
P3.4 A NEW DIRECTION IN CLEAR-AIR TURBULENCE FORECASTING 
BASED ON SPONTANEOUS IMBALANCE 

PART 1: APPLICATION OF THEORY 
 

John A. Knox * 
University of Georgia, Athens, Georgia 

 
Donald W. McCann 

McCann Aviation Weather Research, Inc., Overland Park, Kansas 
 

Paul D. Williams 
Department of Meteorology, University of Reading, Reading, UK         

 
 
 

1. INTRODUCTION 
 
Clear-air turbulence (CAT) is in-flight bumpiness 

detected by aircraft at high altitudes in regions devoid of 
significant cloudiness or nearby thunderstorms.  
Commercial aircraft encounter severe-or-greater 
turbulence about 5,000 times each year, the majority of 
which occur above FL100 (flight level 10,000 feet above 
mean sea level); these incidents lead to tens of millions 
of dollars in injury claims per year (Sharman et al. 
2006).  

 
However, a significant limitation for the forecasting 

of all types of aviation turbulence is identifying the 
source of gravity waves (McCann 2001).  Partly as a 
result, current Federal goals for aviation turbulence 
forecasting are “currently not achievable by either 
automated or experienced human forecasters” 
(Sharman et al. 2006).  

 
Williams et al. (2005) employed laboratory 

experiments and quasi-geostrophic model results to 
explore generation mechanisms of gravity waves in a 
rotating, two-layer vertically sheared flow.  To diagnose 
wave activity, the authors calculated five dynamical 
indicators, several of which were originally devised as 
CAT forecasting indices (Roach 1970; Brown 1973).  
The most accurate indicator tested by Williams et al., 
however, derived from the Lighthill-Ford theory of 
spontaneous balance.  Williams et al. concluded, 
“Further work is required to determine in more detail 
how to properly interpret the Lighthill/Ford indicator,” its 
“geophysical relevance and applicability,” and its 
relationship to other indicators of imbalance.  This is the 
motivation for the present work. 

 
2.  THEORY  

 
Lighthill (1952) derived the theory for the generation 

of sound waves by large-scale motions in a three-
dimensional compressible adiabatic gas.  Ford (1994) 
extended Lighthill’s theory to rotating stratified flow and  
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inertia-gravity wave generation, as did Medvedev and 
Gavrilov (1995).  Ford’s derivation is based on the flux 
forms of the momentum and conservation of mass 
equations in shallow-water flow on the f-plane.  By 
forming the divergence and vorticity equations, and then 
combining them with conservation of mass and its 
second derivative, Ford obtained the following wave 
equation: 

 
 (1) 

 
 

 
in which g is the acceleration due to gravity, h is the 
layer depth, and h0 is the layer depth far from the region 
of vortical motion; and in standard tensor notation Tij is: 
 
 

 
(2) 

 
 Ford (1994) and Williams et al. (2005) indicated 
that nonzero values of right-hand side of (1) should be 
regarded as a source of gravity waves.  Strictly 
speaking, this interpretation is not exact because the 
variable h is not isolated on the left-hand side of (1).  
However, the separation of timescales and the 
weakness of the gravity waves compared to the large-
scale flow allow for this interpretation, and this 
interpretation has also been confirmed by Williams et 
al.’s laboratory experiments.   
 
 Williams et al. (2005) referred to the right-hand side 
of (1) as the “Lighthill/Ford radiation term” and re-
expressed it as 
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 The three right-hand side terms in (3) are the 
Lighthill-Ford gravity wave radiation terms.   
 
 As an extension of previous work, therefore, we 
expand each term in (3) and discuss each term 
separately regarding its contribution to spontaneous 
imbalance.  [Derivatives of h arising from (4) may be 
shown to sum to zero via conservation of mass; we omit 
them below.] 
 
 Term 1 can be expressed as a function of a 
common diagnostic of imbalance, the horizontal 
divergence D: 
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These subterms are obtained from the time derivative of 
the divergence equation in the derivation of (1).  Term 
1A is a source term due to the local change of 
divergence; Term 1B is a source of gravity waves via 
the local change of the horizontal advection of horizontal 
divergence.  Term 1C is the time derivative of the 
familiar Jacobian term found in both the divergence 
equation and in its approximated form, the nonlinear 
balance equation (NBE; Zhang et al. 2000).  
 
 Term 2 is expressible as a combination of the 
horizontal divergence and the vertical component of 
relative vorticity ζ:  
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The product of divergence, planetary vorticity, and 
relative vorticity is found in Term 2A; this product is not 
found elsewhere in the divergence, NBE or vorticity 
equations.  Term 2B is proportional to the horizontal 
advection of relative vorticity.  Term 2C is proportional to 
the vertical component of the cross-product of the vector 
velocity with the horizontal gradient of divergence. 
 
Term 3 can also be re-expressed as: 
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 In Term 3A, the Laplacian of height appears, 
reminiscent of the Laplacian of geopotential found in the 
divergence and NBE equations.   
 
3. SCALE ANALYSIS 

 
 Following Haltiner and Williams (1980, Ch. 3-2), a 
simple scale analysis of the Lighthill-Ford radiation 
subterms in (5), (6) and (7) can be performed for 
synoptic-scale mid-latitude flows with small Rossby 
number (Ro <<   1), i.e. background conditions which in 
our experience are representative of many clear-air 
turbulence outbreaks.   
 
 Assuming velocity and length scales of U and L; an 
advective time scale T; and the ratio of divergent and 
rotational components of the velocity scales as Ro, then 
 

 T ~ 
U

L
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U
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L
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In addition, by invoking the definition 
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we can scale Terms 1 and 2 with respect to (nonzero) 
Ro: 
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To leading order for Ro <<  1, therefore,  
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 This result agrees with Williams et al.’s (2005) 
comment that the ratio of Terms 1 and 2 should scale as 
the bulk Rossby number.  We have, however, extended 
their results and identified the leading-order components 
within Terms 1 and 2 which lead to that scaling.  We 
also confirm for low Ro their speculation that only Term 
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2 might be retained for “many practical purposes.”  
Additionally, Medvedev and Gavrilov’s (1995) analysis 
emphasized the equivalent of our Term 2B for inertia-
gravity wave forcing by quasi-geostrophic motions.    
 
 To scale Term 3, we rewrite it in terms of Reznik et 
al.’s (2001) nonlinearity parameter λ :  
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Furthermore, for standard quasi-geostrophic conditions, 
Reznik et al. note that λ  scales as Ro.  Therefore for 
our analysis: 
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 Thus, for small Ro, Term 3 would be similar in 
magnitude to O(Ro2), i.e. three orders of magnitude 
smaller than Term 2B.  This scaling is broadly 
consistent with the quasi-geostrophic model results of 
Williams et al. (2005, Fig. 7), who found Term 2 to be a 
factor of 40 or more larger than Terms 1and 3; and with 
Sugimoto et al. (“Spontaneous gravity wave generation 
from unsteady rotational flows in the shallow water 
system on an f-plane and a rotating sphere,” 
Spontaneous Imbalance Workshop presentation, 
August 2006), who found Term 3 negligible for large Ro.      
 
 To summarize, our scale analysis of the Lighthill-
Ford radiation terms identifies the following: 
 
Leading-order term: Term 2B (relative vorticity advection) 
Second-order terms: Term 1C, Term 2A, Term 2C 
Higher-order terms: Term 1A, Term 1B, Term 3 
  
 Therefore, we should expect to find that regions of 
large advection of relative vorticity should be a dominant 
source of spontaneous gravity wave generation.  
Medvedev and Gavrilov (1995, Eq. 23) also identified 
advection of relative vorticity as the source term for 
inertia-gravity waves in their extension of Lighthill’s 
theory.   
 
 The Jacobian term, divergence-vorticity product, 
and cross-product of velocity with the gradient of 
divergence may also play non-negligible roles for 
situations in which Ro <  1 but not Ro <<  1.  As a result, 
we also retain these terms.  Medvedev and Gavrilov 
(1995, Eq. 18) identified a source term similar to Terms 
1A and 1C as the most important for the generation of 
mesoscale waves.   
 
4. INTERPRETATION 
 
 Term 2 of the Lighthill-Ford radiation term is 
essentially identical to the numerator of the advective 
Rossby number used by Uccellini et al. (1984) to 

diagnose unbalanced flow.  CAT diagnostics based on 
the advective Rossby number, such as the inertial-
advective wind and the Lagrangian Rossby number (see 
Zhang et al. 2000) have been used with some success 
in CAT forecasting.  Since the leading-order term of our 
scale analysis results from Term 2,  this provides 
theoretical justification for the use of inertial-advective 
CAT predictors and suggests their success may be 
related to Lighthill-Ford gravity wave generation. 
  
 The leading-order Term 2B has been previously 
identified as a CAT forecasting diagnostic. Shapiro 
(1978) related gradients of potential vorticity to CAT; 
Kaplan et al. (2005) created a CAT predictor related to 
gradients of relative vorticity.  A long-standing rule-of-
thumb CAT forecasting technique in the aviation 
meteorology community has been to identify regions of 
strong negative absolute vorticity advection (e.g., 
Appendix A, item p of Sharman et al. 2006).   However, 
during the past four decades deformation and vertical 
shear, rather than horizontal vorticity advection, have 
been emphasized in CAT forecasting techniques.  
Interestingly, deformation and divergence tendency can 
be related to Term 1C, raising the possibility that some 
portion of the success of deformation-based and 
divergence-tendency-based CAT diagnostics may also 
be tied to Lighthill-Ford processes. 
 
 Another second-order subterm, Term 2A, 
possesses a unique characteristic that was proposed in 
an earlier paper on CAT.  Knox (1997), noting Sparks et 
al.’s (1977) observations of frequent CAT in both 
strongly anticyclonic and strongly cyclonic flows, 
suggested that a parabolic nonlinear relationship 
between CAT and absolute vorticity might exist, with a 
minimum at intermediate values of absolute vorticity.  
The absolute value of Term 2A has this relationship with 
absolute vorticity. 
 
 In summary, Lighthill-Ford theory can be related to 
several existing CAT forecasting techniques of the past 
forty years, which were often inspired by empirical 
approaches.  

 
5. IMPLEMENTATION OF THEORY 

 
 We hypothesize that gravity waves spontaneously 
emitted according to Lighthill-Ford theory relate to clear-
air turbulence felt by aircraft in the following manner.  
First, the gravity wave acts upon the environment and 
destabilizes it.  If the environment is close to being 
dynamically unstable with respect to Kelvin-Helmholtz 
instability (i.e., the environment has small Richardson 
number Ri), then the gravity wave causes Ri to be 
reduced locally to less than 0.25 and turbulence ensues 
(Miles and Howard 1964; Dutton and Panofsky 1970).  
Therefore, not only Lighthill-Ford forcing but also the 
environmental Ri must be considered in the production 
of turbulence.  In this way, even weak gravity waves 
may initiate turbulence. 
 



 The intensity of the turbulence is not addressed by 
either of these two quantities.  A separate quantity, 
turbulent kinetic energy (TKE) dissipation, is the only 
known quantitative approach that is correlated with 
aircraft turbulence intensity (McCann 1999; also see 
“eddy dissipation rate” in Cornman et al. 1995). 
 
 For these reasons, we pursue application of 
Lighthill-Ford theory as a CAT forecasting diagnostic 
using the TKE approach of McCann (2001).  In this 
paper, McCann outlined a simple first-order turbulence 
closure, ingredients-based CAT forecast technique and 
presented a procedure for combining the ingredients.  
We summarize this procedure below. 
 
  To reiterate, the guiding assumption in McCann 
(2001) is that gravity waves locally modify the 
environmental Ri which can then trigger CAT via Kelvin-
Helmholtz instability.  [This theory fundamentally differs 
from the Mancuso and Endlich (1966) approach in that 
gravity waves do not “degenerate” into turbulence.  
Their theory implies that the turbulence cascade begins 
at the mesoscale while McCann’s implies a much 
smaller scale.]  Because the modified Ri fluctuates 
within a gravity wave, only portions of the wave are 
turbulent.  The maxima of the two sources of production 
of gravity wave-enhanced turbulent kinetic energy may 
be estimated as  
 

    (15) 
 
and 
 

                                                
(16) 

 
 
 
 In (15) and (16), εbuoy and εwshr are the gravity wave 
modified TKE dissipation due to buoyancy and wind 
shear, respectively, Kh and Km are the eddy thermal 
diffusivity and the eddy viscosity, respectively,  and V is 
the vector horizontal wind.  The ratio, Km / Kh , is a 
turbulent Prandtl number; the closer this ratio is to 0.25, 
the less intermittent the turbulence.  The eddy viscosity 
is empirically determined so that the resulting TKE 
dissipation estimates the eddy dissipation rate of actual 
aircraft (Cornman et al. 1995).  The eddy thermal 
diffusivity, Kh  = 4 Km .  The Brunt-Väisälä frequency 

squared is 
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, in which Θ the potential 

temperature.  
 
 A key parameter in (15) and (16) is the non-
dimensional amplitude,  
 

||/ˆ cV −= Naa   (17) 

 
where a is the actual wave amplitude and c the wave 
phase velocity; it is an inverse Froude number. The non-

dimensional amplitude denominator is the Doppler-
adjusted wind velocity (Dunkerton 1997).   
 
 Maximum positive TKE production from buoyancy 
arises when â > 1 and from wind shear when 
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The method assumes that in the typical forecast time 
the TKE production eventually cascades into molecular 
TKE dissipation through the inertial subrange felt by the 
aircraft.  At any one moment an aircraft may feel less 
than the maximum TKE dissipation because of its 
position within the gravity wave.  
 
 Any type of gravity wave forcing may be 
implemented, but the method requires knowledge of the 
wave amplitudes and phase velocities which, for the 
most part, are unknown.  Due to a lack of consensus 
about the scaling properties of inertia-gravity wave 
amplitudes in theories and atmospheric observations, 
we seek guidance from laboratory experiments 
(Williams et al. 2007, submitted to J. Atmos. Sci.).  The 
inertia-gravity waves generated in these experiments 
have an amplitude which scales linearly with the Rossby 
number.  Noting that the Lighthill-Ford source term 

varies as 2Ro we deduce that, if atmospheric inertia-
gravity waves behave like those in the laboratory, then 
their amplitude must be proportional to the square root 
of the leading-order and second-order terms in the 
Lighthill-Ford source term:    
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We assume constant mean wave properties in (19).   
 
 The proportionality constant in (19) was determined 
empirically by matching distributions of pilot reports of 
turbulence in strong CAT outbreaks prior to 2005-06 
with the patterns of TKE dissipation that fit the best.   
This constant was then held fixed for later analyses.  
 
 In addition, it should be noted that â is also 
inversely proportional to the square root of density.  This 
allows us to compute â (and thus TKE dissipation) at all 
levels down to the ground. The Lighthill-Ford forcing is 
stronger higher in the atmosphere. 
 
 In the case of Term 1C, we compute the 
instantaneous time derivative of the Jacobian as 
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with the time derivatives in (19) calculated from the 
equation of motion via 
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 (21) 

 
 
 
 
where Φ is the geopotential height.  
 
 In the companion paper (Part II; McCann et al. 
2008 ARAM Conference), we demonstrate and discuss 
the results of this approach for both short-term and 
seasonal analyses of CAT occurrence.  The results 
suggest that this approach has the potential to provide 
major improvements in CAT forecasting accuracy. 
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