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Abstract. We report on a numerical study of the impact of
short, fast inertia-gravity waves on the large-scale, slowly-
evolving flow with which they co-exist. A nonlinear quasi-
geostrophic numerical model of a stratified shear flow is used
to simulate, at reasonably high resolution, the evolution of a
large-scale mode which grows due to baroclinic instability
and equilibrates at finite amplitude. Ageostrophic inertia-
gravity modes are filtered out of the model by construction,
but their effects on the balanced flow are incorporated using
a simple stochastic parameterization of the potential vorticity
anomalies which they induce. The model simulates a rotat-
ing, two-layer annulus laboratory experiment, in which we
recently observed systematic inertia-gravity wave generation
by an evolving, large-scale flow.

We find that the impact of the small-amplitude stochastic
contribution to the potential vorticity tendency, on the model
balanced flow, is generally small, as expected. In certain cir-
cumstances, however, the parameterized fast waves can ex-
ert a dominant influence. In a flow which is baroclinically-
unstable to a range of zonal wavenumbers, and in which there
is a close match between the growth rates of the multiple
modes, the stochastic waves can strongly affect wavenumber
selection. This is illustrated by a flow in which the param-
eterized fast modes dramatically re-partition the probability-
density function for equilibrated large-scale zonal wavenum-
ber. In a second case study, the stochastic perturbations are
shown to force spontaneous wavenumber transitions in the
large-scale flow, which do not occur in their absence. These
phenomena are due to a stochastic resonance effect. They
add to the evidence that deterministic parameterizations in
general circulation models, of subgrid-scale processes such
as gravity wave drag, cannot always adequately capture the
full details of the nonlinear interaction.

Correspondence to:P. D. Williams
(williams@met.rdg.ac.uk)

1 Introduction

Inertia-gravity waves (IGWs) are ubiquitous throughout the
stratified parts of the Earth’s atmosphere and ocean. They
are generated by the large-scale flow via three independent
dynamical mechanisms: interactions with topography (e.g.
Hines, 1988); spontaneous-adjustment radiation emitted as
the large-scale flow adjusts (e.g. Ford et al., 2000); and as
Kelvin-Helmholtz modes which develop due to local shear
instabilities (e.g. Roach, 1970). Direct forcing of the atmo-
sphere on the ocean mixed layer, and scattering of large-scale
waves (e.g. the barotropic ocean tide) are two further gen-
eration mechanisms, which could be considered within the
aforementioned categories but which are sufficiently impor-
tant to merit an explicit mention. The characteristic length
and time scales of IGWs are typically at least an order of
magnitude smaller than those of the modes of main meteoro-
logical and climatological interest. This fact is frequently in-
voked to justify filtering IGWs from numerical weather pre-
diction and climate models, under the assumption that inter-
actions between motions on widely different scales are negli-
gible. It is usual to attempt to account for the missing modes
in the filtered model by including a parameterization of their
expected effects. The full governing equations remain non-
linear, however. This means that a parameterized treatment
of the fast modes cannot be rigorously justified, and leaves
open the possibility of a significant nonlinear interaction be-
tween the IGW modes and the large-scale flow.

Most conventional parameterization schemes are deter-
ministic, i.e. they describe the effects of sub-gridscale pro-
cesses by a reproducible prescription which depends upon
local resolved scale variables and a number of adjustable pa-
rameters (Palmer, 2001). For example, a well-known deter-
ministic parameterization is that for momentum deposition
due a continuous spectrum of stratospheric gravity waves,
developed by Hines (1997). Recently, it has been shown that
the deterministic Hines parameterization significantly un-
derestimates the variability of the quasi-biennial oscillation,
in simulations using the UK Meteorological Office Unified
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Model (C. Piani and W. Norton, private communication). A
stochastic parameterization, in which an adjustable parame-
ter is allowed to vary randomly according to some chosen
probability distribution, gives an increased variability and
better agreement with observations.

It is perhaps not surprising that stochastic representations
of neglected processes can perform better than deterministic
parameterizations, for the following reason. Filtering IGW
motions from a numerical model leads to a corresponding
reduction in the number of degrees of freedom of the sys-
tem. This so-called balance assumption constrains the phase
space trajectories to a reduced-dimensional subsurface of the
full phase space, known as the slow manifold. Incorporating
a deterministic parameterization of the neglected processes
does not increase the number of degrees of freedom, be-
cause such parameterizations are closed, i.e. written in terms
of model variables which already exist. The dynamics of
the filtered system with and without the parameterization is
therefore qualitatively similar. However, the random noise
terms associated with a stochastic parameterization introduce
new (non-deterministic) degrees of freedom, since each ran-
dom number drawn from any probability-density function
can be associated with a new and independent phase space
co-ordinate, which is no less dynamically active than the co-
ordinates associated with the deterministic degrees of free-
dom. Increasing the number of degrees of freedom this way
suggests that stochastic parameterizations could give a bet-
ter correspondence with the real system, because there is a
closer match between the dimensionality of the phase spaces
which they explore. In other words, the additional degrees of
freedom introduced by stochastic terms in the filtered equa-
tions may be able to compensate, at least partially, for the
degrees of freedom lost by the filtering.

This was essentially the finding of Palmer (2001), who
filtered the least significant empirical orthogonal function
(EOF) from the Lorenz (1963) equations, and considered
both deterministic and stochastic parameterizations of the
dynamical impacts of this neglected EOF. He found that the
stochastic representation gave the best agreement, in terms
of the mean state and internal variability, with the attractor
of the original, unfiltered equations.

Until recently, research into the strength of the scale-
separated wave-wave interaction focused on greatly simpli-
fied numerical and theoretical models (e.g. Lorenz, 1986).
Lovegrove et al. (2000) discovered that IGWs could be gen-
erated by an evolving large-scale flow in a rotating, two-layer
annulus laboratory experiment, however. For the first time,
the interaction could be studied in a real fluid, without the
ad hoc approximations of highly-truncated and approximated
models.

Most recently, we have explored these rotating annulus
laboratory experiments exhibiting the co-existence of large-
scale and IGW modes. The spatio-temporal locations of
IGWs are consistent with generation by the large-scale mode
according to the spontaneous-adjustment radiation mech-
anism (Williams et al., 2003). We find that, when the
system is devoid of IGWs, the large-scale flow exhibits a

reluctance to undergo transitions between flows of differ-
ent zonal wavenumber. In contrast, the flow undergoes such
transitions much more readily when IGWs are present, even
though typical IGW amplitudes are smaller than the bal-
anced mode amplitude by a factor of around ten. The present
study attempts to obtain independent corroborative evidence
to support these laboratory findings, using a filtered numer-
ical model. In particular, we are interested in determining
whether a simple stochastic IGW parameterization is capable
of reproducing the salient aspects of the laboratory results.

This paper is laid out as follows. In Sect. 2, we give brief
details of the numerical model. IGWs are filtered from the
model equations, and so we employ the model to simulate
the large-scale modes only. We describe model runs both
with and without stochastic forcing. In Sect. 3, we present
two case study integrations which illustrate the impact of
the stochastic forcing on wavenumber selection, and which
demonstrate that the forcing can cause spontaneous transi-
tions between different flow states. Finally, in Sect. 4, we
discuss the results, and make a comparison with the corre-
sponding laboratory findings. We consider the implications
for flows in the atmosphere and ocean, as simulated by gen-
eral circulation models, and finish with our conclusions.

2 The QUAGMIRE numerical model

For the numerical simulations in the present study, we em-
ploy a two-layer quasi-geostrophic annulus model known as
QUAGMIRE (QUAsi-Geostrophic Model for Investigating
Rotating fluids Experiments). A summary of the main model
details is given here, and the reader is referred to Williams
(2003) for a full technical description. Corresponding to the
laboratory experiment (Williams et al., 2003), the model an-
nulus has an inner vertical sidewall of radiusr1 = 6.25 cm,
an outer vertical sidewall of radiusr2 = 12.5 cm, and a total
depth of 2H = 25.0 cm. The base and lid are both horizontal
and flat. The base and sidewalls rotate with angular veloc-
ity � about the axis of symmetry, and the lid (in contact with
the upper fluid layer) rotates relative to the base and sidewalls
with angular velocity1�. This differential rotation provides
a velocity shear which generates a large-scale mode due to
baroclinic instability.

The model integrates the quasi-geostrophic poten-
tial vorticity equations in cylindrical co-ordinates in
two stably-stratified incompressible layers, which have
equal resting depths ofH = 12.5 cm. As in the lab-
oratory experiment, the upper and lower layer densi-
ties and kinematic viscosities areρupper= 997 kg m−3,
ρlower= 1003 kg m−3, νupper= 1.27× 10−6 m2 s−1 and
νlower=1.08× 10−6 m2 s−1. The mutual interfacial tension
is T = 2.85× 10−2 Nm−1. The fluids are forced by Ekman
pumping and suction velocities at the lid, base and interface,
and the effects of weak interfacial tension are included. We
use a regular model grid of 96 points in azimuth and 16
points in radius. We timestep the potential vorticity tendency
equations in physical space, but transform to vertical and
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azimuthal normal mode space once per timestep to obtain
the streamfunction by inverting the potential vorticity. The
timestep, chosen to give a Courant number of 0.01, is
typically 0.01 s.

We use the Arakawa (1966) second order Jacobian for
the advection terms; a leap-frog scheme with a Robert
(1966) three-level time filter to suppress computational
mode-splitting; Ekman layer diffusion terms time-lagged by
one step for stability; and a second order horizontal potential
vorticity hyperdiffusion to suppress gridscale energy build-
up. At the lateral boundaries, we apply impermeability to
the eddy components, and impose no-slip boundary condi-
tions on the axisymmetric component which develops as a
correction to the mean flow. Multiple test integrations were
performed to demonstrate insensitivity of the model output
to the numerical hyperdiffusivity, Robert filter parameter,
gridspacing and timestep.

We next describe, in turn, sample model runs both with-
out, and then with, a stochastic forcing term added to the
governing potential vorticity equations.

2.1 Model runs without stochastic forcing

There is an equilibrium solution to the deterministic model
equations, corresponding to solid-body rotation in both lay-
ers, at different rates (e.g. Hart, 1973). We assess the stability
of this state by using spun-up initial conditions, given by the
equilibrium flow seeded with superimposed small-amplitude
random noise. The noise provides a small perturbation, con-
taining energy at all resolveable wavenumbers, from which
any unstable quasi-geostrophic mode can grow. The devel-
opment of a large-scale wave due to baroclinic instability,
during a typical model run which had� = 3.50 rad s−1 and
1� = 0.08 rad s−1, is shown in Fig. 1. Values of the Rossby
number, Ro, internal Froude number, Fr, and dissipation pa-
rameter,d, defined by

Ro =
1�

2�
, (1)

Fr =
4�2(r2 − r1)

2

g′H
(2)

and

d =

√
ν�

H1�
, (3)

are given in the figure caption. In these equations,
g′

≡ 2g (ρlower− ρupper)/(ρlower+ ρupper) = 6 cm s−2 is the
reduced gravity and ν ≡ (νupper+ νlower)/2= 1.18
× 10−6 m2 s−1 is the mean kinematic viscosity. There
is an initial transient period during which short-lived radial
and zonal modes emerge from the noise. Then, a particular
single mode grows to dominate the flow and equilibrates,
drifting slowly around the annulus at a constant, finite
amplitude. Though the model can simulate flows in which
the equilibrated amplitude vacillates, i.e. periodically grows
and decays with time, such flows are not studied in the
present work. The final equilibrated mode (here of zonal

wavenumber 3) is not necessarily that with the largest initial
growth rate (here of zonal wavenumber 5), in concordance
with the analytical investigation of Appleby (1988).

As in the laboratory experiments, the zonal wavenum-
ber, phase speed and amplitude of the equilibrated wave
depend upon� and 1�. Examples of typical equili-
brated wavenumber 1 and 2 flows are shown in Fig. 2.
Hundreds of model runs have been performed, each
with slightly different combinations of� and 1� rang-
ing from � = 1.0 rad s−1 to � = 3.5 rad s−1, and from
1� = 0.01 rad s−1 to 1� = 1.6 rad s−1. In each run, the per-
turbations in the initial state are found to either decay (baro-
clinic stability), or to grow to a mode with zonal wavenum-
ber 1, 2 or 3 (baroclinic instability) as illustrated in Figs. 2(a),
2(b) and 1(f), respectively. When model experiments with
the same[�,1�] are repeated many times with differ-
ent noise fields in the initial states, the same equilibrated
wavenumber is usually found. This implies that the equili-
brated flow is insensitive to the precise details of the initial
state. The exception to this insensitivity is at very large rota-
tion rates (� > 3 rad s−1 and1� > 1 rad s−1), where repro-
ducibility of the post-transient state is not always observed.
This high-rotation regime is not examined in the present
study.

There is reasonable agreement between the laboratory and
model azimuthal wavenumber regime diagrams in the two-
dimensional space defined by[�, 1�] (Williams, 2003).
This fact indicates that the impact of the IGWs on the large-
scale flow is generally small, because the laboratory flow
contains ubiquitous IGWs but the model contains none. So,
in the present case, a filtered model seems capable of ade-
quately simulating flows in which unresolved motions occur.
This is a signal of a negligible interaction. Nevertheless, we
will present examples in Sect. 3 of special cases in which the
parameterized IGWs exert a strong influence on the global
flow.

2.2 Model runs with stochastic forcing

We now include a simple stochastic parameterization of
IGWs in QUAGMIRE, to mimic the effects of the IGWs in
the laboratory experiments. We do this by adding a random
noise term to the right side of the prognostic model equations
for each layer. An implicit assumption is that the precise de-
tails and structure of the laboratory small-scale waves are ir-
relevant, and that they have the same impact on the balanced
flow as would random fluctuations.

The quasi-geostrophic model QUAGMIRE cannot cap-
ture the evolution of the IGWs, which are inherently
ageostrophic. However, we can reasonably expect it to cap-
ture the response of the quasi-geostrophic modes to poten-
tial vorticity anomalies induced by the small-scale modes.
IGWs have zero potential vorticity anomaly only in the lin-
ear limit, but we assert that finite amplitude IGWs may carry
a non-zero perturbation potential vorticity (PPV). It is this
quantity which we parameterize in the model equations, as
a stochastic perturbation to the PPV tendency fields. Note
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Fig. 1. Plotsof perturbationsto the equilibrium lower layer depthfield, for the case�r����� �$� rad s�{� and ���~�
��� �$� rads�/� , at which �h���?��� ����� , �����a�$� and �l�?��� �#� . Theplotsareorderedin time (right label),andshow the

evolution of themodelstatefrom randomsmall-amplitudeinitial conditions in (a), to anequilibratedlarge-scalemode

with azimuthalwavenumber 3 in (f). Notethatthecolourbar scalesvary betweentheplots.
14

Fig. 1. Plots of perturbations to the equilibrium lower layer depth field, for the case�= 3.50 rad s−1 and1�= 0.08 rad s−1, at which
Ro= 0.011, Fr= 26 andd = 0.20. The plots are ordered in time (right label), and show the evolution of the model state from random small-
amplitude initial conditions in(a), to an equilibrated large-scale mode with azimuthal wavenumber 3 in(f). Note that the colourbar scales
vary between the plots.
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Fig. 2. Plots of perturbations to the equilibrium lower layer depth
field, long after equilibration, for the cases(a) �= 2.25 rad s−1 and
1� = 0.30 rad s−1, at which Ro= 0.067, Fr= 11 andd = 0.043,
and (b) �= 2.75 rad s−1 and 1�= 0.12 rad s−1, at which
Ro= 0.022, Fr= 16 andd = 0.12.

that the system state is completely specified by the PPV field.
By perturbing the PPV tendency field with noise, therefore,
we are effectively perturbing all of the dynamical fields, in-
cluding the horizontal divergence field which the laboratory
IGWs affect directly.

We choose the simplest possible form for the stochastic
terms. At each gridpoint and at each timestep, a random
number is drawn from the uniform distribution on the inter-
val [−a, a] and added to the PPV tendency. The constanta is
a given amplitude with units s−2. The noise fields are chosen
to be purely baroclinic, i.e. equal and opposite in both layers,
as any increase in the depth of one layer due to an interfacial
small-scale wave is matched by a corresponding reduction in
the depth of the other layer. The discretized noise fields so
defined contain no correlations in either time or horizontal
position.
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Fig. 3. Zonal profiles of lower layer depth, long after equilibra-
tion in the presence of stochastic forcing of amplitudea = 1.0 s−2.
The rotation rates are�= 2.25 rad s−1 and1� = 0.23 rad s−1, at
which Ro= 0.051, Fr= 11 andd = 0.057. Profiles are shown at
each of the 16 radii at which there are model gridpoints, ranging
from 62.5 mm (top, blue curve) to 125.0 mm (bottom, green curve).
At the inner and outer sidewall boundaries the lower layer depth
displays no variation with azimuth, because impermeable bound-
ary conditions are imposed there. These are profiles of total lower
layer depth, as opposed to the plots in Figs. 1 and 2, which show
perturbations to the equilibrium solution discussed in Sect. 2.1.

The primary objective of our chosen parameterization
scheme is simplicity. The noisy stochastic forcing fields
which we use take the simplest conceivable form, namely
additive contributions drawn from a uniform distribution of
constant width, with no spatial or temporal auto-correlations.
The parameterization could clearly be refined, for example
by allowing the width of the probability density function to
vary with the underlying potential vorticity gradient, or by
including spatio-temporal auto-correlations which satisfy the
internal inertia-gravity wave dispersion relation. It seems
highly unlikely that such refinements would alter the qualita-
tive conclusions which we are able to reach with the simple
scheme, however. In support of this assertion, the qualitative
aspects of the quasi-biennial oscillation and annual cycle in a
model with stochastic inertia-gravity wave drag, are insensi-
tive to whether the Hines parameter is drawn from a normal
or exponential distribution (C. Piani and W. Norton, private
communication).

Apart from some important exceptions, to be discussed
in Sect. 3, the impact of the stochastic terms on the equili-
brated large-scale flow is generally small. Across most of
the [�, 1�] regime diagram, the post-transient wavenum-
ber and wave speed are not detectably modified by the new
terms. There is a slight increase in large-scale wave ampli-
tude, as energy from the stochastic small-scale waves filters
up-scale. Typical zonal profiles of lower layer depth in the
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Fig. 4. Probability of equilibration to azimuthal wavenumber two
as a function of stochastic noise amplitude,a. The rotation rates
are1�= 0.23 rad s−1 and�= 2.25 rad s−1, at which Ro= 0.051,
Fr= 11 andd = 0.057. For each probability,p, the error bars are
obtained from the standard deviation

√
Np(1 − p) of the binomial

distribution B(N, p), with N = 30.

presence of the stochastic forcing are shown in Fig. 3, in
which the zonal wavenumber of the large-scale mode is 2.
The effects of the stochastic parameterization on the flow
are clear, as a small-amplitude gridscale perturbation to the
main wavenumber 2 signal, which is much smoother when
the parameterization is not activated. The interface ampli-
tude of the balanced mode reaches a maximum of around
3 mm near mid-radius, whilst the characteristic anomaly as-
sociated with the stochastic terms is seen to be around a fac-
tor of 10 smaller. These typical model amplitudes are similar
to those of the large- and small-scale waves as measured in
the laboratory experiment (Williams, 2003).

3 Results

In this section, we use case studies of two particular model
runs to illustrate the large impact that the stochastically-
parameterized fast waves can have on wavenumber selection
and spontaneous transitions, at certain points in parameter
space.

3.1 Impacts on wavenumber selection

We use a stochastically-forced numerical experiment with
1� = 0.23 rad s−1 and� = 2.25 rad s−1. This is quite close
to the azimuthal wavenumber 1↔ 2 transition curve in
the [�, 1�] regime diagram, which means that the linear
growth rates of the wavenumber 1 and 2 modes are approx-
imately equal. An ensemble of thirty members was carried
out for each of various stochastic forcing amplitudes, rang-
ing from a =0 to a = 2 s−2. Within each ensemble, the only

difference between the thirty members was the particular ran-
dom numbers in the stochastic forcing fields. As in Sect. 2,
the initial conditions for the integrations were given by the
equilibrium flow with superimposed small-amplitude noise,
though it seems that the noise seeding is not necessary in this
case as perturbations from which instabilities can grow are
provided by the stochastic forcing. In each case, the equili-
brated azimuthal wavenumberm was noted, and found to be
either 1 or 2.

For each ensemble of constant noise amplitude, the prob-
ability of equilibration to wavenumber 2 was calculated and
is plotted in Fig. 4. There is a clear and strong dependence
of probability partition on noise amplitude. The results are
consistent with a linear drop-off in the probability ofm=2
as the noise increases to arounda = 1.0 s−2, followed by a
saturation at a probability of around 10% up to a noise of
a = 2.0 s−2. At each noise amplitude, zonal profiles of lower
layer depth (such as those in Fig. 3) still showed smooth,
large-scale modes superimposed with small-amplitude, grid-
scale noise.

The addition of small-amplitude noise has had a very sig-
nificant impact upon the predictability of the system’s phase
space attractor, at this point in parameter space. Ten-member
ensembles at the centres of them = 1, 2, 3 regions of the
regime diagram always showed equilibration to the given
wavenumber, irrespective of noise amplitudes up to 2.0 s−2.
This suggests that the regions of[�, 1�] parameter space in
which IGWs can exert a strong influence on large-scale mode
wavenumber selection, are confined to finite width strips ad-
jacent to transition curves, where the system is highly intran-
sitive.

3.2 Spontaneous transitions

In Sect. 3.1, we investigated the stability of an equilibrium
axisymmetric shear flow continuously seeded with stochas-
tic noise, which is a simple model of an axisymmetric atmo-
spheric jetstream in the presence of IGWs. A more likely sce-
nario in the atmosphere is for a large-scale azimuthal mode to
have already grown due to baroclinic instability, and reached
a quasi-equilibrium at finite amplitude, giving a perturba-
tion to the jetstream. There are therefore good geophysi-
cal reasons to be more interested in the stability of a finite-
amplitude large-scale wave in the presence of IGWs, rather
than the stability of an axisymmetric flow.

In order to investigate this, we now take a wavenumber 2
model flow with 1�= 0.23 rad s−1 and � = 2.25 rad s−1,
which has equilibrated at finite amplitude in the absence of
stochastic forcing. As in Sect. 3.1 (with these parameters),
the system is quite close to the wavenumber 1↔ 2 transition
curve. In the present investigation, we continue the model
integrations using the finite amplitude wavenumber 2 mode
as an initial condition, but increase the stochastic noise am-
plitude froma = 0 toa = 2.0 s−2, by 10−6 s−2 each timestep
so that the increase is quasi-continuous.

Results show that the wavenumber 2 mode persists until
the noise reaches a certain threshold level, at which point a
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Fig. 5. Hovmüller diagram, showing an azimuth-time contour plot of model perturbation potential vorticity, at mid-radiusr = 9.4 cm in
the upper layer, at the time of a spontaneous wavenumber transition. The run parameters were1�= 0.23 rad s−1 and�= 2.25 rad s−1, at
which Ro= 0.051, Fr= 11 andd = 0.057.

spontaneous transition is observed to a wavenumber 1 mode.
A Hovmüller diagram showing the transition, which takes
place over around 100 s, which is the time taken for the large-
scale wave to travel around the annulus twice, is shown in
Fig. 5. This kind of transition is never observed without the
stochastic IGW parameterization activated, and so we con-
clude that the transition was caused by the parameterization.
At the time of the transition, the stochastic noise parameter
had reached a value ofa = 1.1 s−2. By examining zonal pro-
files of lower layer depth, such as those in Fig. 3, at the tran-
sition time, we find that this corresponds to a gridscale inter-
face anomaly of root-mean-square amplitude 0.3 mm, which
is much smaller than the amplitude of the large-scale mode.

At first sight, the perturbation potential vorticity plot in
Fig. 5 may seem unrealistically noisy, but this is simply be-
cause the Laplacian operator, which is required to obtain the
perturbation potential vorticity from the interface height, am-
plifies small scales relative to large scales. For this reason,
the profiles of lower layer depth in Fig. 3 appear much less
noisy.

After the transition to the wavenumber 1 mode, the
stochastic noise amplitudea was decreased back to zero by
10−6 s−2 each timestep, but the reverse transition back to
wavenumber 2 did not occur. At the end of the integration,
when the noise had reached zero, the wavenumber 1 mode
was still dominant, indicating the presence of hysteresis in
the system.

As in Sect. 3.1, when the above experiment was repeated
with rotation rates corresponding to the centre of a wavenum-
ber regime in parameter space, spontaneous transitions were
not observed.

4 Conclusions

We have investigated the effects of including a simple
stochastic inertia-gravity wave parameterization, in a quasi-
geostrophic model of a rotating, stratified shear flow. In
general, the effect of the parameterized short waves on the
large-scale, main modes is too small to be detected. The
short waves therefore behave as linear superimposed features
which do not seem to interact in an observable way with the
large-scale flow. Sufficiently close to a wavenumber transi-
tion curve, however, a nonlinear effect allows the short waves
to exert a strong influence over long wavelength mode selec-
tion. In particular, case studies have been given in Sect. 3
of model integrations in which the probability-density func-
tion for equilibrated wavenumber is substantially modified,
and in which spontaneous transitions are observed between
different azimuthal modes. Both of these effects are directly
attributable to the presence of the stochastic short waves, and
occur even though the characteristic high wavenumber am-
plitudes are at least an order of magnitude smaller than the
long wave amplitude. It seems highly unlikely that these phe-
nomena could be reproduced using a deterministic parame-
terization of the inertia-gravity waves, such as that developed
by Hines (1988). Such a parameterization would merely lead
to an additional small drag force on the fluids, adding slightly
to the drag force due to the viscous boundary layers at the
sidewalls, lid, base and interface.

We have seen that the addition of small-amplitude noise
has had a very significant impact on the system dynam-
ics. This phenomenon is a form of stochastic resonance
(Pikovsky et al., 2001), since a small (stochastic) forcing
produces a large (resonant) response. This is a nonlinear
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Fig. 6. Schematic double-well potential for a bistable system, which
can explain the observed model regime transitions close to the 1↔2
transition curve in[�, 1�] parameter space.

resonance which is not dependent upon any matching of
timescales, unlike the familiar criterion required for linear
resonance. If stochastic resonance is exhibited by a non-
linear system, then the introduction of very small amplitude
noise can dramatically affect the system state. For example,
De Swart and Grasman (1987) have studied the effects of
adding a stochastic forcing term to a low-order atmospheric
spectral model based on the barotropic potential vorticity
equation, and found that the noise forces the system to visit
alternately different quasi-stable regimes.

The results of Sect. 3.2 suggest a simple schematic model
for explaining the observed spontaneous transitions. We rep-
resent the stable equilibrium statesm=1 andm=2 by minima
of the potential well shown in Fig. 6. With the system in the
m=2 state, a short burst of sufficiently strong stochastic forc-
ing permits the system to overcome the transition barrier and
thereby undergo an irreversible transition to them=1 state,
in which the system remains after the burst. Presumably, the
barrier height increases with distance from a transition curve
in the[�, 1�] regime diagram, increasing the noise ampli-
tude which is required to force a transition. This is consistent
with the observation of Sect. 3.2 that, far away from regime
diagram transition curves, even very large stochastic forcing
is unable to induce a spontaneous transition.

If the stochastic forcing were sufficiently large, it could
begin to dominate the model output and give flows with
wavenumbers which were essentially random. In that case,
both of the wavenumber regimes in the experiments of
Sect. 3.1 might be expected to have an equal probability of
occurrence. The stochastic forcing which we have used is
much smaller than this, however. It can be large enough to
push the system state over the transition barrier in Fig. 6, in
the direction fromm=2 to m=1, but is never large enough
to effect the reverse transition. This is consistent with the
change in wavenumber two probability from 0.8 to 0.1 as
the noise is increased, as shown in Fig. 4. Presumably if the
noise were increased further still, a point would be reached

at which the noise began to dominate the signal and, corre-
spondingly, the probability might be expected to tend to 0.5.
We have not investigated this regime, as its geophysical rele-
vance is extremely limited.

The present findings are bourne out by laboratory obser-
vations. We have found in the numerical study that the pres-
ence of stochastically-parameterized inertia-gravity waves
increases the likelihood of a model state transition. Corre-
spondingly, we have found in the laboratory annulus exper-
iments that the flow without inertia-gravity waves exhibits a
reluctance to undergo transitions which take place readily in
their presence. The appearance of inertia-gravity waves in
the laboratory is related to intrinsic fluid properties, whose
effects are scale-selective and so suppress or permit inertia-
gravity wave activity without modifying the large-scale mode
(Williams, 2003). For example, we have been able to mod-
ify the interfacial tension using a chemical surfactant, and
thereby completely suppress inertia-gravity waves.

Since laboratory inertia-gravity wave amplitudes cannot
be continuously increased in a controlled way, in contrast
with the numerical experiments, we instead choose to con-
tinuously increase the background rotation rate. As an ex-
ample, laboratory experiments were run in which� was
gradually increased at a rate of 4×10−4 rad s−2, starting
from 2.3 rad s−1 at which the equilibrated flow had azimuthal
wavenumber 2.1� was held constant at 0.62 rad s−1. With-
out inertia-gravity waves, the flow made a transition to a
wavenumber 3 state when� had reached 3.4 rad s−1, but
with inertia-gravity waves, the transition occurred earlier,
when� reached 2.7 rad s−1. The values of the nondimen-
sional parameters for the transition were Ro=0.09, Fr=25
and d=0.026 in the absence of inertia-gravity waves, and
Ro=0.11, Fr=16 andd=0.023 in their presence. Inertia-
gravity waves therefore seem to have a strong influence on
transitions, both in the laboratory and the model. There
are laboratory regimes in which the wavenumber 1 and 2
states vacillate irregularly, rather than a single state remain-
ing steady. This has a closer correspondence with the at-
mospheric regime, and so an investigation of inertia-gravity
wave impacts on these states should form an important com-
ponent of any future work.

The Rossby, Froude and dissipation numbers for the lab-
oratory experiment, atmosphere and ocean are not dissim-
ilar (Williams, 2003), though the non-dimensionalized vis-
cosity and interfacial tension are much larger in the labora-
tory. It therefore seems likely that the qualitative findings
of this study apply to the atmosphere and ocean. The impli-
cation is that a short, intense burst of inertia-gravity waves
could force a large-scale regime change which persists long
after the inertia-gravity waves have dissipated. Such an event
is unlikely to be captured by a deterministic inertia-gravity
wave parameterization, as currently used by most operational
meteorological centres. There is a clear need for further re-
search to investigate the likely forecast error that this phe-
nomenon could inflict. Moreover, stochastic inertia-gravity
wave parameterizations would seem to offer a promising and
convenient way of capturing it.



P. D. Williams et al.: Stochastic resonance in a rotating, stratified shear flow 135

Acknowledgements.PDW acknowledges support under a research
studentship from the UK Natural Environment Research Council,
held at the University of Oxford, with award reference number
GT04/1999/AS/0203.

Edited by: R. Grimshaw
Reviewed by: T. N. Palmer and another referee

References

Appleby, J. C.: Selection of baroclinic waves, Quart. J. Roy. Mete-
orol. Soc., 114, 1173–1179, 1988.

Arakawa, A.: Computational design for long-term numerical inte-
gration of the equations of fluid motion: two-dimensional incom-
pressible flow, J. Comp. Phys., 1, 119–143, 1966.

De Swart, H. E. and Grasman, J.: Effect of stochastic perturbations
on a low-order spectral model of the atmospheric circulation, Tel-
lus, 39A, 10–24, 1987.

Ford, R., McIntyre, M. E., and Norton, W. A.: Balance and the slow
quasimanifold: some explicit results, J. Atmos. Sci., 57, 1236–
1254, 2000.

Hart, J. E.: On the behaviour of large-amplitude baroclinic waves,
J. Atmos. Sci., 30, 1017–1034, 1973.

Hines, C. O.: Tropopausal mountain waves over Arecibo: a case
study, J. Atmos. Sci., 46, 476–488, 1988.

Hines, C. O.: Doppler spread parameterization of gravity wave mo-
mentum deposition in the middle atmosphere, Part 1: Basic for-
mulation; Part 2: Broad and quasi monochromatic spectra and
implementation, J. Atmos. Solar Terr. Phys., 59, 371–400, 1997.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 42,
433–471, 1963.

Lorenz, E. N.: On the existence of a slow manifold, J. Atmos. Sci.,
43, 1547–1557, 1986.

Lovegrove, A. F., Read, P. L., and Richards, C. J.: Generation of
inertia-gravity waves in a baroclinically unstable fluid, Quart. J.
Roy. Meteorol. Soc., 126, 3233–3254, 2000.

Palmer, T. N.: A nonlinear dynamical perspective on model error:
a proposal for non-local stochastic-dynamic parameterization in
weather and climate prediction models, Quart. J. Roy. Meteorol.
Soc., 127, 279–304, 2001.

Pikovsky, A., Rosenblum, M., and Kurths, J.: Synchronization: a
universal concept in nonlinear sciences, Cambridge University
Press, 2001.

Roach, W. T.: On the influence of synoptic development on the pro-
duction of high level turbulence, Quart. J. Roy. Meteorol. Soc.,
96, 413–429, 1970.

Robert, A. J.: The integration of a low order spectral form of the
primitive meteorological equations, J. Meteor. Soc. Japan, 44(5),
237–245, 1966.

Williams, P. D.: Nonlinear interactions of fast and slow modes in
rotating, stratified fluid flows, Ph.D. thesis, Oxford University,
2003.

Williams, P. D., Read, P. L., and Haine, T. W. N.: Sponta-
neous generation and impact of inertia-gravity waves in a strat-
ified, two-layer shear flow, Geophys. Res. Lett., 30, 2255,
doi:10.1029/2003GL018498, 2003.


