expected to
be as dramatic for the very-viscous-flow colliding-plumes
problem used in this paper owing to the effects of diffusion,
and indeed this was found to be the case.

To examine the issue of cost effectiveness for the very
viscous, diffusion-limited colliding plumes, computational
cost, based on an estimate of total floating-point opera-
tion (FPO) counts used in the model, where all operations
(add, subtract, multiply, divide, absolute value, if–then,
etc.) are assumed to have equal computational cost, is
shown (Figure 11a and the table inset in Figure 11). These
results are shown for each order of accuracy as a func-
tion of grid resolution in terms of total floating-point
operations (FPO) per grid point per time step for the
three-stage RK3 mode-split time integrations using two,
three, and six fast-mode small time steps for stages one,
two and three respectively. These FPOs are considered to
be ‘theoretical costs’ (Zhang et al., 2022). Cost effectiveness
based on FPOs provides machine-independent compar-
isons, although FPOs should be considered the worst-case
scenario in terms of cost effectiveness in some cases as
actual CPU timings often provide better computational
speed performance for some codes owing to efficient cache
use. The same small Courant number was used for all
orders so that (a) the same number of small steps was
always used for integrating the fast sound modes, and (b)
temporal differencing errors were kept lower, which was
not always the case in these types of simulations (e.g.,
S93, their Figure 4), even with RK3 time integration (e.g.,
Park & Lee, 2009, their figure 10). Additionally, it is use-
ful to keep in mind that the CFL criteria for explicit time
integration of SGS turbulent fluxes in regions with very
fine resolution (e.g., for a stretched grid) and very large
fluxes near a lower boundary (e.g., hurricane or tornado),
can exceed the CFL criteria for advection (this issue can
be avoided with implicit solvers for diffusion, although
implicit solvers have other issues). With theoretical FPOs,
only a few cost-effective solutions were found between
O3 and the and next-coarser-resolution O5 or above solu-
tions, as well as some O9 and next coarser O13–O17
solutions (fine resolutions; Figure 11b,c). Some of the
O5 and and next-coarser-resolution O9 solutions were
roughly cost-comparable, at least visually, but not objec-
tively. In contrast, solutions made with very-high-order
O13 or above fluxes, coupled with very fine resolutions
of 33.33 m or less, were generally somewhat cost-effective
using objective-based error measures, as was expected,
owing to better convergence rates for smoother solutions,
although seeing this visually tended to be difficult. Addi-
tionally, it is worth noting that coarser-resolution solu-
tions made with O5 fluxes performed roughly as well,
and in some cases as well as next-finer resolutions with
O3 fluxes.
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F I G U R E 11 Set A computational cost and errors. (a) Approximate floating-point operations (FPO; a measure of computational cost)
per grid point per time step for three-stage RK3 time integration. The x-axis labels in (a) and the row headings in the upper-right table are:
FLX=O3, O5, O9, O13, and O17 odd-order constant grid advective flux schemes; P=O4–O18 pressure gradient/divergence terms;
I =O4–O18 interpolation; SUM= sum of P and I; TOT=O3, O5, O9, O13, and O17 FLX plus comparable order P and I; TOT2=O3, O5, O9,
O13, and O17 FLX; O2 P, and O2 I; and TOT4=O3, O5, O9, O13, and O17 FLX, O4 P, and O4 I. (For example, the O3/O4 in the legend of (a)
implies O3 FLX and O4 P and I.) (b,c) Log–log plots of the normalised approximate FPOs versus root mean square (RMS) error for various
grid resolutions and odd-order flux schemes for t= 1000 s of simulation. Specifically, the total FPOs (for all grid points and for all time steps
[i.e., the entire simulation] normalised by the total FPO value for the O3, Δx=Δz= 166.67 m simulation is plotted versus RMS errors
calculated against the O17, 25 m reference solution in (b) for perturbation potential temperature (T – Tb; K; left cluster of curves) and kinetic
energy per unit volume (KE; J⋅m−3; right cluster of curves), and in (c) L∞ error norm for perturbation potential temperature (T – Tb; K; left
cluster of curves) and L∞ error norm for KE (J⋅m−3; right cluster of curves).
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The cost-effectiveness results above were not adjusted
for the Courant number reduction associated with the use
of higher order of numerical approximations for stable
time integration (e.g., Courant number for linear stabil-
ity from Section 2; O3/O5∼ 1.13, O5 [3]/O9∼ 1.27 [1.44],
O5 [3]/O13∼ 1.44 [1.63], and O5 [3]/O17∼ 1.56 [1.77];
CFL generated following Haltiner & Williams, 1980,
Fornberg, 1987, Straka & Anderson, 1993, and especially
Baldauf, 2008, etc.). Increasing the Courant number also
typically required an increased number of small time steps
by up to a factor of four for stable fast-mode time inte-
gration, and as is well known, generally led to larger
objective-error measures (e.g., Haltiner & Williams, 1980;
T87). Nevertheless, calculating the FPOs for larger sta-
ble Courant numbers with lower-order approximations
made most of the comparisons shown in Figure 11 less
cost-comparable than with constant Courant numbers,
although the highest-order flux O13 (O17) or above solu-
tions with finer resolutions of 33.33 m or below, were
marginally cost-effective, compared to O9 (O13), 25 m
solutions.

However, as stated above, use of the total FPOs to assess
cost effectiveness should be considered a ‘worst-case’ sce-
nario, especially for intermediate solutions. For example,
Balsara and Shu (2000) showed that an O9 WENO scheme
required 3.4 times more FPOs than an O5 WENO scheme,
while in practice, with efficient cache use, their O9 scheme
only required 30%–50% more CPU than their O5 scheme.
The ratio of the total FPOs (table in Figure 11) for O9 to
O5 (O17 to O9) upwind-biased flux solutions in this paper
is approx. 1.42 (1.59), while this ratio is approx. 1.75 (1.92)
with near-maximum CFLs. In contrast, the ratio of actual
CPU for O9 to O5 (O17 to O9) is ∼1.07 (1.13), while this
ratio is ∼1.32 (1.21) with near-maximum CFLs. The CPU
estimates were based on an average of five simulations
and only included computations for the flux, interpolation,
buoyancy, diffusion, filter, pressure gradient and diver-
gence, and boundary calculations, but not CPU for model
startup, input/output, and run-time statistics for state vari-
ables, and so forth. It is important to keep in mind that
the computations for many of the flux, SGS turbulent flux,
and so forth, terms require substantial supporting calcu-
lations regardless of the order of accuracy. The practical
(actual) cost effectiveness, based on FPOs, of the solutions
shown in Figure 11 for the two comparison examples (O9
to O5 and O17 to O9) were underestimated by 32% and
59% respectively (i.e., they were faster than the theoreti-
cal cost). The CPU/cache-based results are not shown in
Figure 11 as they can be machine-dependent, while FPOs
are purely theoretical. Use of a lower-order (e.g., O4) pres-
sure gradient and divergence, and especially interpolation,
can further reduce FPOs (table inset in Figure 11) and
can improve the potential for cost effectiveness. Another

limitation to the interpretation of Figure 11 is that the
objective errors do not necessarily represent the optimal
solutions since some solutions visually have some impor-
tant characteristics that are closer to the reference solution,
but their objective errors are larger (possibly owing to
amplitude and phase errors, etc.) and vice-versa.

In summary, based on Figure 11, and especially
when including near-maximum CFLs (not included
in Figure 11), the diffusion-limited nature of the test
problem seems to have been compromised, at least par-
tially, and in many cases wholly, the cost effectiveness
of higher-order solutions in comparison to previous
studies that used either smooth linear problems or com-
plex non-viscous/weakly viscous nonlinear solutions.
Fortunately, more advantageous cost effectiveness
can sometimes be possible for high-order solutions
through careful use of computer CPU/cache. These
cost-effectiveness results generally will be more improved
(or less worse) for three-dimensional simulations. Cost
effectiveness can also be improved with high-order fluxes
by using lower-order interpolations and pressure gradi-
ent/divergence (and not filtering) during the first two
stages of the three stages of the RK3 time integration.
Gadd (1980) showed little or no loss of accuracy using
O2 spatial numerical approximations on the first stage of
Lax–Wendroff time integration and O4 spatial approxima-
tions on the second stage. As discussed later, the overall
O1 to O2 convergence rates (e.g., Figure 3 and Table S4)
associated with the mode-split RK3 time scheme, were
negatively impacted by temporal convergence rates of O1
or less compared to O3 with spatial filter, SGS turbulence
and divergence damping turned off, which demonstrates
the influence of these on overall convergence rates and
their possible negative effects on cost effectiveness.

The lack of cost-comparable and/or cost-effective solu-
tions using very-high-order numerical approximations to
solve nonlinear problems does not argue entirely against
their utility for testing schemes, as discussed by Park and
Lee (2009). Most comprehensive atmospheric models have
complicated physical parametrisations that account for a
large portion of the CPU time consumed by these models.
In these cases, the use of higher-order numerical approx-
imations for advective fluxes probably would not be an
excessive computational burden even if the high-order
schemes were not cost-comparable or cost-effective. Addi-
tionally, higher-order schemes, for a given resolution,
can generally provide better solutions through better
mass and energy conservation along with reduced phase
and amplitude errors (e.g., Balsara & Shu, 2000; Des-
jardins et al., 2008; Haltiner & Williams, 1980; Purser &
Leslie, 1988). Therefore, the issue of requiring cost effec-
tiveness to achieve the best solution for the least com-
putational cost can be less relevant if the computational
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resources are unavailable for spatial resolution to be
increased, as can easily happen in two-dimensional or
three-dimensional approaches, but if instead, order of
accuracy can be increased. In the case when computa-
tional resources are unlimited, perhaps the main drawback
of using higher-order numerical approximations might be
associated with round-off error with extremely high-order
schemes and 32-bit computer mathematics.

3.2.2 Very-high-order solutions with a
mean wind (Set B)

The effects of dispersion, dissipation and phase errors (e.g.,
Durran, 2010 and WS02) in numerical schemes can be
more readily demonstrated by adding a relatively strong
mean wind to the initial conditions for Set A, and these
are shown as Set B. Solutions with the added mean wind
(Figure 2, right column) are not symmetric until resolution
is refined to less than 66.67 m and are not visually nearly
indistinguishable from the solutions without the added
mean wind (mathematically, the ideal solutions should be
Galilean invariant) until resolution is at most 33.33 or 25 m
(Figure 2; also see Figures S1 and S2 for all resolutions for
both perturbation potential temperature and KE per unit
volume).

Behaviours of the perturbation potential temperature
fields solutions with resolutions of 25, 33.33, 50, 66.67, 100,
133.33, and 166.67 m resolution (Figure 12) and zoomed-in
plots of perturbation potential temperature, perturbation
potential temperature difference from the reference, and
KE (Figures 13–15, zoomed as in Figures 5–7) at t= 1000 s
also show that the highest odd-order constant-grid flux
schemes, as expected, produced the best solutions amongst
all those with an added mean wind in terms of rotor shape
preservation as well as subjective phase and amplitude
errors (Figure 2; recall a perfect scheme and perfect arith-
metic would not have errors regardless of the magnitude of
mean added wind). For example, the errors in the locations
of the leading front and upper rotor are generally reduced
visually compared to those in the no-wind simulations
when resolutions of 100, 66.67, 50, and 33.33 m are used
with each of O13 and higher, O9 and higher, O5 and higher,
and O3 and higher numerical approximations respec-
tively. Additionally, symmetry is lost in coarse-resolution
solutions (e.g., see Figure 2, right column for the O17
solutions) made with the added mean wind owing to
variations in dispersion and phase errors in the parts of
the solutions moving with and opposing the flow, espe-
cially for lower-order (<O9) schemes (not shown). Dif-
ference plots for potential temperature (Figure 14) show
the larger phase errors as large positive and negative
dipoles near regions of stronger gradients, especially with

lower-order numerical approximations and/or coarser res-
olutions. While the nature of phase errors can be difficult
to interpret, quantify, and understand, their impact is read-
ily seen as displacements of flow structures. Solutions
made with an added mean wind showed that potential
temperature and KE fields in the highest-order, O9 or
higher, solutions were generally well behaved for resolu-
tions of at most 66.67 m with visually smaller errors than
lower-order solutions, as seen by better preserved maxima
and minimums, circulation shape, and front movement.

3.2.3 Impact of high-order interpolation
and pressure gradient/divergence (Sets C–H)

The next six sets of simulations (Sets C–H), made using
the intermediate resolution of 100 m, odd-order O3–O17
constant-grid advective fluxes, and changes in the order of
accuracy of the interpolations and pressure gradient/diver-
gence, were produced to help show which combinations of
terms with higher and lower orders of accuracy produced
the best solutions.

The relative change in accuracy for these solutions is
described by computing the RMS and L∞ objective-error
measures against the reference solution of potential tem-
perature and KE per unit volume, and then computing
the percent error differences between the these errors for
the test solutions and those for Set A (also calculated
against the reference solution) at t= 1000 s (Figure 16; per-
cent error differences between the test solutions and those
in Set A are computed to more clearly show differences
in solution errors that are very close in value; positive
numbers mean the errors are better than errors for Set A
compared to the reference solution and negative numbers
mean worse than Set A). First, the objective errors between
solutions made with odd-order O3–O17 constant-grid
flux approximations, next higher-order/comparable-order
interpolations, but only O2 pressure gradient/divergence
(Set C) at t= 1000 s are comparable (or even slightly bet-
ter at higher orders of accuracy) to solutions with the
same order of accuracy in Set A. The appearance of the
perturbation potential temperature fields between Sets A
and C (Figure 17, rows one and two respectively) have
only slight differences at higher orders. These visual differ-
ences are seen in the difference fields between Set C and
Set A, 100 m, potential temperature solutions (Figure 18;
TSetA–T) with the same order of flux accuracy, as well
as in the difference fields between Set C from the O17,
25 m reference solutions (Figure 19). An examination of
the Set C vorticity and deformation fields (Figures 20
and 21; zoomed as in Figures 5–9) shows noticeable
differences especially in the vicinity of the marginally
resolved upper rotor for all orders when compared to
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F I G U R E 12 As in Figure 4, except for Set B (added mean wind of Ut =−20 m⋅s−1) perturbation potential temperature (T – Tb; K)
fields. The bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m reference solution (no wind; Set A)
interpolated to each grid. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 As in Figure 5, except for Set B (added mean wind of Ut =−20 m⋅s−1) perturbation potential temperature (T – Tb; K)
fields. There are no cross-sections. The bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m
reference solution (no wind; Set A) interpolated to each grid resolution. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 14 As in Figure 6, except for Set B (added mean wind of Ut =−20 m⋅s−1) perturbation potential temperature difference fields
between the reference (Set A O17, 25 m) solution (TRef) and test solutions (ΔTR =TRef – T; K). There are no cross-sections. The bold dashed
line is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m reference solution (no wind) interpolated to each grid
resolution. The bold solid line is the 0.2 K perturbation potential temperature contour of the solution in the plot. Notice the larger
differences, which show up as much larger positive and negative dipoles than those in Figure 6, especially at intermediate and coarser
resolutions and for lower orders of accuracy. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 15 As in Figure 7, except for Set B (added mean wind of Ut =−20 m⋅s−1) kinetic energy per unit volume (KE; 1/100 J⋅m−3)
fields. There are no cross-sections. The bold solid line is the 0.2 K perturbation potential temperature contour of the solution in the plot.
[Colour figure can be viewed at wileyonlinelibrary.com]

Set A solutions. Next, larger objective-error measures
(Figure 16), including the largest RMS errors, were found
in the simulations with odd-order O3–O17 constant-grid
flux approximations, next-higher-order/comparable-order
pressure gradient/divergence, but only O2 interpolations
(Set D). Notable shape distortion in the upper rotor
of the Set D simulations compared to Set A is discernible in
the perturbation potential temperature fields (Figure 17),
the difference of potential temperature between the Set A
and test (Figure 18), difference between reference and test
solutions (Figure 19), vorticity (Figure 20), and deforma-
tion fields (Figure 21).

These first two subsets of experiments, Sets C and D,
helped show that high-order advection was most impor-
tant for achieving higher accuracy, and that high-order
interpolations generally were more important than
high-order pressure gradient/divergence. Interestingly,
comparable high-order interpolations coupled with
low-order pressure gradient/divergence approximations
had less detrimental effects in terms of solution changes
from those in Set A, than high-order pressure gradien-
t/divergence approximations coupled with low-order
interpolations, which was most clearly seen in the differ-
ence potential temperature fields from the Set A, 100 m
solutions (Figure 18) and the objective errors (Figure 16).

These effects were most readily seen as differences in loca-
tions and magnitudes of potential temperature difference
fields in the vicinity of the upper rotor and edges of the
outward propagating rotors.

Simulations made with higher-order flux approxima-
tions coupled with O2 interpolations and O2 pressure
gradient/divergence approximations (Set E), which is the
typical combination in most atmospheric models, pro-
duced worse RMS potential temperature errors for order
above O9 and worse RMS KE errors for order above
O5 numerical approximations than Set A. The largest
difference errors in Set E were associated with the upper
rotor. Importantly, the Set E solutions, along with Set D
solutions, were the most degraded of all solutions dis-
cussed in this section, even when they were evaluated
against a reference solution made with O17 fluxes and
O2 interpolations and pressure gradient/divergence (not
shown), which was visually very difficult to distinguish
from the reference solution developed for this study.

To be more complete, three sets of simulations
were made with odd-order upwind-biased O3–O17
constant-grid advective-flux approximations, with either
O4, O6 or O18 on both interpolations and pressure
gradient/divergence approximation (Sets F, G, and H
respectively). These appeared to be relatively accurate

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

F I G U R E 16 Sets C–J perturbation potential temperature (T – Tb; K; top) and kinetic energy per unit volume (KE; J⋅m−3; bottom)
percent difference from Set A values [percent difference= (Set A value – test value)/Set A value⋅100] of RMS error (left) and L∞ error norm
(right) for test solutions with Δx=Δz= 100 m calculated against the O17, 25 m reference solution; values less (greater) than zero denote
solutions that have larger (smaller) errors than Set A. Insets show enlarged solutions for Sets I and J for clarity. Experiment set orders of
accuracy are shown in the legend (and also in Table 2), where abbreviations are: P, pressure gradient/divergence; I, interpolations; D,
diffusion (subgrid-scale turbulent flux); and c, comparable order. [Colour figure can be viewed at wileyonlinelibrary.com]

visually (Figures 17–21, zoomed as in Figures 5–9; plots
for Set F are not shown in Figures 17–21) when com-
pared to Set A, and in some cases for Sets F and G had
slightly better objective error measures made against the
O17, 25 m reference solution (Figure 16), especially for
the O9, O13, and O17 solutions. The solutions from Sets
F–H helped demonstrate that while high-order advec-
tion was most important for obtaining accurate solutions,
high-order interpolations and pressure gradient/diver-
gence differencing contributed to accurate solutions as
well. Additionally, the solutions from Set F–H showed
that slightly more accurate solutions were sometimes pos-
sible with marginally reduced orders of advection coupled
with higher-order interpolations and pressure gradient
approximations. As calculations using very-high-order
interpolations are the most computationally intensive in
the simulations (Figure 11), the use of comparable-order
interpolation and pressure gradient/divergence numerical

approximations could be considered too costly, but the
use at least O4 or O6 for both interpolations and pressure
gradient/divergence seems warranted and is perhaps a
good compromise.

Consistent with the results of this section, Klemp
et al. (2003) demonstrated that their mountain wave
simulations, which involved complicated metric terms
associated with terrain, were not much different with
higher-order (O4) spatial numerical approximations
for pressure gradient acceleration. However, Klemp
et al. did not indicate the order of their interpolations
of necessary off-grid point information in the simula-
tions, nor if high-order interpolation would help with
issues related to amplifying truncation errors owing to
unbalanced terrain-related metric terms they described.
Nevertheless, the gas dynamics community, especially
those in the WENO development community, and
perhaps only PL88 in the atmospheric sciences, use

http://wileyonlinelibrary.com
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F I G U R E 17 Sets A–J (without Sets A.IF, B, and F) perturbation potential temperature (T – Tb; K) fields at t= 1000 s using
Δx=Δz= 100 m for simulations made with odd order O3, O5, O9, O13, and O17 upwind-biased constant-grid advective flux schemes,
comparable order interpolations and pressure gradient/divergence, same O18 spatial filter, same Courant number, and same constant-eddy
mixing coefficient of Km = 10 m⋅s−1. Abbreviations are: P, pressure gradient/divergence; I, interpolations; D= diffusion, and c= comparable
order. (Experiment set orders of accuracy are defined in Table 2.) Row one shows Set A (Ic/Pc/D2); row two is Set C (Ic/P2/D2); row three is
Set D (I2/Pc/D2); row four is Set E (I2/P2/D2); row five is Set G (I6/P6/D2); Row six is Set H (I18/P18/D2); row seven is Set I (Ic/Pc/D4); and
bottom row is Set J (Ic/Pc/D10). Maximum (Max), minimum (Min), and contour interval (Cint) values are on each plot. The bold dashed line
is the 0.2 K perturbation potential temperature contour of the Set A O17, 25 m reference solution interpolated to each grid resolution. Only a
zoomed in subdomain from x=−5.2 to −3.6 km and z= 6.4–7.6 km on the left side of the simulation domain is shown. Notice Sets D and E
perform the least favourably, overall, compared to most sets. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 18 As in Figure 17, except for Sets C–J (without Sets A, A.IF, B, and F) perturbation potential temperature difference fields
between the original (Set A) Δx=Δz= 100 m solution with same order of accuracy (TSetA) and test solutions using Δx=Δz= 100 m
(ΔTA =TSetA – T; K). In this figure only, the bold dashed line is the 0.2 K perturbation potential temperature contour of the Set A 100 m
solution with the same order of accuracy as the test solution. The bold solid line is the 0.2 K perturbation potential temperature contour of the
solution in the plot. Notice Sets D and E perform the least favourably, overall, compared to most sets. [Colour figure can be viewed at
wileyonlinelibrary.com]

higher-order interpolations as well as higher-order
pressure gradient/divergence approximations (e.g.,
personal communication, C.-W. Shu 2019). In sum-
mary, based on the simulations in Sets C–H, better
interpolations generally have less impact on solution
accuracy than higher-order flux/advection, but more
impact than higher-order pressure gradient/divergence
differencing.

3.2.4 High-order turbulent-flux
approximations with constant-eddy mixing
(Sets I–J)

Interestingly, the use of O4 numerical approximations
for SGS turbulent fluxes and interpolations to generate
the turbulent fluxes for order O9 or above flux solutions
produced the best objective results relative to Set A (see

http://wileyonlinelibrary.com
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F I G U R E 19 As in Figure 17, except for Sets A–J (without Sets A.IF, B, and F) difference fields between the reference and test
perturbation potential temperatures (ΔTR =TRef – T; K). The bold dashed line is the 0.2 K perturbation potential temperature contour of the
Set A O17, 25 m reference solution interpolated to each grid resolution. The bold solid line is the 0.2 K perturbation potential temperature
contour of the solution in the plot. Notice Sets D and E perform the least favourably, overall, compared to most sets. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 16a,b inset) compared to the same using O10 (or
even O18; not shown) numerical approximations for the
SGS turbulent fluxes, but only by a very slight margin, and
only for perturbation potential temperature. In contrast,

some of the better objective results relative to Set A for
KE were achieved using O4–O10 (or even O18) numeri-
cal approximations for the SGS turbulent fluxes, however,
only by a very slight margin, with unknown reasons for

http://wileyonlinelibrary.com
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F I G U R E 20 As in Figure 17, except for Sets A–J (without Sets A.IF, B, and F) Vorticity (Vor_xz; 100 s−1) fields. The bold solid line is
the 0.2 K perturbation potential temperature contour of the solution in the plot. Notice Sets D and E perform the least favourably, overall,
compared to most sets. [Colour figure can be viewed at wileyonlinelibrary.com]

the different behaviour of the RMS error. The perturba-
tion potential temperature fields (Figure 17) for Sets I and J
(O4 and O10 SGS turbulent approximations respectively),
difference fields between the perturbation potential tem-
peratures from Set A (Figure 18), difference fields from

the reference solution (Figure 19), vorticity (Figure 20)
and deformation fields (Figure 21), show that use of
higher-order turbulent-flux approximations generally has
relatively small effects on the solutions. The L∞ error
norms (Figure 16) and results in Figures 17–21 for Sets I

http://wileyonlinelibrary.com
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F I G U R E 21 As in Figure 17, except for Sets A–J (without Sets A.IF, B and F) Deformation (magnitude of deformation; Def_xz;
100 s−1) fields. The bold solid line is the 0.2 K perturbation potential temperature contour of the solution in the plot. Notice Sets D and E
perform the least favourably, overall, compared to most sets. [Colour figure can be viewed at wileyonlinelibrary.com]

and J showed that higher-order turbulent-flux approxima-
tions slightly damped the perturbation potential tempera-
ture field in regions where there were extrema compared
to the solutions made with O2 turbulent-flux approxi-
mations (Set A), which generally had values and espe-
cially extrema that were too large when compared to the

reference solution, while much of the rest of the solution
was much less affected.

In these tests, with 100 m resolution, and O17
constant-grid flux, O18 constant-grid SGS flux, and 100
m resolution with the constant-eddy mixing coefficient,
for example, resulted in absolute relative differences of up

http://wileyonlinelibrary.com
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to approx. 0.22%, 0.14%, 0.096%, and 0.93% for maxima
of perturbation potential temperature, perturbation pres-
sure, u, and w respectively, at t= 1000 s from the O17, Set
A simulations, which used O2 numerical approximations
for SGS turbulent fluxes, from the complementary simula-
tions using O4–O18 constant-grid flux approximations for
SGS turbulent fluxes. Absolute relative differences for the
maxima of the same variables were comparable or smaller
at approx. 0.22%, 0.011%, 0.005%, and 0.024% for the 25 m
reference solution resolution. In addition, the RMS errors
for the perturbation potential temperature (KE) for a 33-m,
O17 with O18 interpolations, O18 pressure gradient/diver-
gence, and O18 constant-grid SGS fluxes against the 25 m
reference solution were 3.9% (1.3%) better than the 33-m,
O17 flux solution from the Set A simulation showing there
was some advantage in terms of accuracy improvement to
using higher-order SGS fluxes.

Unlike differences between constant-grid flux and
integrated-flux approximations for advection, with the lat-
ter producing much larger errors, the use of these two flux
formulations for the staggered first derivatives to compute
SGS turbulent fluxes interestingly produced small relative
differences of only 0.12% (0.11%) for constant-grid SGS flux
(integrated SGS flux) for maxima of perturbation poten-
tial temperatures and approx. 0.42% (0.088%) for maxima
of KE at t= 1000 s compared to Set A using O17 advec-
tive fluxes and O18 SGS turbulent fluxes (shown in Figure
S3). Additionally, the absolute relative differences in RMS
errors (based on the O17, 25 m Set A reference solution)
between each other (and Set A) and these experiments for
perturbation potential temperature and KE were approx.
0.04% (∼0.2%) and approx. 0.02% (∼0.4%) respectively (see
Figures 16–21 for O4 and O10 turbulent-flux approxima-
tions), with the biggest changes occurring between the O2-
and O4-order turbulent-flux approximations. These RMS
error differences are more than 10 times smaller than those
for the O17 solutions made with O2 approximations pres-
sure gradient/divergence (Set C), O2 interpolations (Set
D), or O2 for both interpolations and pressure gradien-
t/divergence (Set E). Given that high-order SGS turbu-
lent fluxes did not change the convergence rates for the
solutions it seems unlikely that O2 SGS turbulent fluxes
degraded solutions as much as lower-order advection.

Presumably the diffusive nature of turbulent fluxes
minimises the differences between solutions with differ-
ent orders of turbulent fluxes as diffusion operators tend
to damp difference errors each time step, whereas con-
vective (advective) operators allow difference errors to
propagate and accumulate (personal communication; B.
Fornberg 2019). With such small improvements using
higher-order SGS turbulent-flux numerical approxima-
tions, it was concluded they were not generally necessary
for accurate solutions, nor were they excessively costly if

priorities for a specific problem might benefit from their
use. Test solutions (not shown) made with variable-eddy
mixing coefficients by solving the TKE equation showed
that use of higher-order approximations for SGS turbulent
fluxes generally led to larger differences than those with
constant-eddy mixing coefficients, although they were not
excessively different.

3.2.5 Comments on effects of filtering
strength and constant-eddy mixing

The obvious and simplest, but not always the best, way
to control numerically generated high-frequency waves
when physical solutions are excessively impacted by dis-
persion/phase errors, aliasing errors, nonlinear physical
instabilities, and so forth, is to add and/or increase the spa-
tial filter coefficient (e.g., Shuman, 1957; Shapiro, 1970;
S82; P87; PL88: Kusaka et al., 2005; K07) and/or eddy
mixing (e.g., Anderson, 1989; Ooyama, 2002). Reducing
or increasing the value of the filter parameter α by 400%
or a factor of four times smaller (α= 0.0075 damping 2Δx
waves 0.75% every time step) or four times larger (α= 0.12
damping 2Δx waves 12% every time step) than the value
used in this paper can potentially have a variety of effects
such as underdamping noise or excessively damping the
physical solutions (not shown as the focus was not on fil-
ters; K07 comprehensively investigated this topic for atmo-
spheric flows using the WRF model using α= 0.24, noting
they stated they did not advocate using a value as large as
0.24). For the O17, 100 m solutions in this paper, the effects
on the maximum, minimum, and RMS errors for pertur-
bation potential temperature and KE at t= 1000 s when
using the O18 filter and α= (0.0075; 0.03; 0.12) include
approx. 0.2%–3.1% and approx. 0.5% differences in the
maxima and minimums and approx. 0.6%–10%, and 0.5%
for RMS errors for perturbation potential temperature and
KE. Given the relatively minimal impact on the solutions
for these large changes in the filter coefficient α, the results
in this paper were likely robust and not excessively depen-
dent on the value of α. Strengths of the use of filtering
as described for this study include that the filter was the
same for all schemes, use of a very-high-order filter did
not degrade low-order solutions, and that using a constant
filter value for all simulations precluded any solution dif-
ferences that could have been caused by different filter
strengths. A weakness was that the filter orders and filter
coefficients could have been ‘fine-tuned’ for each scheme
and resolution, but this was far beyond the scope of this
paper.

If instead the constant-eddy mixing (which was also
a form of filter but was intended to mimic SGS turbu-
lent fluxes in a crude sense) was reduced or increased by
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only 25% the impact was much more substantial owing
to the larger impact on above 2Δ waves by the effec-
tively O2 filter than the selective high-order O18 spatial
filters (P87; PL88; K07). For comparison, in the O17, 100
m solutions, the effects on the maximum, minimum and
RMS error for perturbation potential temperature and KE
at t= 1000 s when using Km = (7.5; 10; 12.5 m2⋅s−1) were
approx. 2.6%–7.9% and approx. 2.3% difference for the
maxima and minimums and approx. 12%–16% and approx.
6%–12% for RMS errors for perturbation potential tem-
perature and KE. However, the solutions trended towards
different solutions in comparison to those solutions made
with the three values of α for the O18 spatial filter. Unfortu-
nately, increasing the filter strength or eddy mixing coeffi-
cient potentially can adversely smooth resolvable features
(e.g., Anderson, 1989; K07; WSK22), making assessment
and interpretation of the impact of higher-order advec-
tion and interpolation difficult (e.g., WSK22). On the other
hand, proper use of filters can result in much improved
solutions. As discussed by P87 and PL88, use of a filter
with a lower order than the advection order will reduce
the accuracy of solutions, while using higher-order filters
often can improve the accuracy of solutions.

3.2.6 Comments on the effects of time
differencing

Importantly, the time-differencing errors with mode-split
RK3 temporal schemes (at best O2 in time for any
RK3 nonlinear solutions, as shown theoretically by Bal-
dauf, 2010), were perhaps contributing to the small over-
all convergence rates of the solutions for the nonlinear
colliding-plumes problem in part, since the best overall
convergence rates obtained were typically O1 to O2, as
expected. Temporal errors have been shown repeatedly
to limit overall convergence of solutions in other simi-
lar studies. For example, S93 showed that that they could
not attain better than O1 temporal convergence with their
nonlinear density current solutions when keeping spa-
tial resolution constant with O2 spatial differencing and
using increasingly smaller time steps. Their solutions con-
verged at approx. O1 for the Robert–Asselin time-filtered
leapfrog, which is theoretically O1 in time, but absolute
errors increasingly improved against the solution made
with the smallest time step, which served as the reference.
Similarly, Park and Lee (2009) showed that their nonlin-
ear rising-plume problem converged at the rate of the time
schemes they used including approx. O3 for the WS02 RK3
scheme and approx. O4 for their O4 L1 scheme. They also
showed more improvement in temporal convergence rates
using higher-order time schemes and higher-order spa-
tial differencing than the same with lower-order spatial

differencing. In another study, WSK22 could not achieve
better than approx. O3 overall convergence for a linear
advection problem using O10 spatial differencing and the
RK3 scheme, which is O3 in time for linear solutions (Bal-
dauf, 2010). High-order overall convergence rates were
achieved by G09 and Wu et al. (2021), including O17 over-
all convergence for an O17 Runge–Kutta time scheme cou-
pled with O17 spatial differencing for a number of linear
problems; however, G09 could not achieve overall conver-
gence rates that matched order of accuracy for the spatial
differencing for the nonlinear inviscid Burgers’ equation,
as high-order RK schemes become O2 for nonlinear prob-
lems. By choosing a very small time step with the RK4
time scheme, Wu et al. (2021) was able to achieve overall
convergence rates that matched spatial order of accuracy
(O3–O17) for inviscid nonlinear Burgers’ equation solu-
tions, but only when the time step was reduced dramat-
ically by 2−(2r−1)/4 (where 2r− 1 is the order of accuracy,
e.g., O17 for r= 9, for the odd order of the spatial scheme)
for each halving of spatial resolution so that the temporal
errors were roughly the same order as the spatial order of
accuracy. Using the approach employed by Wu et al. would
have required time steps for O17, 50 m solutions that were
approx. 19 times smaller than time steps used for O17, 100
m solutions in this study, rather than just twice as small.

Unsurprisingly, many, including S93, Park and
Lee (2009), Wu et al. (2021), WSK22, and so forth, have
found that using smaller time steps than dictated by the
CFL typically resulted in more accurate solutions, but not
better convergence rates. In the study here, using O17,
resolution of 100 m, and time steps that were two and four
times smaller than that used in Set A resulted in solution
maxima and minimums (not shown) that were closer to
those in the 25 m reference solution than any of the other
experiment sets at 100 m resolution; maximum and mini-
mums up to 5.5% better than those in Set A; variable fields
that were somewhat less noisy than in Set A; and as much
change in solution fields in some cases as in Sets C–J,
where impacts of interpolations, pressure gradient/diver-
gence, and SGS turbulent fluxes were compared. Also, as
one might expect, the use of a time step 2–9.6 times larger
than used in Set A produced maxima and minimums that
were further from the reference solution, as well as fields
of the dependent variables, all of which were more dis-
torted and noisier than in Set A. The calculated temporal
convergence rates for these experiments were typically not
larger than O1 for potential temperature, KE, deforma-
tion, and vorticity, thus, even though absolute temporal
errors were fairly small, they seemingly were not too small
to impact overall convergence rates.

A preliminary examination of temporal convergence
rates (figures not shown) was made using a subset of simu-
lations employing O9 and O17 numerical approximations,
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holding spatial resolution constant at approx. 100 m, sys-
tematically reducing the time step (2.4, 1.2, 0.6, 0.2, and
0.1 s), and using the solution with the smallest time step
(0.1 s) as the reference. When spatial filters, SGS turbu-
lence, and divergence damping were simultaneously made
inactive, the results demonstrated much larger calculated
temporal convergence rates of approx. O3 (usually slightly
larger than O3 and occasionally as large as approx. O3.96
with O17 spatial differencing, as others have noted using
higher-order spatial schemes with RK3 time schemes),
compared to not larger than O1 with all of these terms
active. These results were consistent with the approx. O3
RK3 temporal convergence rates reported by Park and
Lee (2009), which did not include either spatial filtering
or SGS turbulence, but did include stronger divergence
damping, and were better than expected based on the anal-
ysis done by Baldauf (2010). When used without SGS tur-
bulence and divergence damping, the spatial filters, which
had a very modest Courant number of approx. 1× 10−2,
produced calculated temporal convergence rates not larger
than O1, compared to approx. O2–O3 when the filter-
ing Courant numbers were 1× 10−4–1× 10−5 (i.e., much
weaker filter). Additionally, the O2–O18 SGS turbulence
and O2 divergence damping, which had Courant num-
bers of approx. 3× 10−4 and ∼1× 10−2 respectively, both
individually produced approx. O2–O3 calculated tempo-
ral convergence rates. The temporal errors with high-order
flux, and either O2 or high-order (no smaller than O4)
interpolations and pressure gradient/divergence, did not
reduce temporal convergence rates to less than approx. O3.

In summary, low temporal convergence rates associ-
ated with the spatial filters, and to some degree diver-
gence damping and SGS turbulence terms had poten-
tially significant negative impacts on overall convergence
rates, especially those with the filter, and as a conse-
quence they impacted the cost effectiveness of high-order
spatial differencing schemes. In spite of the effect of
slowed convergence rates associated with time differenc-
ing, the absolute errors for solutions that were used in this
paper were generally small, and the use of increasingly
higher-order spatial schemes almost always improved
objective errors, sometimes by a factor of up to 5–7, com-
pared to the lower-order spatial schemes at the same
resolution. Finally, in the spirit of Park and Lee (2009),
who state ‘For a lower-accuracy calculation (i.e., larger
L2 norm), the [simplified RK3] SRK3 [WS02] scheme is
still more efficient. However, for high-accuracy simula-
tions, it may be possible that higher-order time-integration
schemes should become efficient at a sufficiently high
resolution and that the R21 and L21 schemes are more
efficient than the SRK3 scheme’. This perhaps holds
for very-high-order spatial differencing schemes as well,
with a hint of this possibly seen in the higher-resolution

solutions made with 33.33 m or less along with high-order
(O13 or higher) numerical approximations, as indicated
by some of the L2 and L∞ error norm measures presented
herein.

4 CONCLUSIONS

The main conclusions of this study include the following:

1 The best solutions, based on comparisons with a O17,
25 m reference solution, were attained at most reso-
lutions with the highest-order flux schemes, interpo-
lations, and to a lesser extent, pressure gradient/di-
vergence approximations; thus for a given resolution,
higher-order flux/advection was the most impor-
tant factor in producing more accurate solutions,
followed by high-order interpolations, and to a lesser
extent high-order numerical approximations for pres-
sure gradient/divergence, while high-order (O4–O20)
numerical approximations for SGS turbulent fluxes
had minimal impact on solutions (although O4–O6
SGS turbulent-flux approximations may provide some
improved accuracy compared to O2 approximations
when using constant-eddy mixing coefficients in tests
such as those shown in this paper).

2 Formal convergence rates were generally limited to at
best approx. O1–O2 for the mode-split RK3 solutions
discussed in this paper, regardless of the order of accu-
racy of the spatial schemes used owing to the strong
nonlinearity of the test problem, and perhaps partly to
the time scheme, which is theoretically at best O2 for
nonlinear, mode-split, RK3 time-integration schemes
(Baldauf, 2010); temporal convergence rates were not
higher than O1 especially when spatial filters, and
to a lesser degree when SGS turbulence and diver-
gence damping were active, and approx. O3 with them
turned off; this indicated the possible negative impact
of the temporal errors with these terms on overall
convergence rates.

3 Integrated-flux solutions, which were at best O2 for
linear problems (T87), were worse both objectively in
terms of RMS errors and various error norms, as well
as visually, when compared to the constant-grid flux
solutions for the two-dimensional colliding-plumes
nonlinear problem.

4 Visual appearances and objective-error measures,
based on an O17, 25 m resolution reference solu-
tion, showed that solutions improved with increases
in order of numerical approximations for fluxes past
O3–O7 through O9–O17, with the most visual and
objective-error improvement achieved with increas-
ing the overall order from O3 to O5, followed by
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O5 to O9, and so on, although improvement was
grid-resolution-dependent for the test problem.

5 Higher-order numerical approximations improved
the representation of circulation structures and
shapes, phase errors, amplitude errors, and overall
accuracy of kinematic aspects of flows, such as KE,
deformation, and vorticity, for all of the resolutions
used in the simulations of the test problem.

6 Improving the order of accuracy of pressure gradien-
t/divergence could not compensate (except perhaps
marginally) for a low order of accuracy of flux/advec-
tion.

7 The inherent amplitude errors and diffusive nature
associated with upwind-biased flux schemes (larger
than next higher even-order schemes) were increas-
ingly less noticeable with increasingly higher-order
numerical approximations (consistent with T87 and
others).

8 Some theoretically cost-effective solutions in
terms of FPOs, assuming the same Courant num-
ber, were found between finer-resolution O3 and
next-coarser-resolution O5 or higher solutions, as
well as some of the finer-resolution O9, O13, and O17
solutions; however, the intermediate resolution O5
and next-coarser-resolution O9 solutions were at best
cost-comparable.

9 The diffusion-limited nature of the nonlinear
colliding-plumes test problem, as well as time scheme
errors, (especially when coupled with SGS turbulence,
spatial filtering, and divergence damping, which
increased overall absolute errors and diminished tem-
poral convergence rates to less than O1 from approx.
O2), at least partially, if not wholly, compromised cost
effectiveness of the flux solutions made with less than
O13 numerical accuracy if the CFL-based time step
for each order of accuracy was considered, in compar-
ison to previous studies that utilised non-viscous or
weakly viscous solutions.

10 Employing CPU times instead of theoretical FPOs
improves the estimates of cost effectiveness for many
higher-order solutions through efficient computer
cache memory use, noting that CPU times are
machine-sensitive, while FPOs are not.

The main limitations of this work include the
following:

1 The test problem used might not have been challeng-
ing enough to the numerical schemes.

2 Only one value of constant turbulent eddy mixing
coefficient was considered (simulations not shown
with a smaller Km = 4 m2⋅s−1 expectedly contained
more fine-scale detail).

3 All of the possible combinations of orders or accu-
racy for advection, interpolations (including different
interpolation schemes), and pressure gradient/diver-
gence were not examined, reported, and/or attempted.

4 Objective-error measure accuracy might have been be
weakened by interpolating solutions on a staggered
grid using O2 bilinear interpolation.

5 Power spectra were not yet analysed; they can show
whether or not smaller-scale waves have more KE
power with higher- rather than lower-order schemes,
which would indicate that smaller-scale features are
being better resolved (e.g., Skamarock, 2004; P15; N21;
Wang et al., 2021; Zhang et al., 2022), and with further
analysis could also reveal dispersion and dissipation
properties of nonlinear schemes (Zhang et al., 2022).

6 Collapsing numerical approximations (lower-order
accuracy) near the lower and upper boundaries were
likely affecting solutions, but this could be averted
to some degree with inverse Lax–Wendroff- type
approaches (Tan & Shu, 2010, 2013; personal commu-
nication, C.-W. Shu 2019) or mirror conditions at the
vertical boundaries (mirror conditions are not prac-
tical for numerical weather prediction with surface
fluxes).

7 The use of unstretched grids likely limited the relative
importance of high-order interpolations for comput-
ing off-grid point information and fluxes, the former
of which are often computed with simple averaging,
but not always, especially in the vertical (e.g., the CM1
model; Bryan, 2021).

8 The degree of conservation of passive scalars, momen-
tum, mass, energy, etc. was not evaluated (experi-
ments comparing two or more passive scalars and
their sum would have provided more insight concern-
ing the behaviours of schemes for cases with many
scalar variables that are dependent on each other [e.g.,
mixing ratio and concentration of precipitation, or
mixing ratio of rain and snow compared to total mix-
ing ratio and snow]).

9 The short simulation times may not have allowed
full appreciation of the production of better solutions
with higher-order advective fluxes, interpolations, and
pressure gradient/divergence numerical approxima-
tions.

10 Monotonic operators were not extensively tested as a
method to reduce overshoots as their use is beyond the
scope of this study; however, a preliminary test with
the 100 m solutions was done to test Leonard’s (1991)
monotonic operator (not shown), which showed that
while the monotonic operator did indeed keep the
solutions monotonic, the solutions were much less
accurate compared to the O17, 25 m reference solution
without the monotonic operator.
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Future work should include consideration of:

1 Other types of both odd and even high-order flux
schemes and other forms of interpolations, for both
uniform and stretched grids.

2 The effect of collapsing order of accuracy of numerical
approximations as boundaries are approached, espe-
cially when near-boundary interactions are important,
such as in atmospheric boundary-layer simulations
with strong surface fluxes or in other flows with rigid
physical boundaries (e.g., pipe flows, etc.).

3 The impact of time-differencing errors on overall
convergence (although usually considered negligible),
especially in simulations with SGS turbulence, spatial
filtering, and divergence damping.

4 The importance of interpolations and flux approxima-
tions using stretched grid-based coefficients should be
considered (initial work shows that at least interpola-
tion for off-grid information becomes more important
for improved accuracy for more stretched grids).

5 The sensitity of more complicated problems, includ-
ing those with parameterised physical processes (e.g.,
turbulence, microphysics, radiation, etc.), to the use
of higher-order advective fluxes, SGS turbulent fluxes,
interpolation, and pressure gradient/divergence differ-
encing, which could interact in unexpectedly owing to
nonlinearities.

In summary, very high odd-order (O9–O17)
upwind-biased constant-grid advective-flux schemes
coupled with high-order interpolation, pressure gra-
dient/divergence numerical and SGS turbulent-flux
approximations, both visually and objectively produced
the most accurate solutions for the experiments pre-
sented in this paper. We conclude that O9–O17 flux
schemes, coupled with at least O4 or higher high-order
interpolation, and to a lesser extent O4 or higher SGS
turbulent fluxes and pressure gradient/divergence, can
produce high-quality solutions, and have the potential to
perform better in terms of objective and qualitative mea-
sures than O3–O7 advective-flux schemes when coupled
with commonly used O2 interpolations, pressure gradi-
ent/divergence differencing, and SGS turbulent-fluxes
in limited-area atmospheric models, without being a
computational burden.
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