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The Penman equation

For agricultural or hydrological applications it is essential to know surface param-
eters such as surface evaporation or heat fluxes. However, these parameters are
quite difficult to measure directly. For humid surfaces, the Penman equation1 gives
a useful approximation for these fluxes as well as surface properties in terms of
quantities which can be measured by standard meteorological instruments.

Assume the surface air temperature is T0. We also assume that the near-surface
air is saturated, so that its local vapour pressure is es(T0). We can measure the
temperature T and humidity q at an elevation H. We next assume that the heat and
humidity fluxes, see Section 3.7, can be approximated using bulk-aerodynamic
approximations. For example, we take the sensible heat flux Fh to be a Fickian
vertical diffusion,

Fh = ρcpw′T ′ ≈−ρcpKh∂T/∂ z≈ ρcpKh(T0−T )/H, (1)

where Kh is the effective eddy diffusion coefficient for heat and where in the last
step the partial derivative has been replaced by a finite difference over depth H. A
similar equation is valid for the latent heat flux and we arrive at the following set
of approximate equations for the sensible and latent heat fluxes:

Fh = ρcpCh(T0−T ), (2)

Fl = ρ L Cl(q0−q), (3)

with q0 the (unknown) specific humidity at the surface, and the bulk transfer co-
efficients Ch = Kh/H and Cl = Kl/H.2 Note that in the above definition, Ch and
Cl have units of velocity. Indeed, if the heat and moisture transfer occurs through
turbulence, it makes sense that these coefficients are a measure of the turbulent
velocities. This is formalized in the so-called mixing length hypothesis, where it
is taken that Ch and Cl are proportional to a local velocity scale, normally taken to
be the absolute value of the measured horizontal velocity. In the boundary layer
literature, bulk transfer coefficients are defined as the nondimensional coefficients
which multiply the local velocity to get the above transfer coefficients.

Because the vertical fluxes are generally due to turbulent diffusion rather than
molecular diffusion, it is not a bad approximation to take Cl =Ch.

1Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proceedings
of the Royal Society of London, Series A, 193, 120–145; Monteith, J., and M. Unsworth, 1990:
Principles of Environmental Physics, Butterworth–Heinemann, 291pp.

2In the agro-meteorological literature these transfer coefficients are often written in terms of their
inverse, the resistance r, e.g., Ch = 1/rh. This convention is inspired by electronics analogs: media
with different transfer coefficients are combined in the same way as parallel or serial resistors.
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We next rewrite Fl in terms of the vapour pressure. In order to do this we note
that for small specific humidities we have

q0−q =
Rd

pRv
(es(T0)− e) =

Rd

pRv
(es(T )− e+∆(T −T0)) , (4)

where in the last step we linearized the dependence of the saturation vapour pres-
sure on temperature and used the Clausius–Clapeyron equation to define

∆ =
des

dT
=

Les(T )
RvT 2 . (5)

We assume ∆ to be constant in the surface layer, that is, the surface temperature and
the air temperature at elevation H are not too far apart. The value of ∆ itself varies
considerably with temperature, from about 44PaK−1 at T = 0◦C to 144PaK−1 at
T = 20◦C.

We next assume that the energy balance at the surface is steady. This means that
the latent and sensible heat fluxes are completely balanced by the net downward
radiation, indicated as Rn,

Rn = Fh +Fl. (6)

This equation implicitly assumes that the net heat flux into the ground can be ig-
nored. In principle this ground heat flux could be included in the budget although
in practice it is difficult to measure. All we need to do is replace everywhere Rn

by Rn−G, where G is the heat flux into the ground. Generally the net ground heat
flux is small when averaged over time scales longer than a day.

We now have prepared all the ingredients to write down the Penman equation
for the latent heat flux. Substituting Eq. 4 in Eq. 3, we have

Fl =
ρLClRd

pRv
(es(T )− e+∆(T −T0)) , (7)

=
ρLClRd

pRv

(
es(T )− e+∆

Rn−Fl

ρcpCh

)
, (8)

where we used Fh = Rn−Fl to rewrite T −T0 in the first equation. This equation
can be rearranged to find the Penman equation

I Fl =
∆Rn +ρcpCh (es(T )− e)

∆+ γ?
, (9)

where we have introduced the effective psychrometric constant for vapour pressure,

γ
? =

cp

L
pRv

Rd

Ch

Cl
. (10)
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A typical value for γ? is 65PaK−1 where we assume that Cl = Ch. The values of
γ? and ∆ are the same at a temperature of about 6◦C.

We have followed the traditional notation for the Penman equation, but it is
perhaps more insightful to rewrite it in the form

Fl =
∆Rn + γ?Flm

∆+ γ?
(11)

where Flm is the latent heat flux calculated using the actual measured temperature
instead of the surface temperature,

Flm = ρLCl(qs(T )−q). (12)

In this form of the Penman equation, it is clear that at high temperatures (large ∆),
the humidity deficit plays a smaller role in setting the latent heat flux.

The Penman equation can be used to derive the other unknowns in the heat
budget. We find for the sensible heat flux

Fh =
γ?Rn−ρcpCh (es(T )− e)

∆+ γ?
=

γ?Rn− γ?Flm

∆+ γ?
. (13)

The Bowen ratio is

β =
Fh

Fl
=

γ?Rn− γ?Flm

∆Rn + γ?Flm
. (14)

The evaporative fraction EF is

EF =
Fl

Fh +Fl
=

∆+ γ?Flm/Rn

∆+ γ?
. (15)

These expressions become particularly simple when Flm is substantially smaller
than Rn. This can be the case for low wind speeds, (because Cl is typically pro-
portional to the the wind speed at elevation H), high relative humidity (because
es(T )−e = es(T )(1−RH)) or high net radiation. In this situation the Bowen ratio
β approaches γ?/∆ which varies from 1.5 at T = 0◦C to 0.5 at T = 20◦C.

The surface air temperature can also be derived from the Penman equation and
the related expression for Fh, namely

T0 = T − es(T )− e
∆+ γ?

+
γ?

∆+ γ?

Rn

ρcpCh
= T +

γ?

∆+ γ?

Rn−Flm

ρcpCh
. (16)

It is straightforward to modify the above arguments for fixed relative humidity
RH0 at the surface. The only change is the relation between q0 in Eq. 3 and the
saturated vapour pressure at the surface. The Penman equation and those equations
following from it are modified by replacing es by RH0 es, and ∆ by RH0 ∆.


