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ABSTRACT

The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the
context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface
flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly pro-
portional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the
heating enhances this surface response. The time-varying part is independent of the heating and satisfies the
usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a
spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly
is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on
wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings
from this theory.

1. Introduction

In this paper we examine the linear response of a
uniform horizontal temperature gradient to heating.
Under certain assumptions on the vertical structure of
the heating field, linear perturbations satisfy a modified
form of surface quasigeostrophic dynamics. The system
is the thermal analog to the Charney–Eliassen system
of orographically forced barotropic Rossby waves
(Charney and Eliassen 1949; Held 1983) and a surface-
only variant of the system studied by Smagorinsky
(1953) and Hoskins and Karoly (1981).

The observational motivation to study this problem is
the origin of the Northern Hemisphere winter storm
tracks where cold continental air flows over a relatively
warm ocean and the release of latent and sensible heat
appears to kick off local perturbations that provide
seeds for downstream baroclinic developments (e.g.,
Hoskins and Hodges 2002). Furthermore, it has been
argued that the structure of the climatological planetary
waves follows from the mean heating in these storm
tracks. An interesting discussion in earlier literature
can be found in Bolin (1950), Bleeker (1950), and Sut-

cliffe (1951). Perhaps, because a simple analytical
model exists for orographically induced Rossby
waves—it is standard textbook material these days—
this became the favored explanation for the climato-
logical planetary waves. However, this model is unsat-
isfactory for near-surface climatological waves, while it
provides only part of the story for the upper air waves.
We hope that the present paper provides an analogous
simple model for surface temperature waves induced by
prescribed heating. The simplicity of our model is very
much in the spirit of the Charney–Eliassen model.

The theoretical motivation to study this problem is
the peculiar dynamics of linear waves on a uniform
surface temperature gradient. Here, the only external
parameter is the magnitude of the gradient, which is
proportional to the vertical wind shear (units of fre-
quency) through thermal wind balance. From dimen-
sional analysis it then follows that the phase speed of
one-dimensional waves has to be proportional to k�1,
with k the horizontal wavenumber. This implies that
the group velocity vanishes so that energy-like quanti-
ties, quadratic in the wave field, will have a vanishing
flux velocity (e.g., Whitham 1974; Hayes 1977; Straus
1983). It is therefore of particular interest to study the
forced problem where wave energy cannot disperse.

The earlier study by Smagorinsky (1953) indicated
the importance of the diabatic heating to the mean sta-
tionary waves. He added diabatic heating to the baro-
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clinic Charney model and solved for the stationary re-
sponse to heating for an idealized vertical profile. He
found a deep baroclinic response, which appeared to
have a reasonable realization near the surface when
making assumptions about the actual heating field
(which was largely unknown at that time). As in the
Charney model, the � effect is important in Smagorin-
sky’s setup. However, the assumption of a continuous �
is questionable (e.g., Ambaum 1997; Haynes et al. 2001;
Swanson 2001) and therefore the deep baroclinic struc-
ture of the mean response. Furthermore, the vertical
heating profile in Smagorinsky’s theoretical study, with
vanishing heating at the surface, is perhaps less appli-
cable for the midlatitudes where heating is dominated
by the warm ocean surfaces east of the main continents.
This has important consequences for the induced po-
tential vorticity structure. Our model does not include a
background internal potential vorticity gradient so that
vertical coupling of Rossby waves does not occur: even
though internal potential vorticity is generated, our
model remains essentially a single-layer model and is
therefore in spirit similar to the Charney–Eliassen
model.

The perturbed temperature gradient we study here is
also known as the one-sided Eady wave (e.g., Gill 1982;
Davies and Bishop 1994) and forms part of a spectrum
of waves supported by the presence of a boundary
(Rhines 1970). It is one of the Rossby waves required
for baroclinic instability in both the Eady model (Eady
1949) and the Charney model (Charney 1947; Gill 1982;
see also Heifetz et al. 2004). Modified versions of these
baroclinic instability models have been put forward as
models of frontal instability. For example, Joly and
Thorpe (1990) have the surface frontal wave interact
with internal diabatically produced potential vorticity
gradients. Schär and Davies (1990) modify the surface
basic state to include a temperature maximum, which is
the locus for what should be called a barotropic insta-
bility in that the interacting Rossby waves are at the
same (surface) level, although there are baroclinic en-
ergy conversions in their unstable linear modes. In the
present paper these unstable motions are excluded be-
cause the only potential vorticity gradient is that asso-
ciated with the uniform surface temperature gradient,
and therefore the Charney–Stern–Pedlosky necessary
condition for instability is not met (Bretherton 1966).
Müller et al. (1989) study the one-sided Eady wave in
semigeostrophic coordinates as a model of cyclogenesis
through constructive interference of waves. Some of
their results are reproduced in the homogeneous (adia-
batic) part of the solution we describe in section 2,
although we also find a strong bound on the cycloge-

netic potential of constructive interference through a
locally conserved wave energy.

The set of equations that we use are the quasigeo-
strophic equations with zero initial internal quasigeo-
strophic potential vorticity but with varying boundary
conditions. The flow is unbounded from above and the
f plane and Boussinesq approximations are used. We
will use the same scaling as in Held et al. (1995). The
streamfunction �, potential vorticity Q, potential tem-
perature �, and velocity field (U, V) are related as

Q � �2�, � � �z, and �U, V� � ���y, �x�.

�1�

The Laplacian is the three-dimensional Laplacian and
subscripts denote partial derivatives. Variables evalu-
ated at the lower surface z � 0 are written in lower case:

� � � |z�0, � � � |z�0, �u, �� � �U, V� |z�0. �2�

The equations of motion are

Qt � UQx � VQy � Hz �3�

�t � u�x � ��y � h, �4�

where H is a prescribed heating field [this was not in-
cluded in the equations of Held et al. (1995)] and h �
H |z�0. The system where H 	 0 and Q 	 0 is called
surface quasigeostrophic dynamics or uniform potential
vorticity flow.

Like the equation for quasigeostrophic potential vor-
ticity, the equation for surface 
 is simply advection
with, in this case, forcing. However, the dynamics for
surface temperature is very different to that of quasi-
geostrophic potential vorticity. The main difference is a
nonlinear instability of small-scale features leading to a
highly convoluted surface temperature field with a
spectral peak at the smallest scales (e.g., Held et al.
1995). This is the result of the strong singularity in the
Green’s function for this system (see below). An inter-
esting consequence is that a contour dynamics formu-
lation for surface quasigeostrophic dynamics cannot be
practically implemented (D. G. Dritschel 1995, per-
sonal communication).

Before we consider the response of a surface tem-
perature gradient to prescribed heating we briefly
present the derivation of the Green’s function of the
system as this is central to the analysis. We will use the
interpretation of Bretherton (1966), implying that the
system has homogeneous boundary conditions, while
surface temperature perturbations are represented as a
sheet of potential vorticity with a �-function structure in
the vertical. The Green’s function then can be applied
to both interior and boundary potential vorticity. In this
way the contribution to the velocity field of the interior
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potential vorticity and the boundary potential vorticity
can be separated.

Let us first determine the velocity field due to lower
boundary temperature fluctuations only. In this case
the interior potential vorticity Q � �2� is identically
zero. Streamfunction fields that satisfy the zero poten-
tial vorticity condition, as well as the vanishing bound-
ary condition for z → 
, can be written using a Fourier
integral as

� � ��
��

�

�̂�k, l � exp�� |K |z� exp�ikx � ily� dk dl,

�5�

with K2 � k2 � l2 and with �̂(k, l) the Fourier trans-
form of the surface streamfunction �. We can then use
Eq. (1) to calculate �:

� � ��
��

�

� |K |�̂�k, l� exp�� |K |z� exp�ikx � ily� dk dl.

�6�

By setting z � 0 we get the surface fields. From these
we can infer that the Fourier transforms of surface
streamfunction �(x, y) and surface potential tempera-
ture 
(x, y) are related through

�̂�k, l � � �
�̂�k, l�

|K | . �7�

This then is the spectral representation of the Green’s
function for the surface temperature field. Compare
this with the spectral representation of the Green’s
function for interior potential vorticity on an infinite or
periodic domain:

�̂�k, l, m� � �
Q̂�k, l, m�

|K |2 , �8�

where |K | is the total three-dimensional wavenumber.
This function has strong decay for large wavenumbers,
making the velocity field a relatively smooth and non-
local transformation of the source field Q. For a baro-
tropic version of this system (corresponding to m � 0)
the decay is also quadratic in the total wavenumber.
The spectral Green’s function for the surface 
 field
decays slower with wavenumber resulting in strongly
variable velocity fields at the smallest scales, which are
relatively localized around the 
 anomalies. The veloc-
ity field is a derivative of the streamfunction, so each
scale in the 
 field contributes equally to the velocity
field. This then leads to the singular behavior at small
scales for surface quasigeostrophic dynamics.

In the next section we will present the theory of

forced linear perturbations to a zonally symmetric uni-
form basic state. In section 3, observational evidence is
presented that provides support for the basic setup that
we propose in this study. Section 4 contains a conclud-
ing discussion on the presented model.

2. Linear dynamics of a forced horizontal
temperature gradient

We consider a zonally symmetric basic state with
forced perturbations. The basic-state zonal velocity U is
taken to be

U � Sz, �9�

with S a constant vertical wind shear. To linear approxi-
mation the value of S will be constant in time as well.
The thermal wind relation is equivalent to the defini-
tion of potential temperature in terms of the stream-
function. This leads to a basic-state potential tempera-
ture profile consistent with the basic-state zonal veloc-
ity of

� � �Sy. �10�

This, then, is the baroclinic flow onto which we will
produce linear perturbations by applying the heating
field H. The heating field H is assumed to have zero
zonal average, so it will not modify the zonal basic state
to linear approximation.

With this basic state the linearized versions of Eqs.
(3) and (4) become

Qt � zSQx � Hz �11�

�t � �S � h. �12�

We will separate the solution into an inhomogeneous
part, denoted by subscript 0, that satisfies

zSQ0,x � Hz �13�

��0S � h, �14�

and a part that satisfies the homogeneous equations
(23) and (24). We have assumed here that the heating
field is constant in time. To solve Eqs. (13) and (14) we
prescribe an idealized vertical structure of the heating
field as follows:

Ĥ � ĥ�1 � 2�z� exp��2�z�, �15�

with carets, as before, denoting horizontal Fourier
transforms. The vertical decay rate � is a general func-
tion of the horizontal wavenumber K (below we will set
� to be proportional to K, implying that the heating
depth is proportional to the horizontal scale of the forc-
ing). This particular vertical structure lies between an
exponential and a Gaussian. However, it is more real-
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istic than the former and in contrast to both these pro-
files it allows an easy analytical treatment.

Substituting this heating field in Eq. (13) we find

ikSQ̂0 � �4�2ĥ exp��2�z�. �16�

This, then, is the inhomogeneous part of the internal
potential vorticity field. The corresponding streamfunc-
tion field follows from inversion of the three-dimen-
sional Laplace operator Eq. (1).

The streamfunction can be found by separation of
variables, which in spectral space becomes �̂0 � �̂0p(z)
where p satisfies

�p	 � K2p��̂0 � Q̂0 � �
4�2ĥ

ikS
exp��2�z�. �17�

This equation for p can be solved by substituting the
boundary condition Eq. (14), which in spectral space
becomes �ik�̂0S � ĥ. This way we can eliminate �̂ and
ĥ and find the following solution for p:

p �

2


2 � 1
exp��2�z� �

1


2 � 1
exp��|K|z�, with


 	
2�

|K | . �18�

In this solution the boundary conditions p(0) � 1 and
p(
) � 0 have been used. Note that � is a function of K
and represents the nondimensional inverse heating
depth for each wavenumber. The expression for the
surface temperature field is 
̂0 � �̂0p�(0), which, after
some algebra, can be written as

�̂0 � �i
|K |
k

ĥ

S �1 �

2

1 � 

�. �19�

This, then, is the inhomogeneous solution for how the
heating field induces a surface temperature anomaly.

This solution can be written particularly elegantly if
we assume | l | K |k | and � � const. The latter condition
is equivalent to saying that the heating depth is propor-
tional to the horizontal scale of the heating for the
dominant scales in the heating field: this may be rea-
sonable for the latent part of the heating (where water
vapor can be distributed deeper, the longer a storm
track) and it allows an easy analytical treatment. Simi-
larly, the condition that | l | K |k | is a mathematical
assumption to simplify the analysis: we comment on
this further in section 4. Using these assumptions we
find

�̂0 � �i sgn�k�
ĥ

S �1 �

2

1 � 

�, �20�

where sgn(k) denotes the sign of k and � is now a con-
stant real positive number. The factor i sgn(k) in Fou-
rier space corresponds to a Hilbert transform in real
space (e.g., von Storch and Zwiers 1999).1 That is, 
0

is proportional to minus the spatial Hilbert transform
of h:

�0 � �
hH

S �1 �

2

1 � 

�. �21�

The Hilbert transform of a function has some similarity
to its derivative, as can be seen in its spectral represen-
tation: a cosine is transformed into minus a sine and a
sine is transformed into a cosine. The product of ĥ with
i sgn(k) in Fourier space corresponds to the convolu-
tion in real space:

hH�x� �
1
��̄��

� h�x � ��

�
d�, �22�

where the integral is a principal value integral. From
this convolution the similarity between the Hilbert
transform and the derivative of a function also stands
out. Figure 1 shows an example of a Hilbert transform
for an idealized periodic function.

The inhomogeneous solution Eq. (21) can be inter-
preted as follows: a cold perturbation will occur where
there is a strong positive heating gradient in the x di-
rection. Because of Eq. (14) we find meridional winds
proportional and opposite to the heating field: north-
ward winds ahead of the cold anomaly and southward

1 Note that in von Storch and Zwiers (1999) the definitions of
Fourier and Hilbert transforms both have a reverse sign for fre-
quencies.

FIG. 1. An example of a periodic function and its Hilbert trans-
form. The Hilbert transform, defined in Eq. (22), has some simi-
larities to a derivative. The Hilbert transform of this function
shows a logarithmic divergence at the location of the step.
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winds behind the anomaly. The compensation between
meridional temperature advection and heating is typi-
cal for midlatitudes. This situation corresponds to the
shallow heating case, as discussed in Hoskins and
Karoly (1981). The factor with the � in Eq. (21) corre-
sponds to the contribution to the temperature anomaly
due to the interior potential vorticity; if � � 0 (i.e., � �
0), the interior potential vorticity in Eq. (16) vanishes.
The interior potential vorticity is opposite in sign to the
surface potential vorticity implied by the temperature
anomalies. This means that the interior potential vor-
ticity reduces the surface winds corresponding to the
surface temperature anomalies alone. Then, according
to Eq. (14), a larger temperature anomaly is required to
provide the winds that can balance the heating field.

Next we turn our attention to the homogeneous part
of the solution to Eqs. (11) and (12). We denote the
homogeneous solution with subscript 1, so all fields f
are now written as f � f0 � f1. The homogeneous part
satisfies

Q1, t � zSQ1, x � 0 �23�

�1, t � �1S � 0. �24�

This set of equations is exactly identical to linearized
surface quasigeostrophic dynamics because, if the ini-
tial Q1 is chosen to be zero, it remains zero. Equation
(24) is then the only dynamical equation to be consid-
ered. It is easiest to consider the fields initially in spec-
tral space. We then find, using Green’s function for
surface quasigeostrophic dynamics, Eq. (7):

�̂1 � ik�̂1 � �i
k

|K | �̂1. �25�

This equation can be rewritten elegantly if we again
assume | l | K |k | in which case we find

�̂1 � �i sgn�k��̂1

or

�1 � ��1
H. �26�

Under the assumption of meridionally extended pertur-
bations we then find the following closed equation for
the surface temperature field:

�1, t � S�1
H � 0. �27�

Hilbert transforms have the property that ( f H)H � �f
(making it in some sense a real representation of the
imaginary number i). Furthermore, the spatial Hilbert
transform commutes with a time derivative, ( ft)

H �

( f H)t. Using these properties we can take the Hilbert
transform of Eq. (27) to find

�1, tt � S2�1 � 0. �28�

This means that the 
1 field is periodic everywhere with
angular frequency S. It is an interesting aspect of the
Hilbert transform that, even though the 
1 tendency
field according to Eq. (27) is a nonlocal function of the

1 field, the tendency is such that the evolution of 
1 is
periodic with the same period at all locations.2 From
Eq. (28) it then follows that the general solution for 
1

must be of the form 
1 � A(x) cos(St) � B(x) sin(St).
The functions A and B follow from the initial condition
on 
1 and from its initial tendency, which can be calcu-
lated from Eq. (27). The general result is

�1�x, t� � �1�x, 0� cos�St� � �1
H�x, 0� sin�St�. �29�

Figure 2 shows an example of the evolution for an ini-
tial condition on 
1 of a similar shape to the Hilbert
transform example of Fig. 1 [it is analogous to Fig. 2 in
the Müller et al. (1989) paper]. The anomalies always
propagate “eastward” with local perturbations varying
periodically.

As alluded to in the introduction, the wave energy

2 This peculiar property of the system would be the case for
every functional F, which commutes with time differentiation and
which has the property that F (Ff ) � �f for any function f.

FIG. 2. Hovmöller diagrams showing the 
1 field evolution ac-
cording to Eq. (27) with initial condition of the shape of the
example function in Fig. 1. Time along the vertical axis is in units
of one period. Solid contours correspond to positive values,
dashed contours to negative values, and the contour interval is 0.2
(not drawn above values of 2.5).
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does not disperse in this model. Here we can set the
wave energy to be proportional to 
2

1 � (
H
1 )2 (e.g., von

Storch and Zwiers 1999; Zimin et al. 2003). We can then
use Eq. (27) to deduce that this wave energy remains
locally conserved:





t
��1

2 � ��1
H�2� � 0. �30�

In Fig. 2 this can be clearly seen: the wave energy is
stuck at the same “longitude.” This local conservation
of wave energy puts a strong bound on the cyclogenetic
potential of constructive interference, a mechanism
suggested by Müller et al. (1989). Incidentally, Müller
et al. also note the strictly periodic behavior of their
wave solutions, as in Eq. (28).

In the next section we will examine some observa-
tional evidence for the results in Eqs. (21) and (29).

3. Observational evidence

The simplified dynamics as presented in the previous
section has some salient features that can be summa-
rized as follows:

(i) the zonal structure of the inhomogeneous zonal
anomaly temperature 
0 is proportional to the Hil-
bert transform of the zonal structure of the heating
field [Eq. (21)],

(ii) the tendency of the homogeneous temperature
anomaly 
1 is proportional to the spatial Hilbert
transform of the anomaly itself [Eq. (27)],

(iii) the homogeneous temperature anomaly 
1 varies
harmonically with a period inversely proportional
to the vertical wind shear [Eq. (29)].

We test these theoretical results in a suitable domain
of the Northern Hemisphere. Given that temporal vari-

ability is not determined alone by the dynamics de-
scribed here (there are also baroclinic waves acting at
the same time scales), emphasis is given to the time
mean solution, which appears to be of greater interest.
However, even for the latter, the effects of large-scale
orography and the simplifications of the theory cannot
be overlooked.

The dataset used for this analysis consists of two
parts:

1) Monthly climatologies (1979–2001) based on the
ECMWF reanalysis for temperature and other fields
at 925 hPa and the diabatic heating integral from the
surface to 700 hPa from the 40-yr ECMWF Re-
Analysis (ERA-40) Atlas (Kållberg et al. 2005). This
integral (units of W m�2) is denoted by H to distin-
guish it from h, the theoretical heating rate at the
surface (units of K s�1). From these data the corre-
sponding December–March (DJFM) climatologies
were obtained.

2) Six-hourly potential temperature at � � 0.995 (
srf)
from the National Centers for Environmental Pre-
diction–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis for 56 DJFM seasons
(December 1948–March 2004) with a spatial resolu-
tion of 2.5° � 2.5°.

Clearly, the assumptions of a uniform meridional po-
tential temperature gradient basic state with perturba-
tions that have weak meridional structure are only par-
tially met in the real atmosphere. Figure 3 shows the
DJFM climatologies of H and potential temperature at
925 hPa (
925). Two maxima of diabatic heating can be
seen (shading) next to the eastern coasts of Asia and
North America; vigorous surface dynamics occurs there
(Hoskins and Hodges 2002). In the latitude zone 40°–
50°N the temperature gradient is strong and less af-

FIG. 3. DJFM climatologies. Contours show potential temperature at 925 hPa (
925) and the shading the diabatic
heating integral from the surface to 700 hPa (H ). The contouring and shading intervals are 5 K and 60 W m�2,
respectively.
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fected by the Rockies and the Himalayas lying more to
the south. All variables have been averaged over this
latitude range so that spatial variations are restricted to
the x direction (longitude) only and this one-dimen-
sional, periodic domain permits a straightforward cal-
culation of Hilbert transforms.

Equation (21) was examined using the climatologies
of 
925 and H . Heating rate is assumed to follow Eq.
(15). In this case Eq. (21) becomes in dimensional
quantities (denoted with an asterisk)

�*0 � �� �*g

S*cpT*�p* �1 �

2

1 � 

��H �H, �31�

where �p* is the thickness of the heating profile in
pressure units and S*, 
*, T* are taken as weighted
spatial and time averages; primes denote zonal anoma-
lies. We will use the time mean H � so that 
*0 corre-
sponds to the time mean of 
�925. Using thermal wind
balance we can write S* as

S* �
f

N �dU*
dz � �

g

N�* ��d�*
dy ��, �32�

where N is the Brunt–Väisälä frequency. An estimate
for � can be obtained through Eq. (18) by taking � �
f/( |k* |D*N), where D* is the depth corresponding to
�p* and k * the wavenumber approximated to fit
double the zonal width of one of the heating peaks
(leading to a value of 2�/k* � 8000 km; see Fig. 4).
Combining these estimates one can get a value for the
constant of proportionality within the brackets in Eq.
(31). This is clearly sensitive to some of the choices one
has to make, especially for the depth scale of the heat-
ing. If one takes �p* � 200 hPa (e.g., Kållberg et al.
2005), the corresponding value for the constant of pro-
portionality turns out to be about 0.1 K (W m�2)�1.
Figure 4 shows 
�925 (solid line) and �H �H (dashed
line). The two lines match to a remarkable degree as
predicted by the theory of Eq. (21) and its dimensional
counterpart in Eq. (31) with the correct constant of
proportionality. Both profiles exhibit a minimum close
to the Asian and North American eastern coastlines,
which are indicated by gray shading in this and subse-
quent plots. Cold anomalies occur where the strong
positive heating gradients are. On the large scale there
is a good correspondence between the two profiles. On
the smaller scales the correspondence is weaker, al-
though some small-scale features in the heating anoma-
lies (e.g., at the North American northwest coast:
240°E; the Great Lakes: 275°E; and Japan: 135°E) ap-
pear to be reflected in the temperature profile.

Another model result that has been examined is that
the tendency of the temperature anomaly 
1 is propor-

tional to the spatial Hilbert transform of the anomaly
itself with the constant of proportionality being the ver-
tical wind shear [Eq. (27)]. To check against observa-
tions the correlation coefficient between 
1,t and 
H

1 is
calculated. Potential temperature near the surface (6-
hourly 
srf) is used to represent 
1. To exclude the
dominant diurnal cycle a low-pass Fourier filter is ap-
plied to the time series retaining periods longer than 1.5
days. Also, the DJFM mean is removed for each indi-
vidual season, and finally averaging in the latitude zone
leaves a single spatial dimension (0°–360°E). From Eq.
(27) 
1,t and 
H

1 are expected to be anticorrelated. This
should be the case for both correlation in time and
space. Calculating the spatial correlation at each time
step and averaging over the whole period (56 seasons �
121 days � 4 daily) led to a spatial correlation of about
�0.80. The temporal correlation is plotted as a function
of longitude in Fig. 5. The shading indicates again the
coastlines, which closely coincide with maxima of the
heating gradient. The anticorrelation is generally
strong, better than �0.7 at most longitudes. The long
time series adds statistical significance to this positive
result. Anticorrelation shows minima where the west-
erly flow meets the continents (240° and 360°E), al-
though this appears not to have an obvious reason.

A Hovmöller plot of 
1(x, t), as represented by
6-hourly 
srf, is shown in Fig. 6, revealing fairly coherent
moving anomalies with a phase speed of about 15
m s�1. This appears to be a dominant characteristic of
the variability throughout the whole data period out-

FIG. 4. Zonal anomalies of DJFM climatologies averaged in
40°–50°�. Solid line represents potential temperature at 925 hPa
(
 �925), thin dotted line diabatic heating below 700 hPa (H �), and
dashed line minus its Hilbert transform (�H �H). Gray bars indi-
cate the eastern coastlines of Asia and North America in the
selected latitude zone.
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side the diurnal variability band. This gives weight to
the theoretical results of Eqs. (27) and (28) over the
default explanation that the observed anticorrelation
(Fig. 5) is rather explained by simple advection (given
that the Hilbert transform and spatial derivative exhibit
quite a strong similarity): the average low-level west-
erly flow cannot match this high phase speed. There
also seems to be consistency with a local conservation
of wave energy, as noted in the discussion of Eq. (30),
especially at the east coast of the United States. Clearly,
this is also an area of vigorous baroclinic cyclogenesis
bound to the coastline, which would provide an alter-
native explanation of the localization of the wave en-
ergy.

4. Conclusions

Small perturbations on a homogeneous horizontal
temperature gradient, with weak surface winds and
modified by a heating field with weak cross-gradient
structure, satisfy a simple, two-dimensional (time and
zonal direction) set of equations: Eq. (21) for the time
mean and Eq. (27) for the anomaly. In other words, the
mean surface temperature anomaly is proportional to
the spatial Hilbert transform of the heating, and the
tendencies are proportional to the spatial Hilbert trans-
form of the anomaly itself, leading to a frequency pro-
portional to the basic-state temperature gradient. Al-
though various assumptions are used to derive these
results, we have shown that observed zonal tempera-
ture anomalies to a quite large extent satisfy these
properties.

The assumption of weak meridional structure (i.e.,
ignoring l compared to k) will modify the system. Lin-
ear unforced waves will attain a nonzero group velocity.
From the derivation of Eq. (26) it can be seen that in
the presence of meridional structure the meridional
wind and surface temperature anomaly would be re-
lated by something like a desingularized Hilbert trans-
form. In fact, for a temperature field with a dominant
scale in both x and y directions the meridional wave-
number introduces a modification involving a nearly
constant factor proportional to Lx /Ly, with Lx and Ly

the scales in the x and y directions. It is therefore ex-
pected that most of the qualitative character of the Hil-
bert transform relationship is retained. The purely pe-
riodic character, as expressed by Eq. (28), will also be
modified. Similar considerations hold for the derivation
of Eq. (21). Equation (19) is the more general version,
allowing meridional structure, but it does not allow the
compact expression in terms of Hilbert transforms.

A surface zonal wind can be easily included in Eq.
(27). However, the Doppler shift due to observed cli-
matological zonal wind was shown to be weak com-
pared to the main periodicity of the system. The ob-
served zonal propagation of temperature anomalies
(see Fig. 6) cannot be explained by zonal advection, and
the surface Rossby wave character as implied in Eq.
(27) is essential for this propagation. However, some of
the waves in Fig. 6 are baroclinic waves, which are ex-
pected to propagate with the zonal wind speed at the
steering level. This would also fit the observed phase
speed. In fact, regression analyses on complex EOFs of

FIG. 6. Hovmöller diagram of 
 �srf averaged over the 40°–50°�
latitude band for December 1996–March 1997. Contour interval is
8 K, dashed for negatives. Shading as in Fig. 4. The phase speed is
about 15 m s�1.

FIG. 5. Temporal correlation coefficient between the tendency
and the spatial Hilbert transform of 
 �srf averaged over the 40°–
50°� latitude band. DJFM means and periods shorter than 1.5
days have been removed. Shading as in Fig. 4.
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the surface temperature fields (not shown) indicated
that some of the waves had upward propagating char-
acteristics, a process for which interior potential vortic-
ity gradients are necessary.

Clearly, the assumption of vanishing interior poten-
tial vorticity gradients is expected to be only weakly
satisfied in the atmosphere. Interior potential vorticity
gradients associated with the jet stream have to be at
higher altitude than the e-folding depth corresponding
to the dominant wavenumber of the temperature
anomalies to ensure effective decoupling of the surface
temperature wave and the jet. Also, diabatic heating
can induce interior potential vorticity gradients, for ex-
ample, as described in Joly and Thorpe (1990).

The exclusion of potential vorticity gradients other
than that associated with the surface temperature gra-
dient precludes linear quasigeostrophic instability in
our system. It is, however, of interest to note the
strongly singular behavior of surface quasigeostrophic
dynamics and it may be possible that our system admits
finite amplitude instabilities with linear precursors as
alluded to in Müller et al. (1989). This could be an
alternative paradigm for frontal wave development and
is an area of current research.

Despite its apparent shortcomings, the present model
appears to perform fairly well when confronted with
analysis data. The spirit of the model was to provide the
thermal analog to the textbook Charney–Eliassen
model for orographically induced Rossby waves with
the same level of simplicity.
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