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Foreword

QUAGMIRE is a quasi-geostrophic numer-
ical model, intended for carrying out fast,
high-resolution simulations of multi-layer
rotating annulus laboratory experiments
on a desktop PC.

The model uses a hybrid finite-
difference/spectral approach to numer-
ically integrate the coupled nonlinear
partial differential equations of motion in
cylindrical geometry in each layer. The
flow is forced by a differentially rotating
annulus lid. The effects of weak interfa-
cial tension are included, as well as the
quadratic (centripetal) beta-effect. The
annulus base and lid are both allowed to
have a constant radial slope, giving a topo-
graphic beta-effect. Dissipation is achieved
through Ekman layer pumping/suction
at the horizontal boundaries, including
the internal interface(s). A leapfrog time
stepping scheme is used, with a Robert
filter. An optional stochastic forcing mod-
ule is included, to represent the effects of
unresolved features.

At the present time, the model is written
for the special case of two layers of equal
resting depths, but there are plans to
generalize this in the future.

When simulating a laboratory experiment
at reasonably high resolution, on a 1.4 GHz
desktop PC, the model can run up to
ten times faster than “real life”. The run
time memory requirement is 3 MB. The
model waves, which grow due to baroclinic
instability if the Froude number is super-
critical, have phase speeds, equilibrated
amplitudes and wavenumbers which agree
well with laboratory experiments. For
Froude numbers which are higher still,
more complicated model flows result, such
as amplitude vacillations with reasonable

amplitudes and periods and, ultimately,
flow which is highly irregular and appears
to be chaotic.

A tar file, containing the model source
code, a makefile, a shell script and a Mat-
lab diagnostics suite, can be obtained by
e-mailing the authors:

P. D. Williams (williams@atm.ox.ac.uk)
NCAS Centre for Global Atmospheric
Modelling, Department of Meteorology,
University of Reading, PO Box 243, Earley
Gate, Reading, RG6 6BB, UK
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1 Introduction

1 Introduction

1.1 Overview

For over a century, geophysicists have invoked
the principle of fluid dynamical similarity to
make possible the study of geofluids (planetary
atmospheres, oceans and liquid cores) in the
laboratory. The main benefits of studying geoflu-
ids indirectly in this way are that the system is
under the complete control of the experimenter,
that global high-resolution measurements can be
systematically taken, and that experiments can
be repeated as many times as required. None of
these statements hold when such flows are studied
directly rather than in the laboratory. Indeed, it
seems clear that we should not want to perform
experiments on the real atmosphere and ocean,
for fear of what the consequences might be if
the experiment goes wrong! A review of the role
of laboratory experiments in geophysical fluid
dynamics has been given by Hide (1977).

The advent of computer models for study-
ing the general circulation of atmospheres and
oceans, was accompanied by the development
of corresponding models for simulating the fluid
flows in rotating laboratory experiments. Such
experiments are always simplified analogues of
the geophysical systems which they are intended
to mimic, so that the focus of the study can
be restricted to a small number of well-defined
phenomena in isolation. Because of their relative
simplicity, laboratory flows are generally easier
to reliably numerically model than geoflows. The
comparison between laboratory and model flows
therefore remains an important testbed for investi-
gating many fundamental dynamical phenomena.

In this manual, we describe the design and
construction of a new numerical model for simu-
lating fluid flows in discrete-layer rotating annulus
laboratory experiments. We review a variety of
candidate model types in the remainder of this
section, each with different dynamical assump-
tions, and choose to construct a quasi-geostrophic
model. A model with a full representation of
the annular geometry is preferable to a Cartesian
channel model, for a number of important reasons
which are discussed.

The two-layer quasi-geostrophic coupled
partial differential equations in cylindrical coordi-
nates are derived in Section 2, and the diagnostic

relations between streamfunction and poten-
tial vorticity are decomposed into vertical and
azimuthal normal mode form to simplify their
solution. Suitable sidewall boundary conditions
are derived by considering integral properties of
the governing equations. Then, the continuous
equations are carefully discretized in Section 3, in
such a way as to preserve discrete analogues of the
integral properties. Suitable initial conditions are
given. In Section 4, the calculations are partitioned
into model subroutines, and the technical details
of how to run the model are described. Suitable
numerical parameter values and initial conditions
are given, and the model code units are tested to
ensure that they are free from errors. Future plans
for the model are discussed in Section 5.

The model has become known as QUAG-
MIRE, the QUAsi-Geostrophic Model for Investi-

gating Rotating fluids Experiments.

1.2 Dynamical similarity and labo-
ratory experiments

It is well-known (Douglas & Gasiorek, 2000)
that, when written in non-dimensional form, the
equations which govern the evolution of seemingly
different fluid dynamical systems can be very
similar. The aim of laboratory experiments in
geophysical fluid dynamics is to exploit this
dynamical similarity, to make inferences about
atmospheric, oceanic and liquid core phenomena
from observations of the analogous laboratory
flows.

For example, the quasi-geostrophic equations
for an approximated two-layer atmosphere or
ocean, can very closely resemble those for a
rotating, two-layer laboratory experiment. This
statement holds despite the fact that typical length
and time scales for corresponding geophysical and
laboratory flows can differ by very many orders of
magnitude. All that matters for dynamical simi-
larity is equality of the relevant non-dimensional

dynamical and geometrical parameters, such as
the Rossby number and aspect ratio.

Dynamical similarity allows us to study geoflu-
ids in the laboratory, as suggested by Figure 1.
Once we have solved a particular fluid flow problem
by making observations in the laboratory, we have
actually solved an infinite number of other fluid
flow problems all of which are dynamically and geo-
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1 Introduction

Figure 1: Diagram showing the analogy

between (a) the fluid in a rotating annu-

lus experiment in the laboratory, and

(b) the fluid bounded by two latitude cir-

cles on a rotating planet. From Read et

al. (1998).

metrically similar, including on the planetary scale.

Laboratory investigations of non-rotating fluid
flows began in the nineteenth century, and include
the classic investigations of Reynolds (1883).
At around the same time, Vettin (1884) was
probably the first to exploit dynamical similarity
by carrying out rotating laboratory experiments
as analogues of geophysical systems. He studied
the surface flow in a rotating dishpan of fluid with
a lump of ice near the centre, representing a polar
ice cap, and (to the scorn of his contemporaries)
he drew meteorological conclusions from his results.

As suggested by Vettin’s experiment, for
the closest resemblance between the annulus and
planet in Figure 1, we should apply heating and
cooling at the outer and inner vertical sidewalls,
respectively, to mimic the differential solar thermal
forcing between equator and pole. The resulting
rotating thermal annulus system with continuous
fluid stratification has been extensively studied
since the early 1950s, including the classic experi-
ments of Hide et al. (1977).

It follows from the thermal (and gradient)
wind balance equations for a rapidly-rotating
annulus, that a radial temperature gradient will be
accompanied by a vertical shear in the zonal veloc-
ity (such as that associated with the tropospheric
jetstream in the atmosphere). Flows which are
mathematically similar to those obtained in the
thermal annulus, can therefore be obtained in an
isothermal annulus by imposing a velocity shear
directly. For studying geoflows, an alternative
to the thermal annulus is therefore the rotating

two-layer annulus, with a shear provided across
the fluid interface by differentially-rotating top
and bottom horizontal boundaries. The rotating,
two layer annulus has also been studied extensively
in the laboratory (e.g. Carrigan, 1978; King, 1979;
Appleby, 1982; Lovegrove, 1997; Williams, 2003),
and is the subject of the present numerical model.

1.3 Primitive versus filtered models

One possible numerical approach would be a direct
numerical simulation (DNS) of the Navier-Stokes
or shallow water equations, both of which are
referred to as primitive equation sets, because
only relatively minor approximations are made,
and so both vortical and divergent eigenmodes
are retained. DNS codes have been developed
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1 Introduction

for the continuously-stratified, rotating thermal
annulus (e.g. Hignett et al., 1985; White, 1986)
but these would require significant modification
in order to be applicable to a discrete-layer,
isothermal system. Furthermore, DNS codes are
very computationally expensive, and could be used
to examine not more than a few case studies at
reasonably high resolution.

As an alternative to a DNS for the present
numerical simulations, we choose to use a balanced
model, in which small-scale, divergent modes
are filtered out by construction. Because of the
filtering of unbalanced modes, balanced models
have fewer dynamical degrees of freedom than DNS
models, and therefore run much more quickly,
allowing larger numbers of simulations to be
performed. Such filtering is justified because the
interaction between vortical and divergent modes
is conventionally thought to be negligible.

1.4 Review of filtered models

The relative merits of three candidate filtered
model types and two candidate geometries are now
discussed.

1.4.1 Candidate filtered model types

Three commonly-used filtered models for simu-
lating rapidly-rotating, two-layer flows are those
based on the quasi-geostrophic equations, the
balance equations and the slow equations. These
three equation sets can each be derived from the
shallow water equations, which in turn are derived
from the Navier-Stokes equations under the
assumptions of hydrostatic balance and columnar
flow. Discussions of these and other filtered models
are given by McWilliams & Gent (1980) and by
McIntyre & Norton (2000).

The main assumptions made in the derivation
of the quasi-geostrophic equations, first used by
Charney et al. (1950), are that the potential
vorticity is advected only by the geostrophic
component of the flow, and that the amplitudes
of perturbations to the fluid surfaces are much
smaller than the mean fluid depths.

The balance equations (Charney, 1955) are
derived by performing a horizontal velocity decom-
position into vortical and divergent components,

and then truncating with respect to the divergent
component. The balance that they describe is
more complicated, but also more accurate, than
geostrophic balance, and efficient procedures have
been developed to integrate them (Daley, 1982).
However, it has been pointed out by Moura (1976)
that, in their most general form, the balance
equations have spurious non-physical wave solu-
tions with phase speeds much larger than those of
inertia-gravity waves.

The slow equations (Lynch, 1989) are derived
in a similar way to the balance equations, except
that the velocity truncation is performed in a
more systematic manner (based on normal mode
initialization) which results in the vanishing of
the spurious solutions. Numerical integrations of
the slow equations show excellent agreement with
initialized numerical integrations of the shallow
water equations.

Of these three candidate models, we choose
the quasi-geostrophic (Q-G) equations for the
present numerical model. This is because only one
scalar function of horizontal position is needed per
layer to uniquely define the state of the system
using a Q-G model (i.e. streamfunction), whereas
three are needed per layer using a balance or
slow equations model (i.e. streamfunction, velocity
potential and geopotential). With three times
fewer independent variables, the computational
advantages gained from using a Q-G model were
felt to outweigh the disadvantages of its slightly
lower formal accuracy.

1.4.2 Candidate geometries

A number of numerical Q-G models have been
developed for systems consisting of superposed
immiscible fluid layers in a rectangular channel
(e.g. Brugge et al., 1987). For the following
reasons, however, it was decided that none of
these Cartesian models could meet the present
requirements.

Firstly, the channel equations with periodic
azimuthal boundary conditions are a good approx-
imation to the annulus equations only if the ratio
of the width of the annular gap to its mean radius
is much smaller than unity (King, 1979). With
this geometry, the curvature becomes negligible,
and we would be justified in using a channel model
to simulate the flow in an annulus. For typical
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1 Introduction

laboratory annulus experiments, though, this ratio
is usually around 6 cm/9 cm, or 0.7, which is only
slightly smaller than 1.

Secondly, channel models have additional,
shift-reflect symmetries (Cattaneo & Hart, 1990)
not present in annulus models. This is the case
because, though the annulus and periodic channel
are topologically similar, the geometry of their
boundaries is fundamentally different. For exam-
ple, there is a reflect symmetry in the channel in
the plane which is equidistant from the sidewall
boundaries, but there is no analogous symmetry
in the annulus. Kwon & Mak (1988) show that
the existence of such additional symmetries in
the periodic channel leads to certain vortical
wave-wave interaction coefficients being identically
zero. Importantly, an annular model would allow
the complete set of wave-wave interactions that
take place in the laboratory experiments, to be
included in the model, which is important for
quantitative agreement.

Furthermore, a model in cylindrical coor-
dinates would be more general, and potentially
applicable to laboratory experiments other than
annuli. For example, it would keep open the
possibility of running simulations in an open
cylinder with no inner sidewall, as well as in an
annulus, though it would then be necessary to
include an inner sidewall of small nominal radius
in the model, to avoid the singularity at r = 0. We
would need to assume that the flow is insensitive
to the inclusion of this additional boundary.

There are background potential vorticity
gradients present in both the channel and the
annulus, due to the sloping of equilibrium geopo-
tential height surfaces in the presence of a vertical
shear in horizontal velocity. In the channel,
these geopotential height and potential vorticity
variations are linear in the across-channel direction
(equivalent to a β-effect), whereas in the annu-
lus they are quadratic because of the parabolic
equilibrium interface height shape produced by
centripetal effects. This gives an effective quadratic

β-effect, with the possibility of qualitatively dif-
ferent dynamics than in the presence of the usual
linear β-effect.

As a final point, not connected with geometry,
few of the existing Q-G layer channel models
include the effects of interfacial tension, which can
be significant in the laboratory.

Since we desire quantitative agreement with
laboratory experiments, we conclude that we
need to construct a new multi-layer Q-G model
which takes into account the cylindrical geometry,
centripetal effects and interfacial tension. Such a
model is described in the remainder of this manual.
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Figure 2: Schematic diagram showing

a vertical cross-section through the two-

layer annulus system being modelled.

The dashed line shows the resting inter-

face height. See text for definitions.

2 Continuous model equa-

tions

2.1 Derivation of the model equa-
tions

The system to be modelled is shown schematically
in Figure 2. Such a model is often informally
referred to as two-and-a-half dimensional, as the
representation of the vertical dimension is achieved
through only two discrete layers. Cylindrical
polar coordinates r = (r, θ, z) are used, the z-axis
being coincident with the vertical rotation axis.
The fluid is bounded by a base of mean vertical
position z = 0, a lid of mean vertical position
z = 2H > 0 and cylindrical walls at r = a and
r = b > a. The base and lid linearly deviate
from their mean vertical positions by dbot(r) and
dtop(r), respectively, and we define the constants
sbot = ddbot/dr and stop = ddtop/dr. The two
homogeneous, immiscible layers have constant
densities ρi, kinematic viscosities νi and mutual
interfacial tension S, where we use the oceanogra-
phy convention that i = 1 refers to the upper layer,
and i = 2 to the lower layer. The undisturbed
fluid interface has vertical position z = H, and
the disturbed fluid interface has vertical position

z = H + η(r, t). The acceleration due to gravity
is g. The annulus base and walls rotate about the
axis of symmetry with angular velocity Ω, and the
lid with angular velocity Ω + ∆Ω.

Working in a frame which rotates with the
base, the four fundamental equations for the pres-
sure pi(r, t) and the velocity ui(r, t) in layer i are
the Navier-Stokes equations:

∂ui

∂t
+ (ui · ∇)ui + 2Ω × ui + Ω × (Ω × r)

= − 1

ρi
∇pi + νi∇2ui + g (1)

and the equation of volume conservation for the
incompressible liquid:

∇ · ui = 0 . (2)

We take the curl of equation (1) and use vector
identities to obtain an equation for the layer vor-
ticities ωi = ∇ × ui :

∂ωi

∂t
+(ui ·∇)ωi = [(2Ω+ωi)·∇]ui+νi∇2ωi , (3)

the z-component of which, in the layer interiors
where the flow is assumed to be vertically-columnar
and inviscid, is

∂ξi

∂t
+ (ui · ∇)ξi = (f + ξi)

∂ui, z

∂z
, (4)

where ξi is the z-component of ωi, f = 2Ω is the
Coriolis parameter and ui, z is the vertical velocity.

We next vertically integrate equation (4) over
the fluid interiors, parameterizing vertical Ekman
pumping/suction velocities (Gill, 1982) at the lid,
base and interface, which are all assumed to have
small slopes. Assuming that the Ekman layer
depths are much smaller than the total layer
depths, and making the quasi-geostrophic assump-
tions η, dbot, dtop ¿ H and ξi ¿ f , we obtain, after
rearrangement:
(

∂

∂t
+ u1 · ∇

)

q1 = −
√

Ων1

H
[ξ1 + χ2(ξ1 − ξ2)]

+2∆Ω

√
Ων1

H
, (5)

(

∂

∂t
+ u2 · ∇

)

q2 = −
√

Ων2

H
[ξ2 + χ1(ξ2 − ξ1)] ,

(6)
where χi =

√
νi/(

√
ν1 +

√
ν2), and qi(r, θ, t)/H are

the perturbation potential vorticities (PPVs), given
by

q1(r, θ, t) = ξ1 +
f(η − dtop)

H
(7)
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2 Continuous model equations

and

q2(r, θ, t) = ξ2 −
f(η − dbot)

H
. (8)

To complete the derivation, we write all of
the independent variables (ui, ξi and η) in equa-
tions (5)–(8) in terms of the layer streamfunctions
ψi(r, θ, t) defined by

ui, θ =
∂ψi

∂r
(9)

and

ui, r = −1

r

∂ψi

∂θ
. (10)

The streamfunctions ψ1 and ψ2 are defined only to
within arbitrary additive constants, which will be
discussed in Section 2.3.2. The vorticities are given
by

ξi = ∇2ψi . (11)

Assuming hydrostatic balance and nearly equal
layer densities, the interface height perturbation is
given in terms of the streamfunctions (to within an
additive constant) by

η − δ2
m∇2η =

f

g′
(ψ2 − ψ1) +

r2Ω2

2g
, (12)

where g′ = 2g(ρ2 − ρ1)/(ρ2 + ρ1) is the reduced
gravity. The term in δm =

√

S/[g(ρ2 − ρ1)] repre-
sents the effects of interfacial tension for an inter-
face of small curvature. δm is the characteristic
static meniscus width, as can be seen by consid-
ering solutions to equation (12) when the tank
is at rest (Ω = 0) and the fluid velocities are
zero (ψi = constant). The full equation (12) is
a forced Helmholtz equation for η given ψi, where
the boundary conditions are the slopes ∂η/∂r at
the annulus walls, which are related to the inter-
face contact angle. We require an explicit formula
for η, and so we seek a first order solution to the
Helmholtz equation for weak interfacial tension, by
estimating the ∇2η term in equation (12) using the
solution for η when δm = 0. This gives

η =
f

g′
(1 + δ2

m∇2)(ψ2 − ψ1) +
r2Ω2

2g
, (13)

where 1 and δ2
m∇2 are the first two terms in a

power series solution. On simple grounds, the
series would be expected to converge rapidly
if δ2

m∇2η ¿ η, which is the case if δ2
m ¿ λ2

for waves of wavelength λ. We expect waves
to form on the scale of the internal Rossby
radius

√
g′H/|f |, and so the convergence criterion

becomes δ2
mf2/g′H ¿ 1. This is equivalent to

FI ¿ 1 where F = f2(b − a)2/g′H is the Froude
number and the non-dimensional parameter
I = δ2

m/(b − a)2 is the interfacial tension number
(Appleby, 1982).

We finally substitute equations (9), (10), (11)
and (13) into (5) and (6) to obtain the two coupled
partial differential equations governing the evolu-
tion of quasi-geostrophic motions in the two-layer
annulus:
(

D

Dt

)

1

q1 = −
√

Ων1

H

[

∇2ψ1 + χ2∇2(ψ1 − ψ2)
]

+
2∆Ω

√
Ων1

H
(14)

and
(

D

Dt

)

2

q2 = −
√

Ων2

H

[

∇2ψ2 + χ1∇2(ψ2 − ψ1)
]

.

(15)
The total derivative operators are given by

(

D

Dt

)

i

=
∂

∂t
− 1

r

∂ψi

∂θ

∂

∂r
+

1

r

∂ψi

∂r

∂

∂θ
(16)

and the horizontal Laplacian operator is given by

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (17)

By substituting equations (11) and (13) into equa-
tions (7) and (8), we find that the quantities q1 and
q2 are given in terms of ψ1 and ψ2 by

q1 = ∇2ψ1 +
f2

g′H
(1 + δ2

m∇2)(ψ2 − ψ1)

+
f

H

r2Ω2

2g
− fdtop

H
(18)

and

q2 = ∇2ψ2 −
f2

g′H
(1 + δ2

m∇2)(ψ2 − ψ1)

− f

H

r2Ω2

2g
+

fdbot

H
. (19)

On the right side of equation (14), the first
term represents spin-up/down by the frictional
Ekman layers at the lid (∇2ψ1) and interface
(∇2(ψ1 − ψ2)). The second term is the (constant)
forcing term, and represents generation of potential
vorticity by the rotating lid, communicated to the
fluid interior by an Ekman layer. The terms on

7



2 Continuous model equations

the right side of (15) have a similar interpretation,
except that there is no explicit forcing term in this
case.

Equations (18) and (19) are similar to the
potential vorticity/streamfunction relationships in
the channel model of Brugge et al. (1987), except
that the present equations include an interfacial
tension modification, and Brugge’s βy term has
been replaced with our β∗r2 term. This is the
quadratic β-effect. It is equal and opposite in the
upper and lower layers, corresponding to the fact
that depth increases in one layer are accompanied
by equal decreases in the other layer.

Upon non-dimensionalization of equa-
tions (14), (15), (18) and (19), using a time scale
(∆Ω)−1 and horizontal length scale (b − a), def-
initions of Froude number, dissipation parameter,
Rossby number, Reynolds number, Ekman number
and interfacial tension number appear naturally.
We choose to code the model using dimensional
units, however, and therefore do not carry out the
non-dimensionalization here.

We now summarize the assumptions which
were required to derive equations (14)–(19). It is
important to bear these approximations in mind,
since they limit the applicability of the model:

• incompressible fluids

• vertically-columnar fluid interiors

• inviscid fluid interiors (i.e. Reynolds number
Re À 1)

• linear Ekman pumping/suction

• η ¿ H, dbot ¿ H, dtop ¿ H

• |∇η ¿ 1|, |sbot| ¿ 1, |stop| ¿ 1

• Ekman layer depths ¿ H

• ξi ¿ f (i.e. Rossby number ¿ 1)

• hydrostatic balance (i.e. Duz/Dt ¿ g)

• g′ ¿ g

• FI ¿ 1

• passive Stewartson layers which do not
exchange fluid with the interiors

• Stewartson layer widths ¿ b − a

The final two assumptions are discussed in Sec-
tion 2.3, but are included here for completeness.

2.1.1 Perturbation equations

There is an equilibrium solution to equations (14)–
(19) of the form ui, r = 0, ui, θ = r∆Ωi. Substitut-
ing allows us to determine the interior solid-body
rotation rates:

∆Ω1

∆Ω
=

2 + χ

2(1 + χ)
(20)

and
∆Ω2

∆Ω
=

1

2(1 + χ)
, (21)

where χ =
√

ν2/ν1. The corresponding interface
height (to within an additive constant) is given by
equation (13) to be

η =
Ω2r2

2g

(

1 − ∆Ω/Ω

g′/g

)

. (22)

Equations (20)–(22) describe the basic, equi-
librium state upon which baroclinically-unstable
perturbations may grow. We refer to this as the
mean flow and label the corresponding stream-
functions and PPVs as ψi(r) and qi(r), respectively.

Governing equations for perturbations
ψ′

i(r, θ, t) and q′i(r, θ, t) to the streamfunctions and
PPVs, respectively, are obtained by substituting
ψi = ψi(r) + ψ′

i(r, θ, t) and qi = qi(r) + q′i(r, θ, t)
into equations (14)–(19) to obtain

(

D

Dt

)

1′

q′1 = −
√

Ων1

H

[

∇2ψ′
1 + χ2∇2(ψ′

1 − ψ′
2)

]

−∆Ω1
∂q′1
∂θ

+
f2

2H

(

Ω

g
− ∆Ω

g′

)

∂ψ′
1

∂θ

−fstop

rH

∂ψ′
1

∂θ
(23)

and
(

D

Dt

)

2′

q′2 = −
√

Ων2

H

[

∇2ψ′
2 + χ1∇2(ψ′

2 − ψ′
1)

]

−∆Ω2
∂q′2
∂θ

− f2

2H

(

Ω

g
− ∆Ω

g′

)

∂ψ′
2

∂θ

+
fsbot

rH

∂ψ′
2

∂θ
, (24)

where

q′1 = ∇2ψ′
1 +

f2

g′H
(1 + δ2

m∇2)(ψ′
2 − ψ′

1) (25)

8



2 Continuous model equations

and

q′2 = ∇2ψ′
2 −

f2

g′H
(1 + δ2

m∇2)(ψ′
2 − ψ′

1) . (26)

The total derivatives in equations (23)
and (24) now advect according to the perturbation
streamfunctions, i.e.

(

D

Dt

)

i′
=

∂

∂t
− 1

r

∂ψ′
i

∂θ

∂

∂r
+

1

r

∂ψ′
i

∂r

∂

∂θ
(27)

≡ ∂

∂t
+ J(ψ′

i, ∗) .

Equations (23)–(26) are the nonlinear model
equations which we solve. The constant forcing
term in equation (14), which represents forcing of
the full flow by the lid rotation, has been replaced
in equations (23) and (24) with more complicated
non-constant forcing terms which represent forcing
of the perturbation flow by the equilibrium state
and the bottom and top topography. An analytical
assessment of the stability of small perturbations
could begin by linearizing equations (23) and (24),
i.e. discarding the advection terms, but for the
model we retain all of the nonlinear terms.

The perturbation velocity fields are given in
terms of the perturbation streamfunctions by

u′
i, θ =

∂ψ′
i

∂r
(28)

and

u′
i, r = −1

r

∂ψ′
i

∂θ
, (29)

which are the perturbation forms of equations (9)
and (10). The perturbation interface height field is
given (to within an additive constant) by

η′ =
f

g′
(1 + δ2

m∇2)(ψ′
2 − ψ′

1) , (30)

which is the perturbation form of equation (13).

2.2 Normal mode decomposition of
diagnostic equations

Given the fields ψ′
i and q′i at any time, we can

evaluate ∂q′i/∂t at that time using the prognostic
equations (23) and (24). There are contributions to
the PPV tendency from the advection (J(ψ′

i, q
′
i)),

forcing (∂/∂θ) and dissipation (∇2) terms. We can
thereby determine q′i at a short time in the future.
We may then use this to invert the diagnostic

Helmholtz equations (25) and (26) to obtain ψ′
i

at that time, and then begin the loop again using
the updated fields. This is how QUAGMIRE
integrates the model equations.

The Helmholtz equations (25) and (26) are
coupled, and the inversion is made easier by first
writing them in vertical normal mode form to
remove the coupling. We take the sum and dif-
ference of the equations to obtain, respectively,

∇2(ψ′
1 + ψ′

2) = q′1 + q′2 (31)

and

∇2(ψ′
2 −ψ′

1)−Citcc
2f2

g′H
(ψ′

2 −ψ′
1) = Citcc(q

′
2 − q′1) ,

(32)
where Citcc is an interfacial tension correction coef-
ficient given by

Citcc =
1

1 − (2f2δ2
m)/(g′H)

. (33)

We know that f2δ2
m/g′H ¿ 1 (Section 2.1), and

so Citcc is slightly larger than unity, and is exactly
equal to unity if the interfacial tension is zero.

Defining the barotropic (bt) and baroclinic
(bc) vertical normal mode variables to be

Ψ′
bt = ψ′

1 + ψ′
2 , (34)

Ψ′
bc = ψ′

2 − ψ′
1 , (35)

Q′
bt = q′1 + q′2 , (36)

Q′
bc = Citcc(q

′
2 − q′1) , (37)

equations (31) and (32) both become uncoupled
Helmholtz equations of the form

∇2Ψ′
m − λmΨ′

m = Q′
m (38)

for m = bt,bc. The eigenvalues are λbt = 0 and
λbc = 2Citccf

2/g′H.

We now perform a second normal mode decom-
position, this time into azimuthal modes, to further
simplify the solution of the Helmholtz equations.
At each timestep, we expand

Ψ′
m(r, θ) =

∞
∑

n=−∞
Ψ̂′n

m(r)e
√
−1nθ , (39)

Q′
m(r, θ) =

∞
∑

n=−∞
Q̂′n

m(r)e
√
−1nθ . (40)

The complex functions Ψ̂′n
m and Q̂′n

m satisfy Ψ̂′n
m =

Ψ̂′−n
m

∗

and Q̂′n
m = Q̂′−n

m

∗

, where the asterisk rep-
resents complex conjugation, because Ψ′

m(r, θ) and

9



2 Continuous model equations

Q′
m(r, θ) are real. The n = 0 term is called the

mean flow correction (a correction to the zonal flow
that is generated by nonlinear self interactions of
the waves), and is equal to the zonal average of
the perturbation quantities as can be seen from the
zonal integration of equations (39) and (40). The
n 6= 0 terms represent eddy (wave) components.
Substituting equations (39) and (40) into (38) gives
the radial structure equation:

d2Ψ̂′n
m

dr2
+

1

r

dΨ̂′n
m

dr
−

(

λm +
n2

r2

)

Ψ̂′n
m = Q̂′n

m(r) .

(41)
This complex ordinary differential equation must
be solved for each combination of vertical modes
m ∈ {bt,bc} and azimuthal modes n ∈
{0,±1,±2, . . .} to determine Ψ̂′n

m(r) given Q̂′n
m(r).

The inversion process required to obtain ψ′
i(r, θ)

from q′i(r, θ), which are linked by equations (25)
and (26), is therefore summarized as:

q′i
(36) & (37)−→ Q′

m

(40)−→ Q̂′n
m

↓ (41)

ψ′
i

(34) & (35)←− Ψ′
m

(39)←− Ψ̂′n
m

We could now perform a third normal mode
decomposition, this time in the radial coordinate,
by projecting Ψ̂′n

m(r) and Q̂′n
m(r) onto the eigen-

functions of the linear operator on the left side
of equation (41). The baroclinic eigenfunctions
are modified Bessel functions of order n in the
scaled radial coordinate r̃ =

√
λbc r (Boas, 1983),

and the barotropic eigenfunctions are of the form
r±n. However, this approach would force the
streamfunction and PPV to satisfy the same
boundary conditions, for which there is no justi-
fication. In the present model, we therefore solve
the discretized radial structure equation directly
rather than projecting onto radial modes.

2.3 Perturbation streamfunction
boundary conditions for the
continuous equations

We must now choose boundary conditions to
apply to the perturbation streamfunction when
integrating equation (41). The equation was
derived under the assumption of inviscid flow.
It therefore cannot describe the thin, viscous

Stewartson layers of width δS which exist at the
lateral boundaries, and so applies only to the fluid
interior a + δS < r < b − δS . We assume that
δS ¿ a, b so that we may still write the integration
range as a < r < b, but from now on when we refer
to r = a or r = b we mean the boundary between
the fluid interior and Stewartson layer, rather than
the physical lateral boundary itself.1

There are a number of candidate boundary
conditions. To impose passive Stewartson lay-
ers which do not anywhere exchange fluid with
the interior, we would apply the impermeabil-
ity condition to the radial perturbation velocity
u′

i, r|r=a, b = 0, ∀ θ, i, which in the normal mode
variables corresponds to Dirichlet boundary condi-
tions

Ψ̂′n
m|r=a, b = 0 ∀ n 6= 0,m . (42)

The mean flow correction velocity (n = 0) is purely
zonal, and so this component automatically satis-
fies impermeability. Impermeability alone is there-
fore not a sufficient condition to uniquely specify a
solution. No-slip boundary conditions for the zonal
perturbation velocity u′

i, θ|r=a, b = 0, ∀ θ, i, cor-
respond in the normal mode variables to the Neu-
mann conditions

dΨ̂′n
m

dr

∣

∣

∣

∣

r=a, b

= 0 ∀ n,m . (43)

The equilibrium solid-body rotation flow about
which we perturb satisfies impermeability, but is
not no-slip.

Since we are solving a second order differ-
ential equation, only two independent boundary
conditions are required. We cannot therefore
impose both impermeable and no-slip flow at both
boundaries, as that would require four independent
conditions. This over-constrained nature of the
PPV inversion in Q-G models has been discussed
by Williams (1979). A comprehensive study of
the comparative effects of using no-slip boundary
conditions, rather than the more traditional free-
slip conditions, is described by Mundt et al. (1995).

We are therefore forced to use a reduced set of
boundary conditions, but we must choose carefully
and consistently which conditions to retain and

1An alternative method for keeping the Stewartson layers

out of the analysis would be to imagine that our laboratory

apparatus is equivalent to a gedanken experiment in which,

at all times in each layer, the lateral boundaries rotate at

the same rate as the fluid interiors, so that the Stewartson

layers vanish.

10



2 Continuous model equations

which to abandon, to avoid any possibility of
non-physical behaviour. We are, of course, free to
employ different boundary conditions for the differ-
ent normal mode components specified by m and n.

The debate over suitable lateral Q-G bound-
ary conditions has had a long and contentious
history in the literature. In the classic periodic
channel models of Phillips (1954) and Phillips
(1956), boundary conditions corresponding to
equation (42) are used for the wave (n 6= 0) terms,
and equation (43) is used for the mean flow correc-
tion (n = 0) component only. The latter condition
was not imposed (but the former was retained) in
the studies of Phillips (1963) and Pedlosky (1964),
but McIntyre (1967) showed that relaxing this
mean flow correction boundary condition leads to
a spurious, unspecified energy flux through the
sidewalls. The condition was included again in
Pedlosky (1970), but replaced in Pedlosky (1971)
and Pedlosky (1972) with an ad-hoc condition
chosen for mathematical convenience. Smith
(1974) points out that the resulting non-physical
energy source might well invalidate Pedlosky’s
results, and repeats Pedlosky’s calculations with
the proper boundary condition retained (Smith &
Pedlosky, 1975; Smith, 1977). More recent studies
(Appleby, 1982; Yoshida & Hart, 1986; Lewis,
1992; Stephen, 1998) have avoided the spurious
energy and associated unreliable conclusions by
applying both conditions in full, as in Phillips’
original paper.

An informative interpretation of Phillips’
mean flow correction boundary condition has been
given by Davey (1978). For non-zero zonal per-
turbation velocities u′

i, θ|r=a, b at the boundary
between the interior and a Stewartson layer, there
will be a corresponding return volume flux between
the Ekman layers and the Stewartson layer due
to the asymmetry of the Ekman spiral (Pedlosky,
1987), which will have a non-zero radial compo-
nent proportional to u′

i, θ|r=a, b. We can therefore
ensure that there is no net build-up of mass in the
Stewartson layers by setting

∫ 2π

0

u′
i, θ|r=a, b dθ = 0 ∀ i . (44)

This condition is automatically satisfied for the
wave n 6= 0 components, and is equivalent to
equation (43) with n = 0, which is the condition
used by Phillips. With this condition, there is no
net exchange of fluid due to the perturbation flow
between each Ekman layer and the Stewartson

layers, though local exchange is allowed.

Next, we derive a consistent and plausible set
of boundary conditions for the annulus, which do
not lead to non-physical behaviour, by considering
integral properties of both the prognostic and
diagnostic model equations.

2.3.1 Integral properties of the prognostic

equations

Consider the area-integral of the perturbation PPV
tendencies over the annular domain:

∫ 2π

θ=0

∫ b

r=a

∂q′i
∂t

r dr dθ , (45)

as given by the prognostic equations (23) and (24).
The linear ∂/∂θ forcing terms integrate to give zero
unconditionally. The advection terms in the total
derivatives integrate to give zero (Salmon & Talley,
1989) if

∂ψ′
i

∂θ

∣

∣

∣

∣

r=a, b

= 0 , (46)

and the dissipation (∇2) terms integrate to give
zero if

∫ 2π

0

∂ψ′
i

∂r

∣

∣

∣

∣

r=a, b

dθ = 0 . (47)

The two conditions (46) and (47) are equivalent
to impermeability for the waves and no-slip for
the mean flow correction, as originally used by
Phillips. With these conditions, the mean layer
PPVs are conserved by the continuous equations
and there is no spurious energy flux. We choose to
apply these conditions to the present model, except
that the latter condition leads to an ill-posed PPV
inversion for the special case n = 0, m = bt, as we
will now see.

2.3.2 Integral properties of the diagnostic

equations

Equation (41) for the barotropic mean flow correc-
tion is

d2Ψ̂′0
bt

dr2
+

1

r

dΨ̂′0
bt

dr
= Q̂′0

bt . (48)

Since λbt = 0 and n = 0 for this case, one of the
terms in the radial structure equation has vanished,
making the left side an exact differential. Equa-
tion (48) can therefore be integrated analytically
between r = a and r = b to give

b
dΨ̂′0

bt

dr

∣

∣

∣

∣

r=b

− a
dΨ̂′0

bt

dr

∣

∣

∣

∣

r=a

=

∫ b

a

Q̂′0
bt r dr . (49)
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2 Continuous model equations

We choose initial conditions for which the right side
of this equation is zero, i.e. the barotropic PPV
averaged over the 2-D annular domain is zero, and
it is then guaranteed to remain so for all time, as
shown in Section 2.3.1. This means that we need
only explicitly set

dΨ̂′0
bt

dr

∣

∣

∣

∣

r=a

= 0 (50)

and we will automatically have

dΨ̂′0
bt

dr

∣

∣

∣

∣

r=b

= 0 (51)

from equation (49). If we explicitly set both (50)
and (51) when solving (48) in this case, we there-
fore have an underconstrained problem. We need
an additional constraint to close the solution.

We have defined two streamfunctions in the
model — one per layer or, equivalently, one per ver-
tical normal mode — and each of these has an inte-
gration constant associated with it (Section 2.1).
Just because these two arbitrary constants have no
physical meaning does not mean that they do not
need to be defined in the numerical model. Now
that we know that equations (50) and (51) are
not independent boundary conditions, and there-
fore that to explicitly impose both would lead to
an underconstrained PPV inversion, we choose to
explicitly impose only equation (50). We then take
the opportunity to use the remaining degree of free-
dom associated with the solution of equation (48)
to define one of the streamfunction integration con-
stants, by arbitrarily setting

Ψ̂′0
bt|r=b = 0 , (52)

which completes the set of two boundary condi-
tions for the m = bt, n = 0 case, and gives a
well-posed problem.

Incidentally, the second streamfunction inte-
gration constant is defined by requiring the mean
interface perturbation to be zero using equa-
tion (13), which follows from volume conservation
for either layer. This requirement is imposed
“off-line” by adding a suitably-chosen constant
to one of the streamfunction fields when model
diagnostics are plotted, and not as a boundary
condition during the inversion.

A summary of the boundary conditions
which we must explicitly set when integrating

n = 0 n 6= 0

dΨ̂′n
m

dr

∣

∣

∣

∣

r=a

= 0 Ψ̂′n
m|r=a = 0

m = bt

Ψ̂′n
m|r=b = 0 Ψ̂′n

m|r=b = 0

dΨ̂′n
m

dr

∣

∣

∣

∣

r=a

= 0 Ψ̂′n
m|r=a = 0

m = bc

dΨ̂′n
m

dr

∣

∣

∣

∣

r=b

= 0 Ψ̂′n
m|r=b = 0

Table 1: Summary of boundary con-

ditions applied to the streamfunction

when integrating the continuous equa-

tions. Because the diagnostic Helmholtz

equation relating ψ and q is second

order, two conditions (one at each bound-

ary) are required for each combination

of vertical and azimuthal normal modes,

denoted by m and n respectively.
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2 Continuous model equations

equation (41) is given in Table 1. With these
conditions, the sidewall boundaries are imperme-
able to each component of the full flow — the
solid-body rotation equilibrium flow, the mean
flow correction and the eddy components. The
boundaries are slippery to the solid-body rotation
flow and the eddies, but no-slip to the mean flow
correction.

In Section 3, we discretize the model equations
so that they are in a form suitable for numerical
integration.
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3 Discretization of the equations

∆ r / 2

r(i)∆θ

∆ r

i = N rad

j = Nazim

∆ r / 2

i = 1

i = 3

j = 1

j = 2

i = 2

Figure 3: Definition of the model grid.

Grid-points are marked with a “×” sign,

grid-boxes with dashed lines, and the two

cylindrical boundaries r = a and r = b

with solid lines. The dimensions of typ-

ical grid-boxes, both in the interior and

at the boundaries, are shown.

3 Discretization of the equa-

tions

3.1 The model grid

We have derived a set of model partial differential
equations and boundary conditions which are both
sensible and well-posed. We now discretize the
equations so that they are suitable for numerical
solution on a computer. We must take great
care to ensure that the discretized equations
and boundary conditions retain the important
properties possessed by the continuous equations.
In particular, it is important that they satisfy
discretized analogues of the integral properties
discussed in Section 2.3.

The regular grid on which we discretize the
equations is shown in Figure 3. The grid consists
of Nrad points in the radial dimension (including
one point on each boundary r = a and r = b),
and Nazim points in the azimuthal dimension. We
define

∆r =
b − a

Nrad − 1
(53)

and

∆θ =
2π

Nazim
, (54)

and then we have

r(i) = a + (i − 1)∆r , i = 1, 2, . . . , Nrad (55)

and

θ(j) = j∆θ , j = 1, 2, . . . , Nazim . (56)

The point (i,Nazim + 1) is the same as the point
(i, 1). We define the perturbation streamfunction
ψ′(i, j, k) and PPV q′(i, j, k) at each of these
points in each layer (k = 1, 2), so that ψ′ and
q′ are co-located on the grid. The area of the
gridbox with coordinates (i, j) is approximately
[1 − 1

2δi, 1 − 1
2δi, Nrad

]r(i)∆r∆θ, where δ∗,∗ is the
Kronecker delta function.

3.2 Prognostic equations

In the continuous case, we chose perturbation
streamfunction boundary conditions such that each
of the three contributions (advection, forcing, dis-
sipation) to the area-integrated perturbation PPV
tendency was zero. We would now like to choose
discretizations of these contributions, together with
discretizations of the boundary conditions, for
which this statement still holds exactly. If our
discretization only conserves mean PPV approx-
imately, then there is the possibility of a non-
physical and explosive increase in the PPV, even
if the error is small, due to the compound effects
of very many timesteps. Following Section 2.3.1,
we therefore next examine the discretizations and
boundary conditions necessary to ensure that

Nrad
∑

i=1

Nazim
∑

j=1

[1− 1

2
δi,1−

1

2
δi,Nrad

] f(i, j, k)r(i)∆r∆θ = 0

(57)
for k = 1, 2, where f(i, j, k) is, in turn, the
discretized azimuthal derivative, Jacobian and
Laplacian.

3.2.1 Azimuthal derivative

The centred, second order discretization of the
azimuthal derivative:

f(i, j, k) =
ψ′(i, j + 1, k) − ψ′(i, j − 1, k)

2∆θ
(58)

satisfies equation (57) unconditionally, as in the
continuous case.
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3 Discretization of the equations

3.2.2 Jacobian

The second order Arakawa (1966) discretization of
the Jacobian satisfies equation (57) if

ψ′(i, j + 1, k) − ψ′(i, j, k)

∆θ
= 0 ∀ j, k, i = 1, Nrad ,

(59)
which is a discretized version of the condition (46)
for the continuous case.

3.2.3 Laplacian

It is tedious but straightforward to show that the
five-point discretization of the Laplacian (whose
continuous definition is given in equation (17) for
reference):

f (i, j, k)

=
ψ′(i + 1, j, k) − 2ψ′(i, j, k) + ψ′(i − 1, j, k)

(∆r)2

+
ψ′(i + 1, j, k) − ψ′(i − 1, j, k)

2r(i)∆r

+
ψ′(i, j + 1, k) − 2ψ′(i, j, k) + ψ′(i, j − 1, k)

[r(i)∆θ]2
(60)

with ghost point values ψ′(0, j, k) and ψ′(Nrad +
1, j, k) given by linear extrapolation:

ψ′(2, j, k) − ψ′(1, j, k) =

ψ′(1, j, k) − ψ′(0, j, k) (61)

and

ψ′(Nrad + 1, j, k) − ψ′(Nrad, j, k) =

ψ′(Nrad, j, k) − ψ′(Nrad − 1, j, k) , (62)

satisfies equation (57) if

Nazim
∑

j=1

ψ′(2, j, k) − ψ′(1, j, k)

∆r
= 0 ∀ k (63)

and

Nazim
∑

j=1

ψ′(Nrad, j, k) − ψ′(Nrad − 1, j, k)

∆r
= 0 ∀ k ,

(64)
which are discretized versions of the condition (47)
for the continuous case. There will be a small
error in the value of the calculated discretized
Laplacian at the boundaries due to the assumption
of linearly-extrapolated ghost points, but there is
no other simple way to discretize the Laplacian in
such a way that analogues of its integral properties
are fully preserved.

3.3 Diagnostic equations

The discretized versions of equations (39) and (40)
are

Ψ′
m(i, j) =

Nazim−1
∑

n=0

Ψ̂′n
m(i)e2π

√
−1nj/Nazim (65)

and

Q′
m(i, j) =

Nazim−1
∑

n=0

Q̂′n
m(i)e2π

√
−1nj/Nazim . (66)

The summations have been truncated, compared
to equations (39) and (40), because there are only
Nazim independent Fourier components associated
with the discrete Fourier transform of a series of
Nazim numbers.

Because Ψ′
m(i, j) is real, we have

Ψ̂′Nazim−n
m (i) = [Ψ̂′n

m(i)]
∗

(67)

for n = 1, 2, . . . , Nazim − 1. We choose Nazim to
be even, and then we need only explicitly solve
equation (41) for n = 0, 1, 2, . . . , Nazim/2. Solu-
tions for n = Nazim/2 + 1, . . . , Nazim − 1 are given
in terms of solutions for n = Nazim/2 − 1, . . . , 1 by
equation (67), halving the processing time required
for the PPV inversions. The maximum resolvable
wavenumber is the Nyquist wavenumber, Nazim/2.

In terms of the normal mode variables, the dis-
cretized boundary conditions (59), (63) and (64)
reduce, on substitution into equations (65) and
(66), to

Ψ̂′n
m(1) = 0

Ψ̂′n
m(Nrad) = 0

}

∀ m,n 6= 0 (68)

and

Ψ̂′0
m(1) = Ψ̂′0

m(2)

Ψ̂′0
m(Nrad) = Ψ̂′0

m(Nrad − 1)

}

∀ m .

(69)
We now consider the discretization of the

radial structure equation (41). Using centred three-
point finite differences at the interior points i =
2, 3, . . . , Nrad − 1, we obtain

Ψ̂′n
m(i − 1) − 2Ψ̂′n

m(i) + Ψ̂′n
m(i + 1)

(∆r)2

+
Ψ̂′n

m(i + 1) − Ψ̂′n
m(i − 1)

2r(i)∆r

−
[

λm +
n2

[r(i)]2

]

Ψ̂′n
m(i) = Q̂′n

m(i) .(70)
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Re-grouping terms according to grid-points gives

α−(i)Ψ̂′n
m(i − 1) + γ(i)Ψ̂′n

m(i) + α+(i)Ψ̂′n
m(i + 1)

= Q̂′n
m(i)(∆r)2 , (71)

where the dimensionless quantities α± and γ are
given by

α±(i) = 1 ± ∆r

2r(i)
(72)

and

γ(i) = −2 −
[

λm +
n2

[r(i)]2

]

(∆r)2 . (73)

In Cartesian geometry we would have α±(i) = 1.

The Nrad − 2 equations (71), together with
2 boundary conditions, complete the set of Nrad

equations in the Nrad unknowns Ψ̂′n
m(i), i =

1, 2, . . . , Nrad. These linear equations can be writ-
ten in matrix form:


















bdy bdy . . .
α−(2) γ(2) α+(2) . . .

α−(3) γ(3) α+(3) . . .
α−(4) γ(4) α+(4) . . .

α−(5) γ(5) . . .
...

...
...

...
...

. . .



















×





















Ψ̂′n
m(1)

Ψ̂′n
m(2)

Ψ̂′n
m(3)

Ψ̂′n
m(4)

Ψ̂′n
m(5)
...





















=



















0

Q̂′n
m(2)(∆r)2

Q̂′n
m(3)(∆r)2

Q̂′n
m(4)(∆r)2

Q̂′n
m(5)(∆r)2

...



















(74)

where the zero elements in the tridiagonal Nrad

by Nrad matrix have been left blank. The two
elements labelled “bdy” are boundary condition
elements, dependent upon m and n, and there are
two more such elements in the final two columns
of the bottom row.

3.4 Perturbation streamfunction
boundary conditions for the
discretized equations

In the continuous case, we found that the boundary
conditions for the barotropic mean flow correc-
tion component (m = bt, n = 0) were ill-posed
as originally stated, and remained so until we
replaced a redundant boundary condition with
an equation to define an integration constant.

This happens in the discretized case, too: the
square matrix in equation (74) is singular for
the barotropic mean flow correction, when the
boundary condition elements “bdy” are (−1, 1) in
the top row and (1,−1) in the bottom row. The
analytical proof of this, which involves showing
that a certain linear combination of rows is zero,
is tedious but straightforward. By analogy with
the continuous case, we replace the two boundary
condition elements in the bottom row with (0, 1)
to define the integration constant by setting the
streamfunction for this component to zero on the
outer boundary, and then the matrix is no longer
singular (typical condition numbers are given in
Section 4.5).

In the continuous system, we set the n = 0,
m = bt normal streamfunction derivative to zero
at one boundary and found that, if the mean
barotropic PPV was zero, the streamfunction
derivative would automatically be zero at the
other boundary. Importantly, in contrast with
the continuous system, this statement does not
hold exactly for the discretized system. This is
because Q̂′n

m(1) and Q̂′n
m(Nrad) do not appear in

equation (74); we do not apply the discretized
differential equation at the boundaries, as we need
to use these two degrees of freedom to set the
boundary conditions.

The error corresponding to this PPV leak is
small (∼ (∆r)2), but even small errors can grow
to dominate the solution after a large number of
timesteps. To fix this problem with the barotropic
mean flow correction, we discard the outer bound-
ary streamfunction Ψ̂′0

bt(Nrad) obtained through
inversion of equation (74) and define a new value
for it by setting Ψ̂′0

bt(Nrad) = Ψ̂′0
bt(Nrad − 1).

This ensures that the boundary conditions (69)
required for conservation of mean PPV are satisfied
exactly, but the consequence is that the discretized
differential equation (70) is not exactly satisfied
at the point Nrad − 1. The imposed boundary
conditions are summarized in Table 2.

3.5 Details of the numerical schemes

3.5.1 Time stepping

For the time stepping we use a leapfrog scheme
with a Robert (1966) three-level time filter applied
at each timestep, to suppress the computational
mode splitting between even and odd numbered
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3 Discretization of the equations

n = 0 n 6= 0

Ψ̂′n
m(2) − Ψ̂′n

m(1) = 0 Ψ̂′n
m(1) = 0

m = bt

Ψ̂′n
m(Nrad) = 0† Ψ̂′n

m(Nrad) = 0

Ψ̂′n
m(2) − Ψ̂′n

m(1) = 0 Ψ̂′n
m(1) = 0

m = bc

Ψ̂′n
m(Nrad)− Ψ̂′n

m(Nrad) = 0

Ψ̂′n
m(Nrad − 1) = 0

Table 2: Summary of the boundary

conditions applied to the streamfunction

when integrating the discretized equa-

tions. The analogous conditions for

the for the continuous case are given in

Table 1. †After the inversion, Ψ̂′0
bt(Nrad)

is redefined by Ψ̂′0
bt(Nrad) − Ψ̂′0

bt(Nrad −

1) = 0, as discussed in the text.

steps (Mesinger & Arakawa, 1976). At each step,
of size ∆t, qt+1 is determined at each grid point
using the leapfrog scheme:

qt+1 = qt−1 + 2∆t qt
tendency , (75)

and then the value of qt is adjusted in such a way
as to move it closer to the mean of qt−1 and qt+1:

qt → qt + R

(

qt−1 + qt+1

2
− qt

)

. (76)

The old value of qt is abandoned and the new,
filtered value is used in its place. The Robert

filter parameter R > 0 is chosen to be as small
as possible whilst still suppressing the leapfrog
decoupling.

3.5.2 Time-lagged diffusion

Numerical solutions of the simple diffusion
equation, using the leapfrog scheme for the
time-discretization and a time-centred three-point
finite difference for the space-discretization, are
unconditionally unstable due to a computational
mode (Haltiner & Williams, 1980). To avoid this
in the present model, we time-lag the diffusion
terms by one timestep when evaluating the right

sides of the discretized analogues of equations (23)
and (24). This means that, when evaluating the
PPV tendency at timestep t, we calculate the
forcing (∂/∂θ) and advection (J(ψ′

i, q
′
i)) terms

using the fields at timestep t, but calculate the
diffusion (∇2) terms using the fields at timestep
t − 1.

3.5.3 Hyperdiffusion

To represent sub-gridscale effects we add a hyper-
diffusion term to the right sides of the prognostic
equations (23) and (24), as is usual in numerical
models (e.g. Lewis, 1992).

At first, a fourth-order streamfunction hyper-
diffusion term νhyper∇4ψ′

i was tried, but significant
gridscale features were always found to form at
the lateral boundaries whenever the model was
run. This is because during the PPV inversion,
any gridscale features in the PPV field will give
rise to corresponding grid-scale features in the
perturbation streamfunction field, and then the
νhyper∇4ψ′ contribution to the PPV tendency will
tend to damp out these features in the PPV field.
Unfortunately this does not happen at the bound-
aries in the discretized system, because boundary
values of the PPV are not used when performing
the inversion. As already discussed, Q̂′n

m(1) and
Q̂′n

m(Nrad) are missing from equation (74). Values
of PPV therefore are able to feed back into the
PPV tendency field only at interior points, and
there is nothing to suppress grid-scale features in
the PPV field at the boundaries.

To avoid this, we instead use second-order
hyperdiffusion applied to the PPV, by adding
a term νhyper∇2q′i to the prognostic equations.
This term is also time-lagged by one timestep, as
discussed above. The hyperdiffusion term does not
exactly satisfy equation (57), though the error is
small. In order to keep the model solutions as close
as possible to the continuous equations solutions,
we periodically reset the mean PPV to zero in
the model, by adding a very small constant whose
value is chosen to satisfy this requirement.

3.5.4 Stochastic parameterization of sub-

gridscale effects

As a way of representing sub-gridscale effects,
additional and complementary to the hyperdiffu-
sion representation discussed above, there is the
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3 Discretization of the equations

option of a stochastic representation in QUAG-
MIRE. Such parameterizations are becoming more
popular in numerical models, with the recognition
that the additional model degrees of freedom
introduced by a stochastic parameterization may
be able to compensate, at least partially, for the
degrees of freedom associated with sub-gridscale
motions missing from the model (Williams et al.,
2003).

We choose the simplest possible form for the
stochastic noise terms. At each gridpoint and at
each timestep, a random number is drawn from
the uniform distribution on the interval [0, 1], and
then shifted to the interval [−amp, amp] before
being used as an additive contribution to the PPV
tendency. The constant amp is a given amplitude
with units s−2. The discretized noise fields so
defined contain no correlations in either time or
horizontal position.

3.6 Summary of numerical integra-
tion scheme

Flow charts summarizing the details of the QUAG-
MIRE numerical integration scheme are shown in
Figures 4 and 5. Given the PPV fields at times t−1
and t, we invert to obtain the streamfunction fields
at those times, which then allows us to calculate
all the contributions to the PPV tendency. We
perform a leapfrog time integration to obtain the
PPV field at time t + 1, and then modify the PPV
field at time t by applying a Robert filter. Once
we have obtained q′(t) and q′(t + 1) from q′(t − 1)
and q′(t), we discard q′(t − 1) and ψ′(t − 1), we
dump q′(t) and ψ′(t) to disk if required, then we
re-label t → t − 1 and begin the loop again. Note
that the streamfunction and PPV must be kept in
memory at three consecutive timesteps.

The system state is completely determined by
ψ′. Note that it is also completely determined by
q′ together with the boundary conditions, because
equations (25) and (26) are uniquely invertible. It
is not necessary to dump both ψ′ and q′ to disk
in order to have a complete description of the
system, therefore. Nevertheless, we choose to save
both fields, in order to reduce the need for further
calculations when plotting model diagnostics.

Forcing
Add forcing terms

OUTPUT: qtend(t)
INPUT: q(t), s(t), qtend(t)

Calculate J(s,q)
INPUT: q(t), s(t)

OUTPUT: qtend(t)

Advection

MAIN LOOP

Read run parameters and initial fields
(i) compute initial fields internally, or

OUTPUT: q(t), q(t−1), s(t), s(t−1)

Time integration
Leapfrog scheme with Robert filter

OUPUT: q(t+1), q(t)
INPUT: q(t), q(t−1), qtend(t)

Solve q(t+1) for s(t+1)
INPUT: q(t+1)

OUTPUT: s(t+1)

(ii) two time level restart from previous run

QUAGMIRE master routine

Write history record?
INPUT: q(t), s(t)

Write restart record?
INPUT: q(t+1), q(t), s(t+1), s(t)

Dissipation

OUTPUT: qtend(t)
INPUT: q(t−1), s(t−1), qtend(t)

Add Ekman layers and numerical diffusion

Figure 4: Organigram giving an

overview of how the model integrations

progress. The perturbation potential

vorticity is labelled q, and the perturba-

tion streamfunction is labelled s.
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ψ (t−1) ψ (t)

ψ (t−1)

∆2

terms in
the Q−G PV
equations

Robert
filter

q  (t) q  (t+1)’ ’

’q  (t−1) ’q  (t) J{  ’(t),q’(t)}ψ

stochastic
term

(t−1)

∆2 q

leapfrog

’ ’

’

’

’ ’q  (0) q  (1)

re
−

de
fi

ne
t

initial
conditions

d q (t) / d tθqd    ’ (t) /d 
ψ θd    ’ (t) /d 

Figure 5: Organigram showing in detail

how the the model integrations progress,

starting with initial conditions q′(0) and

q′(1). Each timestep has inputs q′(t −

1) and q′(t) and outputs q′(t) and

q′(t + 1), shown shaded. J(ψ′, q′) =

[(∂ψ′/∂r)(∂q′/∂θ)−(∂ψ′/∂θ)(∂q′/∂r)]/r

is the Jacobian.

3.7 Initial conditions

A feature of the leapfrog timestepping scheme is
that initial condition fields are required at two sep-
arate times, in order to begin the integration. As
shown in Figure 5, we choose to specify the PPV
fields as initial conditions. We use small amplitude
random noise for these fields, seeding the system to
permit the growth of unstable perturbations of any
azimuthal and radial wavenumber. The intrinsic
Fortran function RANDOM NUMBER is used to gener-
ate random numbers with a uniform distribution
which are shifted to a chosen symmetrical interval
centred on zero. We then subtract the mean PPV
in each layer at both timesteps, which makes the
fields satisfy the zero mean barotropic PPV condi-
tion of Sections 2.3.2 and 3.4.
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4 Technical model details

4.1 Model source code

Code to carry out the numerical integrations
described herein has been written in Fortran 95,
and compiled using the Numerical Algorithms
Group (NAG) f95 compiler for Linux. Routines
from the NAG library are employed: nag fft for
the transformations between physical and spec-
tral space described by equations (65) and (66),
nag gen bnd lin sys for solving the complex band
matrix equation (74) a large number (Nazim + 2)
of times each timestep, and nag math constants

for the value of π.

The model source code consists of 15 .f90 sub-
routines in the src/ directory. In total, there are
1200 lines of code in these subroutines, many of
which are comments. Brief descriptions of the sub-
routines are now given.

• modules.f90 declares the global variables,
categorized into five modules: precision

(the numerical precisions for the calculations
and dumps to disk), dyn vars (the dynam-
ical state arrays, i.e. streamfunction and
PPV, which are updated once per timestep),
solver vars (the permanent solver arrays,
calculated once at the start of the model run),
phys params (the physical parameters, includ-
ing system dimensions and rotation rates)
and grid params (the numerical parameters,
including grid spacings and timesteps).

• main.f90 is the highest-level routine
in the model, making one-off calls
to init model.f90, init solver.f90

and init state.f90, and then calling
in turn, from within the time step-
ping loop, jacobian.f90, forcing.f90,
dissipation.f90, step q.f90, solver.f90

and save fields.f90.

• init model.f90 initializes the model by read-
ing the namelist (Section 4.3), and then allo-
cating and evaluating the parameters declared
in the phys params and grid params modules.

• init solver.f90 initializes the solver by allo-
cating and evaluating the arrays declared in
the solver vars module.

• init state.f90 initializes the model
state by allocating and evaluating start-
ing values for the arrays declared in

the dyn vars module. This subroutine
makes calls to read pu fields.f90 and
read forcing fields.f90.

• jacobian.f90 calculates the advection
(J(ψ′

i, q
′
i)) term in cylindrical polar co-

ordinates, storing the result as a PPV
tendency. The formula is written to min-
imise the number of multiplications, which
are computationally more expensive than
additions.

• forcing.f90 calculates the forcing (∂/∂θ)
terms (forcing of perturbations by the mean
flow, topographic forcing, stochastic forcing
and optional relaxation to a specified PPV
field), adding the result to the PPV tendency.
This subroutine makes calls to dtheta.f90.

• dissipation.f90 calculates the dissipation
(∇2) terms (Ekman layers at the upper and
lower boundaries, Ekman layers at the internal
interface and 2nd order PPV hyperdiffusion),
adding the result to the PPV tendency. This
subroutine makes calls to laplacian.f90.

• step q.f90 uses the PPV tendency to per-
form the timestepping, with a Robert three-
level time filter, and thereby updates the PPV
field.

• solver.f90 solves the Helmholtz equation in
cylindrical polar co-ordinates, to update the
streamfunction field given the updated PPV
field

• save fields.f90 dumps the model state
(streamfunction and PPV) to disk. The cur-
rent state (regular dump) and/or the current
and previous states (pickup dump) are saved
as unformatted binary data.

• read pu fields.f90 reads the initial model
state from a pickup file, if required.

• read forcing fields.f90 reads the forcing
fields (PSI relax.bin and QGPV relax.bin)
from disk, if required.

• dtheta.f90 is the azimuthal derivative oper-
ator for calculating the forcing terms in the
PPV equations.

• laplacian.f90 is the Laplacian operator in
cylindrical polar co-ordinates for calculating
the dissipation terms in the PPV equations.
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4 Technical model details

A Makefile is also included in the src/

directory, to build the executable from the source
code files. By typing make at a command prompt,
each .f90 source file is compiled to produce a
corresponding .o object file, and then the 15 object
files (plus object files from the NAG library) are
linked to build the executable, with filename qgam

and size around 400 kB.

4.2 Tests of the model code

The azimuthal derivative (dtheta.f90), Laplacian
(laplacian.f90) and advection (jacobian.f90)
routines were each tested using input fields con-
sisting of random numbers satisfying the boundary
conditions. The mean PPV tendency due to
each contribution was found to be zero to within
numerical precision, implying that the code for
these routines is free from errors.

The Helmholtz solver routines
(init solver.f90 and solver.f90) were tested
by first using the forward formulae (25) and (26)
with our discretized Laplacian (60)–(62) to calcu-
late the PPV fields corresponding to given random
perturbation streamfunction fields, and then using
the routines to reconstruct the streamfunction
fields from the calculated PPVs. The root-
mean-square difference between the original and
reconstructed streamfunction fields was around
0.1%, implying that the solver code was also free
from errors. The reason that the agreement is not
exact, to within numerical precision, is that we
assume linearly-extrapolated ghost points to eval-
uate the Laplacian in the forward formulae — an
assumption which is not made during the inversion.

4.3 Namelist

The namelist, qgam.data, should be copied to
the working directory (i.e. the directory in which
the model output is to appear), and then edited
to alter the system/numerical details for the run.
The entries in the namelist, which fall into five
categories, are as follows.

GRID DEFINITION

• N rad (INTEGER) = Nrad = number of grid
points in the radial direction, including one
point on each of the boundaries r = a and
r = b

• N azim (INTEGER) = Nazim = number of grid
points in the azimuthal direction

• N layer (INTEGER) = number of layers
(must be 100 at most; in the present model
release, must be 2)

TIME STEPPING

• delta t (REAL) = ∆t = time step (s)

• start step (INTEGER) = first step in the
integration — set to 1 to internally compute
the initial condition using random numbers,
otherwise picks up from a previous calculation
using the file labelled start step

• end step (INTEGER) = last step in the inte-
gration

• Robert filter parameter (REAL) = R =
strength of Robert time-filtering — must be
between 0.0 (no filtering) and 1.0 (full filter-
ing)

• dump period (INTEGER) = number of steps
between successive regular dumps to disk

• pickup dump period (INTEGER) = number
of steps between successive pickup dumps to
disk

• debug (INTEGER) = debug messages
switched on? (set to 1 for ’yes’)

SYSTEM DIMENSIONS

• a (REAL) = a = radius of inner boundary (m)

• b (REAL) = b = radius of outer boundary (m)

• H (REAL) = H = depth of each layer (m)

• s top (REAL) = stop = radial slope of lid
(dimensionless)

• s bot (REAL) = sbot = radial slope of base
(dimensionless)

FLUID PROPERTIES

• rho (REAL) = ρ = density of each layer
(kg m−3) from top to bottom, i.e. vector of
length N layer with elements of increasing size

• S (REAL) = S = interfacial tension between
each pair of adjacent layers (N m−1) from top
to bottom, i.e. vector of length N layer-1
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• new (REAL) = ν = kinematic viscosity of each
layer (m2 s−1) from top to bottom, i.e. vector
of length N layer

FORCING AND DISSIPATION

• initial amplitude (REAL) = amplitude of
initial PPV perturbation (s−1) — only used if
start step is set to 1

• omega (REAL) = Ω = angular velocity of base
(rad s−1) — must be positive

• lid delta omega (REAL) = ∆Ω = differential
angular velocity of lid relative to base (rad s−1)
— can be either positive (prograde) or negative
(retrograde)

• g (REAL) = g = acceleration due to gravity
(m s−2)

• new hyper (REAL) = νhyper = 2nd order PPV
hyperdiffusion coefficient (m2 s−1)

• relax rate (REAL) = inverse time-scale for
relaxation to specified PPV field (s−1) — only
used if relax type is set to 2 or 3

• relax type (INTEGER) = set to 1 to
relax to a specified streamfunction field
(PSI relax.bin), set to 2 to relax to a spec-
ified PPV field (QGPV relax.bin), or set to 3
to do both 1 and 2

• reset period (INTEGER) = number of steps
between successive resetting of the mean PPV
to zero — set to 1 to reset at each step

• internal ekman (INTEGER) = internal
Ekman layers switched on? (set to 1 for ’yes’)

• noise amp (REAL) = (starting value of)
stochastic forcing amplitude (s−2)

• d dt noise amp (REAL) = rate of change of
stochastic forcing amplitude (s−3)

4.4 Shell script

A shell script, run qgam, is included with the
model. To launch the model, type run qgam

at the command line from a directory contain-
ing a namelist file. This deletes any data files
already present, copies the current version of
the executable to the local directory, creates a
temporary uncommented namelist file, creates a
file of parameter values in a form suitable to be

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05
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x (m)

y 
(m

)

Figure 6: Typical gridpoint positions.

In this case, there are 96 points in

the azimuthal direction and 16 in the

radial direction, giving gridboxes which

are approximately square near the inner

boundary. This figure was produced

using option 11 of the Matlab diagnos-

tics package (Section 4.6).

read by the Matlab diagnostic script, runs the
model (piping system messages to the output file,
qgam.out), and finally deletes the local version of
the executable and the temporary namelist.

To avoid deleting pre-existing data files
(e.g. for a pick-up run), use run qgam pu.

4.5 Suitable values for the numerical
parameters

The NAG FFT subroutines are much faster if
the only prime factors of Nazim are 2, 3 and
5, and so a typical grid might be defined by
Nazim = 25 × 3 = 96 and Nrad = 16, as shown
in Figure 6. A suitable Robert filter parameter
is usually around R = 0.01. For given Ω and
∆Ω, we can take the amplitude of the random
initial PPV perturbation to be ∆Ω/100 so that we
are assessing the growth of very small perturba-
tions, we can choose the timestep ∆t to be such
that the azimuthal Courant number 1

2∆Ω∆t/∆θ
is 0.01, and we can choose the hyperdiffusion
coefficient νhyper to be such that the e-folding
time 1/(νhyper k2

Nyquist) for damping of mid-radius
gridscale waves with the Nyquist wave vector
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m=bt m=bc

n = 0 389 59
n = 1 112 35
n = 2 99 33
n = 3 82 31
n = 4 67 29
n = 5 54 26
n = 6 44 24
n = 7 36 21
n = 8 31 19
n = 9 26 17

Table 3: Estimates of the condition

numbers (in the infinity-norm) of the

tridiagonal matrices in equation (74),

corresponding to the first 10 azimuthal

modes for both of the vertical modes.

Values given are rounded to the nearest

integer, for typical run parameters.

kNyquist = Nazim/(a+ b) is equal to one lid rotation
period, 2π/∆Ω.

It is recommended that model runs are per-
formed using double numerical precision (retaining
16 significant figures) for the calculations and
pick-up dumps to disk, and single numerical
precision (retaining 8 significant figures) for the
regular dumps. These are the default settings,
hard-coded in modules.f90, and allow for accurate
calculations as well as efficient data storage.

The factor by which relative errors in the
perturbation streamfunction are greater than
relative errors in the PPV, following solution of
equation (74), is known as the condition num-

ber of the tridiagonal matrix in that equation.
Some typical condition numbers for the matrices
in equations (74) are shown in Table 3. The
largest condition number in the system has
a value of a few hundred, implying that only
the last two significant figures of the inferred
perturbation streamfunctions will be uncertain,
and that errors due to rounding are therefore small.

In order to demonstrate insensitivity to the
numerical parameters, comparative runs have been
performed with (separately) the hyperdiffusion

coefficient decreased by a factor of 10, the Robert
filter parameter decreased by a factor of 10 and
the gridspacing doubled in both directions, but all
other parameters unmodified. The equilibrated
wave number was the same in each case, and
the mid-radius wave amplitude and phase speed
differed by at most 0.3%. We have therefore
demonstrated that both rounding errors and
discretization errors are small, and that the
equilibrated state is insensitive to the values of the
numerical parameters, implying that the model
output gives an accurate representation of the true
solutions of the continuous model equations.

The code is very efficient: on a desktop Linux
workstation with a 1.4 GHz AMD Athlon processor
and 100% of the CPU usage, and with Nazim = 96
and Nrad = 16, a model integration speed of 120
timesteps per second is attained. In this case, it
is found that timesteps of up to around 0.1 s can
be used stably, implying that the model can run
ten times faster than the laboratory annulus. The
run-time memory requirement is 3.1 MB.

4.6 Matlab diagnostics

A Matlab diagnostics package (diagnostic.m,
diagnostic read.m and gradient imp.m) is sup-
plied with the model, consisting of 2100 lines of
code. The package allows the model data and many
other derived quantities to be plotted in cylin-
drical geometry with ease. To run the package,
launch Matlab from the data directory and type
diagnostic.m. The data file created by the shell
script is read, and the following options are offered.

• 0 = exit

• 1 = contour plot of perturbation streamfunc-
tion

• 2 = contour plot of perturbation potential vor-
ticity

• 3 = contour plot of perturbation interface
height

• 4 = vector plot of perturbation velocity field

• 5 = contour plot of full streamfunction

• 6 = contour plot of full potential vorticity

• 7 = contour plot of full interface height

• 8 = vector plot of full velocity field
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• 9 = time-series of mid-radius interface height
wave amplitude

• 10 = multiple cartesian diagnostics

• 11 = plot of gridpoint positions

• 12 = time-series of mid-radius interface height

• 13 = option 1 over-plotted with option 4

• 14 = option 5 over-plotted with option 8

• 15 = time-series of radially-averaged zonal per-
turbation velocity

• 16 = mid-radius perturbation potential vortic-
ity Hovmüller diagram

• 17 = mid-radius perturbation streamfunction
Fourier spectrum

• 18 = contour plot of Lighthill Radiation Term
magnitude

• 19 = contour plot of Brown’s CAT indicator

• 20 = vector plot of full velocity shear field

• 21 = time-series of 1/4 and 3/4-radius inter-
face height wave amplitude

• 22 = contour plot of local Richardson number
in interfacial Ekman layer

• 23 = time series of minimum local Richardson
number in interfacial Ekman layer

• 24 = contour plot of turbulent energy dissipa-
tion rate

• 25 = interface height profiles as a function of
theta

• 26 = time series of system energy

• 27 = 3-D image of full interface height

• 28 = multiple radiation diagnostics

• 29 = contour plot of horizontal divergence

• 30 = mid-radius interface height Hovmüller
diagram

• 31 = zonally-averaged zonal velocity as a func-
tion of radius

• 32 = time-radius Hovmüller plot of zonally-
averaged zonal velocity

Simply select the option required, and fol-
low the on-screen instructions to display the
plot on the screen. To save or print a figure,
first produce it using the appropriate option,
then exit the diagnostics package using option
0 and issue the appropriate Matlab print command.
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5 Closing remarks

5 Closing remarks

5.1 Summary

The QUAGMIRE model described herein has been
run extensively, and a detailed comparison between
model and laboratory flows has been carried out
Williams (2003). The model waves, which grow
due to baroclinic instability if the Froude num-
ber is supercritical but otherwise decay, have phase
speeds, equilibrated amplitudes and wavenumbers
which agree well with those determined from the
corresponding laboratory experiments. For Froude
numbers which are higher still, more complicated
model flows result, such as amplitude vacillations
with reasonable amplitudes and periods and, ulti-
mately, flow which is highly irregular and appears
to be chaotic. The reasonable model/laboratory
agreement provides an important validation of the
model, and indicates that the numerical techniques
employed are reliable.

5.2 Future plans

As with any numerical model, one can imagine
many additions and improvements which could be
made to the current version of QUAGMIRE. The
most obvious and pressing of these is to generalize
the model to apply to a general, user-specified
number of superposed fluid layers, each of a
(different) user-specified resting depth, rather than
the current configuration of two layers of equal
volume. In terms of more cosmetic aspects, it
would be preferable if the data dumps to disk were
in a portable, self-describing format, e.g. netCDF.

It is hoped that these and other changes will
be implemented in the coming months and years,
as QUAGMIRE continues to evolve.
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