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ABSTRACT

The leapfrog time-stepping scheme makes no amplitude errors when integrating linear oscillations. Un-

fortunately, the Robert–Asselin filter, which is used to damp the computational mode, introduces first-order

amplitude errors. The Robert–Asselin–Williams (RAW) filter, which was recently proposed as an im-

provement, eliminates the first-order amplitude errors and yields third-order amplitude accuracy. How-

ever, it has not previously been shown how to further improve the accuracy by eliminating the third- and

higher-order amplitude errors. Here, it is shown that leapfrogging over a suitably weighted blend of the

filtered and unfiltered tendencies eliminates the third-order amplitude errors and yields fifth-order am-

plitude accuracy. It is further shown that the use of a more discriminating (1, 24, 6, 24, 1) filter instead of

a (1, 22, 1) filter eliminates the fifth-order amplitude errors and yields seventh-order amplitude accuracy.

Other related schemes are obtained by varying the values of the filter parameters, and it is found that

several combinations offer an appealing compromise of stability and accuracy. The proposed new schemes

are tested in numerical integrations of a simple nonlinear system. They appear to be attractive alternatives

to the filtered leapfrog schemes currently used in many atmosphere and ocean models.

1. Introduction

A growing body of evidence demonstrates that at-

mospheric and oceanic simulations are sensitive to the

time-stepping method (e.g., Pfeffer et al. 1992; Huang and

Pedlosky 2003; Zhao and Zhong 2009) and to the time-

step size (e.g., Williamson and Olson 2003; Heimsund and

Berntsen 2004; Teixeira et al. 2007; Mishra et al. 2008).

For example, in simulations of tropical climate with the

CommunityAtmosphereModel version 3 (CAM3),Mishra

and Sahany (2011) report that changing the time-step

size changes the Kelvin wave speed and the convective

and stratiform precipitation. Furthermore, in a simplified

atmosphere general circulation model, Amezcua (2012)

reports that the sensitivity of the skill of medium-range

weather forecasts to the time-stepping method is about

the same as it is to the physics parameterizations.

A popular time-stepping method is the second-order

centered-difference scheme, which is affectionately known

as the leapfrog scheme (e.g., Haltiner and Williams 1980;

Durran 1999; Kalnay 2003; Jablonowski and Williamson

2011). When integrating linear oscillations, the leapfrog

scheme introduces second-order phase errors into the

numerical solution after a given time interval, but the

amplitude errors are exactly zero [assuming the Courant–

Friedrichs–Lewy (CFL) stability condition is satisfied].

The leapfrog scheme possesses a 2Dt computational

mode, which can cause the numerical solution at even

and odd time steps to split apart unphysically (e.g., Lilly

1965; Young 1968; Mesinger and Arakawa 1976). Vari-

ous methods have been proposed to control the time-

splitting instability (e.g., Kurihara 1965; Magazenkov

1980; Dietrich andWormeck 1985; Roache and Dietrich

1988), the most common being to apply the (1, 22, 1)

filter conceived by Robert (1966) and analyzed by Asselin

(1972). The properties of the Robert–Asselin filter have

been studied widely (e.g., Schlesinger et al. 1983; D�equ�e

and Cariolle 1986; Tandon 1987; Robert and L�epine 1997;

Cordero and Staniforth 2004; Marsaleix et al. 2012) and

the filter is used extensively in current models (e.g.,

Griffies et al. 2001; Bartello 2002; Fraedrich et al. 2005;

Hartogh et al. 2005; Williams et al. 2009).

The Robert–Asselin filter damps the computational

mode by construction, but it also damps the physical mode

and introduces first-order amplitude errors. To alleviate

these problems, Williams (2009, 2011) proposed a sim-

ple modification known as the Robert–Asselin–Williams
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(RAW) filter. While the Robert–Asselin filter perturbs

the state of the system only at the middle of the three

time levels involved in the preceding leapfrog calcu-

lation, the RAW filter perturbs it additionally at the

future time level. The two perturbations have opposite

signs and, for the special case of equal magnitudes, the

first-order amplitude errors are eliminated. The first-

order damping vanishes, and the amplitude accuracy

increases from first order to third order.

The RAW filter has been implemented, tested, and

adopted in various models since it was proposed. It is

the default time-stepping method in the atmosphere

of the Model for Interdisciplinary Research on Cli-

mate version 5 (MIROC5; Watanabe et al. 2010). It is

also the default time-stepping method in the Taiwan

Multiscale Community Ocean Model (TIMCOM;

Young et al. 2012), and it has been found to give ocean

simulations that are in better agreement with observa-

tions in various important respects (Young et al. 2013).

TheRAWfilter has been reported to improve both the

spinup and the conservation energetics of the physical

processes in an ice model, when used instead of the

Robert–Asselin filter (Ren and Leslie 2011). It has been

found to improve the skill of medium-range weather

forecasts significantly when used instead of the Robert–

Asselin filter in a simple atmospheric general cir-

culation model (Amezcua et al. 2011). It has been

implemented in a two-layer quasigeostrophic model

of a rotating fluid (Oger et al. 2012). Finally, in semi-

implicit integrations, it has been found to perform well in

various respects compared to other semi-implicit methods

(Durran and Blossey 2012; Clancy and Pudykiewicz

2013).

Are further improvements to the accuracy of the

filtered leapfrog scheme possible? Can the third- and

higher-order amplitude errors somehow be eliminated?

Guidance is sought from Durran (1991), who proves

a general proposition relating the order of the overall

truncation error of any linear finite-difference time

discretization to the order of the phase and amplitude

errors in the numerical solution. The proposition shows

that, for all second-order time-differencing schemes,

the phase accuracy is exactly second order and the am-

plitude accuracy is at least third order. (These numbers

refer to the error scaling after a given time interval, not

after a single time step.) Note that the amplitude order

of accuracy is unbounded from above and can be ar-

bitrarily high, consistent with the unfiltered leapfrog

scheme having an amplitude error of zero. The prop-

osition suggests that the phase accuracy of filtered leap-

frog schemes cannot be improved beyond second order,

but the proposition does not rule out improving the

amplitude accuracy beyond third order.

The goal of the present paper is to identify further

possible improvements to the amplitude accuracy of the

filtered leapfrog scheme. First, it is shown that leap-

frogging over a suitably weighted blend of the filtered

and unfiltered tendencies eliminates the third-order am-

plitude errors and yields fifth-order amplitude accuracy

(section 2). Then, it is shown that the use of a more dis-

criminating (1, 24, 6, 24, 1) filter instead of a (1, 22, 1)

filter eliminates the fifth-order amplitude errors and

yields seventh-order amplitude accuracy (section 3).

Finally, the proposed new schemes are tested in numer-

ical integrations of a simple nonlinear system (section 4).

The paper concludes with a summary and discussion

(section 5).

2. A composite-tendency leapfrog scheme

a. The numerical scheme

Consider filtered leapfrog integrations of the first-

order ordinary differential equation:

dx

dt
5 f (x) , (1)

where t is time, x(t) is the solution being sought, and f(x)

is a given function. We use a time step of size Dt and we

write x(nDt) 5 xn for any integer n. At each time step,

the leapfrog calculation uses the tendency at the pres-

ent time, n, to extrapolate the numerical solution for-

ward by 2Dt from the past time, n 2 1, to the future

time, n 1 1. It is assumed that a stabilizing filter then

slightly perturbs the numerical solution at the present

and future times, n and n 1 1. Note that the numerical

solution at the past time, n 2 1, is not used in the sub-

sequent leapfrog calculation. Therefore, the stability

and accuracy of the scheme are unaffected by filter

perturbations applied at time n2 1, and so without loss

of generality the filter is assumed to perturb the nu-

merical solution only at times n and n1 1. At the end of

the integration, we will have calculated three numerical

solutions at any time, m: xm is the result of leapfrogging

from m 2 2 over m 2 1 to reach m, xm is the result of

applying the filter immediately after leapfrogging from

m 2 2 over m 2 1 to reach m, and xm is the result of

applying the filter immediately after leapfrogging from

m 2 1 over m to reach m 1 1.

In the usual implementation in computer codes, the

filtered values immediately overwrite their predecessors

in memory. Therefore, when leapfrogging from n 2 1

over n to reach n 1 1, at n 2 1 we have access only to

xn21 and not to xn21 or xn21, and at n we have access

only to xn and not to xn. Consequently, the usual im-

plementation of the leapfrog calculation for (1) is
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xn115 xn211 2Dtf (xn) . (2)

However, if the predecessors are kept in memory in-

stead of being overwritten, a possible alternative leap-

frog scheme is

xn115 xn211 2Dt[gf (xn)1 (12 g)f (xn)] . (3)

Here, it is assumed we have access to xn in addition

to xn. The tendency in the leapfrog extrapolation is a

composite tendency based on both. The weighting pa-

rameter is g, which satisfies 0 # g # 1, and which de-

termines whether the tendency is calculated only from

xn (g 5 0), only from xn (g 5 1), or from a linear com-

bination of the two. Note that xn cannot be included in

the linear combination if the scheme is to remain ex-

plicit, because it is currently unknown and will be cal-

culated only after the leapfrog step is done. The usual

implementation in (2) is a special case of (3) when g 5 1,

but the present section aims to analyze the effects of

other values of g.

The analysis will be done using the linear oscillation

equation for the complex variable x(t):

dx

dt
5 ivx , (4)

where i5
ffiffiffiffiffiffiffi

21
p

and v is the real-valued angular fre-

quency. The composite-tendency leapfrog scheme in (3)

applied to the linear oscillation equation in (4) gives

xn115 xn21 1 2ivDt[gxn 1 (12 g)xn] . (5)

The RAW filter (Williams 2009, 2011) is

xn 5 xn 1
na

2
[xn212 2xn 1 xn11] , (6)

xn115 xn112
n(12a)

2
[xn212 2xn1 xn11] . (7)

The RAW filter parameters satisfy 0 # n # 1 and 0 #

a # 1, where n specifies the strength of the filter and a

determines the partitioning of the filter perturbations

between times n and n1 1. The Robert–Asselin filter is

recovered as a special case when a 5 1. Combining (3),

(6), and (7) into a single equation for the numerical

scheme demonstrates that, when n 6¼ 0 and for all values

of g, the overall truncation error is generallyO(vDt), but
becomes O[(vDt)2] when a 5 ½. Therefore, the use of

equal and opposite filter perturbations increases the

overall accuracy from first order to second order.

To proceed with the linear oscillation analysis, the

complex amplification factor, A, is defined by

A5
xn11

xn
5

xn11

xn
5

xn11

xn
. (8)

Writing (5)–(7) with function evaluations at time n only,

using (8), yields a homogeneous matrix equation for

the vector (xn, xn, xn). For nontrivial solutions, the de-

terminant of the 3 3 3 matrix of coefficients must vanish,

yielding a cubic equation for the amplification factor:

c3A
31 c2A

21 c1A1 c05 0, (9)

where

c35 1, (10)

c252n2 [22 n(12a)g]ivDt , (11)

c15211 n1 n[2(12a)(12 g)1a]ivDt , (12)

c052n(12a)(12 g)ivDt . (13)

Equation (9) generally yields three roots for A(n, a,

g, ivDt). In addition to the physical mode, hereafter la-

beled P, there are generally two computational modes,

hereafter labeled C1 and C2. However, when n5 0, a5
1, or g 5 1, the cubic equation reduces to a quadratic

equation (because c0 5 0) and one of the computational

modes vanishes. The additional computational mode

arises because the use in (3) of xn as well as xn introduces

an extra degree of freedom into the numerical scheme.

The extra degree of freedom vanishes if g 5 1, because

then xn disappears from (3), and it vanishes if n 5 0 or

a 5 1, because then (7) implies that xn 5 xn. The com-

plex amplification factor for the exact solution is

Aexact(ivDt)5 exp(ivDt) , (14)

with a magnitude of jAexactj 5 1 and a phase of

arg(Aexact) 5 vDt.

b. Behavior as vDt / 0

A series expansion for jAPj in powers of vDt is ob-

tained using the symbolic manipulation capability of

the Maple software (Maplesoft 2011). The amplitude

error is thereby found to be

jAPj2 15
n(12 2a)

2(22 n)
(vDt)21O[(vDt)4] . (15)

The leading-order amplitude error after taking a single

time step generally scales as (Dt)2. Therefore, the leading-
order amplitude error compounded over T/Dt time

steps generally scales as Dt, implying first-order amp-

litude accuracy. The leading-order amplitude error is
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approximately proportional to n for n � 1. It is in-

dependent of g, showing that the amplitude order of

accuracy is generally insensitive to whether the leap-

frog tendency is calculated from the filtered or unfiltered

solution. However, the leading-order amplitude error

depends critically upon a, being negative (indicating

stability) if a5 1 and positive (indicating instability) if

a 5 0. As shown by Williams (2009), the coefficient of

the quadratic term in (15) vanishes if

a5
1

2
, (16)

which implies equal and opposite filter perturbations

at the present and future times. With (16) satisfied,

(15) becomes

jAPj2 15
n(4g2 31 n2 ng)

4(22 n)2
(vDt)41O[(vDt)6] .

(17)

The leading-order amplitude error after taking a single

time step now generally scales as (Dt)4. Therefore, the
leading-order amplitude error compounded over T/Dt
time steps generally scales as (Dt)3, implying third-order

amplitude accuracy. The leading-order amplitude error

is still approximately proportional to n for n � 1. How-

ever, it now depends critically upon g, being negative

(indicating stability) if g 5 0 and positive (indicating in-

stability) if g 5 1. Therefore, a simple method for stabi-

lizing the RAW-filtered leapfrog scheme, while retaining

the third-order amplitude accuracy, is to compute the

tendency using the unfiltered solution instead of the fil-

tered solution. This method is an alternative to the use

of a ;* ½, which stabilizes the scheme but reduces the

amplitude accuracy. The coefficient of the quartic term

in (17) vanishes if

g5
32 n

42 n
, (18)

which implies that the leapfrog tendency is calculated

from a linear combination of the filtered and unfiltered

solutions in the ratio 32 n : 1. In the limit n/ 0, g/ 3/4

and the ratio tends to 3 : 1. With (16) and (18) satisfied,

(17) becomes

jAPj2 15
n

4(42 n)(22 n)2
(vDt)61O[(vDt)8] . (19)

The leading-order amplitude error after taking a single

time step now generally scales as (Dt)6. Therefore, the
leading-order amplitude error compounded over T/Dt
time steps generally scales as (Dt)5, implying fifth-order

amplitude accuracy. The leading-order amplitude error

is still approximately proportional to n for n � 1. It now

has no other parametric dependence, and it is always

positive (indicating instability). The coefficient of the

sextic term in (19) never vanishes (unless n5 0, in which

case the filter is inactive and the computational mode is

undamped).

A series expansion for arg(AP) in powers of vDt is
obtained in the same manner. For a and g given by (16)

and (18), the phase error is found to be

arg(AP)2vDt5
81 n

12(42 n)
(vDt)31O[(vDt)5] . (20)

The leading-order phase error after taking a single time

step generally scales as (Dt)3. Therefore, the leading-

order phase error compounded over T/Dt time steps

generally scales as (Dt)2, implying second-order phase

accuracy. The leading-order phase error is relatively

insensitive to n for n � 1. The coefficient of the cubic

term in (20) never vanishes (unless n528, in which case

the computational mode is amplified). In fact, the phase

accuracy is found to be second order for all permissible

values of a, g, and n, consistent with the general propo-

sition proved by Durran (1991).

c. Behavior for finite vDt

Section 2b studied the asymptotic behavior of the

physical mode as vDt / 0. However, the behavior of

the physical mode at finite vDt is also of great practical

interest, as is the behavior of the computational modes.

This behavior cannot be obtained from series expan-

sions; therefore, we now study numerical solutions of

the cubic equation in (9). We choose n 5 0.1 and a5 ½,

satisfying (16), and we seek solutions for various values

of g. The behavior of the amplification factors for the

case g 5 (3 2 n)/(4 2 n) ’ 0.744, which satisfies (18), is

shown in Fig. 1. The physical mode is weakly unstable

for all values of vDt, consistent with (19). The usual 2Dt
computational mode (C1) is damped by the filter, and is

accompanied by a new 4Dt computational mode (C2)

that is strongly damped.

The behavior when g 5 0 is shown in Fig. 2. The

physical mode is now stable, consistent with (17). The

4Dt computational mode (C2) is still strongly damped,

but the 2Dt computational mode (C1) becomes unstable

for vDt . 0.832. We infer from Figs. 1 and 2 the exis-

tence of an intermediate value of g between 0 and

(32 n)/(42 n), at which the amplification factors for the

physical mode and the 2Dt computational mode meet

in the complex plane. In the limit n / 0, the interme-

diate value is g 5 ½ and the meeting occurs at vDt 5 1.

These values may be derived analytically, by first setting

3040 MONTHLY WEATHER REV IEW VOLUME 141



n 5 0 in (13) to make c0 vanish and yield a quadratic

equation, and by then setting n 5 0 in the real and

imaginary parts of the condition for a double root (c22 5
4c3c1). The behavior when g 5 ½ is shown in Fig. 3.

All three modes are stable unless vDt . 0.975.

FIG. 1. Complex amplification factors for the RAW-filtered

leapfrog scheme with a composite tendency, when applied to the

oscillation equation. The scheme is defined by (5)–(7). The roots of

(9) are obtained numerically and are plotted here for the case n 5
0.1, a5½, and g5 (32 n)/(42 n)’ 0.744. The physical mode (P)

and the computational modes (C1 and C2) are traced as vDt in-
creases from 0 to 1. The unit circle, on which the exact amplification

factor (E) lies, is also shown.

FIG. 2. As in Fig. 1, but for the case n 5 0.1, a 5 ½, and g 5 0.
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A summary of the amplitude errors of the physical

mode, for n 5 0.1 and various combinations of a and g,

is shown in Fig. 4. The Robert–Asselin filter (a 5 1) is

themost damping case and is stable forvDt, 0.951. The

RAW filter with equal-and-opposite perturbations and

with the leapfrog tendency calculated purely from the

filtered solution (a 5 ½, g 5 1) is more accurate but is

unstable for all vDt. The use of unequal perturbations

(a5 0.7, g5 1)makes the scheme stable forvDt, 0.871

and gives errors that are smaller than those of the

Robert–Asselin filter. Retaining the equal-and-opposite

perturbations but calculating the leapfrog tendency purely

from the unfiltered solution (a 5 ½, g 5 0) also stabi-

lizes the scheme, but the damping is relatively strong

and a computational mode is stable only for vDt, 0.832.

Calculating the leapfrog tendency from a particular blend

of the filtered and unfiltered solutions [a 5 ½, g 5
(32 n)/(42 n)] gives the smallest errors but is weakly

unstable. The best case is arguably the use of equal-and-

opposite filter perturbations, with the leapfrog tendency

calculated from an equal blend of the filtered and un-

filtered solutions (a 5 ½, g 5 ½). This scheme has rela-

tively small errors and relatively weak damping. The

scheme is stable for vDt , 0.975, which is the best sta-

bility limit of all the schemes in the figure, and which is

very close to the stability limit of the unfiltered leapfrog

scheme (vDt , 1).

The amplification factors shown in Fig. 4 quantify the

amplitude errors associated with taking a single time

step. In practical applications, what is of greater interest

is the amplitude errors that accumulate over a given

integration interval, composed of many time steps. The

amplification factors compounded over one complete

oscillation period are shown in Fig. 5. The errors are

magnified compared to those for a single time step, and

the magnification is greater for smaller values of vDt
because more steps are required to complete an oscil-

lation. If an error tolerance is specified, such as the

amplitude being permitted to grow or decay by no more

than 0.5% per oscillation, then maximum time steps

may be read off from the figure, by locating where the

compound amplification factors first reach 0.995 or 1.005.

Can further accuracy improvements be achieved by

using in the leapfrog calculation a composite represen-

tation of the solution at the past time, in addition to a

composite representation of the tendency at the present

time? This scheme would be achieved by replacing xn21

in (3) with a linear combination of the three available

numerical solutions: xn21, xn21, and xn21. Two new

weighting parameters would be introduced. This scheme

has been analyzed by the author, and the results are

reported briefly here. A new degree of freedom is in-

troduced into the numerical scheme, making the poly-

nomial equation for the amplification factor quartic,

and yielding a physical mode and three computational

modes. Series expansions show that no further improve-

ment is obtained to the amplitude or phase errors, for any

permissible values of the two new weighting parameters.

FIG. 3. As in Fig. 1, but for the case n 5 0.1, a 5 ½, and g 5 ½.
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Therefore, the accuracy is affected by the use of a com-

posite tendency, but not by the use of a composite starting

point for the leapfrog extrapolation.

3. A more discriminating filter

a. The numerical scheme

The Robert–Asselin and RAW filters damp the com-

putational mode by introducing a form of diffusion into

the numerical solution. The introduction of diffusion is

evident from (6) and (7), in which the (1, 22, 1) co-

efficients in the expressions for the filter perturbations

represent a discrete approximation to the second time

derivative. In particular, they represent a first-order

backward-difference approximation to the second time

derivative at time n 1 1, or a second-order centered-

difference approximation to the second time derivative

at time n.

In space–time problems, biharmonic diffusion (=4) is

more effective than Laplacian diffusion (=2) at damping

shortwave grid-scale noise relative to longwave resolved

features. By analogy, in leapfrog integrations with a dif-

fusive filter, we anticipate that fourth-derivative time

diffusion (d4/dt4) will be more effective than second-

derivative time diffusion (d2/dt2) at damping the fast

computational mode relative to the slow physical mode.

To quantify this expectation, suppose that the angular

frequencies of the two modes are vfast and vslow, re-

spectively. Then the factor by which the computational

mode is damped more strongly than the physical mode

is (vfast/vslow)
2 for second-derivative time diffusion, but

(vfast/vslow)
4 for fourth-derivative time diffusion.

Motivated by the above discussion, let us attempt

to improve the composite-tendency leapfrog scheme

of section 2. We will study the effects of a more dis-

criminating variant of the RAW filter, in which the

second-derivative time diffusion is replaced with fourth-

derivative time diffusion. This is achieved by retain-

ing (5) without modification, but replacing (6) and (7)

with

FIG. 4. Magnitudes of the complex amplification factors for the physical mode of the RAW-

filtered leapfrog scheme with a composite tendency, when applied to the oscillation equation.

The scheme is defined by (5)–(7). The roots of (9) are obtained numerically and are plotted

for the case n 5 0.1, for various combinations of a and g. Curves are plotted only where all

computational modes are stable. Note that when a5 1, g vanishes from the numerical scheme

(see text).

FIG. 5. As in Fig. 4, except that here the amplification factors are not for a single time step but

for one complete period of the oscillation. This is achieved by raising jAPj to the power of the

number of time steps per period, which is 2p/(vDt).
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xn 5 xn 1 na(xn232 4xn221 6xn21 2 4xn 1 xn11) ,

(21)

xn115 xn112 n(12a)

3 (xn23 2 4xn221 6xn212 4xn 1 xn11) . (22)

The (1, 24, 6, 24, 1) coefficients in the expressions for

the filter perturbations represent a discrete approxima-

tion to the fourth time derivative. In particular, they

represent a first-order backward-difference approxima-

tion to the fourth time derivative at time n 1 1, or a

second-order centered-difference approximation to the

fourth time derivative at time n2 1. Note that a factor of

½ was included in the expressions for the filter pertur-

bations in (6) and (7), so that n could be interpreted as

the fraction by which the (1, 22, 1) filter nudges the

present state toward the mean of the past and future

states. No such interpretation is possible for the (1,24,

6, 24, 1) filter, and so the corresponding factor of ½

is omitted from (21) and (22). Combining (3), (21), and

(22) into a single equation for the numerical scheme

demonstrates that the overall truncation error is

O[(vDt)2] for all values of n, a, and g. Note in particular

that, unlike with the (1, 22, 1) filter, the choice a 6¼ ½

does not degrade the overall accuracy from second order

to first order.

Proceeding as in section 2, we apply the numerical

scheme defined by (5), (21), and (22) to the oscillation

equation in (4). Again, the determinant of a 33 3 matrix

of coefficients must vanish, yielding a quintic equation

for the amplification factor:

d5A
51 d4A

41 d3A
31 d2A

21 d1A1 d0 5 0, (23)

where

d55 1, (24)

d452n(41 3a)2 2[12 n(12a)g]ivDt , (25)

d35211 n(71a)1 n[8(12a)(12 g)1 12a]ivDt ,

(26)

d2 52n(42 3a)2 n[12(12a)(12 g)1 8a]ivDt , (27)

d15 n(12a)1 n[8(12a)(12g)1 2a]ivDt , (28)

d0522n(12a)(12 g)ivDt . (29)

Equation (23) generally yields five roots forA(n, a, g,

ivDt). In addition to the physical mode, hereafter la-

beled P, there are generally four computational modes,

hereafter labeled C1, C2, C3, and C4. However, for the

same reasons as in section 2, when n5 0, a5 1, or g5 1,

the quintic equation reduces to a quartic equation

(because d0 5 0) and one of the computational modes

vanishes.

b. Behavior as vDt / 0

A series expansion for jAPj in powers of vDt gives the
amplitude error to be

jAPj2 152
n(12 2a)

2(12 n2 2an)
(vDt)41O[(vDt)6] . (30)

The leading-order amplitude error after taking a single

time step generally scales as (Dt)4. Therefore, the leading-
order amplitude error compounded over T/Dt time steps

generally scales as (Dt)3, implying third-order ampli-

tude accuracy. The leading-order amplitude error is

approximately proportional to n for n � 1 and is in-

dependent of g. However, the leading-order amplitude

error depends critically upon a, being negative (indi-

cating stability) if a 5 0 and positive (indicating in-

stability) if a 5 1. The coefficient of the quartic term

in (30) vanishes if

a5
1

2
, (31)

which is the same condition on a that was obtained for

the (1, 22, 1) filter. With (31) satisfied, (30) becomes

jAPj2 15
n(52 8g2 9n1 14ng)

8(12 2n)2
(vDt)61O[(vDt)8] .

(32)

The leading-order amplitude error after taking a single

time step now generally scales as (Dt)6. Therefore, the
leading-order amplitude error compounded over T/Dt
time steps generally scales as (Dt)5, implying fifth-order

amplitude accuracy. The leading-order amplitude error

is still approximately proportional to n for n � 1. How-

ever, it now depends critically upon g, being negative

(indicating stability) if g 5 1 and positive (indicating in-

stability) if g 5 0. The coefficient of the sextic term in

(32) vanishes if

g5
52 9n

2(42 7n)
, (33)

which implies that the leapfrog tendency is calculated

from a linear combination of the filtered and unfiltered

solutions in the ratio 5 2 9n : 3 2 5n. This ratio differs

from the corresponding ratio obtained for the (1,22, 1)

filter. In the limit n / 0, g / 5/8 and the ratio tends to

5 : 3. The optimal value of g becomes zero when n 5 5/9,
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but this value of n corresponds to far stronger filtering

than is used in practice. With (31) and (33) satisfied, (32)

becomes

jAPj2 152
5n(42 13n1 11n2)

32(12 2n)2(42 7n)
(vDt)81O[(vDt)10] .

(34)

The leading-order amplitude error after taking a single

time step now generally scales as (Dt)8. Therefore, the
leading-order amplitude error compounded over T/Dt
time steps generally scales as (Dt)7, implying seventh-

order amplitude accuracy. The leading-order amplitude

error is still approximately proportional to n for n � 1.

It now has no other parametric dependence, and it is

always negative (indicating stability). The coefficient of

the octic term in (34) never vanishes (unless n 5 0, in

which case the filter is inactive and the computational

mode is undamped).

A series expansion for arg(AP) in powers of vDt is
obtained in the same manner. For a and g given by (31)

and (33), the phase error is found to be

arg(AP)2vDt5
1

6
(vDt)31O[(vDt)5] . (35)

The leading-order phase error after taking a single time

step generally scales as (Dt)3. Therefore, the leading-

order phase error compounded over T/Dt time steps

generally scales as (Dt)2, implying second-order phase

accuracy. The leading-order phase error is indepen-

dent of n. The coefficient of the cubic term in (35) never

vanishes.

c. Behavior for finite vDt

To examine the behavior at finite vDt, we now study

numerical solutions of the quintic equation in (23). We

choose n 5 0.1 and a 5 ½, satisfying (31), and we seek

solutions for g 5 (5 2 9n)/[2(4 2 7n)] ’ 0.621, which

satisfies (33). The behavior of the amplification factors

is shown in Fig. 6. The physical mode is stable for all

values of vDt, consistent with (34). Of the four compu-

tational modes, three (C2, C3, and C4) are stable for all

values of vDt, but one (C1) becomes unstable for vDt.
0.616. As n/ 0, C1 and C2 tend to 2Dtmodes, C3 tends

to a stationary mode, and C4 tends to a 4Dt mode (not

shown).

A summary of the amplitude errors of the physical

mode, for n 5 0.1 and various combinations of a and g,

is shown in Fig. 7. The use of unequal filter perturbations

(a 5 1 or a 5 0) gives the largest errors. The errors are

reduced by the use of equal-and-opposite perturbations

(a5½) with noncomposite tendencies (g 5 0 or g 5 1),

FIG. 6. Complex amplification factors for the (1, 24, 6, 24, 1)-

filtered leapfrog schemewith a composite tendency, when applied to

the oscillation equation. The scheme is defined by (5), (21), and

(22). The roots of (23) are obtained numerically and are plotted here

for the case n 5 0.1, a 5 ½, and g 5 (5 2 9n)/[2(4 2 7n)] ’ 0.621.

The physical mode (P) and the computational modes (C1, C2, C3,

and C4) are traced as vDt increases from 0 to 1. The unit circle, on

which the exact amplification factor (E) lies, is also shown.
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and they are reduced even further with a composite ten-

dency fg 5 (5 2 9n)/[2(4 2 7n)]g. However, unstable

computational modes generally constrain vDt more

strongly with the (1, 24, 6, 24, 1) filter than with the

(1, 22, 1) filter. The amplification factors compounded

over one complete oscillation period are shown in Fig. 8.

4. Test integrations

To complement the linear analyses performed in sec-

tions 2 and 3, the proposed schemes will now be tested

in numerical integrations of a simple nonlinear system.

A bob of unit mass attached to the end of a rigid massless

pendulum of unit length in a unit gravitational field os-

cillates at an angle of x(t) to the downward vertical ac-

cording to

dx

dt
5 y , (36)

dy

dt
52sinx . (37)

The total (kinetic plus gravitational potential) energy

of the pendulum, relative to the total energy when at rest

in the stable equilibrium position, is

E5 12 cosx1
1

2
y2 . (38)

The total energy is conserved by the continuous equa-

tions, which give dE/dt 5 0, and so it is of interest to

determine whether energy is created or destroyed spu-

riously by the numerical schemes.

Equations (36) and (37) are integrated starting from

x 5 0.95p and y 5 0, corresponding to the bob being

released from rest at an angle of 98 from the upward

vertical. These are challenging initial conditions for a

numerical scheme, because the nonlinearities are large

and the oscillating bob comes to rest close to the un-

stable equilibrium position directly above the point of

suspension. In each integration, a single first-order Euler

forward step is done to initialize the leapfrog scheme.

In the integrations using the (1, 24, 6, 24, 1) filter, two

initial applications of the (1, 22, 1) filter are used to

FIG. 7.Magnitudes of the complex amplification factors for the physicalmode of the (1,24, 6,

24, 1)-filtered leapfrog scheme with a composite tendency, when applied to the oscillation

equation. The scheme is defined by (5), (21), and (22). The roots of (23) are obtained nu-

merically and are plotted for the case n 5 0.1, for various combinations of a and g. Curves are

plotted only where all computational modes are stable. Note that when a5 1, g vanishes from

the numerical scheme (see text).

FIG. 8. As in Fig. 7, except that here the amplification factors are not for a single time step

but for one complete period of the oscillation. This is achieved by raising jAPj to the power of

the number of time steps per period, which is 2p/(vDt).
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generate a long enough history to start applying the

(1,24, 6,24, 1) filter. Both x and y are filtered after each

leapfrog step. The filter strength is chosen to be rela-

tively large (n 5 0.15) to emphasize the effects of the

filters. The time step is Dt 5 0.25.

The filtered leapfrog integrations are compared to a

highly accurate reference solution, which is computed

using an explicit adaptive Runge–Kutta method [RK5(4)]

known as the Dormand–Prince (DOPRI) method

(Dormand and Prince 1980). This method involves tak-

ing a fifth-order step to estimate the error associated

with taking a fourth-order step, and then using the error

to adapt the step size. For the adaptivity criterion ap-

plied to both x and y, the relative error tolerance is 10212

and the absolute error tolerance is 10215. The estimated

error in each integration step is less than the larger of

two quantities: the relative error tolerance multiplied

by the state, and the absolute error tolerance.

The results are shown in Fig. 9. The first leapfrog so-

lution to depart visibly from the reference solution is

the one using the (1,22, 1) filter with a5 1, which is the

original Robert–Asselin filter with first-order amplitude

accuracy. The oscillations are too rapid, because the

filter quickly damps the excursions, and the oscillation

frequency of the nonlinear pendulum increases as the

amplitude decreases. The next two leapfrog solutions to

depart visibly from the reference solution are the ones

using the (1,22, 1) filter with a5 ½ and either g 5 1 or

g 5 ½, which both have third-order amplitude accu-

racy and are a substantial improvement. However, the

higher-order schemes proposed in this paper remain

close to the reference solution for even longer. The

leapfrog solution using the (1, 22, 1) filter with a 5 ½

and g 5 (3 2 n)/(4 2 n) ’ 0.740, which has fifth-order

amplitude accuracy, has only slightly departed from

the reference solution after three full oscillations, de-

spite the relatively strong filtering. The leapfrog solu-

tion using the (1, 24, 6, 24, 1) filter with a 5 ½ and

g 5 (5 2 9n)/[2(4 2 7n)] ’ 0.619, which has seventh-

order amplitude accuracy, is even better and lies the

closest to the reference solution for the longest time. The

energy conservation property of the time-continuous

equations appears to be preserved adequately by all

the filtered leapfrog schemes except the one using the

Robert–Asselin filter, which rapidly removes energy

from the system.

5. Summary and discussion

This paper has studied the accuracy and stability of

various implementations of filtered leapfrog schemes.

The aim was to improve the filtering methods used cur-

rently, which, when integrating linear oscillations, have

first-order amplitude accuracy (Robert 1966; Asselin

1972) and third-order amplitude accuracy (Williams

2009, 2011). First, leapfrogging over a suitably weighted

blend of the filtered and unfiltered tendencies was found

to eliminate the third-order amplitude errors and yield

fifth-order amplitude accuracy. Then, the use of a more

discriminating filter was found to eliminate the fifth-

order amplitude errors and yield seventh-order ampli-

tude accuracy. Each of the schemes studied was found

FIG. 9. Filtered leapfrog integrations of the nonlinear pendulum equations, compared to an RK5(4) integration

thatmay be taken to be exact. The initial conditions at t5 0 are x5 0.95p and y5 0. The time step isDt5 0.25 and the

filter parameter is n 5 0.15. Note that when a 5 1, g vanishes from the numerical scheme (see text).
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to have second-order phase accuracy, the same as the

unfiltered leapfrog scheme. The proposed new schemes

were tested in numerical integrations of a simple non-

linear system.

In detail, section 2 showed that the (1,22, 1) filter with

strength parameter n generally gives amplitude errors

that are first order. However, if the filter perturbations

are equal and opposite, then the errors generally im-

prove to third order. If, in addition, the leapfrogging is

done over a linear combination of the filtered and un-

filtered tendencies in the ratio 3 2 n : 1, then the errors

improve to fifth order. Note that a composite tendency

cannot be constructed when the Robert–Asselin filter is

used, because only the unfiltered tendency exists at that

point of the leapfrog calculation. Therefore, the concept

of filtering at the future time as well as the present time,

which was the key advance of the RAW filter, is crucial

for producing the benefits found in this paper. Section 3

showed that the (1, 24, 6, 24, 1) filter generally gives

amplitude errors that are third order. However, if the

filter perturbations are equal and opposite, then the

errors generally improve to fifth order. If, in addition,

the leapfrogging is done over a linear combination of

the filtered and unfiltered tendencies in the ratio 5 2
9n : 3 2 5n, then the errors improve to seventh order.

It is always the case when constructing a numerical

scheme that there are many possible discretizations, each

of which is consistent in the sense that it tends to the

continuous derivative as the step size tends to zero.

It has often been found that taking a linear combina-

tion of the consistent discretizations results in a better

scheme than taking any single discretization individually.

For example, the construction of the composite leapfrog

tendency in section 2 is reminiscent of the construction

of the Arakawa (1966) Jacobian for modeling advection

in a two-dimensional flow. In that case, of three con-

sistent Jacobian discretizations, only a particular linear

combination was found to preserve the conservation

properties of the continuous Jacobian. In the present

paper, of two consistent filtered leapfrog discretiza-

tions, only a particular linear combination is found to

eliminate the amplitude errors at a particular order and

increase the amplitude accuracy.

A summary of the properties of the proposed new

schemes is given in Table 1. For each scheme, the re-

lationship between the order of the overall truncation

error in the differential equation and the orders of the

amplitude and phase errors satisfies the general propo-

sition of Durran (1991). In particular, although the or-

ders of the amplitude errors vary between the schemes,

none of the schemes has a phase error that is better than

second order. In terms of the orders of the amplitude

and phase errors, several of the second-order schemes

in Table 1 are as good as, or better than, the best second-

order scheme (Young’s method A) in the comprehensive

list given by Durran (1991).

Of particular interest are the maximum time steps

that may be used if a given error tolerance is specified.

For example, suppose it is decided that a loss of am-

plitude of no more than 0.5% per oscillation may be

tolerated. Then, referring to Table 1, the maximum per-

missible time step in the usual implementation of the

TABLE 1. Summary of the stability and accuracy of the composite-tendency leapfrog scheme proposed in section 2 (upper part) and of

the same scheme with a more discriminating filter proposed in section 3 (lower part). The traditional implementation of the Robert–

Asselin filter is in the top row. The value of g is irrelevant if a5 1. The number of computational modes is reduced by 1 if a5 1 or g 5 1.

The number of function evaluations per time step is 1 if g5 0 or g5 1 and is 2 otherwise. For the amplitude order of accuracy, parentheses

indicate that the amplitude error of the physical mode is positive as vDt / 0. The maximum vDt for stability is the maximum value at

which all the modes (physical and computational) are stable when n5 0.1. The maximum vDt for accuracy is the maximum value at which

the amplitude is conserved to within60.5% over one oscillation period when n5 0.1, with parentheses indicating10.5% and absence of

parentheses indicating 20.5%.

Filter a g

No. of

computational

modes

No. of

function

evaluations

per time step Order

Amplitude

order of

accuracy

Phase

order of

accuracy

Maximum

vDt for
stability

(n 5 0.1)

Maximum

vDt for
accuracy

(n 5 0.1)

(1, 22, 1) 1 — 1 1 1 1 2 0.951 0.030

(1, 22, 1) 1/2 1 1 1 2 (3) 2 0 (0.448)

(1, 22, 1) 1/2 (3 2 n)/(4 2 n) 2 2 2 (5) 2 0 (0.712)

(1, 22, 1) 1/2 1/2 2 2 2 3 2 0.975 0.475

(1, 22, 1) 1/2 0 2 1 2 3 2 0.832 0.333

(1, 22, 1) 0 1 1 1 1 (1) 2 0 (0.030)

(1, 24, 6, 24, 1) 1 — 3 1 2 (3) 2 0 (0.228)

(1, 24, 6, 24, 1) 1/2 1 3 1 2 5 2 0.690 0.424

(1, 24, 6, 24, 1) 1/2 (5 2 9n)/[2(4 2 7n)] 4 2 2 7 2 0.616 0.586

(1, 24, 6, 24, 1) 1/2 0 4 1 2 (5) 2 0 (0.394)

(1, 24, 6, 24, 1) 0 1 3 1 2 3 2 0.777 0.240
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leapfrog scheme with the Robert–Asselin filter (a 5 1,

n 5 0.1) would be vDt 5 0.030. In contrast, the maxi-

mum permissible time step in the proposed composite-

tendency leapfrog scheme with the RAW filter (a5 ½,

g 5 ½, n 5 0.1) would be vDt5 0.475, which is an order

of magnitude greater. Therefore, a substantial reduction

in computational expense is achieved, even after taking

into account the need for two function evaluations per

time step instead of one.

In terms of accuracy across a broad range of vDt, the
best stable scheme in Table 1 is the (1, 24, 6, 24, 1)

filter with a5½ and g5 (52 9n)/[2(42 7n)]. With this

scheme, even using a time step as large as vDt 5 0.586,

the amplitude will still be conserved to within 0.5% dur-

ing each oscillation when n 5 0.1. However, the maxi-

mum stable time step is only vDt 5 0.616, which is

relatively small. In terms of stability across a broad

range of vDt, the best scheme in the table is the (1,22, 1)

filter with a 5 ½ and g 5 ½. With this scheme, the

maximum stable time step is vDt 5 0.975 when n 5 0.1.

Furthermore, the maximum time step for amplitude

conservation to within 0.5% during each oscillation is

vDt5 0.475, which is the second-best value in the table.

On balance, the (1, 22, 1) filter with a 5 ½ and g 5 ½

appears to offer the best combination of stability and

accuracy.

Although the amplitude errors in filtered leapfrog

schemes have yielded to the methods proposed herein,

the phase errors have remained stubborn. However,

there may be good physical reasons for valuing ampli-

tude accuracy above phase accuracy. For example, it is

the amplitude accuracy that determines the degree of

energy conservation by the numerical scheme, at least

for linear oscillations. The relative importance of am-

plitude accuracy and phase accuracy depends on the

application. For long-term ocean or climate simulations,

good amplitude accuracy may be required to prevent

errors caused by numerical damping from accumulat-

ing over the long integration periods. Good phase accu-

racy may be less important, because long-term statistics

usually matter more than individual weather systems or

ocean eddies. In contrast, for short-term weather simu-

lations, good phase accuracymay be required to correctly

predict the evolution of individual weather systems.

Good amplitude accuracy may be less important, be-

cause the short integration periods do not allow much

time for amplitude errors to accumulate. Therefore, the

new schemes proposed in this paper, with amplitude

accuracies of up to seventh order but phase accuracies

limited to second order, may be particularly well suited

to ocean and climate applications.

For practical purposes, the computational expense

and memory requirement are important considerations

when choosing a numerical scheme. The calculation of

the composite tendency requires two function evalua-

tions per time step, because the tendency must be cal-

culated for the unfiltered state and the filtered state. This

doubles the computational expense of the tendency cal-

culation, which is the most expensive component of con-

temporary atmosphere and ocean models. In models

that use a time step sufficiently below the stability limit,

however, the increased accuracy allows a longer time

step to be taken for the same error tolerance, tending to

offset the increased expense. Note also that there are

attractive schemes in Table 1 that do not require a com-

posite tendency, because g 5 0 or g 5 1, and therefore

the computational expense of the tendency calculation

is unchanged. In terms of the memory requirement,

holding the unfiltered state in memory until the next

time step is more burdensome than immediately over-

writing it with the filtered state. Also, the (1,24, 6,24, 1)

filter requires a longer history to be kept in memory than

the (1, 22, 1) filter. Whether the increased memory re-

quirement presents a problem in practical applications

remains to be seen.

Could further improvements be made to the ampli-

tude accuracy of the filtered leapfrog scheme? Filters

based on time derivatives higher than the fourth would

discriminate between the physical and computational

modes even more strongly than the (1, 24, 6, 24, 1)

filter proposed here. For example, the (1, 26, 15, 220,

15, 26, 1) filter would represent a discrete approxi-

mation to the sixth time derivative. Such filters would

introduce new computational modes and would require

more memory, however, and it is unclear that ampli-

tude accuracy higher than seventh order would confer

any tangible benefits. A further option would be to apply

both the (1, 22, 1) filter and the (1, 24, 6, 24, 1) filter

together in combination. These possibilities are left for

future work.
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