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We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer
annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between
the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both
space and time. The technique is based on a flow visualization method developed by previous workers,
and relies upon the optical rotation properties of the working liquids. The previous methods returned only
qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative
maps by calibrating height against the colour fields registered by a camera which views the flow from above.
We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in
order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125mm
and depth 250mm from a distance of 2m, the inferred height fields have horizontal, vertical and temporal
resolutions of up to 0.2mm, 1mm and 0.04 s, respectively.
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1 INTRODUCTION

Since the nineteenth century, laboratory experiments have been performed on rotating
fluids in order to improve our understanding of geophysical fluid dynamics. In the
laboratory, as for the atmosphere and ocean, techniques have been developed for
making detailed measurements of the flow, which are essential for a quantitative com-
parison with theory. For example, laboratory techniques for measuring fluid velocities
have become quite advanced. By adding small, neutrally buoyant beads to the working
liquid, sophisticated particle tracking techniques can be used to derive velocity fields,
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u(x, y, z, t), by measuring the displacements of individual beads over small time intervals
(e.g., Fincham and Spedding, 1997). Ultrasonic doppler velocimetry techniques can also
give reliable velocity measurements (e.g., Takeda, 1995). Methods for making accurate
laboratory measurements of the height field of a liquid free surface, z=h(x, y, t), have
remained relatively elusive, however.

In a study of internal waves in a rotating liquid consisting of two stratified, immis-
cible layers, Hart (1972) used a vertical conducting wire stretched through the interface,
acting as an in situ capacitative level sensor. One liquid was an electrical insulator and
the other a slight conductor. The voltage drop across the wire could be calibrated
against internal interface height but, with just a single probe, heights could be inferred
at a single horizontal point only. Whilst this gives useful information about the
temporal structure of the flow, the spatial structure is not retrieved. Furthermore, it is
possible that the probe functions not simply as a passive measurement device, but as
one which actively disturbs the flow.

Remote sensing methods, in which electromagnetic radiation emitted by or trans-
mitted through the fluid is viewed non-invasively from afar, are generally preferred
to in situ methods, to avoid interactions between the flow and the measurement
device. Such interactions may have the potential to significantly disturb the flow. For
example, Read (1992) inserted thermocouple probes into a rotating, thermal annulus,
in order to make in situ measurements of the temperature field. Fast oscillations
were recorded by the thermocouples, which appeared to be inertia–gravity waves and
which contaminated the signal of interest. It is possible that the oscillations were
generated by the presence of the probe.

The simplest remote sensing methods have problems which are difficult to overcome.
With the global, non-invasive technique of shadowgraphy (Goldstein, 1983), in which
parallel rays of light are passed vertically through a fluid interface and focused onto
a screen by refraction at the disturbances, the problem of reconstructing the height
field from the shadowgraph can be very difficult when the disturbances are so steep
that the refraction is nonlinear. The Schlieren method (Goldstein, 1983) is impractical
for similar reasons.

A sophisticated remote sensing flow visualization technique was developed by Hart
and Kittelman (1986), to investigate the flow in a rotating cylinder containing two
superposed, immiscible liquids. In that experiment, the lower liquid is chosen to be
optically active, so that plane-polarized white light propagating vertically through the
lower fluid has its plane of polarization rotated by an angle which depends upon
both the wavelength and the lower layer depth. After leaving the fluids, the angu-
larly-dispersed white light passes through a sheet of polaroid before being received
by a colour camera. For a given lower layer depth, only light of a certain wavelength
has its polarization axis rotated into exact alignment with the polaroid. Light of
other wavelengths is either partially or fully extinguished by the polaroid, giving a cor-
relation between interface height and colour registered by the camera. The quantitative
calibration, to determine the functional relationship between height and colour, was not
attempted by Hart and Kittelman. This meant that, though wavelengths and propaga-
tion speeds could easily be determined using this method, wave amplitudes could not,
since information about the magnitude of interface height perturbations remained qual-
itative. The technique of using an optically active fluid to visualize a flow has also been
employed by Ruddick (1991), in his laboratory model of double-diffusive interleaving
at a thermohaline front.
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The purpose of the present article is to advance Hart and Kittelman’s flow visualiza-
tion technique, by deriving the height/colour calibration curve. This permits quantita-
tive maps of interface height to be reconstructed, allowing wave amplitudes to be
derived for the first time using this method. In Section 2, we describe the present
rotating laboratory experiment, and discuss the calibration problem in more detail.
In Section 3, we derive the nonlinear torque balance equations required for our calib-
ration method, and show how solutions can be obtained iteratively. We derive the
calibration curves in Section 4, and then give an example of an application of the cali-
bration scheme by reconstructing the interface height from a colour laboratory image.
Finally, we summarize the method and results, and discuss the limitations of our
approach, in Section 5.

2 THE ROTATING, TWO-LAYER ANNULUS

The present apparatus is shown in Fig. 1. It consists of a cylindrical stainless steel tank
of inner radius 125.0mm and depth 250.0mm, which has a fixed glass base and a remo-
vable glass lid. A solid steel cylinder, of radius 62.5mm and depth 250.0mm, is glued
coaxially to the base of the tank to form an annulus of gap width 62.5mm. The annular
region is filled to the brim with equal volumes of two immiscible liquids, to give a well-
defined interface and equal resting layer depths of 125mm.

The tank is mounted centrally on a circular turntable which can be made to rotate
under computer control with angular velocity �. The annulus lid, which is in contact
with the upper liquid, can also be made to rotate under computer control with angular
velocity �� relative to the tank. This is possible because the lid is connected to the tank
via a ball race, allowing low-friction relative motion powered by a servo motor
and drive wheel. The rotating lid forces a velocity shear across the fluid interface,
providing an energy source from which baroclinic and/or Kelvin–Helmholtz instabil-
ities can grow.

There is a central circular hole in the turntable, of radius equal to the tank radius, so
that white light from a bright 500W tungsten–halogen source lamp on the laboratory
floor may pass vertically into, through and out of the annular gap. The light is received
by a colour charge-coupled device (CCD) video camera, which is on the rotation axis
and co-rotates with the turntable around 2m above it. Communications between the
laboratory frame and the rotating turntable frame (i.e. the camera power and output
signal, and the servo motor power) are achieved through a commutator slip-ring,
hidden from camera view by the inner cylinder. The S-VHS signal output by the
CCD camera is recorded at 25 frames per second onto video tapes. The signal from
the tapes can subsequently be input to a computer with a frame grabber, to produce
colour 24-bit digitized images measuring 768 pixels by 576 pixels.

The upper layer is water, of density 997 kgm�3, and the lower layer is a blend
of d-limonene and 1,1,2-trichlorotrifluoroethane (CFC-113), of densities 840 kgm�3

and 1570 kgm�3, respectively. The two lower layer constituents are mixed in such pro-
portions that the two-layer liquid is slightly positively stratified, i.e. the upper layer is
slightly less dense than the lower layer. Pure limonene is less dense than water, which is
why it must be mixed with CFC-113 if it is to be the lower layer. This configuration is
necessary to prevent harmful limonene vapours from evaporating into the laboratory
air. The limonene/CFC mixture is hydrophobic, so that the two layers are mutually
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FIGURE 1 Schematic cross-section through the two-layer annulus apparatus, showing the principal
mechanical components (not to scale).

456 P.D. WILLIAMS et al.



immiscible and give a well-defined interface. It is transparent and colourless, to allow
the passage of light without significant absorption, and it has an optical activity
which is non-zero and which varies strongly with wavelength for visible light (due to
the limonene). Apart from the substitution of methylene bromide with CFC-113, and
the change from cylindrical to annular geometry, the apparatus is similar to that
used by Hart and Kittelman (1986). Selected fluid properties are shown in Table I.
The slightly different refractive indices of the two layers means that light rays could
deviate from the vertical when the interface is not horizontal. However, the effects of
refraction at the interface have been evaluated and shown to be small (Williams,
2003) and so are neglected here.

As shown in Fig. 1, quasi-white light emitted by the source lamp travels vertically
upwards through the apparatus and first passes through a diffuser. This is a translucent
plastic sheet which diffuses the incoming light such that it illuminates the base of
the tank uniformly. Without the diffuser, the video images would contain
contrasting bright and dim regions, which would make interpretation and analysis
more difficult.

The diffuse light passes through an entrance polaroid, fixed to the upper side of the
diffuser. This is a thin sheet of linearly-polarizing filter. The direction of its polarization
vector determines a vertical plane of polarization for the emerging light. Importantly,
the entrance polaroid is fixed to the rotating turntable. This means that the vertical
polarization plane of the light entering the fluids will rotate in the laboratory frame,
but is fixed in the camera frame.

Next, the light enters the tank via its glass base, and travels through the optically
active lower layer liquid, whose effect is to rotate the plane of polarization of the
light. The rotation angle per unit depth for pure limonene has been determined experi-
mentally by Hart and Kittelman (1986), for a range of wavelengths spanning the visible
part of the spectrum. We derive the rotation angle for the present limonene/CFC-113
mixture, from Hart and Kittelman’s pure limonene data, by assuming that it is reduced
by a fraction equal to the volume-fraction of CFC-113 in the composite mix (i.e. 22%).
This assumption is easily verified theoretically by taking the total rotation angle to be
the same whether the constituent liquids are well-mixed or are separated into distinct
layers. The resulting optical activity curve is shown in Fig. 2.

Next, the light travels through the optically-inactive upper layer and leaves the tank
via the glass lid, during which its plane of polarization is unchanged. The light then
passes through an analyzing polaroid, which is a second thin sheet of linearly-polarizing
filter fixed to the camera lens. This polaroid only allows the transmission of a certain
fraction of the incident light intensity. Assuming perfect polaroids, this fraction

TABLE I Selected physical properties of the working liquids at the ambient laboratory
temperature (20�C).

Water Limonene/CFC-113
Layer 1 Layer 2
(Upper) (Lower)

Density, � ðkgm�3
Þ 997� 1 1003� 1

Mutual interfacial tension, S ð10�2 Nm�1) 2.85� 0.1 2.85� 0.1
Kinematic viscosity, � ð10�6 m2 s�1) 1.27� 0.02 1.08� 0.02
Optical activity, �, at 0:59 mm ð8m�1

Þ 0 770� 10
Refractive index, n, at 0.59mm 1.3328� 0.0001 1.4466� 0.0001
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varies from 1 if the analyzing polaroid axis and incident light polarization axis are par-
allel (or anti-parallel), to 0 if they are perpendicular. For a given lower layer depth,
therefore, only light of certain wavelengths will be rotated into close alignment with
the analyzing polaroid and be transmitted to the camera. Other wavelengths will be
extinguished by the polaroid. This is the origin of the relationship between lower
layer depth, and colour recorded in the video images.

A typical scene captured by the camera is shown in Fig. 3. The rotation parameters
are �¼ 0.46 rad s�1 and �� ¼ 3.70 rad s�1, at which there is a rotationally–modified
Kelvin–Helmholtz instability but no baroclinic instability. The equilibrated flow is
a Kelvin–Helmholtz mode of azimuthal wavenumber 9, which drifts around the annu-
lus in the turntable frame at a speed of around half of the lid speed.

For a lower layer depth of 15 cm, we deduce from Fig. 2 that the red light component
(�� 0.70 mm) will be rotated through an angle of about 90�, the green light
(� � 0.55 mm) through 135� and the blue light (� � 0.44 mm) through 240�. These
angles are shown in Fig. 4, where the angle between the axes of the crossed entrance
and analyzing polaroids is taken to be 50�. In this case, most of the blue light will
be transmitted through the analyzing polaroid, plus some of the red light but hardly
any of the green light, and we would therefore see a predominantly blue colour for
this height.

By rotating the analyzing polaroid attached to the camera lens, the angle between the
axes of the crossed entrance and analyzing polaroids can be adjusted, which varies the
colour observed for a given interface height. For some angles, the relationship between
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FIGURE 2 Optical rotary dispersion curve for the lower layer liquid of the present laboratory experiments,
i.e. a blend of limonene and CFC-113, derived from the corresponding curve for pure limonene obtained by
Hart and Kittelman (1986).
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FIGURE 3 Typical laboratory image, captured by the video camera and digitized using a high-resolution
frame grabber. Blue regions correspond to relatively large values of interface height, and yellow regions to
relatively low values. The turntable and lid rotation speeds, � and ��, respectively, are both positive. Since
the video camera which recorded this image is fixed in the turntable frame, the turntable appears to be
stationary and the lid (and disturbances) rotate in the anti-clockwise sense.
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FIGURE 4 The polarization axes of red, green and blue light, after travelling through 15 cm of the limo-
nene/CFC-113 mixture, as viewed from above by the video camera. The entrance and analyzing polaroids are
shown as dashed lines.
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height and colour is more sensitive than for others, i.e. smaller changes in height pro-
duce larger changes in colour. In this study, the differential angle is adjusted – by trial
and error – to be such that the relationship is at its most sensitive. This optimizes the
vertical resolution, so that even small changes in interface height produce a significant
signal in the colour field. The angle used is difficult to accurately obtain, because the
two polaroids are over 2m apart, and so no attempt was made to measure it.

It is our intention to calibrate the experiment by inferring the mathematical relation-
ship between colour and height. It is not possible to derive the calibration curve experi-
mentally, by increasing the depth of the lower layer in discrete steps and recording the
colour at each one, since this method would expose the user to excessive quantities of
the harmful limonene vapours.

The calibration requires an independent method for obtaining the interface height
field in just one special case, when the experiment is in operation. The method must
be independent, in the sense that it does not rely on the colour information in the
images, since that is what we wish to calibrate. Fortunately, it is possible to derive
an analytical expression for the equilibrium interface height in the special case of no
baroclinic or Kelvin–Helmholtz instability, using layer torque balance equations. In
this case, zonal wave modes are completely absent. The interface height is axisym-
metric, but can still vary strongly with radius.

We plan to take interface height as a function of radius from the analytical expres-
sion, and colour as a function of radius from a laboratory experiment, and to determine
the relationship between interface height and colour from the two, by eliminating the
radius. We derive the required analytical expression in Section 3.

3 TORQUE BALANCE ANALYSIS

In this section, we seek an analytical expression for the stable equilibrium interface
height shape, which we will use in Section 4 for the derivation of calibration curves.
The interface shape obtained from the steady-state solution of the two-layer quasi-
geostrophic equations is not accurate enough for our purposes, as we will shortly
show. We therefore choose an alternative and more accurate approach, based on setting
to zero the net torque acting on each layer due to the thin, viscous boundary layers
which surround it on all sides.

3.1 Equilibrium interface height field

Variable definitions for the torque balance calculation are shown in Fig. 5. In the
turntable frame, which rotates with angular velocity � in the laboratory frame, the
base (z¼ 0) and sidewalls (r¼ a and r¼ b¼ 2a) are stationary, and the lid (z¼ 2H)
rotates with angular velocity ��. The equilibrium flow in the fluid interiors is assumed
to be completely azimuthal, i.e. to have neither a vertical nor a radial component.
In reality, there is a small non-azimuthal secondary circulation throughout both fluid
interiors, which controls the azimuthal flow (Proudman, 1956; Stewartson, 1966).
The secondary circulation involves flow into and out of the Ekman layers, and vertical
stretching and compression of fluid columns. The relative magnitude of this circula-
tion is O(E1/2), where E¼ �/[�(b� a)2] is the Ekman number (Greenspan, 1968).
Since we typically have E � 10�4 in the present context, the departures from purely
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azimuthal flow are sufficiently small that we neglect them for the purposes of the torque
balance analysis.

In equilibrium, we denote the axisymmetric interior azimuthal velocities, as observed
in the laboratory frame, by u1(r) and u2(r). The subscript ‘‘1’’ refers to the upper layer,
and ‘‘2’’ to the lower layer. The assumption of columnar (i.e. depth-independent) flow
follows from the Taylor–Proudman theorem for sufficiently small Rossby number
(Acheson, 1990). To within an additive constant, the lower layer depth field, h(r),
corresponding to this flow is given by

hðrÞ ¼
1

g0

Z
ðu22 � u21Þ

r
dr: ð1Þ

This interface height field is associated with radial pressure gradient forces in both
layers which are exactly those required by fluid parcels executing circular motion at
the specified speeds. The flow is assumed to be hydrostatic. The reduced gravity is
g0 ¼ 2gð�2 � �1Þ=ð�2 þ �1Þ, and the assumption is made that g0 � g. The external cen-
trifugal effect gives a further contribution to the interface height shape, which is
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FIGURE 5 Schematic cross-section of the annulus, giving variable definitions for the torque balance
calculation. The boundary layer widths, �E and �S, are shown exaggerated, and the angular velocities are
as observed in the turntable frame. See text for a full description.
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neglected in this analysis since it is weaker than the internal centrifugal effect – respon-
sible for the term on the right of (1) – by a factor of g=g0 � 100 (Table I).

We now further assume that the azimuthal flow is one of layer-wise solid-body rota-
tion, so that ui¼ r�i, where �i¼�+��i is the absolute rotation rate in layer i2 {1, 2}.
The validity of this assumption depends upon the size of the mean interface slope, and
is discussed in Section 5. We may now evaluate the integrals in (1), to give

hðrÞ ¼ H þ
ð�2

2 ��2
1Þðr

2 � ð5=2Þa2Þ

2g0
: ð2Þ

Conservation of volume, expressed as

Z 2�

�¼0

Z b

r¼a

hðrÞ r dr d� ¼ �ðb2 � a2ÞH; ð3Þ

has been imposed to determine the integration constant. For later use, we make the
following definitions of the interface/sidewall intersection heights: Hþ � hðaÞ ¼ 2H�

hðbÞ andH� � hðbÞ ¼ 2H � hðaÞ. Fluid at the axisymmetric interface, z¼ h(r), is assumed
to rotate with angular velocity ��I in the turntable frame, as shown in Fig. 5.

In (2), the interior rotation rates in the turntable frame, ��1 and ��2, are as yet
unknown. In much of Hart’s work, including Hart (1972, 1973, 1985), as well as
in other studies including Bradford et al. (1981), these interior rotation rates are derived
from the two-layer quasi-geostrophic equations, neglecting the influence of Stewartson
layers at the sidewall boundaries and assuming a flat, horizontal interface. For the case
of exactly equal viscosities, this calculation yields the simple result ��2 ¼ ð1=4Þ�� and
��1 ¼ ð3=4Þ��, which can be substituted into (2) to obtain an explicit expression for
h(r).

The assumptions of quasi-geostrophy, non-interacting Stewartson layers and a
horizontal interface mean that this method can only be considered as a first approxima-
tion. The present calibration scheme requires a more accurate analysis, as will be
justified in Section 3.3, where we show that the layer rotation rates obtained from
our advanced calculation differ significantly from the simple result quoted above.
King (1979) developed an alternative approach based on a balance of torques in
each layer. He argued that, in equilibrium, the fluid interiors do not experience an
angular acceleration, and so the net external torque on the interiors due to the shears
across the boundary layers must be zero. Stewartson layers and ageostrophy are
both included, but King assumed a flat, horizontal interface to make the calculation
analytically tractable.

In the present problem, we specifically require a non-horizontal interface, as we
would like the calibration curve to span as wide a range of interface heights as possible.
We therefore now extend the torque balance calculation to include non-horizontal
interface effects.

3.2 Derivation of torques

For the torque balance calculation we model each fluid layer as an inviscid interior
region, making up the vast majority of the volume of the layer, surrounded on all

462 P.D. WILLIAMS et al.



sides by thin viscous boundary layers which serve to change the fluid velocity from its
interior value to its no-slip boundary value. In the two-layer annulus, the boundaries
are the lid, base and fluid interface (at which the boundary layers are Ekman (1905)
layers), and the inner and outer cylindrical sidewalls (at which the boundary layers
are Stewartson (1957) layers).

We expect, when the imposed lid rotation �� is positive, that

0 < ��2 < ��I < ��1 < ��; ð4Þ

where ��I is the angular velocity of the interface (see Fig. 5). Qualitatively, the upper
layer interior is being acted upon by a prograde (anti-clockwise) stress due to the
Ekman layer at the lid, and by retrograde (clockwise) stresses due to the Ekman
layer above the interface and both upper layer Stewartson layers. The boundary layer
at the lid is tending to spin the layer up, and the remaining three boundary layers are
tending to spin it down. In the lower layer, it is the interfacial boundary layer which
gives a positive angular velocity tendency, and the remaining three which give a
negative contribution.

To simplify the following analysis we assume equal layer viscosities, �, and densities,
�, both of which approximations are very good in the present context (see Table I).
Neither viscosity differs from the mean viscosity (the value used in the model) by
more than 10%. The model would be made much more complicated by including
the different viscosities, and it is not clear that the extra complexity would be justified
by any significant gain in accuracy. In the limit of small Rossby number (see Section 5
for a discussion) the Ekman and Stewartson layer widths are, respectively,

�E ¼
�

�

� �1=2
and �S ¼

a2�

�

� �1=4

: ð5; 6Þ

For a typical rotation rate of �¼ 1 rad s�1, we have �E=1mm and �S¼ 8mm.
In equilibrium, the interface does not accelerate, and therefore must feel no net

torque due to the Ekman layers above and below it. The vertical shear in horizontal
velocity across the upper interfacial Ekman layer must therefore equal that across
the lower one, giving ��I ¼ ð��1 þ��2Þ=2.

The shear stress on the upper layer interior by the vertical boundary r¼ b is
���b��1/�S, where the minus sign indicates that this stress represents a drag.
A mean has been taken over the thin Stewartson layer, of width �S, across which
a velocity change of b��1 is achieved. This Stewartson layer has area 2�bH+ and is
a distance b from the rotation axis, and so it exerts a torque on the fluid of

TStewartson
layer¼1; r¼b ¼ �

2�����1Hþb
3

�S
: ð7Þ

Similar expressions are obtained for the torques TStewartson
layer¼1; r¼a, T

Stewartson
layer¼2; r¼b and TStewartson

layer¼2; r¼a

due to the remaining three Stewartson layers.
The shear stress on the upper layer interior by the horizontal boundary z¼ 2H

at radius r is ��r (�����1)/�E. In this case the stress is dependent upon radius.
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An area element is r dr d� and the distance from the axis is r, and so this Ekman layer
exerts a torque on the fluid of

TEkman
layer¼1; z¼2H ¼

Z 2�

�¼0

Z b

r¼a

��ð�����1Þr
3

�E
dr d� ð8Þ

¼
���ð�����1Þðb

4 � a4Þ

2�E
: ð9Þ

A similar expression is obtained for the torque TEkman
layer¼2; z¼0 on the lower layer interior

due to the Ekman layer at the base.
The shear stress on the upper layer interior by the interface z¼ h(r) at radius r

is ���r(��1���I)/�E. In this case the area element is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdh=drÞ2

p
r dr d�

and the distance from the axis is r, and so this Ekman layer exerts a torque on the
fluid of

TEkman
layer¼1; z¼h ¼ �

Z 2�

�¼0

Z b

r¼a

��ð��1 ���IÞr
3

�E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dh

dr

� �2
s

dr d� ð10Þ

� �
���ð��1 ���IÞðb

4 � a4Þ

2�E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dh

dr

����
r¼b

� �2
s

: ð11Þ

An approximation has been employed (without which further analytical progress
becomes impossible) to replace the surd in the integrand of (10) with its value at
r¼ b. This is justified because the r3 factor is a much more strongly-varying function
of r than is the surd, which is at most linear in r. The variation of the surd throughout
the integration range is therefore small compared with the variation of the r3 term,
and so we can treat the former as a constant, evaluated at r¼ b since the r3 factor
heavily weights the integral towards the larger values of r. A similar expression to (11)
is obtained for the torque TEkman

layer¼2; z¼h on the lower layer interior due to the Ekman layer
at the interface.

3.3 Torque balance equations

We now write down expressions for the net torque in each layer, and equate them to
zero in equilibrium to give

TStewartson
layer¼1; r¼a þ TStewartson

layer¼1; r¼b þ TEkman
layer¼1; z¼2H þ TEkman

layer¼1; z¼h ¼ 0 ð12Þ

and

TStewartson
layer¼2; r¼a þ TStewartson

layer¼2; r¼b þ TEkman
layer¼2; z¼0 þ TEkman

layer¼2; z¼h ¼ 0 : ð13Þ
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Equations (12)–(13) are two coupled nonlinear equations in the two unknowns ��1

and ��2. Rearranging, we may write the equations in matrix form,

1þ �þ 	þ

��

��

1þ �þ 	�

� �
��1

��2

� �
¼

��

0

� �
, ð14aÞ

where

� ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dh

dr

����
r¼b

� �2
s

, 	� ¼
4

15

�E
�S

8H� þH�

a
: ð14b,cÞ

The matrix equation is nonlinear becauseHþ,H� and dh=drjr¼b each depend upon��1

and ��2 through (2). If we now make the horizontal interface assumption, which
is Hþ ¼ H� ¼ H and dh=drjr¼b ¼ 0, the equations linearize and we recover the results
of the simpler torque balance calculation of King (1979). Additionally neglecting the
influence of the Stewartson layers, by letting �S ! 1 so that the torques
TStewartson
layer¼1;2; r¼a;b ! 0, reduces the matrix equation to

3=2

�1=2

�1=2

3=2

� �
��1

��2

� �
¼

��

0

� �
; ð15Þ

for which the solution is

��1

��2

� �
¼

3

4
��

1

4
��

2
64

3
75 : ð16Þ

This, as expected, is the simple quasi-geostrophic result referred to in Section 3.1.
In the present context, we use an iterative approach to solve the full, nonlinear matrix

(14). We start by choosing ��1 ¼ ��2 ¼ 0 as a first guess. Then we evaluate Hþ, H�

and dh=drjr¼b for this ��1 and ��2, using (2), before evaluating the four matrix
elements for this Hþ, H� and dh=drjr¼b. Finally, we solve (14a) to obtain an improved
estimate for ��1 and ��2. If the original and improved solutions are not equal to
within the required precision, we return to the start for a further iteration, this time
using the improved estimate as a first guess.

The iterations were found to converge in almost all cases. The exceptions occurred
when the product of � and �� was very large – well outside the magnitudes encoun-
tered in most laboratory experiments – when a feature with a period of two iterations
persisted in the equilibrated iteration series. In these cases there is presumably no equi-
librium solution to the torque balance equations.

Figure 6 shows the results of the iteration calculation for the case � ¼ 3 rad s�1

and �� ¼ 1 rad s�1. The fourth decimal place of the solutions is stable after around
the 20th iteration. The converged solution for the lower layer rotation speed is
��2 ¼ 0:23 rad s�1, quite close to 0.25 rad s�1 which is the corresponding simple
quasi-geostrophic result. However, the converged solution for the upper layer is
��1 ¼ 0:42 rad s�1, much smaller than the quasi-geostrophic result of 0.75 rad s�1.
The influence of ageostrophy, Stewartson layer drag and a sloping interface can
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therefore significantly alter the equilibrium rotation rates, and it is important that their
effects are included for an accurate calibration curve, as suggested at the start of this
section.

4 DERIVATION OF CALIBRATION CURVES

We are now in a position to derive calibration curves. An image from a laboratory
experiment, showing the equilibrated axisymmetric flow which is attained for the
case �¼ 0.77 rad s�1 and �¼ 1.87 rad s�1, is shown in Fig. 7. For these parameters,
equivalent to Rossby and Froude numbers of 0.2 and 7.4, respectively, there is neither
a baroclinic nor a Kelvin–Helmholtz instability. There are 106 pixels across the annular
gap, and there will therefore be 106 points on the calibration curve we obtain. For each
of these pixels, we determine the digitised red (R), green (G) and blue (B) colour
components using standard image-processing software. Since the frame grabber gives
a digitization of eight bits per colour channel, the components are given as integers
between 0 and 28� 1¼ 255. We then use these to calculate the hue as a function of
radius, where hue is defined in terms of R, G and B by

hue ¼ cos�1 2G� R� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðR� GÞ2 þ ðR� BÞ2 þ ðG� BÞ2	

q
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FIGURE 6 Results of the iterative numerical solution of the nonlinear matrix equation (14) for ��1 and
��2, for the case � ¼ 3 rad s�1 and �� ¼ 1 rad s�1.
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Hue is an angle representing the dominant wavelength on a ‘‘colour wheel’’, for which
0� corresponds to green, 120� to blue and 240� to red. Hue is one of the components of
the hue, saturation, intensity (HSI) system for representing colours (Foley and Van
Dam, 1982), which is an alternative to the red, green, blue (RGB) system. Hue is an
ideal calibration variable, as it is a monotonically-varying function of interface
height over the range being considered, as we will shortly demonstrate. In the present
context, this statement does not hold for the red, green, blue, saturation and intensity
components. For example, it is clear from Fig. 7 that the intensity (I=R+G+B) is
large near the inner and outer sidewalls, with a minimum near mid-radius. A calibration
curve based on this variable would therefore not be uniquely invertible. It is possible to
restrict the range of radii under consideration, and then we may be able to use intensity
as a proxy for interface height (Lovegrove et al., 2000), but it is clearly more attractive
for the present purposes to use hue, for which the calibration is uniquely invertible
across the entire radial span.

As indicated in Fig. 7, averages have been taken over the azimuthal angles corre-
sponding to 0�, 90�, 180� and 270�, in case the flow is not perfectly axisymmetric.
Also as indicated in the figure, averages have been taken over 40 azimuthally-neigh-
bouring pixels at each of these four angles, to reduce contamination of the signal by
noise.

For the parameters corresponding to the calibration image in Fig. 7, the converged
iterative solution to (14) is found to be ��1¼ 0.34 rad s�1 and ��2¼ 0.14 rad s�1.
These rotation rates are substituted into (2) to obtain h(r). Having both hue and

FIGURE 7 The first laboratory experiment image used for the calibration, showing the equilibrated flow in
the case�� ¼ 0:77 rad s�1, � ¼ 1:87 rad s�1. The four boxes, each measuring 106 pixels by 40 pixels, indicate
the areas from which colour information is extracted.
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interface height as functions of radius allows us to eliminate the radius to obtain
the relationship between hue and height. This procedure has been carried out using
the calibration image of Fig. 7, plus eight further times using calibration images
with different combinations of � and ��, corresponding to different axisymmetric
flows. The family of calibration curves so obtained is shown in Fig. 8. There is good
agreement between the curves, all of which have a characteristic S-shape. This validates
the methods used to obtain the curves and shows that the calibration scheme is reliable.
The curves span a large range of interface heights and hues, which have rarely
been exceeded in the many laboratory experiments which we have performed using
the present system.

As an example of an application of the calibration scheme, Fig. 9 shows the interface
height field inferred from the image in Fig. 3, by projecting hue onto the average cali-
bration curve of Fig. 8. Wave amplitudes, which previously had to be guessed by peer-
ing into the annulus lid, can now be measured. For example, we can easily determine
that the amplitude at a radius of r¼ 100mm is 13mm. An estimate of the precision
of this measurement can be obtained by projection of the hue in Fig. 3 onto each of
the nine calibration curves in Fig. 8 separately, from which we obtain nine amplitude
measurements. The uncertainty, evaluated as the standard deviation, is found to be
1mm. Note that the uncertainty in inferred amplitudes is significantly less than the
uncertainty in inferred interface heights, since the former is determined by the disper-
sion of the slopes of the nine curves, whereas the latter is determined by the dispersion
of the values of the ordinate. It is clear that there is a better match between the slopes of
the nine curves in Fig. 8, than there is between the ordinate values. The factors which
limit the temporal, horizontal and vertical resolution of the retrieved interface maps are
briefly discussed in Section 5.

FIGURE 8 Family of calibration curves, each derived from different experimental conditions, as labelled.
The curve derived from the image in Fig. 7 is included, together with eight others.
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5 DISCUSSION

We have described a technique for calibrating the flow visualization method originally
proposed by Hart and Kittelman (1986). The method uses an optically-active fluid
viewed between crossed polaroid sheets, to give a relation between colour and height.
By writing down nonlinear torque balance equations for each of the two layers in
the rotating annulus, we were able to iteratively determine the equilibrium interface
height shape for the case of no dynamical instability. Combining this data with
values of hue, digitized from the corresponding laboratory images using a frame
grabber, has allowed us to derive a family of nine calibration curves as a consistency
check. Finally, we have given an example of how the calibration scheme can be
used to reconstruct the two-dimensional interface height for a flow exhibiting
Kelvin–Helmholtz instability, and we have shown how wave amplitudes can easily be
obtained from the map of retrieved heights.

In images such as that shown in Fig. 3, there are 106 pixels across the annulus gap of
width 62.5mm, giving a horizontal resolution of 0.6mm. We have carried out further
experiments in which a zoom lens is attached to the camera, giving 334 pixels across
the annulus gap and a horizontal resolution of better than 0.2mm (not shown).
The camera frequency is 25Hz, giving a temporal resolution of 0.04 s. The vertical reso-
lution is limited by a phenomenon known as pixel jitter, which has contributions from
the camera, video recorder and frame grabber, and which causes the digitised colour
values to randomly vary about a mean state, even when the scene being filmed remains
exactly the same. When inferring heights from a single image, pixel jitter limits the
vertical resolution to around 1mm (Williams, 2003). The effects of pixel jitter are
weakened if averages are taken over neighbouring pixels in a single image, and/or
over corresponding pixels in consecutive frames. This means that the vertical resolution
can be significantly improved (by a factor of

ffiffiffiffi
N

p
, for a mean taken over N pixels) so

long as a reduction in the horizontal and/or temporal resolution can be tolerated.

FIGURE 9 Reconstructed two-dimensional interface height, as inferred from the image in Fig. 3, by
projecting the hue onto the mean of the calibration curves shown in Fig. 8.
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We have recently used the calibration scheme to obtain the amplitudes of fast,
inertia–gravity waves on scales of a few millimetres (Williams et al., 2003). An uncer-
tainty would exist if the inertia–gravity wave amplitudes were measured using an
in situ method, due to the possibility that the waves were being generated by an inter-
action between the measuring probe and the flow.

The Ekman and Stewartson boundary layer widths used for the torque balance
analysis of Section 3 (given by (5) and (6)) are formally valid only for asymptotically
small Rossby number. For small but finite Rossby number, nonlinear effects
may cause modifications to the boundary layers, including instabilities (Bennetts and
Hocking, 1973; Lingwood, 1997). However, Fig. 8 shows good agreement between cali-
bration curves for Rossby numbers ranging from Oð0:1Þ to O(1) (values outside this
range cannot be used, because either a baroclinic instability is present or because the
variation of interface height with radius is too small). Furthermore, the Ekman layer
instability appears as vortex rolls in the form of spiral bands (Lilly, 1966) which are
never observed in the present experiments, even with a Rossby number close to
unity. These facts suggest that the asymptotic boundary layer theories remain valid
slightly away from their formal domain of validity, with the implication that nonlinear
boundary layer effects probably do not play a significant role in the calibration of this
experiment.

In Section 3.1, we made an assumption of solid-body rotation in the fluid interiors.
Strictly, this assumption is justified only for asymptotically small interface slopes.
It is possible that the slopes reached in some of the present calibration experiments
lie outside the formal domain of applicability of this assumption. However, the mean
interface slopes in the nine calibration experiments (evaluated as ðHþ �H�Þ=ðb� aÞ;
see Fig. 5) vary by a factor of 2, with no apparent impact on the calibration curves
of Fig. 8. Furthermore, we obtain good quantitative agreement between flows in the
laboratory experiment and those in a quasi-geostrophic model (Williams, 2003), in
which interface slopes are neglected and solid-body rotation is obtained. We therefore
infer that our assumption of solid-body rotation is likely to be valid.

The calibration method described here in the context of a rotating annulus,
could equally well be applied to the case of a two-layer liquid in a rotating cylinder,
as originally used by Hart and Kittelman (1986). A slight modification would be
needed in the torque balance analysis, by setting the inner sidewall radius to zero
and removing the effects of the inner Stewartson layers. Similarly, the scheme
could easily be applied to an annulus in which the outer sidewall radius was
not equal to twice the inner sidewall radius, by relaxing the condition b ¼ 2a. More
generally, a torque balance analysis similar to that described herein could potentially
be applied to the non-rotating case (� ¼ 0, �� 6¼ 0), though the boundary layers
in this ageostrophic case would not be Ekman and Stewartson layers in their conven-
tional forms, and so the boundary layer width formulae in (5) and (6) would need
to be modified.

The calibration curves in Fig. 8 are quite general, depending only on the ratio of
limonene to CFC-113 in the lower layer mixture and on the angle between the crossed
polaroids. Now that the curves have been determined, in the present study, they can
be used for the investigation of many other diverse fluid flow problems involving
an interface. The method developed here would therefore seem to offer a convenient
and non-invasive way of obtaining reliable, high-resolution interface height measure-
ments in a wide variety of experimental fluid flow configurations.
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