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ABSTRACT

A new method of clear-air turbulence (CAT) forecasting based on the Lighthill–Ford theory of sponta-
neous imbalance and emission of inertia–gravity waves has been derived and applied on episodic and
seasonal time scales. A scale analysis of this shallow-water theory for midlatitude synoptic-scale flows
identifies advection of relative vorticity as the leading-order source term. Examination of leading- and
second-order terms elucidates previous, more empirically inspired CAT forecast diagnostics. Application of
the Lighthill–Ford theory to the Upper Mississippi and Ohio Valleys CAT outbreak of 9 March 2006 results
in good agreement with pilot reports of turbulence. Application of Lighthill–Ford theory to CAT forecast-
ing for the 3 November 2005–26 March 2006 period using 1-h forecasts of the Rapid Update Cycle (RUC)
2 1500 UTC model run leads to superior forecasts compared to the current operational version of the
Graphical Turbulence Guidance (GTG1) algorithm, the most skillful operational CAT forecasting method
in existence. The results suggest that major improvements in CAT forecasting could result if the methods
presented herein become operational.

1. Introduction

The theory of spontaneous imbalance owes its origins
to Lighthill’s (1952) study of aerodynamically gener-
ated sound waves and Ford’s (1994) extension of the
problem to rotating shallow-water flow and inertia–
gravity wave generation. In their analyses, the waves
are emitted spontaneously by the vortical flow. This
characteristic distinguishes the spontaneous imbalance
problem from the initial value imbalance and gravity
wave generation of “geostrophic adjustment” (Rossby
1938; Cahn 1945) and from boundary condition pertur-
bations leading to topographically forced gravity waves
(Smith 1979). Instead, it is fundamentally rooted in the
“universal ‘internal’ . . . nonlinearity of atmospheric

motions,” as demonstrated by Medvedev and Gavrilov
(1995) in their independent extension of Lighthill’s
theory.

While the weakness of spontaneous emission in
Lighthill–Ford theory is sometimes emphasized, in this
paper we stress the fact that the theory does indeed
predict gravity wave radiation, even at an arbitrarily
small Rossby number (Ford et al. 2000). Even weak
gravity waves can have sizable impacts on the back-
ground flow (Williams et al. 2003). In this paper, we
emphasize that weak gravity waves can modify the local
environmental stability and wind shear to reduce the
Richardson number (section 6.3 of Nappo 2003) to val-
ues that allow for turbulence production (Roach 1970;
McCann 2001).

Gravity wave radiation is therefore of particular im-
portance to the study and forecasting of clear-air tur-
bulence (CAT). CAT is in-flight bumpiness detected by
aircraft at high altitudes in regions devoid of significant

Corresponding author address: Dr. John A. Knox, Department
of Geography, University of Georgia, Athens, GA 30602.
E-mail: johnknox@uga.edu

3292 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65

DOI: 10.1175/2008JAS2477.1

© 2008 American Meteorological Society

JAS2477



cloudiness or nearby thunderstorms. Much of this
bumpiness is assumed to be caused by aircraft flying in
or near gravity waves (Ellrod et al. 2003). Commercial
aircraft encounter severe, or greater, turbulence about
5000 times each year, the majority of which occur above
flight levels 10 000 ft above mean sea level (FL100);
these incidents lead to tens of millions of dollars in
injury claims per year (Sharman et al. 2006). However,
a significant limitation for the forecasting of all types of
aviation turbulence is identifying the source of gravity
waves (McCann 2001). Partly as a result, current fed-
eral goals for aviation turbulence forecasting are “cur-
rently not achievable by either automated or experi-
enced human forecasters” (Sharman et al. 2006).

In the case of CAT, a candidate source of these
waves is spontaneous imbalance. Observational experi-
ence (e.g., Sorenson 1964) has long indicated the fol-
lowing two flow regimes associated with CAT: strongly
cyclonic and strongly anticyclonic flows. Cyclonic CAT
has been explained and predicted with some success via
Kelvin–Helmholtz instability theory (Dutton and
Panofsky 1970) related to frontogenesis and deforma-
tion (e.g., Ellrod and Knapp 1992). These regions some-
times correspond to areas in which spontaneous emis-
sion of gravity waves is expected to occur (e.g., fronts
and jets). Occurrences of CAT in strongly anticyclonic
flows are rarer but also more problematic to forecast
(Knox 1997). A recent work in progress (G. P. Ellrod
and J. A. Knox 2008, unpublished manuscript) suggests
that augmenting usual deformation/vertical shear fore-
cast methods with divergence tendency leads to im-
proved prediction methods, particularly in anticyclonic
regions. In this context, it is of interest that Ford (1994)
found the strongest spontaneous gravity wave genera-
tion in strongly anticyclonic regions of zero or negative
potential vorticity. In summary, CAT forecasting re-
mains an unsolved problem (McCann 2001) for spon-
taneous imbalance theory to address.

Williams et al. (2005) employed laboratory experi-
ments and a quasigeostrophic model’s results to explore
generation mechanisms of gravity waves in a rotating,
two-layer vertically sheared flow. To diagnose wave ac-
tivity, the authors calculated five dynamical indicators,
several of which were originally devised as CAT fore-
casting indices (Roach 1970; Brown 1973). The most
accurate indicator tested by Williams et al., however,
derived from Lighthill–Ford theory. Williams et al. con-
cluded, “Further work is required to determine in more
detail how to properly interpret the Lighthill/Ford in-
dicator,” its “geophysical relevance and applicability,”
and its relationship to other indicators of imbalance.
This is the motivation for the present work.

This work is organized as follows. In section 2 we

derive an applications-friendly version of the Lighthill–
Ford theory, and discuss each forcing term and the re-
lationship of the leading-order terms to established
CAT forecasting techniques. In section 3 the method
used to apply this theory as a CAT forecasting tool is
explained. In section 4 a case study is presented show-
ing the utility of Lighthill–Ford theory in CAT fore-
casting. Section 5 examines a season-long database that
demonstrates the superiority of applying this theory
versus other CAT forecasting methods, and discussion
and concluding remarks are provided in section 6.

2. Theory

a. Derivation

Lighthill (1952) derived the theory for the generation
of sound waves by large-scale motions in a three-
dimensional compressible adiabatic gas. With extension
to nonrotating shallow-water flow, Lighthill’s theory
predicts pure gravity wave generation. Ford (1994) ex-
tended this theory to rotating stratified flow and iner-
tia–gravity wave generation, as did Medvedev and
Gavrilov (1995). We are not aware of an extant exten-
sion of this theory to the baroclinic case.

Ford’s derivation is based on the flux forms of the
momentum and conservation of mass equations in shal-
low-water flow on the f plane. By forming the diver-
gence and vorticity equations, and then combining
them with conservation of mass and its second deriva-
tive, Ford obtained the following wave equation:

� �2

�t2 � f 2 � gh0�2� �h

�t
�

�2

�xi�xj
Ti j , �1�

in which g is the acceleration due to gravity, h is the
layer depth, and h0 is the layer depth far from the re-
gion of vortical motion; in standard tensor notation
Tij is

Tij �
�

�t
�huiuj� �

f

2
��ikhujuk � �jkhuiuk�

�
1
2

g
�

�t
�h � h0�2�i j . �2�

Ford (1994) and Williams et al. (2005) indicated that
nonzero values on the right-hand side of (1) should be
regarded as a source of gravity waves. Strictly speaking,
this interpretation is not exact because the variable h is
not isolated on the left-hand side of (1). However, the
separation of time scales and the weakness of the grav-
ity waves compared to the large-scale flow allow for this
interpretation, and this interpretation has also been
confirmed by Williams et al.’s laboratory experiments.
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Williams et al. (2005) referred to the right-hand side
of (1) as the “Lighthill/Ford radiation term” and reex-
pressed it as

R �
�

�t
�� � G�

Term 1

� f k � � � G

Term 2

�
g

2
�

�t
�2�h � h0�2

Term 3

, �3�

in which

G � u� � �hu� � �hu � ��u. �4�

(Note that Williams et al. expressed term 3 as a function
of h instead of h � h0, but we choose the latter to
maintain consistency with Ford’s theory.)

These expressions for Lighthill–Ford radiation are
not convenient for interpretation and application. As
an extension of previous work, therefore, we expand
each term in (3) and discuss each term separately re-
garding its contribution to spontaneous imbalance.
[Derivatives of h arising from (4) may be shown to sum
to zero via conservation of mass; we omit them below.]

Term 1 can be expressed as a function of a common
diagnostic of imbalance, the horizontal divergence D:

�

�t
�� � G� � 2h� �

�t
D2

Term 1A

�
�

�t
u � �D

Term 1B

�
�

�t
J�u, ��

Term 1C

�.

�5�

These subterms are obtained from the time derivative
of the divergence equation in the derivation of (1).
Term 1A is a source term resulting from the local
change of divergence; term 1B is a source of gravity
waves via the local change of the horizontal advection
of horizontal divergence; and term 1C is the time de-
rivative of the familiar Jacobian term found in both the
divergence equation and in its approximated form, the
nonlinear balance equation (NBE; Zhang et al. 2000).

Term 2 is expressible as a combination of the hori-
zontal divergence and the vertical component of rela-
tive vorticity �:

f k � � � G

� h� 2Df�

Term 2A

� fu � ��

Term 2B

� f��
�D

�x
� u

�D

�y �
Term 2C

�.

�6�

The product of divergence, planetary vorticity, and
relative vorticity is found in term 2A; this product is not
found elsewhere in the divergence, NBE, or vorticity
equations. Term 2B is proportional to the horizontal
advection of relative vorticity. Term 2C is proportional
to the vertical component of the cross product of the

vector velocity with the horizontal gradient of diver-
gence.

Term 3 can also be reexpressed as

g

2
�

�t
�2�h � h0�2 � g�2��h � h0�

��h � h0�

�t �
� g��h

�t
�2h

Term 3A

� �h � h0���2
�h

�t �
Term 3B

� 2��h

�x

�2h

�t�x
�

�h

�y

�2h

�t�y�
Term 3C

�. �7�

In term 3A, the Laplacian of height appears, reminis-
cent of the Laplacian of geopotential found in the di-
vergence and NBE equations.

b. Scale analysis

Following Haltiner and Williams (1980, 54–59), a
simple scale analysis of the Lighthill–Ford radiation
subterms in (5), (6), and (7) can be performed for syn-
optic-scale midlatitude flows with small Rossby number
(Ro K 1), background conditions that in our experi-
ence are representative of many clear-air turbulence
outbreaks.

Assuming velocity and length scales of U and L, an
advective time scale, and that the ratio of divergent and
rotational components of the velocity scales as Ro, then

T �
L

U
, � �

U

L
, and D � Ro

U

L
. �8�

In addition, by invoking the definition

f 	
1

Ro
U

L
, �9�

we can scale terms 1 and 2 with respect to (non-
zero) Ro:

�

�t
�� � G� �

U3

L2 � Ro2

Term 1A

Ro
Term 1B

1
Term 1C�, �10�

f k � � � G �
U3

L2 � 1
Term 2A

Ro�1

Term 2B

1
Term 2C�. �11�

To leading order for Ro K 1, therefore,

Term 1
Term 2

�
Term 1C
Term 2B

� Ro. �12�

This result agrees with Williams et al.’s (2005) comment
that the ratio of terms 1 and 2 should scale as the bulk
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Rossby number. We have, however, extended their re-
sults and identified the leading-order components
within terms 1 and 2 that lead to that scaling. We also
confirm for low Ro their speculation that only term 2
might be retained for “many practical purposes.” Ad-
ditionally, Medvedev and Gavrilov’s (1995) analysis
emphasized the equivalent of our term 2B for inertia–
gravity wave forcing by quasigeostrophic motions.

To scale term 3, we rewrite it in terms of Reznik et
al.’s (2001) nonlinearity parameter 
:

g

2
�

�t
�2�h � h0�2 �

U3

L2 	2. �13�

Furthermore, for standard quasigeostrophic conditions,
Reznik et al. note that 
 scales as Ro. Therefore, for our
analysis,

g

2
�

�t
�2�h � h0�2 �

U3

L2 Ro2. �14�

Thus, for small Ro, term 3 would be similar in magni-
tude to O(Ro2), that is, three orders of magnitude
smaller than term 2B. This scaling is broadly consistent
with the quasigeostrophic model results of Williams et
al. (2005, their Fig. 7), who found term 2 to be a factor
of 40 or more larger than term 3, and with Sugimoto et
al. (2008), who found term 3 to be negligible even for
large Ro.

To summarize, our scale analysis of the Lighthill–
Ford radiation terms identifies the following:

• leading-order term: term 2B (advection of relative
vorticity);

• second-order terms: term 1C, term 2A, term 2C; and
• third-order and smaller terms: term 1A, term 1B,

term 3.

Therefore, we should expect to find that regions of
large advection of relative vorticity should be a domi-
nant source of spontaneous gravity wave generation.
Medvedev and Gavrilov [1995, their Eq. (23)] also iden-
tified advection of relative vorticity as the source term
for inertia–gravity waves in their extension of Light-
hill’s theory.

The Jacobian term, divergence–vorticity product,
and cross product of velocity with the gradient of di-
vergence may also play nonnegligible roles for situa-
tions in which Ro � 1 but not Ro K 1. As a result, we
also retain these terms. Medvedev and Gavrilov [1995,
their Eq. (18)] identified a source term similar to terms
1A and 1C as the most important for the generation of
mesoscale waves.

In the following sections we test these expectations
with data from clear-air turbulence observations, with

the clear understanding that this theory is designed for
shallow-water flow rather than the baroclinic atmo-
sphere.

c. Interpretation

The interpretation of Lighthill–Ford theory in terms
of spontaneous imbalance and wave generation affords
an opportunity to reexamine previous, often empiri-
cally inspired work on clear-air turbulence in light of
new and fundamental theory.

The second term of the vector form of the Lighthill–
Ford radiation term in (4), (hu • �)u, is essentially iden-
tical to the numerator of the advective Rossby number
used by Uccellini et al. (1984) to diagnose unbalanced
flow. CAT diagnostics based on the advective Rossby
number, such as the inertial-advective wind (Knox
2001), and the Lagrangian Rossby number (van Tuyl
and Young 1982; Koch and Dorian 1988) have been
used with some success in CAT forecasting. Interest-
ingly, the leading-order term of our scale analysis re-
sults from this second vector term on the RHS of (4).
Thus, the use of inertial-advective CAT predictors may
be related to this component of Lighthill–Ford sponta-
neous gravity wave generation.

The leading-order term 2B has been previously iden-
tified as a CAT forecasting diagnostic. Shapiro (1978)
related gradients of potential vorticity to CAT; Kaplan
et al. (2005) created a CAT predictor related to gradi-
ents of relative vorticity. A long-standing rule-of-thumb
CAT forecasting technique in the aviation meteorology
community has been to identify regions of strong nega-
tive absolute vorticity advection (e.g., Sharman et al.
2006, their appendix A, item p). However, during the
past four decades deformation and vertical shear,
rather than horizontal vorticity advection, have been
emphasized in CAT forecasting techniques.

For example, one of the more successful diagnostics
of CAT (e.g., Roach 1970; Brown 1973; Dutton 1980;
Keller 1990; Ellrod and Knapp 1992) has been flow
deformation DEF, defined as

DEF2 � ��u

�x
�

��

�y�2

� ���

�x
�

�u

�y�2

. �15�

However, why should flow deformation be related to
CAT? Conventional wisdom links DEF to frontogene-
sis and ultimately to Kelvin–Helmholtz instability. The
seminal paper linking CAT and deformation by Man-
cuso and Endlich (1966) sought instead a link between
deformation and the generation of mesoscale waves
that could degenerate into turbulence. In 1966 the con-
cept of large deformation triggering mesoscale waves
“lack[ed] theoretical support,” so Mancuso and Endlich
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turned instead to frontogenetical arguments involving
vertical wind shear. However, they concluded, “We do
not have a completely satisfactory explanation for the
physical connection between turbulence and the prod-
uct of vertical wind shear and deformation.”

Lighthill–Ford theory may be able to provide a me-
soscale wave generation–deformation linkage that
Mancuso and Endlich (1966) sought in vain. One can
algebraically equate (without approximation) term 1C
to DEF as

�

�t
�2J�u, ��� �

1
2

�

�t
�DEF2 � �2 � D2 �. �16�

The D2 term scales as Ro2 and is often negligible.
Therefore, in regions of small and/or nearly steady rela-
tive vorticity,

�

�t
�2J�u, ��� �

1
2

�

�t
�DEF2 � � DEF

�

�t
�DEF�. �17�

Thus, a direct connection can be made (at least in cer-
tain circumstances) between flow deformation and in-
ertia–gravity wave generation via Lighthill–Ford
theory. This may partially explain the surprising success
of deformation-based CAT predictors despite weak-
nesses in their derivation and application (Knox 1997).

It is also of note that G. P. Ellrod and J. A. Knox
(2008, unpublished manuscript) recently introduced a
hybrid deformation-based CAT diagnostic that also in-
corporates the time trend of divergence, specifically to
address hard-to-forecast CAT in strongly anticyclonic
regions. Its inspiration derives from McCann (2001)
and also empirical experience, but the hybrid’s success
may also be explainable in terms of Lighthill–Ford
theory. In the case where DEF and divergence are not
negligible and relative vorticity is quasi constant, (16)
can be written as

�

�t
�2J�u, ��� �

1
2

�

�t
�DEF2 � D2 �

� DEF
�

�t
�DEF� � D

�D

�t
. �18�

Thus, both deformation and the local tendency of di-
vergence can be related to one of the second-order sub-
terms of the Lighthill–Ford gravity wave radiation
term. This may provide some theoretical justification
for the approach of Ellrod and Knox.

Another second-order term 2A possesses a unique
characteristic that was proposed in an earlier paper on
CAT. Knox (1997), noting Sparks et al.’s (1977) obser-
vations of frequent CAT in both strongly anticyclonic
and strongly cyclonic flows, suggested that a parabolic

nonlinear relationship between CAT and absolute vor-
ticity might exist, with a minimum at intermediate val-
ues of absolute vorticity. The absolute value of term
2A, 2|Df� | , captures this nonlinearity—assuming large
|D | at near-zero absolute vorticity or in regions of large
absolute vorticity, a parabolic curve is obtained for
2 |Df� | as a function of absolute vorticity (not shown).

A popular indicator of imbalance is the residual of
the NBE (e.g., Houghton et al. 1981; Moore and Abel-
ing 1988; Zhang et al. 2000). Plougonven and Zhang
(2007) recently derived a vertically propagating inertia–
gravity wave equation in which the right-hand forcing
terms included the Lagrangian derivative of the vertical
gradient of the NBE residual. Our analysis of Lighthill–
Ford theory for horizontally propagating waves, how-
ever, does not reveal a similarly close relationship be-
tween wave generation and the NBE residual. Our
leading-order radiation term, advection of relative vor-
ticity, is not part of the NBE residual. The second-order
term 1C is the time derivative of the Jacobian, which is
found in the NBE residual. The second-order term 2A
contains f�, which is also found in the NBE residual, but
in term 2A it is multiplied by D. Terms 1A and 1B are
time derivatives of divergence and advection of diver-
gence, which would be nonzero in the event of NBE
imbalance. However, these terms are third-order in our
Lighthill–Ford scale analysis.

In short, from the perspective of Lighthill–Ford
theory the NBE residual does not manifest itself as a
significant diagnostic of gravity wave generation indi-
cator. Other quantities discussed in this section appear
to be more appropriate. Finally, because Lighthill–Ford
theory combines divergence and vorticity equations,
whereas the NBE is an approximated form of the di-
vergence equation, it would seem that Lighthill–Ford
theory should possess whatever advantages have been
gained by using NBE residual as a flow imbalance di-
agnostic.

In summary, the Lighthill–Ford theory of spontane-
ous imbalance can be related to several existing clear-
air turbulence forecasting approaches of the past 40
years, which were often inspired by empirical, rule-of-
thumb approaches.

3. Methods

Having performed a scale analysis of the Lighthill–
Ford theory for synoptic-scale midlatitude flows, we
now discuss how to implement it as a clear-air turbu-
lence forecasting diagnostic.

We hypothesize that gravity waves spontaneously
emitted according to Lighthill–Ford theory relate to
clear-air turbulence felt by aircraft in the following
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manner. First, the gravity wave acts upon the environ-
ment and destabilizes it. If the environment is close to
being dynamically unstable with respect to Kelvin–
Helmholtz instability (i.e., the environment has small
Richardson number Ri), then the gravity wave causes
Ri to be reduced locally to less than 0.25 and turbulence
ensues (Miles and Howard 1964; Dutton and Panofsky
1970). Therefore, not only Lighthill–Ford forcing but
also the environmental Ri must be considered in the
production of turbulence. In this way, even weak grav-
ity waves may initiate turbulence.

The intensity of the turbulence is not addressed by
either of these two quantities. A separate quantity, tur-
bulent kinetic energy (TKE) dissipation, is the only
known quantitative approach that is correlated with air-
craft turbulence intensity (McCann 1999; also see
“eddy dissipation rate” in Cornman et al. 1995).

For these reasons, we pursue the application of
Lighthill–Ford theory as a CAT forecasting diagnostic
using the TKE approach of McCann (2001). In this
paper, McCann outlined a simple first-order turbulence
closure ingredients-based CAT forecast technique and
presented a procedure for combining the ingredients.
We summarize this procedure below.

To reiterate, the guiding assumption in McCann
(2001) is that gravity waves locally modify the environ-
mental Ri, which can then trigger CAT via Kelvin–
Helmholtz instability. [This theory fundamentally dif-
fers from the Mancuso and Endlich (1966) approach in
that gravity waves do not “degenerate” into turbulence.
Their theory implies that the turbulence cascade begins
at the mesoscale while McCann’s implies a much
smaller scale.] Because the modified Ri fluctuates
within a gravity wave, only portions of the wave may be
turbulent. The maxima of the two sources of produc-
tion of gravity wave–enhanced turbulent kinetic energy
may be estimated as

�buoy � Kh�â � 1�N2, �19�

and

�wshr � Km��V
�z �2

�1 � â�Ri �2
. �20�

In (19) and (20), �buoy and �wshr are the gravity wave–
modified TKE dissipation resulting from buoyancy and
wind shear, respectively, Kh and Km are the eddy ther-
mal diffusivity and the eddy viscosity, respectively, and
V is the vector horizontal wind. The ratio Km /Kh is a
turbulent Prandtl number; the closer this ratio is to 0.25,
the less intermittent the turbulence. The eddy viscosity
is empirically determined so that the resulting TKE dis-

sipation estimates the eddy dissipation rate of actual
aircraft (Cornman et al. 1995). The eddy thermal dif-
fusivity is Kh � 4Km. The Brunt–Väisälä frequency
squared is N2 � g/�(��/�z), in which � is the potential
temperature. The final output of the algorithm is the
maximum of (19) and (20).

A key parameter in (19) and (20) is the nondimen-
sional amplitude

â � Na
 |V � c | , �21�

where a is the actual wave amplitude and c is the wave
phase velocity; it is an inverse Froude number. The
nondimensional amplitude denominator is the Dopp-
ler-adjusted wind velocity (Dunkerton 1997).

Maximum positive TKE production from buoyancy
arises when â � 1 and from wind shear when

â � 2 � Ri�1
2. �22�

The method assumes that in the typical forecast time
the TKE production eventually cascades into molecular
TKE dissipation through the inertial subrange felt by
the aircraft. At any one moment an aircraft may feel
less than the maximum TKE dissipation because of its
position within the gravity wave.

Any type of gravity wave forcing may be imple-
mented, but the method requires knowledge of the
wave amplitudes and phase velocities that, for the most
part, are unknown. Because of a lack of consensus
about the scaling properties of inertia–gravity wave am-
plitudes in theories and atmospheric observations, we
seek guidance from laboratory experiments (Williams
et al. 2008). The inertia–gravity waves generated in
these experiments have an amplitude that scales lin-
early with the Rossby number. Noting that the Light-
hill–Ford source term varies as Ro2, we deduce that if
atmospheric inertia–gravity waves behave like those in
the laboratory, then their amplitude must be propor-
tional to the square root of the leading- and second-
order terms in the Lighthill–Ford source term,

â2 � fu � �� � 2Df� � f k � u � �D � 2
�

�t
J�u, ��.

�23�

We assume constant mean wave properties in (23).
The proportionality constant in (23) was determined

empirically by matching distributions of pilot reports of
turbulence in strong CAT outbreaks prior to 2005–06
with the patterns of TKE dissipation that fit the best.
This constant was then held fixed in the analyses of
2005–06 CAT occurrences discussed in sections 4 and 5
below.

OCTOBER 2008 K N O X E T A L . 3297



In the case of term 1C, we compute the instantaneous
time derivative of the Jacobian as

�

�t
J�u, �� � J��u

�t
, �� � J�u,

��

�t�, �24�

with the time derivatives in (23) calculated from the
equation of motion via

�u

�t
� �

��

�y
� f� � u

�u

�x
� �

�u

�y

��

�t
� �

��

�x
� fu � u

��

�x
� �

��

�y
, �25�

where � is the geopotential height.
In the next section, we briefly present a case study of

the application of Lighthill–Ford theory to clear-air tur-
bulence forecasting as an illustration of the approach
and its efficacy and as a prelude to its application on
longer time scales.

4. Case study

On 9 March 2006, a significant CAT outbreak oc-
curred over portions of the Upper Mississippi and Ohio
Valleys. In 2 h between 0000 and 0200 UTC 10 March
nearly three dozen pilot reports (PIREPs) of CAT were

received, including eight reports of severe or moderate-
to-severe turbulence. Most of the strongest turbulence
was experienced in the upper troposphere above
FL350, in convergent southwest flow ahead of a trough
over the Great Plains (Fig. 1).

Using the 1-h Rapid Update Cycle (RUC) 2 forecast
from 0000 UTC 10 March 2006, we calculate the TKE
dissipation using (23) as the gravity wave forcing. Fig.
2a depicts 200–225-hPa TKE dissipation overlaid with
PIREPs of turbulence occurring between FL350 and
FL410. The agreement between regions of maximum
TKE dissipation and PIREPs of turbulence is consid-
erable, especially given the relative sparseness and in-
homogeneity of pilot reports. Also of note is the null
report of turbulence made in a region of minimal TKE
dissipation rates. By comparison, the 25-hPa layer
(200–225 hPa) bulk Richardson number (Fig. 2b) indi-
cates very broad regions of Ri � 1 across much of Illi-
nois, southern Wisconsin, and parts of Michigan. This is
the classic problem of overprediction of CAT that
plagues most CAT forecast indicators. By contrast, Fig.
2b illustrates that leading- and second-order terms of
Lighthill–Ford radiation correspond to better-defined
regions of maxima than does Ri.

Cross sections during this CAT outbreak also reveal
the efficacy of Lighthill–Ford theory in identifying

FIG. 1. One-hour RUC2 forecast of the 200-hPa streamlines and wind speed (dashed, m s�1) for the
Upper Mississippi and Lower Ohio Valleys, valid at 0100 UTC 10 March 2006.
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FIG. 2. (a) 200–225-hPa TKE dissipation overlaid with pilot reports of turbulence occurring over the
Upper Mississippi and Ohio Valleys between FL350 and FL410 using the 1-h RUC2 forecast at 0000
UTC 10 Mar 2006. Lines indicate cross sections used in subsequent figures. (b) Lighthill–Ford radiation
(solid lines) and 200–225-hPa Richardson number (dashed lines) for the same region and time period.
The Lighthill–Ford radiation is calculated using the leading- and second-order terms determined in
section 2 and the method described in section 3.
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likely regions for turbulence. Figure 3 shows nearly per-
pendicular cross sections from Des Moines, Iowa
(DSM), to Detroit, Michigan (DTW), and Volk Field,
Camp Douglas, Wisconsin (VOK), to Paducah, Ken-
tucky (PAH). PIREPs of turbulence within 100 km of
the cross section are overlaid. The turbulence reports
generally coincide with high values of TKE dissipation
rate. Conversely, null reports of turbulence generally
coincide with low values of TKE dissipation rate. Spa-
tial patterns of � using Lighthill–Ford theory are rela-
tively coherent; that is, they more closely resemble the
physical wave patterns found in experiments by Wil-
liams et al. (2005) than numerical noise.

The results of this case study support the notion that
application of shallow-water Lighthill–Ford theory to
the problem of clear-air turbulence could lead to ben-
eficial forecasts of CAT, even in baroclinic situations.
How does this approach fare over longer periods of
time, and how does its accuracy compare to that of
existing methods of CAT forecasting? We explore
these questions in the next section.

5. Seasonal statistics

The method of CAT forecasting explicated in the
preceding sections is now used to diagnose the occur-
rence of CAT during a 144-day period using the 20-km
output from the 13-km RUC2 operational numerical
weather prediction model. Layer TKE dissipation rates
calculated from the 1-h forecasts from the 1500 UTC
model run (valid at 1600 UTC) for each day from 3
November 2005 to 26 March 2006 are validated with
5546 text pilot reports of turbulence from 1500 to 1700
UTC at or above FL200. PIREPs of turbulence in con-
vection (as determined subjectively from satellite imag-
ery) or in mountain waves (as determined from the
MWAVE algorithm; see McCann 2006) were not in-
cluded in the database. The maximum TKE dissipation
rate in the layer with the FL within 50 km of the pilot
report of CAT was matched with the subjective pilot
report of the intensity of the turbulence. [See Schwartz
(1996) and Bass (2001) for a discussion of limitations
and inconsistencies in these subjective reports.]

One way to assess an algorithm’s skill is to create a
set of 2 � 2 contingency tables by varying the threshold
chosen to make a yes-or-no forecast decision and then
comparing those with the yes-or-no observed condi-
tions (Mason 1982). For each threshold the members of
the table are the number of correct yes forecasts (YY),
the number of correct no forecasts (NN), the number of
incorrect yes forecasts (YN), and the number of missed
forecasts (NY). The Heidke skill score (HSS; Doswell
et al. 1990) is one of many skill summary measures for

2 � 2 contingency tables. It gives credit for the correct
forecasts (YY and NN) and deducts for the incorrect
forecasts (YN and NY). The score may vary between
�1 and 1, with 0 meaning no skill. The HSS’s strength
over other summary measures is its ability to account
for rare events. Because PIREPs are sparse and not
random (they tend to report positive turbulence), the
YN and NY categories may be uncertain. Therefore,
the absolute value of the HSS is not likely accurate, but
it may be compared within an HSS set to assess which
threshold creates the highest skill.

Figure 4 shows the HSS for our application of Light-
hill–Ford theory to CAT forecasting during November
2005–March 2006. It reveals a positive forecast skill for
all CAT intensities. Especially noteworthy is that the
highest score for the differentiation between no turbu-
lence and positive turbulence is for a zero threshold. In
other words, when there is a positive TKE dissipation
forecast, aircraft will likely feel some turbulence. At
moderate and severe intensities the HSS peaks with
higher TKE dissipation; this indicates that the higher
the forecast TKE rate, the stronger the expected tur-
bulence. This is a very desirable feature of a CAT fore-
casting technique, given the practical importance of dif-
ferentiating between various CAT intensities.

An alternative statistical analysis of forecasting is the
receiver operating characteristic (ROC) curve. Popu-
larized in the field of radiology (e.g., Hanley and Mc-
Neil 1982), a ROC graphic contains the YY percentage
of total reports versus the NN percentage of total re-
ports for a range of thresholds; collectively, this defines
the ROC curve. Each point on the curve is the fore-
cast’s accuracy for a given threshold. The closer the
ROC curve is to the upper-right corner of the graph,
the more skillful the method.

Recently, Sharman et al. (2006) statistically com-
bined the historically most useful CAT forecast meth-
ods into a single product called the Graphical Turbu-
lence Guidance (GTG). Their combined approach veri-
fied better than any other single method. Figure 5
compares the ROC curve of our algorithm with the
ROC curve of the current operational version of the
GTG (GTG1) for moderate or greater turbulence dur-
ing November 2005–March 2006. (The GTG curve in
Fig. 5 is based on data obtained online at http://www.
rtvs.noaa.gov.) As Fig. 5 illustrates, our approach over
this period is more skillful than GTG for moderate or
greater turbulence. Our approach is also more skillful
than GTG for light or greater and severe turbulence
(not shown). Because at the time of writing the GTG1
is currently the best available method, our results sug-
gest that application of our approach to CAT forecast-
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FIG. 3. (a) Vertical cross section from DSM to DTW of TKE dissipation using the 1-h RUC2 forecast
at 0000 UTC 10 Mar 2006. PIREPs within 100 km of the cross section are overlaid. (b) As in (a), except
for a vertical cross section from VOK to PAH. Symbols depicting pilot reports of turbulence are the
same as in Fig. 2.
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ing could potentially be more skillful than the best
methods typically used by forecasters today.1

The U.S. Federal Government’s goal for CAT fore-
cast techniques is for a probability of detection for
moderate or greater turbulence greater than 0.8, with a
probability of detection of null reports greater than 0.85
(Sharman et al. 2006). Based on the seasonal statistics
shown in Fig. 5, our application is tantalizingly close to
this goal, with a YY probability for moderate or greater
turbulence of 0.829 and a NN probability for null tur-
bulence of 0.785 at a zero threshold. However, at the
most skillful threshold for moderate or greater turbu-
lence the YY probability for our method is only 0.657.

6. Discussion and concluding remarks

In this paper, we have developed the Lighthill–Ford
theory of spontaneous imbalance and gravity wave
emission in a form amenable to clear-air turbulence
forecasting. Using scale analysis, we have identified the
main dynamical processes contributing to spontaneous
imbalance for midlatitude synoptic-scale flows. In par-
ticular, we have singled out the leading-order contribu-
tor: the advection of relative vorticity. This may at least
partly explain the observed relationship between sharp
PV gradients and inertia–gravity wave generation

noted by others (e.g., Viúdez and Dritschel 2006). This
result is also consistent with the sometimes overlooked
work of Medvedev and Gavrilov (1995) concerning in-
ertia–gravity wave generation by quasigeostrophic
background flows.

We have used this theory to scrutinize past CAT
forecasting approaches. This is instructive because the
origins of many CAT forecasting techniques are at least
partly empirical. Our hope is that our approach may be
used to place the subject of CAT forecasting on a
firmer theoretical footing.

We have implemented the leading- and second-order
terms of the Lighthill–Ford radiation term as a CAT
forecasting method via the TKE approach of McCann
(2001). Tests using a single case study suggest its utility,
and further analysis confirms its superiority to other
methods over a 144-day period. It should be stressed
that comparison to the GTG1 algorithm is a strenuous
“acid test”: GTG combines a host of tried-and-true
CAT forecasting methods based on differing dynamical
assumptions, and uses weighting functions and tuning
versus observations to achieve an optimal forecast ap-
proach. Our application is, in contrast, based on a single
consistent theory of spontaneous imbalance, predicated
on shallow-water theory, and uses no statistical optimi-
zation. Nevertheless, as Fig. 5 indicates, our approach is
potentially a significant advance beyond GTG1.

Returning to theoretical considerations, the demon-

1 It should be noted that GTG2, an improved version of
Graphical Turbulence Guidance that is scheduled to be opera-
tional in September 2008, has a performance superior to that of
GTG1 and similar to that shown for Lighthill–Ford in Fig. 5 (Shar-
man et al. 2006, their Fig. 5).

FIG. 5. ROC curves for the current operational GTG1 clear-air
turbulence algorithm (dashed line) vs the Lighthill–Ford method
(solid line) discussed in this paper. The closer that the ROC curve
is to the upper-right corner of the graph, the more skillful the
method.

FIG. 4. HSS for various levels of clear-air turbulence using TKE
dissipation based on Lighthill–Ford theory, for the 3 Nov 2005–26
Mar 2006 period. Layer TKE dissipation rates were calculated
from the 1-h RUC2 forecasts from the 1500 UTC model run (valid
at 1600 UTC) for each day, and validated with 5546 text pilot
reports of turbulence from 1500 to 1700 UTC at or above FL200.
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strated utility of Lighthill–Ford theory as a CAT fore-
casting technique is remarkable given the assumptions
involved. We have made no attempt in this paper to
extend the theory beyond rotating shallow-water flows,
or to incorporate a nonzero background flow. Further-
more, the spontaneous-adjustment emission theory of
Ford et al. (2000) assumes Rossby numbers greater
than unity. Inertia–gravity waves generated by that
mechanism are thought to be exponentially small in
amplitude for small Rossby number flows (e.g.,
Plougonven et al. 2005). The relevance of the Lighthill
mechanism to emission from large-scale geophysical
flows has therefore been debated (Saujani and Shep-
herd 2002; Ford et al. 2002). However, the Lighthill–
Ford source term appears in a renormalization theory
that permits inertia–gravity waves that are not expo-
nentially small, even at small Rossby numbers
(T. W. N. Haine 2008, personal communication). The
emitted waves are mathematically slaved to the vortical
flow, but still are perfectly capable of generating clear-
air turbulence. This gives added motivation for the ap-
proach we have taken in this paper.

Our work highlights the potential importance of
spontaneous imbalance as a source of gravity wave ac-
tivity in the atmosphere, a point also noted by
Medvedev and Gavrilov (1995). Future work will seek
to extend the theory beyond rotating shallow-water
flows and to pursue applications beyond clear-air tur-
bulence forecasting.
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