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We compare laboratory observations of equilibrated baroclinic waves in the rotating
two-layer annulus, with numerical simulations from a quasi-geostrophic model. The
laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby
number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains
ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-
geostrophic model captures the laboratory flows reasonably well. The model displays
several systematic biases, which are consequences of its treatment of boundary layers
and neglect of interfacial surface tension and which may be explained without
invoking the dynamical effects of the moderate Rossby number, large aspect ratio or
inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue
to apply well outside its formal bounds.

1. Introduction
Fluid flows observed in the rotating laboratory annulus, and their comparison
with numerical simulations, remain an important testbed for investigating many
fundamental phenomena in geophysical fluid dynamics (e.g. Hignett et al. 1985;
Lewis 1992; Williams, Haine & Read 2005; Read et al. 2007). The interpretation
of laboratory observations in the context of numerical simulations, and vice versa,
sharpens the existing dynamical questions and raises new ones. The basic formulation
of numerical models may be tested much more rigorously and stringently in the
context of laboratory fluids than of the atmosphere and ocean because the latter
contain much more complexity. Indeed, the prospect of achieving traditional numerical
convergence of realistic atmosphere or ocean models may be hopeless because of this
complexity (McWilliams 2007).

Numerical models have been developed to integrate the Navier–Stokes equations
for the rotating annulus (e.g. White 1986). Although these models contain a complete
representation of the fluid dynamics, they are computationally very expensive. In
practice, usually they are useful only for examining a small number of case-study
flows. It is often desirable to use a faster, approximate model with fewer dynamical
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degrees of freedom. Quasi-geostrophic numerical models fall into this class and have
been developed for the rotating rectangular channel (e.g. Brugge, Nurser & Marshall
1987) and the rotating cylindrical annulus (e.g. Williams et al. 2009). There is a tension
between accuracy and speed in any computational modelling exercise. Although a
Navier–Stokes model would give more faithful simulations than a quasi-geostrophic
model, it could take orders of magnitude longer to run. A rapid approximate answer
is often preferable to a delayed exact answer.

Quasi-geostrophic theory (Charney, Fjørtoft & von Neumann 1950) formally
applies only to flows that are shallow, have small Rossby number and are devoid of
ageostrophic motions. But to what extent is quasi-geostrophic theory able to capture
the full fluid dynamics, especially in dynamical regimes in which the theory does
not formally apply? Very few studies have attempted to answer this critical question.
Mundt, Vallis & Wang (1997) reported that their quasi-geostrophic numerical model
performs quite well, ‘far beyond its expected range of validity’ in some cases, compared
with a shallow-water equations control run. Zurita-Gotor & Vallis (2009) found
that primitive-equation and quasi-geostrophic simulations of the equilibration of
baroclinic turbulence agree reasonably well over a fairly broad parameter range. But
how applicable is quasi-geostrophic theory to deep flows? Or to real flows observed
in the laboratory, rather than simulated in primitive-equation models? The existing
literature sheds little light on the answers to these questions.

The current paper aims to test the limits of quasi-geostrophic theory by
systematically comparing its predictions with laboratory observations of flows that
are deep, have moderate Rossby number and contain ubiquitous ageostrophic inertia–
gravity waves. We describe the laboratory annulus in § 2 and the numerical quasi-
geostrophic model in § 3. We compare equilibrated baroclinic wave flows in the
laboratory and in the model in § 4, considering wavenumber regime diagrams (§ 4.1),
wave amplitudes (§ 4.2) and wave speeds (§ 4.3). In each case, we propose and test
physical mechanisms responsible for the model’s biases compared with the laboratory.
We conclude with a summary and discussion in § 5.

2. Description of the laboratory experiment
The laboratory apparatus we employ is shown in figure 1 and has been used by

King (1979), Appleby (1982), Lovegrove (1997) and Williams (2003). The annular tank
has inner radius L = 62.5 mm, outer radius 2L =125.0 mm and depth 2H = 250.0 mm.
The tank contains two immiscible liquids with equal resting depths of H = 125.0 mm.
The tank is mounted on a circular turntable that rotates with angular velocity
Ω � 0. The tank’s lid, which is in contact with the upper liquid, rotates with
angular velocity �Ω � 0 relative to the tank, in order to drive a velocity shear
across the internal interface and induce baroclinic instability. The upper layer is
water, of density ρ1 = 997 kgm−3 and kinematic viscosity ν1 = 1.27 × 10−6 m2 s−1,
and the lower layer is a limonene–chlorofluorocarbon mixture, of composite density
ρ2 = 1003 kgm−3 and kinematic viscosity ν2 = 1.08 × 10−6 m2 s−1. The surface tension
at the internal interface is S =29.0 × 10−3 Nm−1. The acceleration due to gravity is
g = 9.81 m s−2.

To visualize the height of the internal interface, white light from a lamp on the
laboratory floor passes upwards through the base, liquids and lid, which are all
transparent. The light is received by a colour video camera that is mounted near
the ceiling on a frame attached to the turntable. Different interface heights cause
different colours to be registered by the camera because limonene is optically active
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Figure 1. (a) Photograph of the laboratory apparatus from above, showing the circular
turntable, annular tank and mounted frame. (b) Schematic vertical cross-section through the
annulus. The dashed line shows a possible resting parabolic interface height (attained when
�Ω = 0), and the solid line shows a possible perturbed interface height (attained when �Ω �= 0).
See the text for definitions of variables.

and the annulus is viewed through crossed polaroids, following Hart & Kittelman
(1986). Williams, Read & Haine (2004b) have calibrated the experiment, by deriving
the quantitative relationship between interface height and colour.

The control parameters are Ω and �Ω , from which we construct a two-dimensional
parameter space spanned by the internal rotational Froude number (F ) and the
dissipation parameter (d), which are dimensionless quantities defined by

F =
f 2L2

g′H
(2.1)

and

d =

√
νΩ

H�Ω
, (2.2)

where f = 2Ω is the Coriolis parameter; g′ = 2g(ρ2 − ρ1)/(ρ1 + ρ2) is the reduced
gravity; and ν = (ν1 + ν2)/2 is the mean kinematic viscosity.

The laboratory experiments lie well outside the formal quasi-geostrophic regime,
for three independent reasons. First, in the regular baroclinic wave regime of interest
in the current paper, the bulk Rossby number (�Ω/2Ω) reaches values as large
as 1 (see figure 3 of Williams et al. 2005). Second, the depth-to-width aspect
ratio (2H/L = 4) is large. Third, the fluid contains ubiquitous ageostrophic inertia–
gravity waves (Williams, Haine & Read 2008), which are relatively weak but which
nevertheless contribute to departures from geostrophic balance. Therefore, quasi-
geostrophic theory – an asymptotic approximation to the shallow-water equations for
small Rossby numbers – is formally inapplicable.

Before proceeding, we briefly qualify our above remark that the presence of
ageostrophic inertia–gravity waves is inconsistent with quasi-geostrophic theory.
Certainly, quasi-geostrophic theory cannot capture the inertia–gravity waves. But
their presence does not necessarily limit the applicability of quasi-geostrophic theory
to the larger scales of motion if the inertia–gravity waves interact negligibly with those
scales. Indeed, for small Rossby numbers, non-interaction theorems (e.g. Greenspan
1968) limit the ability of the inertia–gravity waves to interact with the large-scale
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flow. However, for O(1) Rossby numbers, such as those encountered in the present
experiments, the non-interaction theorems fail to hold, and the ability of quasi-
geostrophic theory to describe the large-scale flow may be compromised.

3. Description of the quasi-geostrophic model
Previous studies have employed rectangular channel geometry to approximately model
the cylindrical annulus (e.g. Brugge et al. 1987). Rectangular channel geometry with
periodic along-channel boundary conditions is a good approximation to cylindrical
annulus geometry only if the width of the annulus is much smaller than the mean
radius (King 1979). However, the ratio of the former to the latter in the present annulus
is 2/3, which is not much smaller than unity. Furthermore, the periodic rectangular
channel has additional shift–reflect symmetries that are absent in the annulus
(Cattaneo & Hart 1990). As a result, certain wave–wave interaction coefficients
vanish in the channel but not in the annulus (Kwon & Mak 1988). Therefore, for the
present numerical simulations, we choose a bespoke annulus model that fully retains
the effects of cylindrical geometry. The model is the QUAsi-Geostrophic Model for
Investigating Rotating fluids Experiments (QUAGMIRE). This section will summarize
the salient features of QUAGMIRE. A comprehensive technical description is given
by Williams et al. (2009).

Referring to figure 1(b), the model employs cylindrical polar coordinates (r, θ, z)
fixed in the turntable frame. The stream functions are ψi(r, θ, t), and the quasi-
geostrophic potential vorticities are qi(r, θ, t)/H , where i =1 refers to the upper
layer and i = 2 refers to the lower layer. The (dimensional) equations governing the
evolution of quasi-geostrophic motions, integrated by QUAGMIRE, are

∂q1

∂t
=

1

r

∂ψ1

∂θ

∂q1

∂r
− 1

r

∂ψ1

∂r

∂q1

∂θ
−

√
Ων1

H

[
∇2ψ1 + χ2∇2(ψ1 − ψ2)

]
+

2�Ω
√

Ων1

H
, (3.1)

∂q2

∂t
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1

r

∂ψ2

∂θ

∂q2

∂r
− 1

r

∂ψ2

∂r

∂q2

∂θ
−

√
Ων2

H

[
∇2ψ2 + χ1∇2(ψ2 − ψ1)
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where

q1 = ∇2ψ1 +
f 2

g′H
(ψ2 − ψ1) +

f

H

r2Ω2

2g
, (3.3)

q2 = ∇2ψ2 − f 2

g′H
(ψ2 − ψ1) − f

H

r2Ω2

2g
(3.4)

and χi =
√

νi/(
√

ν1 +
√

ν2).
In (3.1) and (3.2), the nonlinear Jacobian terms represent advection of potential

vorticity by the geostrophic flow; the Laplacian terms represent parameterized
dissipation of potential vorticity by the thin Ekman (1905) layers at the lid (∇2ψ1),
base (∇2ψ2) and interface (±∇2(ψ1 − ψ2)); and the constant term in (3.1) represents
parameterized generation of potential vorticity by the differentially rotating lid,
communicated to the fluid by the Ekman layer. In (3.3) and (3.4), the first terms
on the right represent the contribution to the potential vorticity from vortices within
the layers; the middle terms represent the contribution from vortex stretching and
compression because of interface perturbations; and the final terms represent the
contribution from the basic centrifugal parabolic interface deflection (the quadratic
β-effect; e.g. Bouchet & Sommeria 2002). The effects of interfacial surface tension
are neglected (but see § 4.2). The equilibrium solution to (3.1)–(3.4) consists of solid-
body rotation at rate �Ω(2 + χ)/[2(1 + χ)] in the upper layer and �Ω/[2(1 + χ)] in
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the lower layer, where χ =
√

ν2/ν1 (Hart 1972). For certain parameter values, weak
perturbations to this equilibrium solution may grow because of baroclinic instability
and equilibrate at finite amplitude.

Inversion of the elliptic equations (3.3) and (3.4), to obtain ψ1 and ψ2 from q1 and
q2 at each time step, is achieved in QUAGMIRE by first projecting on to the vertical
and azimuthal normal modes of those equations and then, for each mode, solving a
second-order ordinary differential equation for the radial structure. The flow in the
laboratory annulus satisfies the impermeability condition and the no-slip condition at
both lateral boundaries, yielding four boundary conditions. But the radial structure
equation contains only second-order radial derivatives, and so only two of the four
boundary conditions may be applied. Therefore, we are forced to use a reduced set
of boundary conditions.

The over-constrained nature of the potential vorticity inversion in quasi-geostrophic
models has been discussed by Williams (1979). Physically, the problem occurs
because (3.3) and (3.4) contain no lateral viscosity terms and cannot capture the
thin viscous Stewartson (1957) layers at the lateral boundaries. The inclusion of
lateral viscosity terms, through the addition of ν1∇4ψ1 to (3.1) and ν2∇4ψ2 to (3.2),
following McWilliams (1977) and Flierl (1977), would allow the Stewartson layers
to be captured. But the no-slip condition could then be imposed only by artificially
modifying the boundary values of the stream functions, obtained through inversion
of (3.3) and (3.4) subject to impermeability, before using them in the laterally viscous
extensions to (3.1) and (3.2). We reject this approach because the stream functions
and potential vorticities used in (3.1) and (3.2) would then be inconsistent, i.e. would
not satisfy (3.3) and (3.4).

How to choose appropriate lateral boundary conditions in laterally inviscid quasi-
geostrophic models has long been debated. Perturbations to the equilibrium solid-
body rotation flow may be decomposed into azimuthal waves and a correction to the
azimuthal-mean flow. Phillips (1954, 1956) imposed impermeability on the waves and
the no-slip condition on the mean-flow correction (which satisfies impermeability by
construction). But the latter condition was abandoned by Phillips (1963) and Pedlosky
(1964), leading to a spurious non-physical energy flux through the lateral boundaries
(McIntyre 1967). Again, the condition was imposed by Pedlosky (1970) but later
abandoned (Pedlosky 1971, 1972), on the grounds of being ‘the only apparently
feasible way of making progress’ with the analytical solution. Pedlosky’s calculations
have since been repeated with the condition imposed (Smith 1974, 1977; Smith &
Pedlosky 1975).

We presently avoid the spurious energy flux by imposing the full original boundary
conditions of Phillips (1954, 1956) in the QUAGMIRE model. The no-slip condition is
imposed on the mean-flow correction during the elliptic potential vorticity inversion.
We stress that the no-slip condition is imposed, not to capture the Stewartson
(1957) boundary layers, which are fundamentally viscous, but rather to suppress the
spurious energy source that is otherwise present. Lateral viscosity, whether molecular
or turbulent or numerical, is not needed to do this.

For the present numerical integrations of (3.1)–(3.4) using QUAGMIRE, as for
previous integrations (e.g. Williams, Haine & Read 2004a), ψi and qi are co-located
on a regular grid composed of 16 points in the radial direction (including one point
on each lateral boundary) and 96 points in the azimuthal direction. This choice
yields grid boxes near the inner boundary that are approximately square and of side
length 4 mm. For comparison, the baroclinic deformation radius is around 15 mm.
The leapfrog time-stepping scheme is used, including a Robert (1966) time filter (with
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parameter 0.01) to suppress the computational mode (Mesinger & Arakawa 1976).
The time step �t is chosen such that the bulk azimuthal Courant number �Ω�t/2Δθ

is 0.01. The Arakawa (1966) discretization of the Jacobian and the standard five-point
discretization of the Laplacian are used.

Very weak diffusion of potential vorticity, of the form ∇2qi , is added to the right
sides of (3.1) and (3.2), as is usual in numerical models (e.g. Lewis 1992). We stress
that this is done not to capture the Stewartson (1957) boundary layers but rather to
avoid a non-physical build-up of energy near the grid scale. The diffusion coefficient
is chosen such that the e-folding time for the damping of mid-radius grid-scale
features is equal to one lid rotation period; a typical numerical value is 10−7 m2 s−1.
All the diffusion terms are time-lagged by one time step to avoid the well-known
computational instability (Haltiner & Williams 1980).

Williams et al. (2009) have demonstrated numerical convergence for the parameter
values given above, by showing that simulations are insensitive to changes in the grid
spacing, potential vorticity diffusion coefficient and Robert parameter.

4. Comparison between laboratory experiment and quasi-geostrophic model
Mindful that the laboratory experiments lie outside the quasi-geostrophic regime, we
wish to determine the extent to which the fluid dynamics of equilibrated baroclinic
waves are captured by the quasi-geostrophic equations (3.1)–(3.4). To this end,
laboratory data are obtained from a series of experiments, each with �Ω held constant
at a value below 3.1 rad s−1 and with Ω slowly increasing from 0 to 4.3 rad s−1 over
3 h. We compare the laboratory observations with 210 QUAGMIRE simulations,
one for each combination of Ω/rad s−1 ∈ {1.00, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00,
3.25, 3.50} and �Ω/rad s−1 ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.12, 0.15,
0.20, 0.23, 0.30, 0.40, 0.50, 0.60, 0.70, 0.85, 1.06, 1.31, 1.61}, giving a roughly uniform
density of sampled points in the (log[d], F ) parameter space. Each model integration
is initiated from the equilibrium solid-body rotation flow plus a very weak random
perturbation to seed any baroclinic instability and is continued until long after any
baroclinic wave has equilibrated.

The following sections compare wavenumber regime diagrams (§ 4.1), wave
amplitudes (§ 4.2) and wave speeds (§ 4.3) between the laboratory and the model.

4.1. Wavenumber regime diagrams

We categorize flows in the laboratory and model according to the dominant azimuthal
wavenumber of the equilibrated baroclinic wave, which is always found to be 1, 2 or
3 within the parameter ranges explored herein. In the absence of baroclinic instability,
baroclinic waves do not form and the flow remains axisymmetric. Figure 2 compares
the resulting wavenumber regime diagrams. The non-trivial topology of the laboratory
bifurcation structure, which is a consequence of wave competition, is convincingly
captured by the model. There is excellent qualitative agreement between the shapes
of the regime transition curves. In the limit of zero dissipation parameter, the Phillips
(1954) model of baroclinic instability predicts a critical Froude number of π2/2 ≈ 4.9
for the neutral curve, in good agreement with both regime diagrams. The increase of
the critical Froude number with increasing dissipation parameter, seen in both regime
diagrams, is captured by the dissipative extension to the Phillips model (e.g. § 7.12 of
Pedlosky 1987).

Many quantitative aspects of the comparison between the two regime diagrams
are convincing, such as the relative sizes of the three wavenumber regimes. The
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Figure 2. Azimuthal wavenumber regime diagrams from (a) the laboratory and (b) the
model. The symbols categorize the dominant flow at each measurement point: the circles
denote axisymmetric flow; the triangles denote wave 1 flow; the squares denote wave 2 flow;
and the diamonds denote wave 3 flow. The sampling is much sparser in the laboratory than
in the model. Regime transition curves are inferred and over-plotted. In (a), which is adapted
from figure 7 of Lovegrove, Read & Richards (2000), the three bold symbols indicate the
parameter locations of figure 3 (a, c, e). In (b), the three bold symbols indicate the parameter
locations of figure 3 (b, d, f ). The model wave 1 and wave 2 regimes become entangled at low
d and high F because of extreme initial condition sensitivity. Note the different axis limits
in (a) and (b).

quantitative agreement is not wholly satisfactory, however. The (d, F ) coordinates
of the axisymmetric/wave 1/wave 2 triple point are (0.01, 4.6) in the laboratory
and (0.07, 6.1) in the model, and those of the axisymmetric/wave 2/wave 3 triple
point are (0.02, 5.6) in the laboratory and (0.3, 11) in the model. Therefore, the model
overestimates F by a factor of around 1–2 and d by a factor of around 5–10. This bias
appears to be robust in quasi-geostrophic models. For example, in a quasi-geostrophic
spectral channel model of the annulus, Lovegrove (1997) found that ‘while the Froude
numbers of experimental runs are of the same magnitude as those present in the
theoretical regime diagram, the experimental values of the dissipation parameter are
actually about an order of magnitude smaller than the predicted theoretical values’.
The dissipation parameter is a non-dimensional measure of the magnitude of the
Ekman-layer terms in (3.1) and (3.2). Therefore, we infer that the assumption of
linear parameterized Ekman-layer pumping and suction velocities, used here and by
Lovegrove (1997), is inadequate if quantitative agreement is sought.

It might reasonably be wondered whether much advantage derives from the
nonlinear component of the model and whether linear quasi-geostrophic theory
is all that is needed to capture the bifurcation structure observed in the laboratory.
Lovegrove (1997) derived neutral curves from linear quasi-geostrophic theory and
plotted a regime diagram (figure 5.11 therein). The correspondence with our regime
diagram, derived from nonlinear quasi-geostrophic theory (figure 2b), is mixed. The
ax ↔ 1, ax ↔ 2 and ax ↔ 3 transition curves are captured well, but the 1 ↔ 2
and 2 ↔ 3 transition curves are not. Evidently, nonlinear effects are important for
wavenumber selection when two or more unstable wave modes compete. Indeed,
many authors (e.g. Hart 1981; Pedlosky 1981; Appleby 1982) have demonstrated that
the selected wave, in a flow that is simultaneously baroclinically unstable to more
than one wave mode, is not necessarily the one with the largest linear growth rate.
We conclude that linear quasi-geostrophic theory is not sufficient to reproduce all
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the regime boundaries seen in the laboratory (figure 2a). Only the nonlinear quasi-
geostrophic model can fully reproduce the bifurcation structure. Of course, nonlinear
effects are also important for determining the equilibrated wave amplitudes, because
waves growing from baroclinic instability would grow exponentially and indefinitely
in a linear quasi-geostrophic model.

4.2. Wave amplitudes

A systematic comparison of equilibrated wave amplitudes is difficult because a given
Ω and �Ω (or d and F ) generally correspond to different wavenumber regimes in
the laboratory and the model. Instead, we choose approximately corresponding wave
1, wave 2 and wave 3 case-study flows by visual inspection of figure 2. The basic
interface height structures of the three case-study flows are compared in figure 3. The
laboratory and model waves are qualitatively very similar.

The interface height waves are compared quantitatively in figure 4, after projecting
the laboratory waves on to the calibration curve derived by Williams et al. (2004b).
Curiously, the laboratory curves are seen to contain substantial admixtures of modes
other than the dominant mode, but the model curves are much more monochromatic.
For the wave 1, wave 2 and wave 3 flows, respectively, the mid-radius amplitudes
are around 25, 8 and 7 mm in the laboratory and 4, 2 and 1 mm in the model.
Therefore, although the model correctly captures the decreasing amplitude with
increasing wavenumber observed in the laboratory, the model waves are a few times
weaker than the laboratory waves. The laboratory and model structures clearly
correlate very well by visual inspection, however, and only really differ in amplitude,
not pattern. Note that although there is a well-known correction to the Ekman
pumping velocity at finite Rossby numbers (e.g. Hart 1995), which scales linearly
with the Rossby number and which could in principle modify the amplitude of the
equilibrated waves, our observed wave amplitude bias persists even at small Rossby
numbers and so evidently cannot be explained by this mechanism.

We propose that the wave amplitude bias is caused by the model’s neglect of
surface tension effects at the interface between the two liquids. The non-dimensional
parameter describing the relative importance of these effects is the product of the
Froude number and the interfacial tension number (Appleby 1982; Williams et al.
2009), where the latter is defined by

I =
S

g(ρ2 − ρ1)L2
. (4.1)

In the present laboratory setting, we have I =0.13. Therefore, the product FI may
exceed unity if the Froude number is large. We conclude that interfacial surface tension
effects may be non-negligible and that the quasi-geostrophic model may benefit from
their inclusion. In the limit of weak interfacial surface tension, i.e. FI 
 1, analytical
progress is possible. In this limit, Williams et al. (2009) have shown that (3.1) and (3.2)
are unmodified but that (3.3) and (3.4) become

q1 = ∇2ψ1 +
f 2

g′H

(
1 +

S

g(ρ2 − ρ1)
∇2

)
(ψ2 − ψ1) +

f

H

r2Ω2

2g
, (4.2)

q2 = ∇2ψ2 − f 2

g′H

(
1 +

S

g(ρ2 − ρ1)
∇2

)
(ψ2 − ψ1) − f

H

r2Ω2

2g
. (4.3)

The new terms, involving the operator [S/g(ρ2 − ρ1)]∇2, describe the leading-order
effects of weak interfacial surface tension and are comparatively small in the limit
under consideration. The physics encapsulated in the new terms is that interfacial
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Figure 4. Profiles of equilibrated interface height in the middle of the annular gap (i.e. at
r = 94 mm) in the maps of figure 3, from the laboratory (left column) and the model (right
column) for wave 1 flows (top row), wave 2 flows (middle row) and wave 3 flows (bottom row).
The corresponding parameters are given below each plot. The azimuthal orientations of the
waves are arbitrary. Referring to figure 3, the zero of azimuth is at ‘3 o’clock’, and azimuth
increases in the clockwise direction. Note the different ordinate scales between the laboratory
and model plots.
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Figure 5. Equilibrated mid-radius wave amplitude in the quasi-geostrophic model, plotted
against interfacial surface tension, for a wave 1 flow with Ω = 2.25 rad s−1 and �Ω =
0.60 rad s−1.

surface tension strengthens the horizontal gradient of the hydrostatic pressure
difference between the lid and the base, intensifying the geostrophic velocity shear
across the internal interface and increasing the baroclinicity of the fluid. Therefore,
we expect interfacial surface tension to increase the amplitude of baroclinic waves.

To substantiate our proposed mechanism for the model’s wave amplitude bias,
we perform additional QUAGMIRE integrations with (4.2) and (4.3) replacing (3.3)
and (3.4). In a case-study wave 1 simulation, we increase S from 0 to 10.0×10−3 Nm−1

in 10 discrete steps, allowing the flow to equilibrate fully after each increase. The
corresponding value of the product FI increases from 0 to 0.47. The equilibrated
state remains a wave 1 flow throughout, and the basic flow pattern is unmodified.
But, as shown in figure 5, the amplitude of the equilibrated wave increases by a
factor of around 5 as the interfacial surface tension is increased. Similar results are
found for other wavenumbers. We cannot further increase S to match the value of
29.0 × 10−3 Nm−1 measured in the laboratory, because the product FI becomes too
large for the representation embodied in (4.2) and (4.3) to be valid. Nevertheless, we
are persuaded that the wave amplitude bias in the original model integrations can
probably be accounted for by their neglect of interfacial surface tension.

Finally, we repeat a subset of the original 210 QUAGMIRE integrations, with (4.2)
and (4.3) replacing (3.3) and (3.4) and using a nominal value of 5.0 × 10−3 Nm−1

for the interfacial surface tension. The subset is that for which FI < 0.3 (i.e. F < 13),
which is the largest value for which the assumption FI 
 1 could reasonably be
expected to apply. The resulting regime diagram (not shown) closely matches the
original one (figure 2b). We conclude that weak interfacial surface tension does not
affect the regime diagram but substantially increases the wave amplitudes.

4.3. Wave speeds

Returning to the original set of surface-tension-free QUAGMIRE integrations,
figure 6 shows the dependence of the phase speed of the baroclinic wave on the
differential lid rotation rate, for fixed turntable rotation rate. The wave speed is
proportional to the lid rotation rate in both the laboratory and the model. The



198 P. D. Williams, P. L. Read and T. W. N. Haine

0.5 1.0 1.5 2.00

0.2

0.4

0.6

0.8

1.0

Lid speed, ΔΩ (rad s–1) 

W
av

e 
sp

ee
d
 (

ra
d
 s

–
1
)

Laboratory

Model

Figure 6. Angular azimuthal phase speed of equilibrated baroclinic waves, in the laboratory
experiment and the quasi-geostrophic model, plotted against �Ω for the case Ω = 2.0 rad s−1.
Similar results are found at other values of Ω . Also shown are straight dotted lines of gradients
0.50 and 0.12 passing through the origin.

proportionality constants differ, however. The wave speed (in the turntable frame) is
equal to 0.12�Ω in the laboratory and 0.50�Ω in the model. Therefore, the model
overestimates the wave speeds by a factor of around 4. These results are unmodified
by the inclusion of weak interfacial surface tension, as implemented in § 4.2.

We propose that the phase speed bias is caused by the model’s neglect of Stewartson-
layer drag at the lateral boundaries. As discussed in § 3, the potential vorticity inversion
in quasi-geostrophic models is over-constrained. Either the impermeability condition
or the no-slip condition, but not both, may be imposed on the waves at the lateral
boundaries. Since impermeability is the more basic requirement, the no-slip condition
is abandoned, and the Stewartson layers are necessarily neglected as a consequence.
We note that the nonlinear evolution of baroclinic waves in a two-layer channel
is known to be sensitive to the lateral boundary conditions for typical laboratory
parameter values (e.g. Mundt, Brummell & Hart 1995a).

To substantiate our proposed mechanism for the model’s wave speed bias, we apply
torque-balance considerations to calculate and compare the equilibrium flow in the
annulus, both with and without Stewartson layers. The two inviscid interiors are
modelled as rotating solid bodies, acted upon by torques due to velocity shears across
the Ekman boundary layers at the lid, base and internal interface and across the
Stewartson boundary layers at the sidewalls. In equilibrium, the net torque acting on
each inviscid interior must be zero, yielding two coupled nonlinear algebraic equations
for the solid-body rotation rates in the upper and lower layers. Williams et al. (2004b)
have derived the equations and described a convergent iterative method for obtaining
solutions.

We apply the torque-balance analysis to case-study flows with Ω =2.0 rad s−1 and
various values of �Ω . For these flows, the Ekman-layer depth (ν/Ω)1/2 is 0.8 mm and
the Stewartson-layer width (νL2/Ω)1/4 is 7.0 mm. The results of the calculations are
shown in figure 7. As expected, the solid-body rotation rates in the upper and lower
layers are substantially reduced when Stewartson-layer drag is included in the torque
balance, compared with when it is neglected. Taking an average over the upper and
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Figure 7. Equilibrium solid-body rotation rates in the upper and lower layers, both with and
without Stewartson-layer drag (SLD), plotted against �Ω for the case Ω = 2.0 rad s−1. The
data are obtained from a torque-balance calculation described in the text. Similar results are
found at other values of Ω .

lower layers yields rotation rates for the vertically averaged flow. When Stewartson-
layer drag is neglected, the vertically averaged flow rotates at 0.50�Ω , in agreement
with the baroclinic wave speed of 0.50�Ω seen in the quasi-geostrophic model. But
when Stewartson-layer drag is included, the vertically averaged flow rotates at only
0.31�Ω , for comparison with the baroclinic wave speed of 0.12�Ω measured in the
laboratory.

Two caveats apply when comparing the predictions of the torque-balance analysis
with the baroclinic wave speeds. First, the torque-balance analysis applies only to the
axisymmetric equilibrium flow and hence neglects the contributions of the baroclinic
waves to the Ekman-layer torques at the internal interface (which presumably increase
the drag). Second, baroclinic waves are not necessarily expected to travel at the same
speed as the vertically averaged flow. Indeed, measurements in the laboratory annulus
have revealed that baroclinic waves travel substantially slower than the vertically
averaged flow (Lovegrove 1997). Therefore, despite the large apparent discrepancy
between 0.31�Ω and 0.12�Ω , we are persuaded that (at least the majority of) the
wave speed bias in the quasi-geostrophic model can be accounted for by the neglect
of Stewartson-layer drag at the lateral boundaries.

5. Summary and discussion
We have compared laboratory observations of equilibrated baroclinic waves in
the rotating two-layer annulus with numerical simulations from a bespoke quasi-
geostrophic model named QUAGMIRE. The laboratory experiments lie well outside
the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width
aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. The
comparison was motivated by a desire to test the ability of quasi-geostrophic theory
to adequately describe the fluid dynamics of such non-quasi-geostrophic flows.

Qualitatively, the quasi-geostrophic model captures many aspects of the laboratory
flows remarkably well, despite being formally inapplicable. The laboratory and the
model both exhibit a curve of marginal baroclinic instability in the (d, F )-plane. On
the high-F side of the curve, baroclinic waves of wavenumber 1, 2 and 3 develop,
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and on the low-F side, the flow remains axisymmetric. The non-trivial topology
of the wavenumber bifurcation structure in the laboratory is convincingly captured
by the model. The observed decrease of baroclinic wave amplitude with increasing
wavenumber and the observed proportionality between baroclinic wave speed and lid
rotation rate are also convincingly captured.

Quantitatively, the model displays three systematic biases compared with the
laboratory. First, in a comparison of the parameter locations of the wavenumber
bifurcation structures, the model and laboratory Froude numbers agree to within a
factor of 2, but the dissipation parameters differ by an order of magnitude. Second,
the interfacial amplitudes of baroclinic waves in the model are a few times smaller
than those measured in the laboratory. Third, baroclinic waves in the model propagate
around four times faster than those in the laboratory.

We have presented evidence that the model’s biases are consequences of its
treatment of boundary layers (both Ekman and Stewartson) and neglect of interfacial
surface tension. Therefore, the biases can probably be explained without invoking the
dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity
waves. Quasi-geostrophic dynamics, with a more faithful treatment of the boundary
layers and surface tension, could probably accurately describe the laboratory flow,
despite the flow lying well outside the quasi-geostrophic regime.

Despite the model’s quantitative shortcomings, the non-trivial wavenumber
bifurcation structure in the (d, F )-plane is convincingly captured. We consider this
to be a stringent test of the model’s fidelity. The implication is that the bifurcation
structure is insensitive to the model’s biases in wave amplitudes and speeds, the large
aspect ratio, the moderate Rossby number, the presence of inertia–gravity waves in
the laboratory, the greater degree of modal monochromaticity seen in the model
compared with the laboratory, the model’s neglect of interfacial surface tension and
the model’s treatment of Ekman and Stewartson layers. This is an unexpected and
intriguing result that could not have been predicted from the existing literature. It
is also potentially useful, for example by permitting the use of a low-order quasi-
geostrophic model to easily map out the bifurcation structure – which would be
very difficult with a primitive equations model – followed by the use of a primitive
equations model for more quantitative agreement in specific cases.

It would be interesting to extend our comparison to more turbulent flow regimes.
For the experiments presented herein, the bulk Reynolds number of the annulus
Re = L2�Ω/ν, based on the molecular viscosity, typically ranges from 30 to 5000. In
contrast, the Reynolds number typically reaches 106 or 107 in the atmosphere and
108 or 109 in the oceans (Read 2001). Unfortunately, we cannot access the high-Re
turbulent regime with the present apparatus. For example, to achieve Re = 108 using
liquids of molecular viscosity ν = 1.2×10−6 m2s−1 in an annulus of width L = 62.5 mm,
we would need to differentially rotate the lid at �Ω = 30 000 rad s−1, which well
exceeds the maximum permissible rotation rate. Although we could easily explore
this regime in the model, there seems little point if the corresponding laboratory data
are unavailable for comparison. Therefore, we leave questions about the applicability
of quasi-geostrophic theory in the turbulent regime as future work for a group with
a larger annulus (e.g. the rotating tank with a diameter of 14 m at the Laboratoire
des Ecoulements Géophysiques et Industriels in Grenoble) or less viscous working
liquids.

Furthermore, it would be interesting to compare, between the laboratory experiment
and the numerical model, the basic solid-body rotation fields used for the stability
analysis. This is because each Stewartson layer occupies around 10 % of the radial
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domain. The Stewartson layers will inevitably affect the structure of the mean
flow, which could in turn affect the wave amplitudes and phase speeds and could
considerably alter the nature of the instability. Indeed, the presence of horizontal shear
in the Stewartson layers has been found to be particularly significant in producing
discrepancies between quasi-geostrophic theory without such layers and laboratory
experiments run in the quasi-geostrophic regime (e.g. Mundt et al. 1995a; Mundt,
Hart & Ohlsen 1995b). Unfortunately, the solid-body rotation velocity fields cannot
be compared in the present setting. This is because although the velocity field is
available from the numerical model, it is not available from the laboratory apparatus,
which was configured specifically to measure interface height only.

Finally, it would be interesting to introduce a primitive equations model into the
comparison, to explore more fully the essential non-quasi-geostrophic effects. For
example, if part of the error in the quasi-geostrophic model were due to the filtering
of inertia–gravity waves present in the laboratory, then a rotating shallow-water
equations model should be capable of capturing it. Similarly, if part of the error
were due to the large aspect ratio of the laboratory annulus, then a deep-water
non-hydrostatic model should be capable of capturing it. Extensions to our study
that involve the construction of bespoke primitive equations models are, therefore,
attractive possible avenues for future work.

The general premise receiving support in our study, namely that quasi-geostrophic
theory is useful for non-quasi-geostrophic parameter regimes, appears tangentially in
several papers (e.g. Mundt et al. 1997) that focus on other topics. But the premise
has not been explored systematically in a dedicated paper. Rather, it has entered
into widespread belief without ever being tested comprehensively. If our findings are
thought to be unsurprising, we contend that it will probably be based on unsupported
conjecture rather than ideas deeply rooted in published work. We further contend that
a dispassionate observer informed only by the existing literature could easily have
expected much poorer agreement than we found. The success of quasi-geostrophic
theory outside its formal bounds has been demonstrated and quantified herein, but
the theoretical explanation remains to be elucidated.

We are grateful to three anonymous reviewers for their helpful comments and to
Jim McWilliams and Hilary Weller for useful discussions. P. D. W. acknowledges
funding through a University Research Fellowship from the Royal Society (reference
UF080256) and a Fellowship from the Natural Environment Research Council
(reference NE/D009138/1).

REFERENCES

Appleby, J. C. 1982 Comparative theoretical and experimental studies of baroclinic waves in a
two-layer system. PhD thesis, University of Leeds.

Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of
fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119–143.

Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and Jupiter’s Great Red Spot as
maximum-entropy structures. J. Fluid Mech. 464, 165–207.

Brugge, R., Nurser, A. J. G. & Marshall, J. C. 1987 A quasi-geostrophic ocean model: some
introductory notes. Tech Rep. Blackett Laboratory, Imperial College.

Cattaneo, F. & Hart, J. E. 1990 Multiple states for quasi-geostrophic channel flows.
Geophys. Astrophys. Fluid Dyn. 54, 1–33.

Charney, J. G., Fjørtoft, R. & von Neumann, J. 1950 Numerical integration of the barotropic
vorticity equation. Tellus 2 (4), 237–254.



202 P. D. Williams, P. L. Read and T. W. N. Haine

Ekman, V. W. 1905 On the influence of the Earth’s rotation on ocean currents. Ark. Math. Astr. Fys.
2, 1–52.

Flierl, G. R. 1977 Simple applications of McWilliams’ ‘A note on a consistent quasigeostrophic
model in a multiply connected domain’. Dyn. Atmos. Oceans 1, 443–453.

Greenspan, H. P. 1968 The Theory of Rotating Fluids . Cambridge University Press.

Haltiner, G. J. & Williams, R. T. 1980 Numerical Prediction and Dynamic Meteorology , 2nd edn.
Wiley.

Hart, J. E. 1972 A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3, 181–209.

Hart, J. E. 1981 Wavenumber selection in nonlinear baroclinic instability. J. Atmos. Sci. 38 (2),
400–408.

Hart, J. E. 1995 Nonlinear Ekman suction and ageostrophic effects in rapidly rotating flows.
Geophys. Astrophys. Fluid Dyn. 79, 201–222.

Hart, J. E. & Kittelman, S 1986 A method for measuring interfacial wave fields in the laboratory.
Geophys. Astrophys. Fluid Dyn. 36, 179–185.

Hignett, P., White, A. A., Carter, R. D., Jackson, W. D. N. & Small, R. M. 1985 A comparison
of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating
cylindrical annulus. Quart. J. R. Meteorol. Soc. 111, 131–154.

King, J. C. 1979 Instabilities and nonlinear wave interactions in a two-layer rotating fluid. PhD
thesis, University of Leeds.

Kwon, H. J. & Mak, M. 1988 On the equilibration in nonlinear barotropic instability. J. Atmos. Sci.
45 (2), 294–308.

Lewis, S. R. 1992 A quasi-geostrophic numerical model of a rotating internally heated fluid.
Geophys. Astrophys. Fluid Dyn. 65, 31–55.

Lovegrove, A. F. 1997 Bifurcations and instabilities in rotating two-layer fluids. PhD thesis, Oxford
University.

Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia–gravity waves in a
baroclinically unstable fluid. Quart. J. R. Meteorol. Soc. 126, 3233–3254.

McIntyre, M. E. 1967 Convection and baroclinic instability in rotating fluids. PhD thesis,
Cambridge University.

McWilliams, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected
domain. Dyn. Atmos. Oceans 1, 427–441.

McWilliams, J. C. 2007 Irreducible imprecision in atmospheric and oceanic simulations. Proc. Natl
Acad. Sci. 104 (21), 8709–8713.

Mesinger, F. & Arakawa, A. 1976 Numerical methods used in atmospheric models.
Global Atmospheric Research Programme Publications Series No. 17. World Meteorological
Organization, Geneva.

Mundt, M. D., Brummell, N. H. & Hart, J. E. 1995a Linear and nonlinear baroclinic instability
with rigid sidewalls. J. Fluid Mech. 291, 109–138.

Mundt, M. D., Hart, J. E. & Ohlsen, D. R. 1995b Symmetry, sidewalls, and the transition to
chaos in baroclinic systems. J. Fluid Mech. 300, 311–338.

Mundt, M. D., Vallis, G. K. & Wang, J. 1997 Balanced models and dynamics for the large- and
mesoscale circulation. J. Phys. Oceanogr. 27 (6), 1133–1152.

Pedlosky, J. 1964 The stability of currents in the atmosphere and the ocean. Part I. J. Atmos. Sci.
21, 201–219.

Pedlosky, J. 1970 Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30.

Pedlosky, J. 1971 Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28,
587–597.

Pedlosky, J. 1972 Limit cycles and unstable baroclinic waves. J. Atmos. Sci. 29, 53–63.

Pedlosky, J. 1981 The nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech. 102,
169–209.

Pedlosky, J. 1987 Geophysical Fluid Dynamics . Springer.

Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple
baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 273–286.

Phillips, N. A. 1956 The general circulation of the atmosphere: a numerical experiment.
Quart. J. R. Meteorol. Soc. 82 (352), 123–164.

Phillips, N. A. 1963 Geostrophic motion. Rev. Geophys. 1 (2), 123–176.



Testing the limits of quasi-geostrophic theory 203

Read, P. L. 2001 Transition to geostrophic turbulence in the laboratory, and as a paradigm in
atmospheres and oceans. Surv. Geophys. 22 (3), 265–317.

Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Wordsworth, R., Miki-Yamazaki,

K., Sommeria, J. & Didelle, H. 2007 Dynamics of convectively driven banded jets in the
laboratory. J. Atmos. Sci. 64 (11), 4031–4052.

Robert, A. J. 1966 The integration of a low order spectral form of the primitive meteorological
equations. J. Meteorol. Soc. Jpn 44 (5), 237–245.

Smith, R. K. 1974 On limit cycles and vacillating baroclinic waves. J. Atmos. Sci. 31, 2008–2011.

Smith, R. K. 1977 On a theory of amplitude vacillation in baroclinic waves. J. Fluid Mech. 79 (2),
289–306.

Smith, R. K. & Pedlosky, J. 1975 A note on a theory of vacillating baroclinic waves and Reply.
J. Atmos. Sci. 32, 2027.

Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 17–26.

White, A. A. 1986 Documentation of the finite difference schemes used by the Met O 21 two-
dimensional Navier–Stokes model. Tech Rep. Met O 21 IR86/3. Geophysical Fluid Dynamics
Laboratory, UK Meteorological Office.

Williams, G. P. 1979 Planetary circulations. Part 2. The Jovian quasi-geostrophic regime.
J. Atmos. Sci. 36, 932–968.

Williams, P. D. 2003 Nonlinear interactions of fast and slow modes in rotating, stratified fluid
flows. PhD thesis, Oxford University. http://ora.ouls.ox.ac.uk/objects/uuid:5365c658-ab60-
41e9-b07b-0f635909835e.

Williams, P. D., Haine, T. W. N. & Read, P. L. 2004a Stochastic resonance in a nonlinear model of a
rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization.
Nonlin. Proc. Geophys. 11 (1), 127–135.

Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale
unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 1–22.

Williams, P. D., Haine, T. W. N. & Read, P. L. 2008 Inertia–gravity waves emitted from balanced
flow: Observations, properties, and consequences. J. Atmos. Sci. 65 (11), 3543–3556.

Williams, P. D., Haine, T. W. N., Read, P. L., Lewis, S. R. & Yamazaki, Y. H. 2009 QUAGMIRE
v1.3: a quasi-geostrophic model for investigating rotating fluids experiments. Geosci. Model
Develop. 2 (1), 13–32.

Williams, P. D., Read, P. L. & Haine, T. W. N. 2004b A calibrated, non-invasive method for
measuring the internal interface height field at high resolution in the rotating, two-layer
annulus. Geophys. Astrophys. Fluid Dyn. 98 (6), 453–471.

Zurita-Gotor, P. & Vallis, G. K. 2009 Equilibration of baroclinic turbulence in primitive equations
and quasigeostrophic models. J. Atmos. Sci. 66, 837–863.


