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Abstract
Two-dimensional, nonlinear diffusion-limited colliding plumes simulations
were used to demonstrate the improved solution accuracy with very high order
O9–18 flux schemes, including upwind-biased and even-centred constant grid
flux and Crowley constant grid flux schemes, and odd order weighted essen-
tially non-oscillatory (WENO) flux schemes, along with variations and hybrids
of these. All schemes were coupled with comparably high order even-centred
Lagrangian interpolations and pressure gradient/divergence approximations,
and O18 spatial filtering. Subgrid-scale (SGS) turbulent flux calculations, with
a constant eddy-mixing coefficient, were made with O2 spatial approximations
(O4–20 accurate SGS turbulent fluxes had little impact). Using a range of res-
olutions from Δx=Δz= 25–166.66… m for all schemes comparisons against
an O17 flux, 25 m resolution reference solution showed solutions made with
≥O9 fluxes produced (often substantially) improved solutions, both visually and
usually objectively, compared to solutions produced with lower order (<O9/10)
fluxes, especially at intermediate resolutions (33.33–100 m). Expectedly, odd
order solutions were increasingly damped as accuracy was decreased, especially
from O9 to O3, especially for WENO solutions, while even order solutions were
increasingly contaminated with dispersion and aliasing errors as accuracy was
decreased, especially from O10 to O4. Odd order schemes also produced bet-
ter solutions than even order schemes for <O9/10 fluxes, while the highest
order (≥O13/14) schemes produced the best solutions, for any given resolu-
tion. Even order flux and Crowley flux (WENO) solutions were the least (most)
computationally expensive, based on either floating-point operations (FPO) or
CPU times. Efficient WENO-Sine and proposed hybrid Crowley-WENO(-Sine)
schemes required fewer FPOs to produce more accurate solutions than tradi-
tional WENO schemes. We are encouraged by the often much improved visual
and objective accuracy of very high order (≥O9) fluxes in simulations of a com-
plex problem, and encourage further testing in numerical weather prediction
models.
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1 INTRODUCTION

Very few studies have considered very high, ninth
through to eighteenth, order of accuracy (O9–18; here-
after, O denotes order-of-accuracy), upwind-biased odd
order or centred even order advective flux finite dif-
ference approximations in the atmospheric sciences,
nor have more common ≥O9 flux schemes been com-
pared. To address this, the purpose of this article is to
evaluate accuracy and computational cost effectiveness,
through visual evaluation and objective error measures,
of traditional O3–18 constant grid flux, dimension-split
O3–18 constant grid flux Crowley (Crowley, 1968 C68;
Smolarkiewicz, 1982 S82; Schlesinger, 1984; Tremback
et al., 1987 T87; Bott, 1989; Costa and Sampio, 1997; Wicker
and Skamarock, 2002 WS02; etc.), and O3–17 weighted
essentially non-oscillatory (WENO) flux schemes (Jiang
and Shu, 1996 JS96; Shu, 1997 S97; Balsara and Shu, 2000
BS00; Shu, 2003 S03; Borges et al., 2008; Gerolymos
et al., 2009 G09; etc.) for a slow (e.g. advection and
turbulence modes) and fast (e.g. sound and sometimes
gravity-buoyancy modes) mode-split system of equations
(e.g. Skamarock and Klemp, 1992) using a nonlinear
diffusion-limited 2D colliding plumes problem. These
types of scheme are chosen as they form a relatively sim-
ple basis for many other schemes, with lower ≤O7 order
versions widely used in the atmospheric sciences and≤O9
in the gas dynamics communities. All solutions produced
in this study are made with comparable or higher order
numerical approximations for both interpolations wher-
ever odd-grid calculations are needed as well as for calcula-
tions of the pressure gradient and divergence calculations
in the momentum equations and divergence term in the
pressure equation. Higher order (e.g. O4–18) subgrid-scale
(SGS) turbulent flux approximations had little impact on
solutions (Straka et al., 2023 SWK23) and thus are not
presented.

Odd order schemes generally have better phase errors
compared to one-order lower even schemes, while even
order schemes have better amplitude errors than one-order
lower odd schemes (T87). None of the schemes were com-
bined with flux limiters (e.g. Leonard, 1991 L91; BS00) for
this study. Other important types of advection and flux
scheme constructs, such as finite-volume, finite-element,
compact, spectral/pseudo-spectral, and so forth, schemes
were not considered herein, but should be considered in
the future.

High order advection computations based on
upwind-biased odd order and centred even order tradi-
tional flux or Crowley-type flux schemes (including higher
derivative terms) can be made with constant grid-based
interpolation coefficients (T87), which are based on
Lagrangian interpolations and adjusted so that they have

the same order of error as pure advective schemes for
constant advective velocity and grid spacing (T87; inter-
polation coefficients for constant grid flux are identical to
the reconstruction coefficients used in WENO schemes
S97). Higher order integrated flux schemes for odd and
even order for traditional flux and Crowley flux schemes
can also be based on unadjusted Lagrangian interpola-
tions for either unstretched or stretched/irregular grids.
While seemingly high order, their accuracy is not equiv-
alent to pure advective schemes when the advective
velocity and grid increment are constant and have been
demonstrated to be less accurate (T87). Use of an analyti-
cal function and its derivative can be used to demonstrate
that constant grid flux schemes converge at the order of
the scheme, while integrated flux schemes only converge
at O2 regardless of the order of the interpolation (SWK23,
in review; thus, not shown here), consistent with T87. All
non-WENO odd order schemes used in this study were
one point-biased, although they could be constructed
as up to N-point upwind-biased schemes, where N is
order of accuracy. The reconstruction polynomials, which
are used to compute the fluxes for WENO schemes, are
numerically identical to the constant grid flux polyno-
mials, but found by alternative methods (e.g. Shu, 1998).
Vertical advection terms for scalars can be integrated for
mode-split simulations on the slow time step, or on the
fast mode time step using multiple small time steps to
accommodate fast-moving gravity waves, with the former
used herein.

Traditional odd and even order higher-order advec-
tion/flux schemes are simple to implement and compu-
tationally very efficient. In addition, these flux schemes
are very accurate, especially for smooth flows. However,
they are subject to the production of aliasing and high
frequency dispersion errors, especially near sharp gradi-
ents and discontinuities (S97), and thus require the use of
flux-limiters (e.g. Bott, 1989; L91; S97; BS00; Durran, 2010
etc.) and/or spatial filters (Shuman, 1957; Shapiro, 1970;
S82; Purser, 1987 P87; Purser and Leslie, 1988 PL88;
Durran, 2010) to control numerical “noise”, especially for
low-order even-centred schemes. Odd order flux schemes,
which inherently damp solutions, although to a lesser
extent as accuracy is increased (e.g. TML05), typically
require less spatial filtering than even order flux schemes.

Stable time integration for traditional flux schemes
in compressible models with the slow modes (advec-
tion, diffusion, etc.) split from the fast modes (sound
and gravity waves), called mode-split systems, can be
accomplished with explicit two-stage O2 or three-stage
O3 Runge–Kutta (RK) schemes (WS02), O4 RK4 schemes
(Park and Lee, 2009), as well as with some filtered
leapfrog schemes (Asselin, 1972; Park and Lee, 2009;
Williams, 2009, 2011, 2013; Williams et al., 2022), among
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others (e.g. explicit O3 [for linear systems, O2 for nonlinear
systems] Adams–Bashforth–Moulton: Wicker, 2009).

The forward-in-time multidimensional advective or
flux form type Crowley schemes (e.g. C68) can be sta-
bilised using properly implemented dimension-split (often
called time-split) approaches or by the use of explicit
cross derivatives (e.g. C68; S82; Schlesinger, 1985 S85;
T87; Bott, 1989; Easter, 1993; Costa and Sampio, 1997).
Crowley schemes can be used in mode-split models with
the two-step approach proposed by WS02 for the veloc-
ity and pressure variables, or by solving the momentum
equations on the small time step, the fast-mode part of
the time integration as proposed by Walko and Avis-
sar (2008). Most applications of Crowley schemes have
used stabilising derivatives up to order N for an N-order
Crowley scheme. Smolarkiewicz (1982) used a stabilis-
ing second-order derivative, but commented that the first
derivative advection or flux could be approximated using
any higher order scheme. As described by T87, even (odd)
derivative terms in Crowley schemes mostly impact ampli-
tude (phase) errors. Multi-dimensional, dimension-split
schemes, including Crowley schemes, have been shown
to produce artificial gradients (Clappier, 1998) owing to
errors with diagonal advection/flux in flows with deforma-
tion for at least some systems of equations. Fortunately,
these artificial gradients can be eliminated by correctly
formulating the flux using a very simple flux correction,
which requires minimal code changes. While WS02 sug-
gested using the Clappier (1998) flux correction, they did
not use it in their mode-split Crowley scheme demon-
stration using the Straka et al. (1993 S93) density current
problem, but were still successful in using the Crow-
ley mode-split time integration scheme. Positive definite
area-preserving integrated flux Crowley schemes based on
nonlinearly normalising and limiting fluxes (applicable to
other types of flux schemes) for up to O4 were presented by
Bott (1989) and to O5–8 by Costa and Sampio (1997), along
with many others who presented variations described in
the literature, and these schemes have been shown to
be accurate and efficient, but are not considered herein.
Finally, Smolarkiewicz (1985) showed that the time accu-
racy of the Crowley scheme for non-constant velocities
could be increased from O1 to O2 by simply using the
advecting velocity at time level n+ 1/2, denoted by vn+1/2,
after each dimensional direction update in the advec-
tion/flux computations. Values of vn+1/2 can be obtained
by using the average of the n* and n time level veloci-
ties vn+1/2 = 0.5(v*+ vn), or by using extrapolated velocities
at time levels n−1 and n, vn+1/2 = 0.5(3vn – vn−1). How-
ever, it is not known how the WS02 mode-split Crowley
affects the Smolarkiewicz (1985) procedure in attempt-
ing to achieve O2 temporal accuracy. Thus, this procedure
was not used in the results presented in the current study,

as preliminary test results were somewhat encouraging
to mixed.

The WENO schemes, and their many variants, are
widely popular in many areas of fluid dynamics, and to a
lesser extent in atmospheric and ocean sciences (e.g. Tan
et al. 2005; TML05), and have been shown repeatedly to
provide excellent solutions for non-viscous fluid problems
with very complex flows and sharp boundaries/shocks.
Most WENO schemes are odd order, although high order
central WENO schemes for O4, 6 and 8 have been devel-
oped (e.g. Qiu and Shu, 2002), and can be more effi-
cient than odd order WENO schemes. Care must be
taken with some central WENO schemes to avoid neg-
ative linear weights. High computational cost associ-
ated with WENO schemes is perhaps one reason WENO
schemes have not been used as often in atmospheric
sciences compared to other schemes. Nevertheless, two
O3–9 WENO scheme variations are available in Bryan’s
CM1 model (Cloud Model 1; Bryan, 2021 B21, https://
www2.mmm.ucar.edu/people/bryan/cm1/), and at least
one O3–9 WENO scheme variation is available in at
least some versions of National Center for Atmospheric
Research (NCAR)’s Weather Research and Forecast model
(WRF), O3–5 WENO schemes in the Meso-NH model
(Lunet et al., 2017), among other models in the atmo-
spheric and oceanic sciences (e.g. TML05 for idealised
advective atmospheric related test problems). Some of the
desirable characteristics of WENO schemes include being
able to stably preserve gradients, maintain non-oscillatory
behaviour (although WENO schemes are not necessar-
ily monotonic) by limiting dispersion error, and minimise
dissipation of extrema near steep gradients and disconti-
nuities through the use of nonlinearly weighted combina-
tions of upwind, downwind, and centred (for some orders)
local reconstruction polynomials for the fluxes. Examples
are three third order fluxes for a fifth order scheme, four
fourth order fluxes for a seventh order scheme, five fifth
order fluxes for a ninth order scheme, and so forth, in
regions of smooth flow, yet will maintain approximately
third, fourth, fifth, etc. order near discontinuities, respec-
tively; see references above, especially S97, for comprehen-
sive explanations and descriptions for constructing WENO
schemes.

While the WENO schemes can produce excellent
solutions for complex non-viscous problems, especially
higher >O5 solutions, these schemes become increasingly
computationally expensive, with floating-point operation
(FPO) numbers related to R to the third power, where
order O= 2R–1. In comparison, the traditional comparably
high order advection or flux schemes have FPO numbers
related to order of the scheme, and Crowley schemes have
FPOs numbers related to the scheme order to the second
power. Much of the computational cost of WENO schemes

https://www2.mmm.ucar.edu/people/bryan/cm1/
https://www2.mmm.ucar.edu/people/bryan/cm1/
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is associated with computing the smoothness indicators
(e.g. S97; G09; Wu et al., 2020 W20; Wu et al., 2021 W21).
However, W20 and W21 recently described simpler, very
accurate smoothness indicators (exact for sine-waves),
which are much more efficient than traditional ≥O7
WENO schemes. The WENO-Sine scheme makes the com-
putational cost of implementing WENO related to R to
the second power, rather than R to the third power for
traditional WENO smoothness indicators. This cost need
should not be considered excessively restrictive for using
WENO schemes for numerical integration in studies of
complex atmospheric problems and numerical weather
prediction, as the flux computations are often only five
to ten percent of the total cost (e.g. TML05). Finally,
WENO schemes, as well as basic flux schemes, can be
stably integrated in slow/fast mode-split models with
various three-stage O3 Runge–Kutta time schemes RK3
(Williamson, 1980; Shu, 1988; Shu and Osher, 1988; WS02;
Baldauf, 2008; where RK3 in general is O2 for nonlin-
ear system time integrations and O3 for only linear sys-
tem time integrations: Purser, 2007; Baldauf, 2010; Lunet
et al., 2017).

A hybrid-WENO-Crowley odd order dimension-split
scheme is also proposed in this study in an attempt to
maintain the desirable characteristics of WENO schemes
and offset a portion of the computational expense of the
WENO scheme when used with Runge–Kutta time inte-
gration schemes. The proposed hybrid scheme simply
uses O3–17 WENO fluxes for the advection flux terms,
which are then coupled with the N-derivatives required
for stability for Crowley schemes, with the N-derivative
differenced with higher order constant grid fluxes. Time
integration is stably carried out with the WS02 mode-split
forward scheme for Crowley schemes. A higher order
hybrid-WENO-Crowley scheme can allow for a combi-
nation of the desirable aspects of WENO schemes when
simulating flows with sharp gradients and/or disconti-
nuities and also be amenable to stable time integration
with a simpler forward scheme, which reduces com-
putational cost relative to RK3 time integration. The
hybrid-WENO-Crowley scheme can incorporate the W20
and W21 WENO-Sine smoothness indicators to further
reduce computational cost.

Some motivating questions for this study include: (1)
first and foremost, which of the high order numerical
schemes discussed above can most accurately simulate
the nonlinear diffusion-limited 2D colliding plumes test
problem by providing the most accurate representation
of both physically important, but marginally resolved
(6–10 Δx) flow features, as well as well-resolved and
smooth features of the solutions in their thermodynamic
fields, kinetic energy (KE) fields, and derivative kinematic
fields (e.g. deformation and vorticity), using O3–18 flux

approximations and 25–166.67 m spatial resolutions?; (2)
which of these schemes can best accomplish high accu-
racy with high computational efficiency?; and (3) are
there variations and combinations of these schemes that
are more accurate and/or more efficient than the others?
Objective error measures are obtained using the O17 flux
scheme and 25 m grid resolution, nearly grid-converged,
diffusion-limited solution of the 2D colliding plumes
problem for a reference. The solutions all were integrated
in time with relatively small time steps to minimize tempo-
ral truncation errors. Both a brief description of the model
and a description of the design of the 2D colliding plumes
problem are included in Section 2. A reference solution is
then described and serves as the basis for visual compar-
isons and computed objective errors in Section 3, as are
the results and discussion of the results. A summary of the
findings and the conclusions are presented in Section 4.

2 METHODS

The 3D fully-compressible model used in this study was
based on the Euler equations cast in a conservative flux
form for dry or moist dynamics on the staggered C-grid,
following concepts discussed by Bryan and Fritsch (2002
BF02), Bryan and Morrison (2012), and B21, and nearly
conserves mass and energy. Fast sound and gravity waves
and slow advective and turbulent modes were split into a
fast/slow time-split system of equations (Skamarock and
Klemp, 1992), and stably integrated by including diver-
gence damping on the fast-mode time steps (Skamarock
and Klemp, 1992). The divergence damping coefficient
was kept very small to minimise errors from its use
(Lian et al., 2023). Importantly, divergence damping dif-
ferencing has formal temporal and spatial accuracy of
only O1 and O2, respectively. The turbulence scheme
and spatial filtering were integrated in time with accu-
racy of O1 forward-in-time for Crowley, and O2 for non-
linear RK3 time integrations by computing these terms
on all three RK3 stages. Flux schemes used were the
traditional constant grid flux, dimension-split constant
grid flux Crowley (T87), and WENO flux (e.g. JS96; S97;
BS00; G09). Turbulent-fluxes for all variables, except for
pressure, were computed using O2 numerical approxi-
mations and a constant eddy-mixing coefficient, which
allowed for a diffusion-limited nearly grid-converged ref-
erence solution when spatial (and temporal) resolution
was sufficiently reduced. Extensive tests reported else-
where (SWK23) showed that higher order (O4–18) numer-
ical approximations for constant eddy-mixing for constant
grid flux or Lagrangian integrated flux based SGS turbu-
lent fluxes had little impact on RMS errors of fully com-
pressible colliding plume solutions. The minimal impact
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of higher order SGS turbulent fluxes was a result, at least
in part, of differencing errors with diffusion terms not
being propagated as much each time step as they are with
advection terms, rather the diffusion term errors tend to
be damped locally (e.g. personal communication, B. Forn-
berg, 2019). Spatial filtering was based on the family of
filters described by P87. Note that the orders associated
with the high order spatial filters are the orders of the
derivative they are associated with and not the spatial dif-
ferencing accuracy; they all are O2 accurate in space as can
be seen in Fornberg’s (1988) tabulations.

A descriptive summary of all numerical schemes and
physics are provided in Supporting Information as Table S1
(adapted from SWK23). The Courant–Friedrichs–Lewy
(CFL) conditions and critical wave number for stable RK3
solutions with linear odd and even order O1–20 advec-
tion/flux approximations following procedures described
by Baldauf (2008), and for stable leapfrog even order O2–20
advection/flux approximations following Haltiner and
Williams (1980), Fornberg (1987), and Straka and Ander-
son (1993) for comparison, are tabulated in Appendix A
as Tables A1, A2 and A3, respectively. All constant grid
flux differencing, interpolation coefficients, staggered grid
coefficients for pressure gradient and divergence calcula-
tions for O1–20 schemes, and filter coefficient for even
orders O2–20 are tabulated in Supporting Information
Tables (S2a–d) along with instructions for reproducing the
reported values. The reader is referred to JS96, S97, BS00,
S03, Borges et al. (2008) and G09 for instructions to con-
struct WENO schemes as well as all coefficients. Note
that the nonlinear weights for WENO schemes were found
using improved methods from Borges et al. (2008), rather
than those proposed by Jiang and Shu (1996). Additionally,
the nonlinear weights for O3, 7, 11 and 15 WENO schemes
suggested by Castro et al. (2011) are used. Finally, a value of
𝜀min = 1× 10−10 (BS00) is used to prevent division by zero
in computation of the nonlinear weights for the WENO
scheme, while a value of 𝜀max = 1× 1030 is used to keep
the numerator in the weights from exceeding machine
precision (64 bits). The exponent parameter p in the non-
linear weights for WENO fluxes can have an impact on the
nonlinear dissipation, but not the formal accuracy of the
WENO fluxes (e.g. JS96; S97; G09). This nonlinear dissipa-
tion can increase with an increasing p (e.g. G09), and thus,
increasing the p can result in better control of overshoots at
very sharp boundaries and shocks. Traditionally, the value
of the exponent of p= 2 is used (e.g. JS96; S97; BS00; etc.);
however, a value of p= r has been shown by G09 to result
in more accurate solutions. The majority of WENO flux
solutions shown and discussed herein are made with p= 2,
with test solutions produced and discussed for p= r.

Results from a comprehensive suite of simulations
of a dry nonlinear 2D test problem are presented

to demonstrate the impact of very-high order finite
difference flux, dimension-split Crowley flux, and WENO
flux schemes made using odd/even order O3/4, O5/6,
O9/10, O13/14 and O17/18 numerical approximations
(odd order only for WENO), combined with compara-
ble even order Lagrangian interpolations for information
required at off-grid point locations and even order stag-
gered pressure gradient/divergence approximations (one
order higher for odd order schemes; e.g. for O17 advec-
tion, O18 interpolation/pressure gradient/divergence is
used). Since most studies in atmospheric sciences use at
most O2–7 advection/flux, the lowest order of numerical
approximations shown are O3/4. Flux correction for diag-
onal advection (Clappier, 1998) is not used for the Crowley
solutions, nor was this relatively simple correction neces-
sary, as was also found by WS02. Simulation results for
O1/2, O7/8, O11/12 and O15/16 are not shown for brevity.
A summary of the spatial resolutions (166.66… (here-
after 166.67), 133.33… (133.33), 100, 66.66… (66.67), 50,
33.33… (33.33), and 25 m, time steps and domain param-
eters used herein, is presented in Table 1. The orders of
accuracy for fluxes, interpolations, and pressure gradien-
t/divergence that comprise the simulation Sets A–H are
presented in Table 2. All solutions were made with 64-bit
mathematics, noting that round-off errors limit solution
improvement beyond ∼O17/18 or O19/20 for all schemes
considered. Solutions in this article were produced with
the Intel compilers; 128-bit arithmetic and storage was
not available with the latest Intel and GNU FORTRAN
compilers.

2.1 Efficient implementation of the
Crowley schemes

The computational efficiency of an N-order Crowley
scheme with N derivatives can be substantially improved,
especially when a model has many scalar dependent
variables. Consider the O4 flux Crowley scheme, for
example, with fluxes for grid index i for some variable b(i),
given by:

Flux(i+1/2)=s1+s2+s3+s4,

where

s1= (a1)•(c11•b(i–1)+c12•b(i)+c13•b(i+1)
+c14•b(i+2)),

s2= (a2)•(c21•b(i–1)+c22•b(i)+c23•b(i+1)
+c24•b(i+2)),

s3= (a3)•(c31•b(i–1)+c32•b(i)+c33•b(i+1)
+c34•b(i+2)),

s4= (a4)•(c41•b(i–1)+c42•b(i)+c43•b(i+1)
+c44•b(i+2)).



3674 STRAKA et al.

T A B L E 1 Domain and time-step parameters.

𝚫x (m) 𝚫z (m) Lx (m) Lz (m) Nx Nz Nx • Nz Nt 𝚫t (s)

166.66… 166.66… 20,000 10,000 121 61 7,381 1,920 0.520833…

133.33… 133.33… 20,000 10,000 151 76 11,476 2,400 0.4166…

100.00 100.00 20,000 10,000 201 101 20,301 3,200 0.3125

66.66… 66.66… 20,000 10,000 301 151 45,451 4,800 0.20833…

50.00 50.00 20,000 10,000 401 201 80,601 6,400 0.15625

33.33… 33.33… 20,000 10,000 601 301 180,901 9,600 0.104166…

25 25 20,000 10,000 801 401 321,201 12,800 0.078125

Note: Nx (Nz) is equal to the number of scalar grid points in x- (z-) directions for a staggered grid. The total number of grid points=Nx • Nz, and Nt is the
number of time steps for 1,000 s of integration. The x-direction velocity (u) has one extra point in the x-direction and the z-direction velocity (w) has one extra
point in the z-direction for the staggered C-grid. The time steps for each resolution are found using Δt=C •Δx/V max(s), where Courant number C= 0.046875,
values of Δx are grid resolutions, and approximate maximum velocity V max = 15 m⋅s−1.

a=u Δt/Δx, is the Courant number with velocity, time
step, and grid spacing given by u, Δt, Δx, respectively, cji
and below c(j,i+[−1,0,1,2]) are stencil coefficients to com-
pute fluxes, and s1–4 are the terms for the O1–4 fluxes,
respectively. (Note the dot • denotes multiplication.)

The fluxes can be rewritten for better computational
efficiency as:

Flux(i+1/2)=t1•b(i–1)+t2•b(i)+t3•b(i+1)
+ t4•b(i+2),

where
t1 = a•(c11+a•(c12+a•(c13+a•(c14)))),
t2 = a•(c21+a•(c22+a•(c23+a•(c24)))),
t3 = a•(c31+a•(c32+a•(c33+a•(c34)))),
t4 = a•(c41+a•(c42+a•(c43+a•(c44)))).

The Crowley flux term here can be written with more
compact notation as:
Flux(i+1/2) = t(1)•b(i–1) + t(2)•b(i)

+ t(3)•b(i+1) + t(4)•b(i+2),
where
t(j) = a•(c(j,i–1)+a•(c(j,i)+a•(c(j,i+1)

+ a•(c(j,i+2)))) for j=1,4.

Importantly, the values for t1, t2, t3 and t4, or t(j) in the
improved efficiency version, only need to be computed
once (twice) per time step for scalars (velocity and pres-
sure) and can be reused for each scalar in the time step.
Also, the variable “a” does not have to be repeatedly taken
to an integer power. Furthermore, the improved efficiency
version requires dependent variables at each index in the
difference stencil for scalars to be accessed only once (for
the O4 flux example a total of four dependent variable
accesses versus 16), both of which can be very advanta-
geous, in terms of computer CPU and cache use, espe-
cially in models with a large number of scalar dependent

variables, which is often the case for models that include
aerosols, microphysics and chemistry. This procedure the-
oretically results in the computational cost for even (odd)
order Crowley flux schemes being equal to (twice) the “tra-
ditional” odd order flux computational cost each time the
flux needs to be computed. In other words, the FPO num-
bers become linearly related to the scheme order rather
than the scheme order squared.

2.2 Two-dimensional colliding plumes
test problem

To compare the performance of a comprehensive suite
of simulations using five numerical schemes, each with
five orders of accuracy, and eight grid resolutions, a 2D
nonlinear test problem with warm and cold spheroidal
plumes colliding with each other above the ground was
used. This problem was similar to the one described in Nor-
man (2021 N21), although with eight times smaller initial
plume perturbation amplitude, as well as with inclusion
of constant eddy-mixing SGS turbulent fluxes. The con-
stant eddy-mixing SGS turbulent fluxes allow for a nearly
grid-converged solution for nonlinear problems if the spa-
tial resolution is fine enough. In addition, the effects on
solutions of a background mean wind of Ut =−20 m⋅s−1

were also considered. As the plumes approach each other,
vertical gradients are enhanced, and after colliding, both
cold and warm air plumes spread out laterally while ther-
mal and shear instabilities result in the development of
prominent rotors. The solutions are symmetric in the
horizontal, but they are not symmetric in the vertical
owing to vertical gradients in density, temperature, pres-
sure, and sound speed. Rotors of different sizes develop
as the plumes spread laterally, with the rotors tending to
grow upscale owing to the 2D slab-symmetry geometry of
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the domain (e.g. Fjortoft, 1953; Soong and Ogura, 1973);
Appendix B includes a figure, zoomed on the left mem-
ber of the symmetric circulation couplet of the colliding
plumes after 1,000 s using O17 fluxes, and 16.66… m res-
olution, in which the features discussed with respect to
the results herein are denoted (the upper and lower rotors,
etc.) to facilitate solution of comparisons of the schemes
with various orders of accuracy and resolution. The 2D
colliding plume simulations produce steep gradients with
strong deformation, rotation, divergence and translation
kinematic characteristics, which can significantly chal-
lenge numerical schemes. The colliding plume problem
has physical features and attributes, such as very sharp
gradients, deformation and rotational characteristics, and
smoother flow regions, which spatial grids can resolve to
varying degrees. All simulations were made without the
complications of physical parametrizations other than the
turbulence scheme with a constant eddy diffusion coeffi-
cient and selective higher order spatial filters.

The atmosphere represented in the simulations is ini-
tially dry adiabatic (potential temperature equal to 300 K
at all heights). The two plumes which collide are initiated
horizontally in the centre (x= 10 km) of a 20× 10 km x-z
domain, which is periodic in the x-direction. The warm
plume is centred at height z= 3,050 m and the cold plume
is centred at height z= 7,050 m. The warm and cold plumes
are prescribed by the same cosine squared function, but
with potential temperature excess/deficit of Δ𝜃 =±2.5 K,
respectively. The radii of both plumes are 2,000 (2,000) m
in the x- (z-) directions. All schemes were tested with grid
resolutions of Δx=Δz= 25, 33.33, 50, 66.67, 100, 133.33,
166.67 m. The time steps assume a constant Courant num-
ber (C= 0.046875) with the resulting time steps given as
Δt= 0.078125, 0.1041166… , 0.15625, 0.20833… , 0.3125,
0.4166, and 0.520833… (Table 1). With these values all
solutions are stable, although all solutions were stable
with Courant numbers as large as C= 0.12, and much
larger if the number of small time steps was increased.
The small Courant number helped keep temporal trunca-
tion errors minimised, as discussed in SWK23. A constant
eddy mixing coefficient (Km = 10.0 m2⋅s−1) was applied to
all variables (except pressure), which allowed for a nearly
grid-converged solution when Δx=Δz= 25 m. A weak
scale-selective O18 spatial filter (S82; P87; PL88; Knievel
et al. 2007) was applied in both x- and z-directions to per-
turbation values (from their base state; pressure was not
filtered). The very small filtering coefficient used (α= 0.03)
meant 2Δ spatial waves were damped 3% every time step.
For comparison, a value of α = 0.24 is used in the Weather
Research Forecast model (WRF; K07). The numerical spa-
tial filter (P87) is very selective for higher wave number
(small Δx) with coefficients for the O18 filter based on
the two parameters R (rolloff) and S (smoothness); (R,

S)= (18, 0) for all solutions in this article. The spatial fil-
ter was not technically required to be as strong with odd
order, upwind-biased flux scheme solutions as that needed
for even order scheme solutions, and was not required at
all for WENO scheme solutions; therefore, an intermedi-
ate filter coefficient α (held constant for all the schemes)
was chosen so as to not overly smooth the odd order
scheme solutions, or to not excessively under-smooth the
even order scheme solutions. Much lower values of αwere
able to be used for odd order schemes where higher val-
ues of α were found to be generally detrimental. On the
other hand, the lower order even scheme solutions used in
this article would have significantly benefited from much
stronger spatial filtering to remove large amplitude, high
frequency numerical noise (dispersion error and alias-
ing) in the solutions presented. Use of stronger filtering
for either odd or even higher order solutions would have
resulted in unneeded and detrimental excessive damping
of the higher order solutions. Use of a spatial filter with
an order less than the order of advection/flux advection
was always detrimental to the accuracy of solutions (P87,
PL88), but the converse was not true.

3 RESULTS AND DISCUSSION

3.1 Reference solution

A nearly grid-converged reference solution (Figure 1) was
produced in order to make visual solution comparisons
and calculate objective error measures based on a solution
made using the odd order O17 upwind-biased constant
grid flux, O18 spatial filter, O18 pressure gradient /diver-
gence, constant eddy mixing coefficient Km = 10.0 m2⋅s−1,
Δx=Δz= 25 m, and Δt= 0.078125 s in order to make
visual solution comparisons and calculate objective error
measures. The idea of nearly grid-converged solutions
herein means the flow and scalar fields become suf-
ficiently resolved and smooth for the resolution such
that the higher order derivatives become increasingly
well posed and well behaved as a result of the constant
eddy-mixing turbulent diffusion (or in other studies by
flux-limiters; e.g. N21). As Park and Lee (2009) note, in
the context of time differencing for nonlinear problems,
“… the theory that a smaller time step with a low-order
time-integration scheme can be better than an inefficient
high-order scheme is supported only when the conver-
gence rule is maintained” (i.e. for a linear problem). The
same holds in the context of spatial differencing in that
a higher spatial resolution with low-order spatial differ-
encing can be better than a computationally intensive
high order scheme. As a consequence of these concepts,
“convergence” of nonlinear solutions in this study only
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F I G U R E 1 Set A perturbation potential temperature (T − Tb; K) fields at t= 1,000 s made with grid resolution Δx=Δz= 25 m with
odd/even order O17/18 upwind-biased/centred constant grid flux Crowley (Co= odd; Ce= even), upwind-biased/centred constant grid flux
(Fo= odd; Fe= even), and odd order WENO (W) flux schemes, all with O18 interpolations and pressure gradient/divergence, O18 spatial filter,
same Courant number C, and constant eddy mixing coefficient of Km = 10 m2⋅s−1 shown in left and centre columns. Kinetic Energy per unit
volume (KE; 1/100 J⋅m−3) fields shown in the right column. Maximum (Max) and minimum (Min) values and contour interval (Cint) values
are on each plot. The bold solid line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. The bold dashed line
in the centre column plots is the 0.2 K perturbation potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference
solution. Only a sub-domain (most of the whole domain) from x=−8 to 8 km and z= 1 to 9 km in the left column, x=−6.7 to −2.7 km and
z= 3.6 to 7.6 km (left rotor) in the centre column and right column are shown. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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means that the objective error measures are improving
rather than converging at the theoretical linear conver-
gence rates.

Objective error measures such as root-mean-square
(RMS) errors and L∞ error norms (Figure 2), computed

for all schemes using the 25 m reference solution, for res-
olutions of Δx=Δz= 25, 33.33, 50, 66.67, 100, 133.33 and
166.67 m and fluxes of O3/4, 5/6, 9/10, 13/14 and 17/18
were used to determine which resolution could be best
used for a reference solution. In addition, Richardson

F I G U R E 2 Set A objective error
measures versus resolution Δx = Δz (m) for
orders of accuracy (legend). Perturbation
potential temperature (T − Tb; K; lower
curve cluster in each panel) and Kinetic
Energy (KE; J⋅m−3; upper curve cluster in
each panel) Root Mean Square errors (RMS;
left) and L∞ error norms (right) calculated
against the upwind-biased constant grid flux
O17, 25 m reference solution for the
odd/even O3/4, 5/6, 9/10, 13/14 and 17/18
order upwind-biased/centred constant grid
flux Crowley schemes, odd/even order
upwind-biased/centred constant grid flux,
and odd order O3, 5, 9, 13 and 17 WENO
flux schemes, all with comparable order
interpolations and pressure
gradient/divergence, O18 spatial filter, same
Courant number C, and constant eddy
mixing coefficient of Km = 10 m2⋅s−1.
[Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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extrapolation (not shown) based on the Δx=Δz= 25 and
33.33 m solutions was used, as in S93, to support that the
test problem solution was sufficiently grid-converged with
O17 numerical approximations and Δx=Δz= 25 m res-
olution. Note that, phase errors (which vary with each
scheme, as some of the solutions were not completely
grid-converged for the nonlinear test problem) produced
localised differences amongst the schemes. For example,
in some test solutions, there were local differences from
the reference solution of up to ∼0.21 K in the perturba-
tion potential temperatures, even though the simulation
extrema (Lmax and Lmin error norms calculated against
the reference solution) were identical to about four dig-
its for all variables. Finally, as described in SWK23 for
this colliding plumes problem, the L1 error norms for per-
turbation potential temperature between O3–17, 33.33 m
simulations and O17, 25 m simulation, were∼4.12× 10−3

to 1.16× 10−3, while L1 error norms between the O3–17,
50 m and O17, 25 m solutions, ranged from∼4.81× 10−3 to
3.79× 10−3. These error norms met the Zhang et al. (2003)
L1 error norm <0.01 criteria to indicate near-convergence
for their viscous Rayleigh–Taylor problem. The L1 error
norms 3.71× 10−2 to 2.64× 10−2 between O3–17, 100 m
solutions and O17, 50 m solutions indicated that the 100 m
solutions were not near-convergence based on the Zhang
et al. (2003) criteria.

Using a spatial resolution of Δx=Δz= 25 m with any
of the schemes produced maxima and minima in the per-
turbation potential temperature, winds, and perturbation
pressure fields that were generally within 0.51% of each
other, with the O17, 25 m Crowley solution having the
largest of these differences and largest RMS errors, and
the O18 flux, O17 WENO, and O18 Crowley having the
smallest differences and RMS errors from best to worst,
respectively. Regardless, any of these Δx=Δz= 25 m solu-
tions made with O17/18 numerical approximations from
any of the schemes in Set A were nearly indistinguish-
able and had very nearly identical maxima and min-
ima for up to three to four digits, as well as compara-
ble RMS errors and L∞ error norms. As a result, any of
the O17/18, 25 m solutions made could have been used
as a reference solution, without any change in the con-
clusions based on objective error measures (and visual
appearances; analyses with different reference solutions
are not shown for brevity). The O9/10–17/18 solutions
made with Δx=Δz= 25 also were visually, very nearly
indistinguishable from the reference simulation solution
without any added mean wind, as were the O13/14–17/18,
25 m solutions made with an added mean wind of
Ut =−20 m⋅s−1. Finally, it should be kept in mind that
numerical errors of any sort can result in buoyancy and
shear instabilities to be erroneously excited or damped
in problems such as the colliding plumes problem, single

plume problems (Grabowski and Clark, 1991), and so
forth, and can complicate discernment of differences
owing to physical causes from those caused by numerical
solution errors (Zhang et al., 2003).

3.2 Comparisons without an added
mean wind (Set A)

The results from all of the schemes without an added mean
wind were compared at t= 1,000 s by examining solu-
tions from all schemes made with comparably high order
interpolation and pressure gradient/divergence approxi-
mations, same O18 spatial filter, same Courant number
C, and Δx=Δz= 100 m for perturbation potential tem-
perature (Figure 3; Set A). Additional comparisons at
t= 1,000 s are shown for solutions with enhanced focus
on the vicinity of the marginally resolved upper rotor
(Figures 4–8) where the largest errors generally occurred
for the odd order Crowley (Co; note even order Crow-
ley Ce not shown in Figures 4–8, but included in Sup-
porting Information S3), odd and even constant grid flux
(Fo and Fe, respectively), and WENO (W) flux schemes,
comparable order interpolations and pressure gradient/di-
vergence, same O18 filter, same Courant number C, and
resolutions ofΔx=Δz= 33.33, 66.67 and 100 m for pertur-
bation potential temperature (Figure 4), difference plots
of potential temperature between the upwind-biased con-
stant grid flux O17, 25 m reference solution and test solu-
tions (Figure 5), kinetic energy per unit volume [Figure 6;
KE= 0.5 ρ(ui • ui)], 2D vorticity in the x-z plane [Figure 7;
(Δu/Δz-Δw/Δx) hereafter vorticity], and total magnitude
of 2D deformation in the x-z plane {Figure 8; [(Δw/Δx+
Δu/Δz)2 + (Δu/Δx–Δw/Δz)2]1/2; hereafter deformation},
where ui are the i= 1,2,3 (u,v,w) velocity components in
m⋅s−1, and ρ is the dry air density in kg⋅m−3.

As expected, higher order numerical approxima-
tions produce visually better results with respect to the
upwind-biased constant grid flux O17, 25 m reference
solution for all schemes for Δx=Δz= 33.33, 66.67 and
100 m resolutions, especially in terms of preserving the
shape of the rotors. All odd/even flux and odd/even order
Crowley schemes, especially the ≥O9/10 higher order odd
and even schemes, and≤O6 even schemes, using reso-
lutions of 66.67 and 100 m (as well as 50, 133.33 and
166.67 m not shown) produced notable (∼ ≥1%; locally
as high 20%–40%) overshoots in the maxima and min-
ima of perturbations compared to the reference solution,
while these overshoots were only found in the ≤O5, 25
and 33.33 m solutions (former not shown). In contrast,
the ≤O9, 100 m, and≤O13, 50 (not shown) and 66.67 m,
the ≥O17, 25 (Figure 1) and 33.33 m (Supporting Infor-
mation Figure S4a) WENO flux solutions did not produce
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F I G U R E 3 Set A perturbation potential temperature (T − Tb; K) fields at t= 1,000 s made with grid resolution Δx=Δz= 100 m, with
odd/even order O3/4, 5/6, 9/10, 13/14 and 17/18 upwind-biased/centred constant grid flux Crowley (Co= odd; Ce= even), odd/even order
upwind-biased/centred constant grid flux (Fo= odd; Fe= even), and odd order WENO flux (W) schemes, comparable order interpolations and
pressure gradient/divergence, O18 spatial filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2⋅s−1. Maximum
(Max) and minimum (Min) values and contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 K perturbation
potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference solution interpolated to the grid in the plot. Only
a left-side sub-domain from x=−6.7 to −2.7 km and z= 3.6 to 7.6 km is shown. [Colour figure can be viewed at wileyonlinelibrary.com]

notable (∼ ≥1%) overshoots in the maxima and minima of
perturbations compared to the reference solution. These
behaviours are generally in agreement with G09 where
≤O9 WENO fluxes had few or no overshoots in the max-
ima and minima of the scalar quantity (nearly monotonic),
while ≥O13 WENO fluxes did (not monotonic).

In spite of the overshoots, which tended to be very
localized, the higher order solutions had better overall

amplitude and phase errors, as well as better objective
error measures including RMS errors and L∞ error norms
for potential temperature and KE made using the con-
stant grid flux O17, 25 m reference solution (Figure 2;
RMS and L∞). The RMS errors for potential temperature
and KE fields for all schemes made with Δx=Δz= 100 m
are also shown in Table 3. By t= 1,000 s, most schemes
for the nonlinear problem used in this article converged

http://wileyonlinelibrary.com
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F I G U R E 4 Set A
perturbation potential
temperature (T − Tb; K)
fields at t= 1,000 s made with
grid resolutions
Δx=Δz= 100, 66.67 and
33.33 m, with odd order O3,
5, 9, 13 and 17 upwind-biased
constant grid flux Crowley
(Co), odd/even order O3/4,
5/6, 9/10, 13/14 and 17/18
upwind-biased/centred
constant grid flux (Fo= odd;
Fe= even), and odd order
O3, 5, 9, 13 and 17 WENO
flux (W) schemes,
comparable order
interpolations and pressure
gradient/divergence, O18
spatial filter, same Courant
number C, and constant
eddy mixing coefficient of
Km = 10 m2⋅s−1. Maximum
(Max) and minimum (Min)
values and contour interval
(Cint) values are on each
plot. The bold dashed line is
the 0.2 K perturbation
potential temperature
contour of the upwind-biased
constant grid flux O17, 25 m
reference solution
interpolated to the grid in
each plot. Only a zoomed-in
sub-domain from x=−5.2 to
−3.6 km and z= 6.4 to 7.6 km
on the left side of the
simulation domain is shown.
[Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 As in
Figure 4, except for the
difference between reference
and test potential temperature
(TRef − T; K). The bold dashed
line is the 0.2 K perturbation
potential temperature contour of
the upwind-biased constant grid
flux O17, 25 m reference
solution interpolated to the grid
in each plot. The bold solid line
is the 0.2 K perturbation
potential temperature contour of
the simulation in the plot.
[Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 6 As in Figure 5, except for Kinetic Energy per unit volume (KE; 1/100 J⋅m−3). The bold solid line is the 0.2 K perturbation
potential temperature contour of the simulation in the plot. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 7 As in Figure 6, except for vorticity (100 s−1). The bold solid line is the 0.2 K perturbation potential temperature contour of
the simulation in the plot. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 8 As in Figure 7, except for deformation (100 s−1). The bold solid line is the 0.2 K perturbation potential temperature contour
of the simulation in the plot. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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at best at ∼O2 except for some very high order and fine
resolution solutions where convergence was ∼O3 and
occasionally higher (Figure 2), with convergence rates
slowly flattening at higher resolutions for <O17/18, but
not for O17/18. This is similar to what N21 showed for
nonlinear, shock-producing, 1D Euler simulations.

While many simulations were able to reasonably cap-
ture the resolvable and marginally resolved characteristics
of the flow with Δx=Δz= 100 m (Figure 3) or 133.33 m
(not shown), and appear fairly similar between schemes,
among like-schemes, among like-order of accuracy, and
especially among the odd order schemes (Figure 1 and
Figures 3–8), as well as among the even O10, O14 and
O18 schemes, the perturbation potential temperature dif-
ferences fields (Figure 5) show some very large local dif-
ferences, which were typically ∼1–2 K and occasionally
larger than ±3 K. These errors probably owe to a com-
bination of phase and amplitude errors, and numerical
dispersion and dissipation along with aliasing, all of which
might not be fully appreciated from visual examination.
The largest errors were especially in and near the bound-
aries of the smaller (less resolved) upper rotor and near the
front and back edge of the outward (leftward) propagat-
ing front beneath the upper rotor. Comparisons of maxima
and minima of the velocity components (not shown) have
differences of 8–10% between similar order schemes (e.g.
O17/18), as high as 15% for a given scheme amongst all of
the orders discussed, and an overall maximum difference
of 15%. The differences in the pressure fields among the
schemes were generally <5% (not shown).

Even order constant grid flux and even order con-
stant grid flux Crowley schemes, especially the low order
(O4 and O6) forms, have more prominent high frequency
wave numerical noise, which can cause excitation of phys-
ical instabilities as the numerically induced high fre-
quency waves are not well controlled. These types of
errors can disrupt the evolution of the larger scale fea-
tures and produce unphysical solutions, as well as exag-
gerated maxima, minima, etc. Importantly, the Crowley
schemes have some advantage over the constant grid flux
solutions in terms of reduced dispersion errors, though
the Crowley schemes tend to have slightly more dissipa-
tion errors. Nevertheless, the O14 and O18 constant grid
flux and constant grid flux Crowley schemes have some
of the best objective error measures (objective errors for
Δx=Δz= 100 m are tabulated in Table 3, while objec-
tive errors for Δx=Δz= 100, 66.67 and 33.33 m are also
tabulated in Table 4 along with CPU timings which are
discussed later), and these were very slightly better than
O13 and O17 odd order schemes. In contrast, odd-order
constant grid flux numerical approximations have much
less obvious dispersion/phase and aliasing errors than
even order schemes (especially for <O10 fluxes), appear

relatively free of numerical noise, and have the best over-
all visual performance and objective error measures for all
orders.

Notice that the O13–17 WENO solutions using
Δx=Δz= 100 m (Figure 3) tend to produce a perturbation
in the potential temperature field on the top-left side of
the interface, while none of the other solutions produce
this perturbation. This same perturbation appeared in the
non-viscous WENO colliding plume solutions described
by N21, and appears to be associated with numerically
accentuated shear and buoyancy gradients, both of which
were already large, causing an unphysical feedback, based
on the behaviour of the reference solution and WENO
simulations with finer resolutions of Δx=Δz= 25, 33.33,
50 and 66.67 m for guidance, none of which have this
perturbation. The objective measures (Figure 2; Table 3)
show that error improvement stops and gets worse as
order is increased from O13 to O17 for the 100 m WENO
solutions, while all of the other schemes continue to have
improved errors with increasing order. In contrast to the
>O5 WENO solutions, as well as the other odd solutions
with the non-WENO schemes, the O3–5 WENO solutions,
and especially the O3 WENO solutions, appear overly
smooth with significantly smaller amplitude maxima and
minima (Figures 3–8). Moreover, the O3–5 WENO solu-
tions (Figure 2) are not as accurate as the odd order flux
scheme solutions either visually or with objective error
measures. The damped O3–5 WENO solutions herein
are consistent with the well-known issue of excessive
damping of gradients with O3–5 WENO schemes doc-
umented by, for example, Latini et al. (2006) and Wang
et al. (2021 WPM21). Though not shown for brevity, it
is important to note that the WENO simulations show
the well-known exceptional behaviour of preserving
strong gradients both with and without artificial viscos-
ity (eddy mixing and/or spatial filters), while the other
schemes, especially the even order schemes, need spatial
filtering.

Overall, considering all orders-of-accuracy and all res-
olutions tested, the results discussed for the case of no
added mean wind (Set A) show that odd order constant
grid flux schemes perform the best against the reference
solution (as might be expected since the reference solu-
tion is obtained using the odd order constant grid flux
scheme with O17, and 25 m). Additionally, the O10–18
even order constant grid flux schemes performed remark-
ably well for intermediate and finer grid resolutions
(Δx=Δz= 33.33–100 m). However, the O4–6 even order
constant grid flux solutions, and to a very slightly lesser
degree the O4–6 Crowley schemes, produced solutions
that were all very noisy and contaminated with significant
dispersion and aliasing errors, the latter noticeable in the
presence of prominent 3Δwaves, both visually identifiable
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T A B L E 3 RMS errors with four significant digits for potential temperature/kinetic energy per unit volume in simulation Sets A–H for
Δx=Δz= 100 m simulations with errors computed using the O17, 25 m reference simulation.

Schemes O3/4 O5/6 O9/10 O13/14 O17/18

A Co 0.1399/1.768 0.1064/1.302 0.08396/1.088 0.07378/1.024 0.07001/1.012

Ce 0.1980/2.472 0.1352/1.439 0.08735/1.075 0.07347/1.001 0.06984/0.09552

Fo 0.1420/1.811 0.1069/1.302 0.07862/1.035 0.07149/1.002 0.07037/1.050

Fe 0.2106/2.623 0.1413/1.497 0.08670/1.058 0.07183/0.9846 0.07038/1.002

W 0.1909/2.429 0.1200/1.527 0.08947/1.163 0.08698/1.130 0.1023/1.154

B Co 0.2123/3.018 0.1983/2.587 0.2054/2.821 0.2084/2.854 0.2093/2.875

Ce 0.2467/3.465 0.2225/3.045 0.2093/2.883 0.2083/2.873 0.2099/2.897

Fo 0.2026/2.893 0.1811/2.698 0.1801/2.659 0.1803/2.680 0.1798/2.692

Fe 0.2513/3.910 0.2289/3.323 0.1993/2.972 0.1850/2.758 0.1842/2.751

W 0.2499/3.992 0.1838/2.700 0.1715/2.587 0.1739/2.622 0.1742/2.569

C WR 0.1909/2.429 0.1299/1.642 0.1095/1.380 0.1029/1.283 0.09734/1.271

WS NA NA 0.08055/1.137 0.08110/1.136 0.07697/1.077

D WL c:c:17 0.1007/1.136 0.1013/1.144 0.1015/1.148 0.1023/1.155 0.1023/1.154

WH17:17:c 0.1649/2.436 0.1217/1.548 0.09241/1.180 0.08866/1.136 0.1023/1.154

WH PIc 0.1908/2.427 0.1199/1.527 0.08956/1.162 0.08707/1.131 0.1023/1.154

E Fs Wv 0.1648/2.104 0.1102/1.424 0.08707/1.151 0.08363/1.098 0.08235/1.071

Fv Ws 0.1711/2.072 0.1121/1.283 0.08226/1.035 0.07877/1.033 0.09121/1.061

F Co2 0.1399/1.768 0.1064/1.302 0.08401/1.088 0.07380/1.024 0.07001/1.012

G Hy 0.1918/2.421 0.1204/1.525 0.09058/1.171 0.08820/1.135 0.1002/1.147

HS NA NA 0.08247/1.135 0.08315/1.171 0.07554/1.060

H2S NA NA 0.08247/1.135 0.08315/1.171 0.07554/1.060

Hs cv 0.1715/2.066 0.1123/1.293 0.08236/1.065 0.07909/1.053 0.08803/1.069

Hv Cs 0.1640/2.078 0.1117/1.434 0.09012/1.180 0.08500/1.107 0.08374/1.064

H Fv s17 0.1452/1.820 0.1109/1.318 0.08671/1.140 0.08113/1.144 0.07037/1.050

Fs v17 0.1143/1.372 0.08570/1.060 0.07148/0.9861 0.07029/1.006 0.07037/1.050

Note: The top row indicates odd/even order solutions from O3/4–17/18.
Abbreviations: Co= odd order upwind-biased constant grid flux Crowley; Ce= even order constant grid flux Crowley; Fo=upwind-biased odd order constant
grid flux; Fe= even order constant grid flux; W=WENO flux; WS=W with sine-based smoothness indicators; WR=W with smoothness indicator power
given by p=R, where O= 2R–1; WL c:c:17=O3, 5, 9 or 13 W for stages one and two of RK3, and O17 W for stage three of RK3; WH= (17:17:c)=O17 W for
stages one and two of RK3, and O3, 5, 9 or 13 W for stage three of RK3; WH PIc= (17:17:c)=O17 W for stages one and two of RK3, and O3, 5, 9 or 13 W for
stage three of RK3 with comparable order interpolations and pressure gradient/divergence; Ws Fv=W for scalars and Fo for velocities/pressure; Fs Wv=Fo
for scalars and W for velocities/pressure; Co2=O3, 5, 9, 13 or 17 Co with N = 2 derivatives in place of N = order of Crowley scheme; Hy=hybrid
WENO/Crowley flux; HS=hybrid WENO/Crowley flux with sine-based smoothness indicators (p= 1); H2S=hybrid W for scalars and Co with N = 2
derivatives in place of N = order of Crowley scheme; Hs Cv=hybrid W for scalars and Co for velocities/pressure; Hv Cs=hybrid W for velocities/pressure and
Co for scalars; Fv s17= lower order Fo (O3, 5, 9 or 13) for velocities/pressure and O17 Fo for scalars; and Fs v17= lower order Fo (O3, 5, 9 or 13) for scalars and
O17 Fo for velocities/pressure. NA=not available. The bold numbers are the four lowest RMS errors for each set.

and in power spectra of the velocity components, KE,
vorticity, and potential temperature (not shown).

Visual inspection of the solutions in Figure 1 and
Figures 3–8 shows that increasing the order of accuracy
of approximations used to make the solutions by two to
four orders is roughly comparable to making the resolu-
tion 1.5–3 times finer, consistent with Shi et al. (2003),

Latini et al. (2006) and SWK23. All O9–17 solutions with
Δx=Δz= 50 m (not shown) and 66.67 m appear nearly
as good visually and perhaps better than the O3–5 solu-
tions made with Δx=Δz= 33.33 m (factor of 1.5–2; in
particular, see difference fields between 25 m reference
and test solutions for perturbation potential temperature
in Figure 5).
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The computational cost is approximated for each
scheme from a theoretical perspective to avoid comput-
er/compiler dependence as total floating-point operations
(FPO) per grid point per time step for the three-stage
RK3 mode-split time integrations using two, three and six
fast mode small time steps per slow-mode time step, for
stages one, two and three, respectively times the number
of grid points times the number of time steps (Figure 9).
The use of order of accuracy preserving interpolations and
pressure gradient/divergence calculations results in FPO
numbers greater than those compared to using O2 inter-
polations and pressure gradient/divergence calculations as
is traditionally done in most atmospheric models. Over-
all accuracy does not seem to be degraded if ≥O4 is used
for the interpolations and pressure gradient/divergence
calculations, but is for O2 (SWK23). Importantly, the use
of O4 for the interpolations and pressure gradient/diver-
gence calculations results in many fewer FPOs compared
to use of comparable order of accuracy for these calcula-
tions (SWK23). Note the approximate linear increase with
order of FPOs per grid point per time step for the flux and
Crowley schemes, cubic increase for WENO schemes, and

quadratic increase for WENO-Sine solutions (discussed in
Section 3.4.2). The total FPOs in the graphs of Figure 10
were all normalised by the Δx=Δz= 166.67 m O4 con-
stant grid flux scheme FPO value (the lowest value of
all schemes and resolutions considered) and are based
on keeping the Courant number constant, and provides
the basis which provides a relative computational cost
for each scheme using with O3/4, 5/6, 9/10, 13/14 and
17/18 order numerical approximations and resolutions of
Δx=Δz= 25, 33.33, 50, 66.67, 133.33 and 166.67 m, rel-
ative to the RMS errors for perturbation potential tem-
perature and KE (Figure 10). Use of a time step based
on the stable CFL rather than a constant Courant num-
ber becomes more complex, especially for the lower order
(≤O5/6) solutions. First, temporal truncation errors tend
to increase with longer time steps for this problem (e.g.
SWK23). Second, the solutions with longer time steps
required fewer total computations, which might offset the
impact of accumulated temporal errors.

Comparisons of computational costs based on FPOs
versus potential temperature and KE RMS errors for all
solutions is best seen graphically, which shows that the

F I G U R E 9 Set A approximate (Total) Floating-Point Operations (FPOs) per grid point per time step for each scheme (left chart),
constant grid flux Crowley (Co= odd; Ce= even), constant grid flux (Fo= odd; Fe= even), WENO flux (W), and WENO with sine wave-based
smoothness indicator (WS; for R≥ 4, which is ≥O7, notes values for O3 and O5 WS are theoretical). The table (right) includes the
approximate total floating-point operations (FPO) per grid point per time step (Total) and the FPO for advection (FLX). The bottom six rows
of the table contain the approximate FPO for WS02 forward mode-split Crowley (C) and mode-split RK3 time integrations for pressure
gradient/divergence (PD), all non-flux interpolations (Int), and the sum (Sum) of FPOs for PD, Int, buoyancy, and filter terms. The FPO
values for Sum of PD, Int, buoyancy, and filter terms using O2 and O4 numerical approximations are 1,713 and 2,233 for mode-split RK3, and
1,263 and 1,743 for WS02 forward mode-split Crowley, respectively.
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F I G U R E 10 Set A log–log charts of the computational cost (total Floating-Point Operations FPO) versus Root Mean Square errors
(RMS) for Perturbation potential temperature (T − Tb; K; left-most curve cluster in each panel) and Kinetic Energy (KE; J⋅m−3; right-most
curve cluster in each panel) calculated against the upwind-biased constant grid flux O17, 25 m reference solution for the odd/even order
O3/4, 5/6, 9/10, 13/14 and 17/18 upwind-biased/centred Crowley constant grid flux (Co= odd, upper left; Ce= even, upper right) odd/even
order O3/4, 5/6, 9/10, 13/14 and 17/18 upwind-biased/centred constant grid flux (Fo= odd, middle left; Fe= even, middle right) and odd
order O3, 5, 9, 13 and 17 WENO flux (W; bottom) schemes comparable order interpolations and pressure gradient/divergence, O18 spatial
filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2⋅s−1 for grid resolutions of Δx=Δz= 25, 33.33, 50, 66.67,
100, 133.33 and 166.67 m (legend). The total FPO values (for all grid points and all time steps, i.e. the entire simulation) are all normalised by
the FPO value for the centred constant grid flux O4 Δx=Δz= 166.67 m simulation for comparison purposes. [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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solutions with the best objective errors for the computa-
tional cost are solutions made at the finest resolutions with
highest even order flux, odd order flux (Figure 10), even
order Crowley solutions, while WENO solutions had sig-
nificantly larger computation costs (Figure 10). Clearly,
except at the highest orders and high resolutions, most
schemes are not cost-effective based on the use of the the-
oretical FPOs. Using near the maximum stable CFL only
worsens the cost-effectiveness for each scheme. The lack
of cost-effectiveness seems to be associated, at least in part,
with the diffusion-limited nature of the problem and tem-
poral errors, especially temporal errors with the filter, as
discussed in SWK23.

Fortunately, efficient computer cache use, which
can be machine dependent, can allow for signifi-
cant cost-effectiveness with higher order schemes as
described by, for example, Balsara and Shu (2000) and Shi
et al. (2003), who showed computational costs based on
CPU times were up to two or more times less than costs
estimated from FPOs. In this study, attempts at careful
programming resulted in better use of faster computer
caches and reduced cost for all schemes compared to
expectations based on FPOs. Values for the CPU times
for each scheme order along with RMS errors for per-
turbation potential temperature (top RMS value for each
order) and KE (bottom RMS value for each order) are
presented for 100, 66.67 and 33.33 m solutions in Table 4.
The first CPU value in the for each scheme order is CPU
time for only the flux stencil + pressure gradient stencil
+ divergence stencil + interpolation stencil calculations
and next to this CPU time in bold is its ratio to the lowest
order scheme (O3/4) in the row. The second CPU value
for each scheme order is CPU time for only total advection
+ total small step + total buoyancy and next to this CPU
time in bold is its the ratio to the lowest order scheme
(O3/4) in the row. The CPU for the SGS turbulent flux and
spatial filter calculations are the same amongst Crowley
solutions and same amongst RK3 solutions for any given
resolution and included in the caption of Table 4. Efficient
computer cache use, for example using the 100 m odd flux
simulations, resulted in the ratio of the CPU time for O17
to O3 stencil calculations to be roughly only ∼3.6, when
theoretically using FPOs the ratio would be ∼6.6 (note the
flux FPOs in Figure 9 included all calculations for fluxes,
where in contrast only the stencil calculations were con-
sidered for this discussion). All calculations, including
overhead calculations (e.g. dt/dx, map factors, density in
the flux divergence term, etc.) needed to update dependent
variables with fluxes, pressure gradient, and divergence,
are significant, similar among the Crowley time inte-
grations, similar among the RK3 time integrations, and
are included in the second number in each table cell to
help show why high order solutions do not dramatically

increase total CPU time in comparison to much lower
order solutions. In another comparison, the O17 WENO
flux solution CPU times (Table 4, second number), which
were dominated by the flux calculations (84%–93% for
O3–17 WENO fluxes, respectively), use only about ∼1.5–2
times more CPU time (domain size dependent) than O3
WENO solutions, in contrast to using FPOs, for which
the O17 WENO solutions could be expected to use ∼10
times more CPU time than O3 WENO solutions. This
made the WENO schemes much more attractive in terms
of CPU time use compared to what could be expected
using theoretical FPOs. The results in Table 4 also show
that the use of CPU times rather than FPOs to estimate
cost-effectiveness allows some higher order schemes to
be more competitive, at least visually, and not much
more CPU compared to lower order schemes. Finally,
while use of higher order numerical approximations,
at least for the colliding plume problem, is not always
cost-effective, higher order numerical approximations can
provide more accurate to much more accurate solutions
when resolution is not changed, or cannot be changed for
reasons such as limits associated with available computer
memory.

3.3 Comparisons of solutions with an
added mean wind of −20 m⋅s−1 (Set B)

Additional simulations, with an added mean wind of
Ut =−20 m⋅s−1, were compared at t= 1,000 s for all
schemes made with comparably high order interpola-
tion and pressure gradient/divergence approximations,
same O18 spatial filter, same Courant number C, and
Δx=Δz= 25–166.67 m. Use of the added mean wind
proved to be more of a challenge for all schemes, as seen in
the perturbation potential temperature fields (Figure 11).
As with the solutions without the added mean wind,
additional comparisons were made between solutions
at t= 1,000 s in the vicinity of the marginally resolved
upper rotor where the largest errors generally occurred
for the odd order Crowley, odd and even order con-
stant grid flux, and WENO flux schemes, with compara-
ble order interpolations and pressure gradient/divergence,
same O18 filter, same Courant number C, and resolutions
of Δx=Δz= 33.33, 66.67 and 100.00 m for perturbation
potential temperature (Figure 12) and kinetic energy per
unit volume (Figure 13).

The odd order constant grid flux, odd order constant
grid flux Crowley, and WENO flux schemes produced the
better solutions than the even order constant grid flux and
even order Crowley schemes for all orders-of-accuracy, in
terms of rotor shape preservation and amplitude and phase
errors, when compared to solutions without an added
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F I G U R E 11 As in Figure 3, except for Set B simulations (i.e., with an added mean wind of Ut = −20 m s−1) perturbation potential
temperature (T − Tb; K). The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased constant grid
flux O17, 25 m reference solution interpolated to each grid. [Colour figure can be viewed at wileyonlinelibrary.com]

wind and to the reference solution from the simulations
without the added wind (theoretically, the solution should
be the same with and without an added mean wind due to
Galilean invariance; however, the mean wind adds a fur-
ther challenge to the numerical schemes not present in the
no-wind simulations). Unsurprisingly, the phase errors,
which are enhanced by strong advection from the added
mean wind, were minimised with the higher order approx-
imations. The degree of improvements, which are notable
and continued up to O17/18, were somewhat unexpected.
Some minor loss in symmetry in the rotor shape and flow
fields (features on left side versus right side of domain)

occurred with all schemes, especially with the even order
schemes and spatial resolutions of 100, 66.67 and 33.33 m
(all schemes and all orders are shown in Supporting Infor-
mation S4) for the simulations with the added mean wind
owing to variations in dispersion and phase errors in the
parts of the solutions moving with and opposing the flow,
especially for lower order even flux schemes. The even
order Crowley schemes produced less asymmetries than
teven order flux schemes, while the WENO schemes pro-
duced the least asymmetries at any order for any accuracy
at any given resolution compared to the odd/even Crowley
and odd/even flux schemes. The asymmetries decreased

http://wileyonlinelibrary.com
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F I G U R E 12 As in Figure 4, except for Set B simulations (i.e. with an added mean wind of Ut = −20 m s−1). Perturbation potential
temperature (T − Tb; K). The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased constant grid
flux O17, 25 m reference solution interpolated to the grid. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 13 As in Figure 6, except for Set B simulations (i.e. with an added mean wind Ut = −20 m s−1). Kinetic Energy per unit
volume (KE; 1/100 J⋅m−3). The bold solid line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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with both increasing scheme orders and spatial resolutions
but were still present for spatial resolutions of 33.33 m;
however, they were barely visible (Supporting Informa-
tion S4).

Interestingly, the apparent phase errors (based on
visual assessment of the placement of the leading poten-
tial temperature front (relative to the reference solution,
dashed contour) are the smallest in the O17 WENO solu-
tions made with Δx=Δz= 100 m (Figure 11) compared to
all of the other solutions for this resolution regardless of
the order of accuracy with which they were made. Addi-
tionally, the O5, 9, 13 and 17 WENO solutions also tend
to have the lowest RMS errors (Table 3) for potential tem-
perature and KE among the schemes for Set B. However,
the O3–5 (and to a lesser degree O9) WENO solutions
with the added mean wind have the worst visual appear-
ance, followed by the O3 and O5 Crowley solutions, even
at finer resolutions of Δx=Δz= 50 and 33.33… m (not
shown). The solutions made with even order flux finite dif-
ference schemes, and to a slightly lesser extent the even
order Crowley schemes, were adversely affected by disper-
sion/phase and aliasing errors, especially those with<O10
numerical approximations, and much more so than the
odd order scheme solutions. Additional spatial filtering
(factor of 10 or more, higher) was needed with lower order
even-centred constant grid flux schemes to control adverse
dispersion and aliasing etc. errors (not shown) enough to
make them as visually free of numerical noise as the odd
order solutions. However, increasing filtering strength can
adversely affect the overall accuracy, especially when eval-
uated in terms of amplitude error. In summary, the results
with the added mean wind simulations showed that the
highest order odd order schemes as well as the very highest
order (≥O9) even order schemes, were remarkably accu-
rate and had minimal numerical noise for the case with an
added mean wind.

3.4 Constant grid, Crowley, and WENO
flux advection scheme hybrids
and variations

Several variations of odd order versions of constant
grid, Crowley, and WENO flux schemes are evaluated
next, as are various hybrids of these schemes, includ-
ing a hybrid-WENO/Crowley scheme. Additionally, the
WENO flux schemes, integrated with three-stage O3 RK3
time integration schemes, slowly continue to gain use
in the atmospheric sciences. Given the high computa-
tional cost of numerical weather models, WENO and other
schemes sometimes have been used with “short-cuts”
to improve efficiency. However, the evaluation of the
impact of any detriment to the scheme accuracy associated

with some of these implementation practices to improve
computational efficiency has not always been demon-
strated and/or documented for either linear or non-
linear atmospheric problems. The impacts of some of
these implementations are presented in Sets C–H using
Δx=Δz= 100 m resolution.

3.4.1 WENO smoothness indicator power
(Set C)

Gerolymos et al. (2009) showed examples of WENO solu-
tions with up to O17, in which the WENO scheme
smoothness indicator exponent parameter were given by
p=R (denoted as WR on plots), where order of accu-
racy O= 2R–1, rather than using the traditional value of
p= 2 (JS96; BS00; G09). (Note p= 2 for both O3 WR and
O3 W.) Briefly, the O5–17 WENO flux solutions shown
by G09 made using a value of p=R were generally more
monotonic, and more accurately captured the solutions
in regions of very sharp boundaries/shocks for linear and
nonlinear 1D problems compared to solutions made with
p= 2. Comparisons of examples of WENO flux scheme
solutions presented herein with the smoothness indica-
tor exponent parameter given by p=R (hereafter denoted
as WR), instead of the traditional value of p= 2 (e.g.
JS96; S97), and Δx=Δz= 100 m resolution, showed that
the perturbation potential temperature field maxima and
minima in the for O5, 9, 13 and 17 WR solutions did
not overshoot values (e.g. were more monotonic) found
in the reference solution. In contrast, for example, the
perturbation potential temperatures maxima and minima
in the O17, 100 m solutions made using of p= 2 (the
worse-case) by 4.7 and 23.1%, respectively. These per-
cents decreased in the O17, 66.67 m (50 m) resolution
WENO flux solutions (p= 2) to 2.6% (1.6%) for perturba-
tion potential temperature maxima, with no overshoots
for the minima for either 66.67 or 50 m. Minimising over-
shoots and better monotonic behaviour by using p=R was
one of the defining impacts shown and discussed by G09.
However, RMS errors were somewhat degraded for O5,
9 and 13 WR perturbation potential temperature and KE
solutions herein using p=R (Figure 14 rows one–three,
WR, zoomed as in Figures 4–8; Table 3), although some-
what improved for O17 WR solutions, as compared to
WENO with p= 2 (see Figures 4–6). It seems that using
p=R may have overdamped the solutions at 100 m res-
olutions resulting in larger RMS errors. Finer resolution
solutions (e.g.Δx=Δz= 66.67 and 50 m) made using p=R
(Figure 14 rows five–six as in Figure 3) showed some-
what less damped solutions compared to solutions made
using 100 m resolution and p=R (Figure 14 row four as
in Figure 3), with no overshooting maxima and minima of
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F I G U R E 14 Set C perturbation
potential temperature (T − Tb; K; rows 1, 4, 5,
6, 7 and 10), difference between reference and
test solution potential temperature (TRef − T;
K; rows two and eight), and Kinetic Energy
per unit volume (KE; 1/100 J⋅m−3; rows three
and nine) fields at t= 1,000 s made with grid
resolution of Δx=Δz= 100 m, with O3, 5, 9,
13 and 17 WENO-R (WR) and O9, 13 and 17
WENO-Sine (WS) flux schemes, comparable
order interpolations and pressure
gradient/divergence, O18 spatial filter, same
Courant number C, and constant eddy mixing
coefficient of Km = 10 m2⋅s−1. The top six rows
are for the WR solutions with the smoothness
indicator exponent parameter given by p=R
(G09; order of accuracy given by O= 2R – 1),
rather than the traditional value of p= 2
(JS96; S97), with rows four, five, and six WR
solutions using 100, 66.67, and 50 m. Rows
7–10 are for the WENO solutions with sine
wave-based smoothness indicators (WS in
left-hand table) made with p= 1. Row ten is as
in row four for perturbation potential
temperature (T − Tb; K) for the efficient sine
wave-exact WENO-Sine (WS) smoothness
indicators and p= 1 solution but in the larger
sub-domain (compare with Figure 3; notice
the absence of anomalous perturbation
potential temperature found for the WENO
solutions). Maximum (Max) and minimum
(Min) values and contour interval (Cint) are
on each plot. The bold solid line is the 0.2 K
perturbation potential temperature contour of
the simulation in the plot. The bold dashed
line is the 0.2 K perturbation potential
temperature contour of the upwind-biased
constant grid flux O17, 25 m reference
solution interpolated to the grid in each plot.
Only a zoomed-in sub-domain from x=−5.2
to −3.6 km and z= 6.4 to 7.6 km on the left
side of the simulation domain is shown,
except in row four through six and the bottom
row where a sub-domain is from x=−6.7 to
−2.7 km and z= 3.6 to 7.6 km on the left side
of the simulation domain is shown. [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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perturbation potential temperatures for ≤O13, WR solu-
tions, although there were minor overshoots for the O17,
WR solutions as noted above. These higher resolution, WR
solutions still had larger RMS errors than found using
WENO p= 2. In addition, the ≥O13, 66.67 and 50 m res-
olution solutions had enhanced shear instabilities on the
warm-cold air interface, resulting in small-scale rollups,
which were not found in the reference solution. The
rollups seemed to be less apparent as resolutions were
made finer where diffusion could control them better,
and eventually converged to the reference solution, but at
finer resolutions than required for WENO solutions made
with p= 2. In summary, the use of p=R in computing
WENO fluxes produced potentially both worse and better
solutions, which are possible for the complex dynamical
problem employed in this article depending on resolution,
SGS turbulence, WENO flux order, and the error metrics
of most interest. Although the WR solutions were more
likely to be monotonic, they had larger RMS errors, and
the higher order (≥O13) solutions had more shape differ-
ences from anomalous shear instabilities at intermediate
resolutions, both of which contributed to the larger RMS
errors.

3.4.2 Accurate and more efficient
smoothness indicators for WENO schemes
(Set C)

Recently proposed and demonstrated, efficient, sine
wave-based WENO smoothness indicators (exact for sine
waves; hereafter WS; W20 and W21; note that the coeffi-
cients suggested by W21 were recomputed and corrected
for this article owing to a couple of typographical errors
in W21), for R≥ 4 (≥O7) WENO schemes (with com-
parable order interpolations and pressure gradient/diver-
gence), provided visually better solutions (Figure 14, rows
eight–ten, WS; zoomed as in Figures 4–8) for perturba-
tion potential temperature and KE fields, as well as better
objective error measure results (Table 3) when compared
to solutions with the traditional smoothness indicators
for O9, 13 and 17 WENO schemes given by JS96, BS00
and G09. Importantly, the anomalous perturbations in
the inner front on top of the lower rotors in the orig-
inal O13 and O17 WENO solutions are not produced
and the maxima and minima are much better behaved
with WENO-Sine scheme (compare row five in Figure 3
with row 10 in Figure 14). (Solutions for cases with and
without a mean wind for resolutions of 33.33, 66.67,100 m
are provided in Supporting Information S3, and for the
nearly full domain, with and without a mean wind,
for resolution of 100 m and for with a mean wind
for resolutions of 33.33 and 66.67 m are provided in

Supporting information S4.) These newer smoothness
indicators required increasingly fewer computations per
grid point per time step with each increase in R when
compared to traditional WENO schemes of equivalent
order as there are three versus R for each stencil for
R≥ 4. The results herein are in agreement with the find-
ings of W21 who stated that a value for the exponent
parameter p= 1 provided the best solutions with their
smoothness indicators. The use of either p= 2 or p=R
(in general >1) with the W21 sine-based smoothness indi-
cators degraded the results for the perturbation poten-
tial temperature and KE fields (not shown), as W21
found and explained. These results support the use of
the W21 sine-based WENO scheme smoothness indica-
tors for the colliding plumes test problem as formulated as
they provided more accurate WENO type solutions using
fewer FPOs.

3.4.3 Lower WENO approximations
for stage 1 and 2 of RK3 time integrations (Set D)

One way to reduce the computational cost of imple-
menting very high order advection schemes that are cou-
pled to multi-stage time schemes is to use lower-order
flux approximations, for example, in the 1st and 2nd
stage calculations of the RK3 time scheme, followed by
a very high-order advection scheme for 3rd stage. As an
example of the impact of this procedure, Gadd’s (1978)
multi-dimensional implementation of an O4 advection
scheme with a two-step Lax–Wendroff time-integration
scheme, used O2 advection for the first Lax–Wendroff
“half time step”, followed by O4 advection in the second
Lax–Wendroff “half time step”, maintaining the high order
accuracy of the O4 advection.

The use of Gadd’s approach of computing lower order
advection on all but the last stage of a multi-stage time
step, was applied herein on the 1st and 2nd stages of
RK3/WENO integrations and is shown to be stable and
accurate for the combinations considered. Specifically,
tests were made for five examples with orders for the RK3
time integration stages one: two: three given by O3:3:17,
O5:5:17, O9:9:17, O13:13:17 and O17:17:17 (Figure 15,
rows one–three, WL; zoomed as in Figures 4–8). The
results from these experiments show that requiring the
same high order advection/flux be used for each RK3
stage is not necessary, at least from a practical view,
based on perturbation potential temperature and KE
fields (Figure 15), and objective error measures (Table 3;
compare the values in each column with the values in the
last column, as all solutions have O17 for the third stage
of the RK3 time integration). Interestingly, the errors were
often slightly improved for the most part for the O3:3:17,
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F I G U R E 15 Set D perturbation potential temperature (T − Tb; K; rows one and four), difference between reference and test solution
potential temperature (TRef − T; K; rows two and five), and Kinetic Energy per unit volume (KE; 1/100 J⋅m−3; rows three and six) fields at
t= 1,000 s made with grid resolution Δx=Δz= 100 m, with mixed orders of WENO flux for RK3 time integration stages one, two and three
for scalars, velocity and pressure, O18 for all interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number C, and
constant eddy mixing coefficient of Km = 10 m2⋅s−1. Rows one – three are WENO flux solutions with orders for RK3 time integrations stages
one, two and three given by O3:3:17; O5:5:17, O9:9:17, O13:13:17 and O17:17:17 (WL). Rows four – six are WENO flux solutions with orders
for RK3 time integrations stages one, two and three given by O17:17:3; O17:17:5, O17:17:9, O17:17:13 and O17:17:17 (WH). Maximum (Max)
and minimum (Min) values and contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 K perturbation potential
temperature contour of the upwind-biased constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. The bold solid
line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. Only a zoomed-in sub-domain from x=−5.2 to
−3.6 km and z= 6.4 to 7.6 km on the left side of the simulation domain is shown. [Colour figure can be viewed at wileyonlinelibrary.com]

O5:5:17, O9:9:17 WENO solutions compared to using O17
WENO for all three RK3 stages. For the WL results, the
order of accuracy of the interpolations and pressure gradi-
ent/divergence at each stage were all kept the same as the
ones used in the last (third) stage of RK3 time integration;
that is, they were all compatible with the highest order

scheme used in the last (third) stage of RK3 time integra-
tion, which was O18 for these WL results.

Unsurprisingly, solutions with high order WENO flux
for the first two RK3 stages and low order WENO flux for
the third stage (i.e. O17:17:3–13; Figure 15, rows four–six,
WH solutions; Table 3), only shown for demonstration

http://wileyonlinelibrary.com
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purposes, generally did not improve the solutions, when
compared to those produced with WL solutions or those
with the same order of WENO flux at each RK3 stage.
The solutions were made with interpolations and pres-
sure gradient/divergence that were either O18 for all
stages (Figure 15 for WL and WH solutions) or the lowest
comparable order of accuracy of any of the three stages
(not shown; errors provided in Table 3). This demon-
stration shows that using higher order WENO fluxes, on
the 1st and 2nd, than those on the 3rd stage, regardless
of the order of accuracy of interpolations and pressure
gradient/divergence that were considered, generally did
not improve the appearance or objective measures of the
WENO solutions. However, solutions for the same order-N
WENO fluxes for all three RK3 stages were about the
same as using order <N flux on the first two RK3 stages
(WL scheme), making the use of WENO potentially much
less computationally expensive. Although not tested for
other schemes in this article, these results are expected to
hold for any of the other schemes besides WENO fluxes
considered herein.

3.4.4 WENO approximations for scalars
and constant grid flux for velocity and pressure
and vice versa (Set E)

A set of experiments were made using WENO flux only
for scalars and constant grid flux for velocity and pres-
sure to determine if these are as accurate as using WENO
flux for all variables. While this might not be true for
non-viscous problems, especially those with shocks, it
might hold for smoother diffusion-limited problems. Both
Pressel et al. (2015 P15) and WPM21 commented that they
did not find degradation of solutions when comparing
solutions made with WENO fluxes on only scalars com-
pared to solutions made with WENO fluxes for scalars,
velocity and pressure, but neither showed these results as
both studies focused on other issues. Both also noted that
perhaps the reason for the minimal impact when WENO
was not used for velocity fields was that velocity fields tend
to be smoother than scalar fields. Simulations with the test
problem herein using WENO flux for scalars only (e.g. only
potential temperature, but not pressure, which is strongly
coupled to velocity for sound waves; arguably, potential
temperature is also strongly coupled to velocity for grav-
ity waves through buoyancy), and comparably high order
odd order upwind-biased constant grid fluxes for velocity
and pressure resulted in perturbation potential tempera-
ture and KE fields (Figure 16 rows 1–3 Ws Fv; zoomed
as in Figures 4–8; Table 3) that were better objectively
than those that used WENO flux for all variables (Table 3).
However, the perturbation potential temperature field was

somewhat distorted, although the 0.2 K contour of the
potential temperature appeared to capture the upper rotor
better. The potential temperature difference fields in the
upper rotor were improved, perhaps more for O13–17,
when compared to results with WENO flux for all variables
in Figure 5.

Simulations with WENO for scalars and constant grid
flux for velocity were repeated except using constant grid
flux for scalars and WENO flux for velocity and pressure
(Figure 16, rows 4–6 Fs Wv; zoomed as in Figures 4–8),
which interestingly produced solutions with somewhat
worse visual appearances in terms of the shape of 0.2 K
contour for potential temperature as well as in some parts
of the potential temperature difference fields on the inside
and around the base of the upper rotor. In contrast, as in
the case for Fv Ws solutions, these Fs Wv solutions also
had better objective errors for all solutions for both per-
turbation potential temperature and KE fields than the
solutions with WENO fluxes on all variables (Table 3).
The generally reduced objective errors were related to
the much better reproduction of the overall amplitude
of potential temperature fields compared to the reference
solution, even though the Lmax and Lmin values for KE
were not reproduced as well as in the Fv Ws experiments
or experiments using WENO for all fluxes. These results
were mixed in terms of supporting the use of WENO only
for scalar fluxes, or only for velocity and pressure, rather
than all fluxes, as objective errors were reduced for some
measures, but various aspects of solution appearance were
found to be worse for the colliding plumes test problem as
formulated.

3.4.5 Number of derivatives for Crowley
schemes (Set F)

Smolarkiewicz (1982) successfully developed dimension-
split/time-split 3D and explicit cross-derivative Crowley
schemes, which use any order approximation for the
advection and O2 approximations for the stabilising sec-
ond derivatives. Tremback et al. (1987), similar to C68, fur-
ther developed the dimension-split/time-split 3D Crow-
ley schemes by adding stabilising derivatives up to O10
for both odd and even order O1–10 Crowley schemes
(N-stabilising derivatives for an N-order scheme). Test
simulations made for this article with O3, 5, 9, 13 and 17
Crowley schemes using only the second stabilising deriva-
tive (N = 2), rather than all N stabilising higher derivatives
for N-order Crowley schemes, produced solutions for per-
turbation potential temperature and KE fields (Figure 17
row one and two, C2; zoomed as in Figures 4–8; Table 3;
note the traditional Crowley solutions with N-derivative
for an N-order scheme are shown in Figures 3 and 4)
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F I G U R E 16 Set E perturbation potential temperature (T − Tb; K; rows one and four), difference between reference and test solution
potential temperature (TRef – T; K; rows two and five), and Kinetic Energy per unit volume (KE; 1/100 J⋅m−3; rows three and six) fields at
t= 1,000 s made with grid resolution Δx=Δz= 100 m, with hybrids of order O3, 5, 9, 13 and 17 WENO flux schemes and comparable odd
order upwind- biased constant grid flux, O18 for all interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number
C, and constant eddy mixing coefficient of Km = 10 m2⋅s−1. The top three rows are for order O3, 5, 9, 13 and 17 WENO flux for scalars (Ws)
and comparable order constant grid flux for velocity and pressure (Fv). The bottom three rows are for O3, 5, 9, 13 and 17 WENO flux for
velocity and pressure (Wv) and comparable order constant grid flux for scalars (Fs). Maximum (Max) and minimum (Min) values and
contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the
upwind-biased constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. The bold solid line is the 0.2 K
perturbation potential temperature contour of the simulation in the plot. Only a zoomed-in sub-domain from x=−5.2 to −3.6 km and z= 6.4
to 7.6 km on the left side of the simulation domain is shown. [Colour figure can be viewed at wileyonlinelibrary.com]

that were virtually indistinguishable from each other,
both visually and objectively (the schemes with N-higher
derivatives were nearly identical or very slightly better
objectively for some of the solutions), for any given scheme
order. Importantly, these Crowley solutions with N = 2

were produced with lower computational costs as only
two derivatives were evaluated and not N derivatives. This
result can be explained in part by noting that when the
Courant number value of C=u Δt Δx becomes increas-
ingly small (<1), the values of C N that are multiplied

http://wileyonlinelibrary.com
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F I G U R E 17 Sets F and G
Perturbation potential temperature
(T – Tb; K; rows 1, 3, 5, 7 and 9) and
difference between reference and
test solution potential temperature
(TRef – T; K; rows 2, 4, 6, 8 and 10) at
t= 1,000 s made with grid resolution
Δx=Δz= 100 m, with odd order O3,
5, 9, 13 and 17 upwind-biased
constant grid flux Crowley and
hybrid-WENO/Crowley schemes,
comparable order interpolations and
pressure gradient/divergence, O18
spatial filter, same Courant number
C, and constant eddy mixing
coefficient of Km = 10 m2⋅s−1. The
top two rows are for upwind-biased
odd order O3, 5, 9, 13 and 17 constant
grid flux Crowley scheme using only
the stabilizing second derivative
(C2), rather than N derivatives for an
N-th order scheme. Rows three and
four are for hybrid-WENO/Crowley
(Hy) flux schemes (Set G in rows
three and four and all remaining
rows). Rows five and six are for
hybrid-WENO/Crowley flux
schemes made with sine wave-based
WENO-s smoothness indicators and
p= 1 (HS). Rows seven and eight are
for hybrid-WENO/Crowley flux
schemes for scalars (Hs) and
Crowley for velocity and pressure
(Cv). Rows nine and ten for
hybrid-WENO/Crowley fluxes on
velocities and pressure (Hv) and
Crowley on scalars (Cs). Maximum
(Max) and minimum (Min) values
and contour interval (Cint) values
are on each plot. The bold dashed
line is the 0.2 K perturbation
potential temperature contour of the
upwind-biased constant grid flux
O17, 25 m reference solution
interpolated to the grid in each plot.
The bold solid line is the 0.2 K
perturbation potential temperature
contour of the simulation in the
plot. Only a zoomed-in sub-domain
from x=−5.2 to −3.6 km and z= 6.4
to 7.6 km on the left side of the
simulation domain is shown.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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with each N-th derivative become increasingly small and
less impactful (e.g. with a Courant number value used
in this study of C= 0.046875, values for C2 ∼ 2.197× 10−3,
C3 ∼ 1.03× 10−4, … , C9 ∼1.09× 10−12, C17 ∼2.547× 10−23,
etc.), than if C= 0.9 (C2 = 0.81, C3 = 0.729, … , C9 ∼0.3874,
C17 ∼0.1668, etc.). The Crowley simulations shown all
use the difference-stencils (related to order of accuracy)
for the higher order derivatives suggested by T87, not-
ing that the order accuracy for the approximations for
lower derivatives are generally higher order, but the high-
est order derivatives in T87 are not the order of the higher
order derivatives (presumably this practice is not a serious
issue as at least the even order derivatives are dissipa-
tive). Rather the approximations are the highest order of
accuracy that will fit in the length of the stencil used to
compute the interpolation for the first derivative. Note
that comparable order interpolations and pressure gra-
dient/divergence were used for all Set E simulations. In
summary, these results support the use of only the second
stabilising derivative, as objective and visual appearances
were not changed and solutions were computationally less
expensive than using N derivatives for an N-order Crowley
scheme.

3.4.6 Hybrid-WENO/Crowley schemes
(Set G)

Dimension-split/time-split hybrid-WENO/Crowley
schemes were tested as the use of higher order deriva-
tives sometimes can help reduce phase errors (e.g. T87;
WS02). Furthermore, the WS02 forward-in-time Crowley
scheme time integration procedure for mode-split systems
with only one(two) functions per time step for scalars
(velocities and pressure) is notably less computationally
intensive in terms of total FPOs for any given order of
flux using the spatial differencing algorithm discussed in
Section 2, compared to the RK3 time integration scheme,
which requires three functions per time step for scalars,
velocities and pressure, respectively. With this in mind,
the use of WENO fluxes in a Crowley scheme framework
might be advantageous computationally as well as numer-
ically. Experiments were conducted with a proposed
hybrid-WENO/Crowley scheme, which has interpola-
tion for the flux obtained from the WENO scheme, and
upwind-biased constant grid flux higher order deriva-
tives. Comparable order interpolations and pressure
gradient/divergence were used for all Set G simulations.

Visually accurate perturbation potential tem-
perature and KE solutions were obtained with the
Hybrid-WENO-Crowley schemes (Hy) when compared
to the WENO and odd order Crowley solutions in Set A
(e.g. Figure 4). The potential temperature perturbation

difference plots (Figure 17, row four) showed patterns
and regions of errors for Hybrid-WENO-Crowley that
were more similar to those with the Set A, WENO
solutions than the Set A, odd order Crowley solutions
(Figure 5). Objective errors, including RMS for per-
turbation potential temperature and KE (Table 3) for
the Hybrid-WENO-Crowley schemes were similar
to those with the WENO schemes for these simula-
tions. Additionally, like with the WENO scheme, the
Hybrid-WENO-Crowley scheme and sine-based WENO
smoothness indicator scheme, also produced improved
perturbation potential temperature difference fields from
the reference solution and improved RMS errors, based
on the reference solution, over those made with tradi-
tional smoothness indicators by ∼5% to ≥20%, especially
for the O17 solutions. These results are important as the
computational cost based on FPOs of the forward in time
Hybrid-WENO-Crowley schemes, for either traditional
or sine-based smoothness indicators, are markedly less
than RK3 WENO solutions, especially for higher order
solutions.

Using hybrid-WENO/Crowley flux for scalars and
Crowley flux on velocities and pressure also per-
formed well (Figure 17, rows seven and eight, Hs Cv;
zoomed as in Figures 4–8; Table 3), while the use of
hybrid-WENO/Crowley on velocities and pressure only
and Crowley flux on scalars produced better results for
perturbation potential temperature (Figure 17, rows nine
and ten, Hv Cs; zoomed as in Figures 4–8; Table 3) and
KE fields (not shown), than using WENO on all variables,
both with further reductions in computational cost from
the cases of using WENO fluxes on all variables (the dif-
ferences were again somewhat worse than for odd order
Crowley). Although not shown, comparably accurate
solutions, which were virtually indistinguishable, either
visually (not shown) or objectively (Table 3; H2S) were
also possible using only the stabilising second deriva-
tive and no other higher order stabilising derivatives in
these hybrid schemes. In summary, computational costs
can be reduced, and objective errors notably improved
using hybrid-WENO/Crowley schemes with or without
the sine-based smoothness indicators, as well as with
or without stabilising higher order derivative or only
the stabilising second derivative. Additionally, use of
hybrid WENO/Crowley fluxes on either scalars or veloc-
ities and pressure, especially for the hybrid-WENO on
velocities and pressure and Crowley on scalars (Hs Cv)
might help provide more accurate solutions than using
WENO flux on all variables; the HsCv and HvCs solutions
appeared visually better compared to the WENO solu-
tions, but visually not as good as the Crowley solutions.
This appeared to be the case for the objective errors as
well.
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3.4.7 Use of lower order approximations
for velocity and pressure advection and higher
order for scalars and vice versa (Set H)

Finally, a set of simulations was made to determine
whether higher order accuracy flux of velocities and
pressure or higher order flux of scalars (potential

temperature) was more important to solution accuracy,
while potentially allowing for some reduced computa-
tional costs. Pressel et al. (2015) and WPM21 both stated
that the velocity fields are generally smoother than the
scalar fields in their atmospheric planetary boundary layer
simulations (which was also seen with KE fields herein),
and thus did not require velocity flux schemes to be as

F I G U R E 18 Set H perturbation potential temperature (T – Tb; K; rows one and four), difference between reference and test solution
potential temperature (TRef – T; K; rows two and five), and Kinetic Energy per unit volume (KE; 1/100 J⋅m−3; rows three and six) fields at
t= 1,000 s made with grid resolution Δx=Δz= 100 m, with O3, 5, 9, 13 and 17 upwind-wind biased constant grid flux schemes, all with O18
interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number C, and eddy mixing coefficient of Km = 10 m2⋅s−1.
The top three rows are for odd order O3, 5, 9, 13 and 17 constant grid flux schemes for velocity and pressure (Fv) and the O17 constant grid
flux scheme for scalars (s17). The second three rows are for odd order O3, 5, 9, 13 and 17 constant grid flux schemes for scalars (Fs) and the
odd order O17 constant grid flux scheme for velocity and pressure (v17). Maximum (Max) and minimum (Min) values and contour interval
(Cint) values are on each plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased constant
grid flux O17, 25 m reference solution interpolated to the grid in each plot. The bold solid line is the 0.2 K perturbation potential temperature
contour of the simulation in the plot. Only a zoomed-in sub-domain from x=−5.2 to −3.6 km and z= 6.4 to 7.6 km on the left side of the
simulation domain is shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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accurate as scalar flux schemes. The simulations shown
herein include those made with O17 fluxes for scalars and
O3–17 fluxes for velocities and pressure, and well as those
made using O17 fluxes for velocities and pressure, and
O3–17 fluxes for scalars. These were used to compare with
simulations using O17 fluxes for all variables (Figures 3
and 4–8). All Set H simulations (Figure 18) used O(18)
interpolations and pressure gradient/divergence.

The amplitudes of the perturbation potential
temperature fields in the most marginally resolved fea-
tures of the upper rotor for the first subset of experiments
were best preserved with O17 scalar fluxes, although the
shape is not as well preserved (as compared to the Set A
odd order flux solutions in Figure 4 or the reference solu-
tion) in association with less accurate velocity and pressure
fluxes (Figure 18, rows one–three, Fv s17; zoomed as in
Figures 4–8; Table 3). In addition, the 0.2 K perturbation
potential temperature contour was not as well preserved
compared to the Set A solutions or the reference solution.
Conversely, the second subset of experiments produced
worse amplitude preservation of the perturbation poten-
tial temperature fields with O3–13 scalar fluxes, compared
to the reference solution, but about the same as in Set
A, with slightly better placement and shape for the rotor
associated with O17 velocities (Figure 18, rows 4–6 Fs
v17; zoomed as in Figures 4–8; Table 3). Interestingly, the
use of lower order fluxes with scalars rather than velocity
and pressure resulted in generally better objective error
measures than Set A odd order flux solutions and better
0.2 K perturbation potential temperature contour preser-
vation in the upper rotor, especially in the narrow warm
regions for most solutions, owing to lower order scalar
fluxes being more dispersive, which makes the >0.2 K
regions wider, especially in finer scale regions of the upper
rotor. The perturbation potential temperature difference
fields also had smaller differences when using lower order
(O3–5) scalar fluxes. These characteristics permit gross
determinations as to which of these subsets of experi-
ments produce the best solutions for all orders considering
competing factors. The best solutions in these experi-
ments were the Fs v17 solutions based on RMS errors for
potential temperature and KE, as well as for perturbation
potential temperature field differences, especially for O3–9
solutions.

4 CONCLUSIONS

The main conclusions of this study include: The visual
appearances and objective error measures for solutions
produced by all schemes considered continued to improve
well through flux orders of O3/4–9/10, which are the high-
est orders available/used in most popular research and

operational 3D atmospheric science numerical models,
and all the way up to O17/18. Most of the visual and
objective improvements were from O3 to O5, and then
from O5 to O9, and so on, although they often were not
negligible from O13–17. Higher order numerical approxi-
mations also improved the accuracy of kinematic aspects
of flows as seen using quantities such as KE, deforma-
tion and vorticity. Upwind-biased, odd order, very high
order flux schemes produced the least dispersion/phase
errors with only minimally damped extrema at very high
orders of accuracy >O13 when compared to the refer-
ence solution. Very high order even order ≥O14 schemes,
which better preserve amplitude errors over one order
lower odd schemes and have slightly worse phase errors
than one order higher odd schemes, also performed
very well. Excessive round-off error accumulation argues
against using much higher than O17/18 constant grid
flux and constant grid flux Crowley schemes, and espe-
cially against using higher than O13 or O17 WENO flux
schemes.

The WENO flux schemes did not perform as well
as the constant grid flux and constant grid flux Crow-
ley schemes for O3–9 solutions made with resolutions
coarser than 50 m, supporting the results described by
Latini et al. (2006) and WPM21 that ≤O5 WENO solutions
could be excessively dissipative. Interestingly, the very
high order O9–17 WENO flux scheme solutions made with
a strong added mean wind were the most accurate for a
given resolution, with some of the lowest overall objective
errors, in this study. Importantly, the ≤O13 WENO flux
solutions also tended to be more monotonic at interme-
diate and coarser solutions, in contrast to other schemes,
even though WENO scheme solutions are technically not
monotonic. While WENO schemes certainly were much
more computationally expensive than most schemes con-
sidered in terms of FPOs, they were not necessarily exces-
sively/prohibitively expensive with careful use of cache
memory in making computations; the CPU time for O17
WENO was at most three to four times more than the CPU
time O17 flux.

Only weak numerical spatial filters were generally
needed with odd order high order constant grid flux
and constant grid flux Crowley schemes in contrast to
even-order schemes, which required much more filter-
ing for low orders of accuracy as they tend to produce
more dispersion and aliasing errors. Very high order con-
stant grid flux non-WENO schemes, which had appropri-
ate spatial filters for the diffusion-limited problem, pro-
duce solutions that were comparable or better than both
lower order and higher order WENO based solutions at
a fraction of the cost in terms of FPOs or CPU time,
especially the forward in time WS02 Crowley based flux
solutions.
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The WENO flux solutions made with the exponent
parameter p=R in the nonlinear weights for WENO fluxes
were generally less accurate based on RMS errors than
those using the traditional value of p= 2 for the test
problem. Using by p=R improved maximum and mini-
mum perturbation potential temperature overshoots and
generally helped maintain more monotonic WENO flux
solutions, although shear instabilities formed in these
WENO solutions on the warm-cold air interface at coarser
resolutions of greater than 50 m with higher order >O13
WENO schemes, that was not present in the reference
solution. Importantly, the use of recently proposed,
efficient and fewer (three versus R for each stencil; for
R≥ 4) sine-wave WENO smoothness indicators, which are
exact for sine waves, along with p= 1, produced solutions
that were in good agreement with the reference solution,
and were more accurate than solutions made with tra-
ditional WENO smoothness indicators. Using less than
order N WENO flux for the first two stages of the three
RK3 stages of order N WENO solutions produced solu-
tions that were as accurate as using order N WENO flux
advection on all three RK3 stages, especially if the WENO
flux order for the first two stages is not very small (e.g.
O3) compared to the last stage (e.g. O17). Other findings
include that, solutions made with odd order constant grid
flux for velocities and pressure and WENO flux for scalars,
were better solutions than those made with odd order
constant grid flux for scalars and WENO flux for veloci-
ties and pressure, and both were more accurate, especially
the former, evaluated against the reference solution as
compared to the use of WENO flux advection for all vari-
ables. The anti-WENO (A-WENO) O3 and O5 flux schemes
proposed by WPM21 to improve the excessive smooth-
ing by lower order WENO schemes might be considered
for improvement of high order WENO schemes, but the
A-WENO approach might not be necessary with higher
order (≥O7) WENO or other flux schemes. Finally, the
adaptive order WENO flux schemes based on Legendre
polynomials, which result in much simpler smoothness
indicator approximations (Balsara et al., 2009, 2016), as
well as the use of hybrid-WENO flux schemes, which only
use nonlinear WENO fluxes in regions of steep gradients
or approximate discontinuities with efficient high order
flux schemes in smoother flow regions (Hu et al., 2015)
should be explored for atmospheric problems. These
schemes seem very attractive as most regions in atmo-
spheric flows are rather smooth compared to non-viscous
gas dynamics flows. The proposed hybrid-WENO flux
scheme is promising as WENO flux is only applied
at a small number of grid points (<1%) and requires
only a simple numerical test to determine whether
the WENO flux should replace the more efficient high
order flux.

A proposed dimension-split hybrid-WENO/Crowley
advection scheme integrated in time with the WS02
two-step Crowley forward-in-time integration scheme,
which allowed for fast/slow mode-split time integration,
produced accurate solutions with fewer FPOs compared
with either traditional or newer efficient smoothness indi-
cators, with p= 2 for the traditional, or p= 1 for the newer
smoothness indicators, respectively. This was true for
hybrid-WENO/Crowley flux scheme used for all scalars,
velocity and pressure, or with hybrid-WENO/Crowley flux
scheme for only scalars and constant grid flux Crowley for
velocity and pressure.

Crowley scheme solutions made with just the stabil-
ising O2 spatial derivatives, compared to those with N
higher order derivatives for an Nth order scheme, pro-
duced nearly identical solutions and lowered the number
of FPOs. This also was true for the hybrid-WENO/Crowley
flux scheme. Use of lower order odd order constant
grid flux for scalars, and high order odd order constant
grid flux for velocities produced better solutions in terms
of the shape of the flow field features, but worse ampli-
tudes of the potential temperature compared to the ref-
erence solution in the marginally resolved regions, than
the use of the high order odd order constant grid flux
for velocity and pressure, and lower order odd con-
stant grid flux for scalars. Finally, the mode-split time
integration solutions produced with constant grid flux
Crowley schemes were the least computationally expen-
sive of all schemes considered in terms of either FPOs
or CPU in this study for any given order of accu-
racy and resolution owing largely to being amenable
to being written in a condensed form. Otherwise, they
would have been more computationally expensive than
the constant grid flux RK3 integrations, as was found
by WS02.

Future assessments of very high order numerical
schemes should be made using realistic atmospheric fore-
cast problems, especially those that require high accu-
racy, have complex physics, and can be integrated for
relatively long periods of time relative to their spa-
tial scales. Examples of problems that might be con-
sidered are those related to significant weather fore-
cast for hail, winds, and tornadoes with severe storms,
extreme winds and precipitation with hurricanes, heavy
snow with lake effect and synoptic systems, as well as
a multitude of short-term climate problems associated
with excess precipitation, heat and drought, and cold
waves.

In summation, upwind-biased, very high order
(O9–18) flux schemes performed very well in the experi-
ments described in this article, especially the non-WENO
flux schemes, although the high order WENO flux
schemes produced very good solutions in experiments
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with a strong mean wind. The odd order schemes,
which generally require less spatial filtering (WENO
flux schemes technically required none) compared to
the lower order even schemes that were considered,
were only slightly more computationally expensive
(two function evaluations are required for odd order
schemes for each step or sub-step), when compared
to even order centred flux schemes. Objective error
measures for non-WENO flux schemes improved to
O17/18, while those for WENO flux schemes did not
improve much past O9 or O13 for intermediate resolu-
tions of ≥50 m. The use of high order flux computations
coupled with high order interpolation and pressure gra-
dient/divergence numerical approximations (≥O4) are
recommended to attain the best solutions, especially for
physically important, marginally resolved phenomena,
as was found for short-term integrations presented in
this article. The results of this study lead us to encourage
the further testing of very high order ≥O9 flux schemes
in numerical weather prediction and weather research
models.
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APPENDIX A

T A B L E A1 CFL and critical wave number at which instability appears first based for O1–19 linear odd order upwind biased (by one
point) advection schemes with WSO2 O3 Runge–Kutta (LRK3) time integration using and extending the procedures described by
Baldauf (2008).

LRK3 ODD O1 O3 O5 O7 O9 O11 O13 O15 O17 O19

CFL 1.256373 1.625891 1.434983 1.243779 1.127174 1.049315 0.9935351 0.9514629 0.9184809 0.8918446

Kcrit 3.141593 2.472898 1.693186 1.763554 1.847447 1.922732 1.988061 2.044338 2.093085 2.135942

T A B L E A2 CFL and critical wave number at which instability appears first based for O2–20 linear even order centred advection
schemes with WSO2 O3 Runge–Kutta (LRK3) time integration using and extending the procedures described by Baldauf (2008).

LRK3 EVEN O2 O4 O6 O8 O10 O12 O14 O16 O18 O20

CFL 1.732051 1.262224 1.092102 1.000839 0.942644 0.901712 0.8710421 0.8470229 0.8275891 0.8114673

Kcrit 1.570796 1.797478 1.936074 2.033371 2.107086 2.165720 2.213967 2.254671 2.289680 2.320252

T A B L E A3 CFL at which instability appears first based for O2–20 linear even order centred advection with (LLF) time integration to
compare to LRK3.

LLF EVEN O2 O4 O6 O8 O10 O12 O14 O16 O18 O20

CFL 1.0 0.7287451 0.6305261 0.5778348 0.5442359 0.5206038 0.5028964 0.4890290 0.4778089 0.4685009

Note: As can be shown, the CFLs for O2–20 linear even order centred advection schemes with WSO2 O3 Runge–Kutta time integrations (see Table A2) are
always ∼1.732051 more than the same order advection and leapfrog time integrations.

APPENDIX B

F I G U R E B Locations of flow structures in the perturbation potential temperature field for the colliding plumes circulation in a
solution made with O17 constant grid fluxes, O18 interpolations and pressure gradient/divergence, O18 spatial filter, and constant eddy
mixing coefficient of Km = 10 m2⋅s−1 using Δx=Δz= 16.66… m and Δt= 0.0520833… (adapted from SWK23). [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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