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ABSTRACT

A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The
statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting
to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in
its distribution function. The empirical distribution function for the 1960–2000 period is close to a Weibull
distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no
apparent local multimodality or bimodality.

The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being
normally distributed. This is consistent with the central limit theorem, which applies to the construction of
the wave amplitude index. For the period 1960–70 it is found that there is apparent bimodality in this index.
However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single
longitude.

As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric
fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show
approximately normal distributions. The author concludes that these techniques may therefore be subop-
timal to detect any multimodality.

1. Introduction

The idea of multiple equilibria in the atmosphere was
given prominence by the seminal work of Charney and
DeVore (1979). This idea is attractive on many levels. It
may explain the apparent occurrence of weather re-
gimes. It would also mirror low-order nonlinear models
that have been used as didactic analogs for more com-
plex behavior in the real atmosphere.

Whether multiple equilibria actually exist in the at-
mosphere is as yet unclear. Authors have been showing
statistical evidence of multiple equilibria for many
years (e.g., Hansen and Sutera 1986; Mo and Ghil 1988;
Kimoto and Ghil 1993; Corti et al. 1999; Monahan et al.
2001; Christiansen 2005a). However, almost with equal
regularity others have pointed out a lack of statistical
significance in these results (Nitsche et al. 1994;
Stephenson et al. 2004; Christiansen 2005b). The prob-
lems have been confounded by parameter dependence
of the statistics used and of the significance testing.

Whether the atmosphere has multiple equilibria ap-
pears to be more an article of faith than an observed
reality.

The elegance of low-order nonlinear models as di-
dactic analogs (e.g., Palmer 1999) has probably in-
creased our desire to find multiple equilibria in the real
atmosphere. However, these low-order models are by
construction not realistic. The multiple equilibria in the
Charney and DeVore (1979) model were found to oc-
cur in unrealistic parameter regimes (Tung and
Rosenthal 1985). Other simple models of multiple equi-
libria focusing on nonlinear oscillators (e.g., Malguzzi
and Speranza 1981) have always involved many ideali-
zations, although, perhaps surprisingly, the multiple
equilibria in the more realistic barotropic model of Am-
baum and Verkley (1995) can be mapped on response
curves of nonlinear oscillators (Ambaum 1997).

It may be argued (D. Straus 2006, personal commu-
nication; Stan and Straus 2007) that there is a distinc-
tion between weather regimes, as exemplified by Baur’s
Großwetterlagen, and circulation regimes, as mea-
sured, for example, by the Rossby and Namias index
cycles. The latter are usually thought of as global non-
linear resonances while weather regimes, as experi-
enced by the synoptician, may be bimodal or multimo-
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dal only quite locally in both time and space. It is then
not clear that a long-term global statistic would usefully
reflect the residence of the atmosphere in various
weather regimes.

Theories underlying local weather regimes are in-
spired by the observed quasi-stationary nature of
blocked flows and zonal flows. For example, modons
(e.g., McWilliams 1980; Verkley 1984; Flierl 1987) are
solutions of the equations of motion that represent lo-
cal nonlinear perturbations of the flow with closed re-
circulation regions, thus representing different flow to-
pology from a zonal background flow. Such flow struc-
tures can be sought in models (e.g., Branstator and
Opsteegh 1989) or observations (e.g., Ek and Swaters
1994) by looking for regions with one-to-one relation-
ships between the streamfunction and the potential vor-
ticity, such that the flow is (quasi) stationary. More
recently, Swanson (2002) has been reviewing how in
simple models large local perturbations on jet streams
can be formed. These studies suggest that localized
nonlinear flow structures are dynamically possible and
share many aspects with observed flow structures. Al-
though the topological changes required for modonlike
recirculations cannot formally be achieved by the adia-
batic rearrangements in the simplified model of Swan-
son (2002), it does provide a convincing route to strong
local perturbations by accumulation of wave activity.

In this paper we construct and analyze a local wave
amplitude statistic that is largely nonparametric (sec-
tion 2) and is not influenced by secular trends or de-
cadal variability in jet location. It allows us to identify
local wave amplitude anomalies that do not necessarily
rely on global resonances. We find that there is no
strong indication for bimodality or multimodality in the
500-hPa geopotential height amplitude (section 3) or
the highly related wave amplitude index (WAI; Hansen
and Sutera 1986). We also find that the bimodality ob-
served in Hansen and Sutera’s wave amplitude index is
most likely not a reflection of true bimodality at any
location, but rather an artifact of aliasing two different
mean amplitudes at different longitudes into a single
index (section 4). Integrated statistics, such as the wave
amplitude index or principal component time series,
are found to be suffering from the fast convergence to
Gaussian statistics of the central limit theorem, which
makes such indices suboptimal to detect potential bi-
modality.

2. Local wave amplitude

For any periodic function f(x) we can define a local
wave amplitude A(x) as

A2 � f2 � � fH�2, �1�

where fH is the spatial Hilbert transform of f (e.g., von
Storch and Zwiers 1999). The Hilbert transform is most
easily defined in the spectral domain: the Fourier trans-
form f̂ of f and its Hilbert transform f̂ H are related
through

f̂ H � i sgn�k�f̂, �2�

where k is the wavenumber. In other words, to find the
Hilbert transform of a periodic function, each Fourier
component is shifted by a quarter wavelength so that all
sines become cosines and all cosines become negative
sines. Additional properties of Hilbert transforms can
be found in von Storch and Zwiers (1999). An applica-
tion of the Hilbert transform in atmospheric dynamics
can be found in Ambaum and Athanasiadis (2007),
where it plays a central role in the dynamics of Rossby
edge waves and where the wave amplitude, as defined
above, was shown to be locally conserved for linearized
surface quasigeostrophic dynamics. An application of
the Hilbert transform to wave amplitude diagnostics
can be found in Zimin et al. (2003).

The above definition of wave amplitude has some
desirable properties that make it a natural choice. A
monochromatic wave A cos(kx � � ) is found to have a
constant wave amplitude A. For superpositions of
monochromatic waves the wave amplitude describes
the wave envelope, as can be checked using simple test
functions. For example, choose f � cos(k � �)x � cos(k
� �)x. This can be rewritten as f � 2 coskx cos�x, and
for � K k it can be interpreted as a carrier wave of
wavenumber k modulated with an amplitude of 2 cos�x.
The Hilbert transform of f is f H � �sin(k � �)x �
sin(k � �)x, and we find that f 2 � ( f H)2 � (2 cos�x)2, as
expected for � K k; when this criterion is not met, the
current definition still provides the envelope of the full
wave.

We will use this local wave amplitude definition to
provide an amplitude measure for 500-hPa geopotential
height anomalies as a function of longitude. The advan-
tage of a longitude-dependent local amplitude above a
zonally averaged measure, such as Hansen and Sutera’s
(1986) wave amplitude index, is that synoptic experi-
ence shows that most interesting large-scale waves have
the form of localized blocks, usually over the Atlantic
and Pacific basins. The local wave amplitude allows
isolation of a consistent definition of wave amplitude
over those areas. Another advantage is that our local
wave amplitude is independent of the phase of the car-
rier wave under consideration. So, if the internal struc-
ture of the block (i.e., the phase of the carrier wave)
moves slightly or the block evolves under incident mo-
bile systems, the local wave amplitude remains con-
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stant, contrary to measures dependent on prescribed
patterns (such as, e.g., the North Atlantic Oscillation).
This reflects the synoptic experience that the area un-
der consideration is still experiencing high wave ampli-
tude even though the exact phase might vary because of
smaller-scale development. A third advantage is that
the local wave amplitude does not contain parameters,
so no spatial wavenumbers are chosen that could give
rise to parameter dependency of its statistics.

The usual method to find a longitude-dependent
measure of 500-hPa geopotential height variation is to
average the field over a particular latitude belt. This has
some obvious disadvantages. A good example may be
the transition from a zonal flow to a strongly blocked
flow. For the zonal flow the wave amplitude of interest
is around the subtropical jet latitudes, while for the
blocked flow the waves of interest are farther north,
generally away from the zonal mean jet(s). To capture
all cases we would need to choose a very wide latitude
belt, which gives rise to washed-out statistics. If a nar-
rower band is chosen, the statistics become dependent
on the boundary choices, as explored in Christiansen
(2005a).

To overcome this problem we use a flow-dependent
latitudinal weighting of the geopotential height Z. The
chosen weighting w(� ) as a function of latitude � is
proportional (the constant of proportionality is such
that the latitudinal integral over w equals one) to the
total variance of Z along the latitude circle:

w��� � �
0

2�

����, �� � 	�
����2 cos��� d�, �3�

where 	�
 is the zonal average of Z. This way the local
wave amplitude is always evaluated at the latitudes
where the waves are. The seasonal variation in jet lo-
cation is automatically accounted for as well as decadal
variability and secular trends in jet latitudes. Another
advantage is that this weighting does not have any other
parameters that may influence the statistics (although
the power of the moment, in this case 2, could be con-
sidered a parameter). So, a latitudinal weighting as in
Eq. (3) is defined and a longitudinally varying geopo-
tential anomaly f() is found as

f��� � �
0

��2

�Z��, �� � 	Z
����w��� d�. �4�

This geopotential anomaly is then used to calculate the
local wave amplitude from Eq. (1). An example can be
found in Fig. 1 where strong Atlantic and Pacific blocks
are clearly visible in the geopotential height field. The
latitudinal weighting picks out the latitudes of the
blocks and the resulting wave amplitudes pick out the
longitudinal envelopes of the blocking waves with re-
gions of relatively modest wave amplitude in between.

In summary, we have defined a local wave amplitude
that generalizes the usual wave amplitude index by pro-
viding a consistent wave amplitude as a function of lon-
gitude and does not contain any tunable parameters.
Because our local wave amplitude can be evaluated at
any longitude of interest, independent of the phase of
the carrier wave, and because it always takes into ac-
count the latitudes of interest, we expect this index to
show real bimodality or multimodality if it is there in

FIG. 1. Contour map of the low-pass filtered geopotential height at 500 hPa for 0000 UTC
7 February 1994 (contour interval, 50 m): (bottom right) weight as a function of latitude and
(top) wave amplitude (shaded, in meters) as a function of longitude with the weighted geo-
potential anomaly f (black) and its Hilbert transform f H (gray).
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the data. This is examined in detail in section 3. In
section 4 the relationship between our local wave am-
plitude and the Hansen and Sutera wave amplitude in-
dex will be discussed.

3. Statistics of local wave amplitude

In this section we show some of the main observed
statistics for the local wave amplitude, defined in the
previous section. The data that we used are extracted
from the 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40)
archive (Kållberg et al. 2005), enhanced with opera-
tional analyses of 6-hourly data for the four decades
from 1960 to 2000. The data were low-pass filtered with
a cutoff frequency of 10 days—we used a Lanczos filter
with a length of 79 data points (20 days). The cutoff
frequency was chosen to exclude synoptic activity from
our amplitude index. A 5-day cutoff would perhaps be
a more traditional choice, but in work with P. J. Atha-
nasiadis (2008, unpublished manuscript), we show that
variability is dominated by synoptic mobile systems at
frequencies higher than 10 days. The 10-day cutoff is
therefore a conservative choice to exclude these. We
have recalculated the key statistics presented in Fig. 2
with a 5- day cutoff filter and found essentially the same
results. The data were further limited to the months
November–March (NDJFM), the meteorological win-
ter period extended with adjacent months from the
transitional seasons. As argued in the previous section,
our local wave amplitude follows natural variations in
latitudinal wave location, so there was no need to
deseasonalize or detrend the data.

In Fig. 2 we present the empirical probability distri-
bution function of the local wave amplitude as a func-
tion of longitude for all four decades. The overall struc-
ture shows peaks in average wave amplitude around
30°W and 140°E, the mid-Atlantic and west Pacific,
respectively. For the mid-Atlantic this maximum am-
plitude presumably is associated with the strong vari-
ability of the Atlantic jet, also associated with the North
Atlantic Oscillation. The west Pacific maximum is
likely associated with the strong climatological trough
over that area, which also registers as a high wave am-
plitude. The distribution function peaks at lower am-
plitude (and higher probabilities) around 90°W and
60°E. Although the distribution function has rich struc-
ture, there is no obvious strong sign of local bimodality.

It is not clear what theoretical distribution function
the amplitude is expected to follow at each longitude. If
the two contributions f and fH to the amplitude in Eq.
(1) were locally independent and had a Gaussian dis-
tribution with mean zero standard deviation �, then the
amplitude would follow a Rayleigh distribution, which
is the same as a Weibull distribution with shape param-
eter k � 2 and scale parameter �. In general, the
Weibull distribution is defined as

g�A; �, k� �
1
2

k

� �A

��k�1

exp��
1
2 �A

��k�, �5�

where � is the scale parameter of the distribution and k
the shape parameter. Given the weak a priori argument
that the amplitude could follow a Rayleigh distribution,
it makes sense to fit the empirical data to its general-
ization, a Weibull distribution.

Examples of such fits to a Weibull distribution are
plotted in Fig. 3 (because of the high number of samples
the fits were done as simple nonlinear curve fits). These
fits show a range of shape parameters (1.8–3.0) and
scale parameters. The longitudes in Fig. 3 are chosen to
represent an extreme shape or scale parameter (see
also Fig. 4). Longitudes around the Greenwich merid-
ian (top right panel, Fig. 3) and 150° W (not shown) are
unusual in that the amplitude distribution apparently
has fairly substantial deviations from the fitted Weibull
distributions, which could be candidates for multimodal
distributions. However, for all other longitudes, the fit
to the Weibull distribution is remarkably good.

The goodness of fit to the Weibull distributions was
confirmed with a Kolmogorov–Smirnov test. For this
test, the cumulative distribution of the observed data
and of the fitted Weibull distribution are compared and
tested for significance of any deviations. It was found
that the null hypothesis, that the observed cumulative
distribution was drawn from a fitted cumulative Weibull

FIG. 2. Probability distribution function of the local wave am-
plitude of geopotential height at 500 hPa as a function of longi-
tude. At each longitude the distribution function is normalized
(i.e., integrates to one over amplitude). Four decades (1960–2000)
of NDJFM low-pass filtered data are included.
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distribution, could not be rejected with a significance
level better than 95%. Any significant deviations at se-
lected locations or in selected decades could not be
distinguished from sampling noise. The significance
level is dependent on the number of chosen degrees of
freedom. For our test, a single independent data point
every 10 days was chosen, consistent with the low-pass
filter time scale.

Figure 4 shows the shape and scale parameters for all
longitudes of the fitted Weibull distributions. The stan-

dard errors (i.e., errors in the fitting of the parameters)
have not been plotted since they are less than 1% for
both parameters at all longitudes. The scale parameters
clearly follow the dependency of the wave amplitude
evident in Fig. 2. Perhaps surprisingly, the shape pa-
rameter also follows the variations of the scale param-
eter. The interpretation is that for locations for higher
wave amplitudes the distribution does not simply scale
up; it, in fact, moves away from zero amplitude (there
are relatively fewer low amplitude cases). It can also be
seen that the Rayleigh distribution (shape parameter of
2) is a fairly good model for the amplitude distribution
for the longitudes of low average wave amplitude.

Figure 5 shows the empirical and fitted amplitude
distributions at the Greenwich meridian for the four
separate decades from 1960 to 2000. It is clear that the
amplitude distribution has substantial interdecadal
variability. Although this statistic is not directly com-
parable to the Hansen and Sutera wave amplitude in-
dex (see section 4 for a more detailed discussion), as in
Christiansen’s (2005a) study, we find that 1990–2000 is
the most perturbed decade, with a high shape param-
eter and high scale parameter for the fitted Weibull
distribution. Especially in the period 1970–90 the em-

FIG. 4. Scale parameter (left ordinate) and shape parameter
(right ordinate) of the Weibull distribution fitted to the empirical
distribution of Fig. 2. Four decades (1960–2000) of NDJFM low-
pass filtered data are included.

FIG. 3. Plots of Weibull distribution (thick line) fitted to the empirical distribution of wave amplitude (impulses) at
four selected longitudes. Four decades (1960–2000) of NDJFM low-pass filtered data are included.
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pirical distribution appears remarkably broad that, in
synoptic experience over those two decades, would cer-
tainly be experienced as a peculiar distribution: the
near extremes are about as likely as the mean. Subtract-
ing a smooth fitted distribution from the empirical dis-
tribution in these decades would give a bimodal
anomaly structure. However, it could be argued that
this is not really a relevant procedure to find bimodal-
ity; furthermore, based on the statistics alone, the pe-
culiarity of the distribution at the Greenwich meridian
in these decades would have to be interpreted as sam-
pling variability.

4. Wave amplitude index and central limit
theorem

We can define a wave amplitude index by integrating
the squared amplitude A over longitude:

WAI2 � �
0

2�

A���2 d� � �
0

2�

� f2 � � fH�2� d�

� 2�
0

2�

f2 d�. �6�

By Parseval’s theorem the zonal integral of f 2 equals
the sum over the squared amplitudes of its Fourier
components. Therefore, this definition becomes
equivalent to Hansen and Sutera’s WAI if the signal
was prefiltered to zonal wavenumbers 2–4 and the
zonal anomaly f was defined over a fixed latitude belt.
Following Eq. (2), the squared amplitudes of the Fou-
rier components of the Hilbert transform are the same
so that the total variance of the Hilbert transform is the
same as the total variance of the original function, lead-
ing to the last equality in Eq. (6).

From our definition of the WAI it also becomes clear
that our local wave can be interpreted as a generalized
version of the WAI in that in addition to amplitude
information it shows the phase information as well (i.e.,
at what longitudes waves interfere constructively to
produce high local amplitudes).

Figure 6 shows the empirical distribution with a fitted
normal distribution for our WAI defined over all four
decades. A Weibull distribution did not fit the data (see
below). The fitted normal distribution has a mean am-
plitude of 141(0.2) m and a standard deviation of
34(0.2) m. It is clear that the normal distribution fits the
data very well. The empirical distribution has some

FIG. 5. Plots of Weibull distribution (thick line) fitted to the empirical distribution of wave amplitude (impulses) for
the four separate decades at the Greenwich meridian.
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structure near the peak but, even if it was statistically
significant, there is no important multimodality.

Figure 7 shows our WAI over the different decades.
Over all decades the Gaussian fit is good except for
1960–70. The clear bimodality for this decade was also
observed by Hansen and Sutera (1986) and Chris-
tiansen (2005a; for a WAI also stratified according to

temporal rate of change). Quite apart from possible
data issues for the presatellite era, this bimodality of the
WAI turns out to be misleading. This becomes clear
from Fig. 8, the empirical distribution of wave ampli-
tude at each longitude for the 1960–70 decade. This
figure is analogous to Fig. 7 with the phase information
of each wave component retained. Note that no
smoothing has been attempted, so most of the small-
scale structure in Fig. 8 is sampling noise. However, it
now becomes clear that the high amplitudes in Fig. 7
occur mainly at longitudes around 130°E, while the low
amplitudes occur around 40°E and 90°W. There is no
single longitude where the wave amplitude has a bimo-
dal distribution as seen in the 1960–70 WAI. So the
bimodality of the 1960–70 WAI does not represent lo-
cal bimodality of the wave amplitude; it just represents
the fact that different longitudes have, on average, ei-
ther high or low wave amplitude with, in this decade,
relatively few longitudes having an intermediate wave
amplitude.

Next, we turn our attention to why the WAI appears
to closely follow a normal distribution while the indi-
vidual contributions are accurately modeled with
Weibull distributions. First we determine how much the

FIG. 7. The WAI as defined in Eq. (6) for the four different decades (impulses) with the fitted normal distributions
(thick lines).

FIG. 6. The WAI as defined in Eq. (6) for the period 1960–2000
(impulses) with a fitted normal distribution (thick line).
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integrands in the WAI [Eq. (6)] are independent. A
good measure of how many independent data are to be
found in the amplitude function is based on the auto-
correlation. If the amplitudes A(, t) are perfectly cor-
related between different longitudes, r[A(1), A(2)] �
1, then we have only one degree of freedom. If for each
longitude combination for which 1 � 2 we have
r[A(1), A(2)] � 0, then the number of degrees of
freedom is (at least) the number of grid points in the
longitude direction. For intermediate values of the au-
tocorrelation scale we can estimate the number of de-
grees of freedom M as

1
M

� � 1
N �

i�1

N

r �A��j�, A��i��� , �7�

where N is the number of grid points and 	· · ·
 denotes
an average over longitudes j. Using this measure we
find around 3.6 degrees of freedom (the number of
degrees of freedom is usually thought of as an integer,
but in many applications there is no problem in gener-
alizing this to a fractional number) with the spatial de-
cay scale of the autocorrelation of the wave amplitude
at about 50° of longitude (the wave amplitude envelope
in Fig. 1 should be interpreted in this light). So, our
WAI index is made up of the sum of 3.6 independent
variables. The set of empirical distributions at each lon-
gitude does satisfy the Lindeberg conditions on the cen-
tral limit theorem for variable distributions (e.g., Feller
1968). This then means that our WAI by definition will
look similar to a Gaussian distribution. Clearly, with
only 3.6 degrees of freedom the limit to the Gaussian
distribution is not complete. However, the convergence

to the limit is generally very swift (also evidenced by
how far the empirical distribution functions in Figs. 6
and 7 are from a Weibull distribution), so our WAI is
bound to be close to having a Gaussian distribution.

The application of the central limit theorem to our
WAI clearly has profound consequences for its use in
detection of multimodality: even if the atmosphere had
multimodality at particular (or all) longitudes and if the
amplitude between longitudes decorrelates sufficiently
fast, the central limit theorem implies that the WAI
index will be normally distributed. Under these circum-
stances the WAI is unsuitable to detect multimodality.
Any observed multimodality will be the result of sam-
pling errors or unstable statistics.

5. Summary and discussion

A measure of local (in longitude) wave amplitude has
been introduced. A consistent amplitude is defined at
each longitude using spatial Hilbert transforms to ex-
tract a wave envelope. The wave is a latitudinally
weighted geopotential height anomaly at 500 hPa. The
latitudinal weighting is proportional to the wave vari-
ance at each latitude.

At all longitudes the local wave amplitudes appear to
follow Weibull distributions with shape parameters be-
tween about 2 and 3 and scale parameters between 100
and 140 m. The shape parameter turns out to be high
where the amplitude is high, indicating that in regions
of high average amplitudes the low amplitudes are rela-
tively underrepresented. At the tail ends of the Pacific
and Atlantic storm tracks the empirical distributions
are relatively farthest away from the fitted Weibull dis-
tributions, although the hypothesis that those distribu-
tions are drawn from a Weibull distribution cannot be
rejected at the 95% significance level.

The empirical distributions have substantial decadal
variability. For example, in the 1970–90 period the
wave amplitude at the Greenwich meridian has a flat
distribution between amplitudes of about 50 and 250 m.
Although this is largely averaged out over the four-
decade period, it clearly represents a substantial period
with unusual statistics. During this 20-yr period there is
an unexpectedly high probability of finding either rela-
tively high or low amplitudes. It is a subject of future
study to determine whether this is the result of weather
regime residence times. Any conceptual model for this
result should be able to explain why the other two de-
cades apparently do not show these unusual statistics.

The local amplitude can be integrated over longitude
to provide a hemispheric wave amplitude index, similar
to Hansen and Sutera’s (1986) WAI. It is shown that for
the full data period under consideration the WAI is

FIG. 8. Probability distribution function of the local wave am-
plitude of geopotential height at 500 hPa as a function of longi-
tude. At each longitude the distribution function is normalized
(i.e., integrates to one over amplitude). The decade 1960–70 of
NDJFM low-pass filtered data is used.
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close to a normal distribution. Again, there is substan-
tial decadal sampling variability with the 1960–70 de-
cade showing a bimodal distribution. However, it is
shown that the high and low amplitude states of this
distribution are, in fact, realized at different longitudes,
thus showing no real bimodality at any longitude in that
decade.

Note that our WAI values are higher by a factor of 2
than those found in previous studies because we in-
cluded the variance of the Hilbert transform as well
[Eq. (6)]; the choices of a temporal filter (10-day low
pass compared to 5 day), latitudinal weighting (vari-
ance weighting compared to a fixed latitude belt), and
the included longitudinal wavenumbers (all waves com-
pared to wavenumbers 2–4) do not introduce large
changes in mean wave amplitude. The inclusion of the
higher-longitudinal wavenumbers has only modest in-
fluence because of the temporal filtering. It is perhaps
more surprising that the latitudinal variance weighting
has so little influence on the mean amplitude. Appar-
ently the variance weighting simply provides a consis-
tent way of locating the latitudes of interest.

With the WAI as the integral of local wave ampli-
tudes, the central limit theorem can be applied to it,
insofar as different longitudes are independent. It is
shown that the local wave amplitude contains 3 to 4
independent degrees of freedom. This means that the
limit to the Gaussian distribution is not complete. How-
ever, the convergence is strong enough to generally
prevent the appearance of bimodality, even if bimodal-
ity was clear in the local data and if the data record was
long enough to prevent sampling errors. It is also ex-
pected that the time filtering of the data increases the
longitudinal autocorrrelation scale and so reduces the
effective number of degrees of freedom. Unfiltered
data are therefore expected to show an even more
Gaussian WAI.

Methods of looking at distributions in two-dimen-
sional projections of the atmospheric phase space usu-
ally employ empirical orthogonal functions (EOFs) or
some other spatial pattern to span the two-dimensional
projection space. Such methods also potentially suffer
from the strong convergence of the central limit theo-
rem.1 For example, an empirical orthogonal function is
a spatial pattern that, in general, can cover uncorrelated
(linearly independent) locations (e.g., Ambaum et al.
2001). This means that the corresponding time series is

a weighted sum of independent variables and by the
central limit theorem will have Gaussian statistics. The
time series probably contains only few independent
variables so the limit is certainly incomplete, but the
convergence to a Gaussian distribution is remarkably
fast. Under such circumstances it will, by definition, be
impossible to see more structure in the combined em-
pirical distribution function other than a bivariate ap-
proximate Gaussian distribution. Clearly, if it can be
shown that any principal component time series truly
represents a single atmospheric degree of freedom [this
would, e.g., be more likely for stratospheric EOFs; see,
e.g., Christiansen (2003)], then it will be possible to find
non-Gaussian structure, if the underlying atmospheric
data were non-Gaussian. But by virtue of the central
limit theorem, such EOFs need to represent strong tele-
connectivity and cannot contain several independent
signals.
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