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ABSTRACT

The boundary conditions for the quasigeostrophic equations in isentropic coor-
dinates are examined. It is shown that, if one prescribes the height of the lower
boundary, the barotropic mode must have a finite effective Rossby radius. The
resulting equation for this mode is the equivalent barotropic vorticity equation.
The extension to multi-mode systems is treated, with the two-mode system as
a specific example. This two-mode system is equivalent to a certain two-layer
system. Furthermore, it is shown how weak diabatic effects may be included
in this framework. This is illustrated with a simple model of thermal relax-
ation for the equivalent barotropic vorticity equation. The potential vorticity
forcing is in this model proportional to the streamfunction.

1 Introduction

The starting point of this study is the short note by Berrisford et al. (1993) on quasi-
geostrophic potential vorticity in isentropic coordinates. In this note it is shown how the
introduction of isentropic coordinates leads to a conceptual simplification of the derivation
of the quasigeostrophic equations, as a result of the strict interpretation of vertical veloc-
ities in terms of diabatic effects. In the present study we concentrate on the introduction
of a lower boundary condition in this model. We will show that the usual neglect of the
so-called “non-Doppler” term is not necessary. The inclusion of the non-Doppler term ef-
fectively represents the allowance of dynamical pressure variations at the lower boundary.
These pressure variations are related to variations in the mass content of the air column
above the surface. As such we allow for vortex stretching effects in the air column, which,
in turn, can be translated into a finite effective Rossby radius for the barotropic mode. The
resulting equation for this barotropic mode is the equivalent barotropic vorticity equation.

We will treat two extensions to the equivalent barotropic model. The first consists of
the inclusion of higher baroclinic modes. As a specific example the two-mode system is
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presented in its general form and in a form where a background stratification, which is
typical for the troposphere and the lower stratosphere, is specified. A second extension is
the inclusion of weak diabatic effects in the model. These diabatic effects are assumed not
to alter the background stratification. As a specific example, we show how a simple model
for thermal relaxation can be formulated for the equivalent barotropic vorticity equation.

The plan of this article is as follows: In the next section we summarize the quasi-
geostrophic equations in isentropic coordinates. Section 3 is devoted to the treatment
of the lower boundary condition. Here we also show how we may render the boundary
conditions homogeneous, by introducing an appropriate potential vorticity sheet at the
lower boundary. In section 4 these homogeneous boundary conditions are used to expand
the equations into vertical modes. In section 5 we describe how the single-mode expansion
leads to the equivalent barotropic model. Section 6 is devoted to the extension of the
model to multiple modes, with the two-mode system as a specific example. In section 7
we show how we may include weak diabatic effects, illustrated with a thermal relaxation
model for the equivalent barotropic vorticity equation.

2 The isentropic quasigeostrophic equations

In this section the quasigeostrophic model in isentropic coordinates, as described by Berris-
ford et al. (1993), is summarized. For details on the derivation of this model we refer to
their note. For convenience we adopt the same notation.

All atmospheric variables are expressed as the sum of a barotropic (i.e. only depen-
dent on potential temperature #) reference value, denoted by subscript “0”, and a small
deviation from this reference value, denoted by a prime. For example, the pressure field p
is written as

p(z,y,0,t) = po(0) +p'(z,y,0,1). (1)

The geostrophic velocity v follows from the streamfunction ¥, which, in turn, is propor-
tional to the deviation of the Montgomery potential M, by

1
v=kx Vy=—k x VM’ (2)
0
with k a unit vector pointing upward, and f; a reference value of the Coriolis parameter f.
The horizontal derivatives V are here, and throughout the rest of this article, to be taken
with constant potential temperature. The Montgomery potential M is defined as

M =C,T + gz, (3)

with C, the specific heat at constant pressure, 7' the temperature, ¢ the gravitational
acceleration, and z the height field.

The quasigeostrophic model in isentropic coordinates consists of the material conser-
vation of quasigeostrophic potential vorticity ¢, following the geostrophic velocity. This is
expressed as

<%+V-V>q:0. (4)



The right-hand side of this equation is zero, which corresponds to frictionless and adiabatic
conditions. A discussion of frictional and diabatic effects is deferred to section 7. The
quasigeostrophic potential vorticity equals
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where p is the density and where the linear differential operator £ is introduced (note
that £ is elliptic because (dpy/df) < 0.) Equations 4 and 5 form a closed system in the
prognostic variable ¢ if the elliptic operator £ can be inverted. This is the case if suitable
boundary conditions on the streamfunction are supplied. This is the subject of the next
section.

For our purposes we also need the following relations regarding the vertical structure of
the atmosphere. The hydrostatic equation accurately describes the main vertical balance
of the atmosphere. In isentropic coordinates it reads

oM C,T

R (6)
The first law of thermodynamics can be written as

dQ dT dp de

T =GO Ry =G v

where d() is the heat input per unit of mass. Now combining the hydrostatic equation with
the first law of thermodynamics we find that pressure deviations are related to deviations
in the Montgomery potential, and consequently to the streamfunction, as
oM’ oy
/
R p—— = 0—. 8
D = po 20 pofo 20 (8)
This relation holds even in the presence of diabatic effects. It can be combined with the

definition of the Montgomery potential and the ideal gas law to give the following relation
between deviations in the height field and the streamfunction:

97 0y
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This relation states that the height deviation as a function of p'/(pofof) is the Legendre
transform of the streamfuction as a function of

3 Boundary conditions

The elliptic operator £ can be inverted if the streamfunction, its normal derivative or a
combination of the two is provided at the boundaries. The horizontal boundary condi-
tions depend on the horizontal geometry of the system. In a system with rigid walls, we
should impose the no-flux condition, which means that no fluid penetrates the horizontal
walls. In terms of the streamfunction this is equivalent to requiring ¥ to be constant at
the walls. Other possible geometries have no bounding walls, like for example a doubly



periodic domain, a sphere or an infinite plane. In these geometries no horizontal boundary
conditions are required, except for the infinite plane, where the energy should vanish at
infinity.

The top boundary condition is fixed by requiring the pressure variations to vanish.
Following Eq. 8, this implies the boundary condition

<%)t =0, (10)

where the subscript “t” denotes evaluation at the top boundary level ;. For all practical
purposes (excluding, for example, at the pg = 0 level of an isothermal atmosphere), this
boundary condition can be applied at a finite 6;. In this way we circumvent the problems
of applying boundary conditions at infinite height, like treated in Pedlosky (1979) or
Chapman and Lindzen (1970). Anyhow, the neglect of pressure variations above a certain
isentropic level seems to be a rather unrestrictive condition, if this level is chosen high
enough.

The lower boundary condition is fixed by the requirement that the height of the lowest
boundary is prescribed. We now use Eq. 9 to relate the height of the lower boundary with
the streamfunction. If we want to prescribe a fixed orographic profile 5(z, y) at the lower
boundary, we have the following condition on the streamfunction at the lower boundary
(denoted by subscript “s”):

8¢ _ ¢(®s) qn
<%)s - 63 - f0®s’ (11)

where ©; is the potential temperature at the lower boundary. In accordance with quasi-
geostrophic theory, n will be so small that ©; differs by a small amount from the fixed
potential temperature 65 at zg = 0. So we have

O, =0 + 6., where 0. < 6,. (12)

We now linearize Eq. 11 around 8, and obtain

PN _ ¥(8s)  gn
(ﬁ)f 6, Joby (13)

The physical picture of this boundary condition is that of an air parcel at the lower
boundary which flows over a mountain while conserving its potential temperature. Note
that we still allow for pressure variations at the lower boundary.

There are some features in which this treatment of the boundary conditions differs
from that by Berrisford et al. (1993). First of all, we use a fixed lower boundary height
as lower boundary condition whereas Berrisford et al. argue that height deviations are
approximately advected over the lower boundary (here, “approximately” refers to the
same approximation as in Eq. 12.) The latter is of course a rather strange boundary
condition, because there is no reason to expect that the height of an air parcel on the

lowest isentropic surface 6, that was originally located somewhat above the lower surface,
may not change, even on a flat lower surface. In other words, we propose to replace the
boundary condition Dz'/Dt = 0 by the stronger condition z’ = 0 (for a lower surface with



orography 1 we propose a replacement of the boundary condition Dz'/Dt = —v - Vn by
the stronger condition z’ = 7.) Secondly, we argue that that there is no reason to omit
the contribution of ¥ to the surface height field 7 in Eq. 13, which contribution leads to
a so-called “non-Doppler term” in the lower boundary condition of Berrisford et al. We
will show that this term gives rise to dynamical variations in the lower surface pressure
(contrary the the passive pressure deviations as allowed by Berrisford et al. ) These
changes in the lower surface pressure are of course related to vortex stretching effects of
the total fluid column above a given point on the surface (see also section 5.)

Our boundary condition on (J/00) is dependent on time, because @ generally will
change in time, and dependent on horizontal position, because 7 is generally a nonconstant
function of the horizontal coordinates. Formally, this no problem, but if we want to
solve the inversion with the standard technique of separating the vertical coordinate this
leads to time- and position-dependent vertical modes. We can render the lower boundary
condition independent of position and time with a procedure analogous to the well-known
construction of “surface charges” introduced into quasigeostrophic theory by Bretherton
(1966). We will explicitly present this technique here, so it becomes clear that there is no
problem in including the non-Doppler term in the lower boundary condition.

Define thereto a streamfunction ¢, that is related to the streamfunction ¢, by

= gp A0 -0 (32, (1)
s fogs

00 08
where ¢ is an infinitesimally small positive temperature, which means that for all 8 > 6,
we can choose ¢ such that # > 65 + ¢. The function H is the Heaviside function, which is

defined as

H(m):{l T (15)

The streamfunction ¢ is now defined up to an integration constant, which we will choose to
be zero. As a result, the vertical derivatives of ¢ and ¥ differ by a discontinuous function.
On the other hand, the ¥ and ¢ themselves differ by a continuous function, that has a
nonzero value only below 65 + ¢. Because we choose ¢ infinitesimal, this means that this
difference vanishes, even at ;. So we have

{'IE=¢ , 6,<0<8,

8 _ 0
56 = 26 s < 8 <6,

(16)

The streamfunction ¢} is chosen such that at the lower boundary we can satisfy Eq. 13 if
we take

L%
(%) -0

which is, contrary to the boundary condition on (9%/08), trivially independent of position
and time.



The quasigeostrophic potential vorticity can also be expressed in terms of 12 The
vertical derivative of the rightmost term in Eq. 14 contributes a Dirac-delta function to
the quasigeostrophic potential vorticity:

_ - fopo (- gn B .
q_f+c¢+m< fo)(s(o (0, + ). (18)

We have omitted contributions to ¢ that are proportional to H((#;4¢) —6) because formally
the inversion of £ can be written as an integral of ¢ multiplied by a Green function. The
contributions that have been omitted vanish for infinitesimal e.

Equations 4 and 18 now form a closed system under the homogeneous vertical boundary
conditions 10 and 17. It should be emphasized that this system is equivalent to the original
quasigeostrophic system, where the potential vorticity was given by Eq. 5, and the lower
boundary condition by Eq. 13. The price one pays for simplifying the lower boundary
condition is the inclusion of a potential vorticity sheet just above the lower surface.

The isentropic coordinates allow for an interpretation of this surface sheet in terms
of a “physical” realization. The sheet has an infinitesimal vertical extend in isentropic
coordinates but the pressure makes a finite jump (as demanded by Eq. 8) over the sheet.
This means that the sheet may be interpreted as a layer of air with very low static stability
— so is very thin in isentropic coordinates — and which mass content is in accord with
the pressure jump over the sheet. The mass content of the sheet is prescribed such as
to compensate the mass variation of the atmosphere above the sheet, so that all pressure
variations at the bottom of the sheet vanish, as expressed by Kq. 17. The surface sheet
carries finite quasigeostrophic potential vorticity, because Eq. 5 contains a term propor-
tional to dp’/d8, which, in turn, contributes a Dirac-delta function to the quasigeostrophic
potential vorticity.

It may be tempting to relate the surface sheet to a planetary boundary layer, which
also has very low static stability. However, there are two ways in which the planetary
boundary layer is fundamentaly different from this surface sheet. Firstly, the mass content
of the planetary boundary layer is mostly determined by the turbulent conditions in the
boundary layer itself; it does not passively adjust to the mass content of the atmosphere
above. Secondly, in our formulation the planetary boundary layer should be interpreted
as a disturbance to a finite dpo/df. But (0p'/08)/(dpo/df) becomes very large in the
planetary boundary layer, which is forbidden in quasigeostrophic scaling.

4 Vertical modes

The inversion of the elliptic operator £ can be performed partially by separation of the
vertical coordinate. Thereto we will write the dynamical fields 1, ¢, and v as a sum over
vertical modes, like for example

P(z,y,0,t)= i P (2,9, t) Xm(0). (19)

m=0

The vertical modes x,, are eigenfunctions of the Sturm-Liouville equation

d de de
2 | — —_ =



where the eigenvalues v, have a dimension of inverse squared length. Under the general
(192

boundary conditions a;dx,,/d8 + B;xm = 0, where the subscript “i” stands for bottom
surface (s) or top (¢), the eigensystem has the following properties (e.g., Ledermann 1982):

e T'he eigenvalues 7,, can be ordered such that v < 77 < 3 < .... They form an
infinite set of real numbers that tend to infinity as m — oc.

e The eigenfunctions x,, can be chosen such that they are orthonormal in the following
sense

et dpo

—5 XmXn df = (ps - pl‘)(sn,mv (21)
. df

where ps = po(6s), p: = po(6:), and § the Kronecker symbol. The normalization is
such that the eigenfunctions are dimensionless.

e The series expansion, Eq. 19, is uniformly convergent and the coefficients 1, are
expressible as

1 6tdp0
= — Ot do. 22
4 R TR (22)

The boundary conditions that we wish to impose in our specific case, can be deduced
from Eqs. 10 and 17. They are

(d;(—lsn> - (d(?(/—;% =0 (23)

We can multiply Eq. 20 with x,, and integrate over the vertical coordinate 6. Partial
integration combined with the boundary conditions in Eq. 23 and the normalization in
Eq. 21 then leads to the following expression for the eigenvalues v,,:

5 /“’f <de>2
Ym = PR pob p7; de. (24)
This equation proves that the eigenvalues v,, are nonnegative. In fact, the function that is
constant as a function of # is a solution of the Sturm-Liouville problem with the boundary
conditions of Eq. 23. This eigenfunction has eigenvalue zero. Equation 24 then shows that
this must be the eigenfunction with the lowest index. Using the normalization in Kq. 21
we can therefore deduce

Xo=1, 7% =0, (25)

which represents the barotropic mode.
The evolution of the coefficients ¢, can be obtained by projecting Eq. 4 on the m-th
vertical mode.

0qm >
L + Z Aklmvg,k ' VQI - 07 (26)
ot k,=0



where the interaction coefficients A, are defined as

1 Ot de
2o . de. 27
o pr Jo. dB XFXIX (27)

Al = —

Using the definition of ¢ in Eq. 18 we can easily show that

—_ S 2 _ _ fgps 0 = 0 / fOpsg 0
Gm = FOmo+ (V2 = Ym)m — =22 X (02) D Xn (05) 0 + Xm (0)7,  (28)
Ps — Pt 0 Ps — Pt

where p; = po(6s). Here we see how the decomposition of the fields into vertical modes
has solved the vertical part of the inversion of the linear operator £. The mth potential
vorticity mode generally depends on the streamfunctions of all other modes, due to the
inclusion of the surface sheet. In this sense the modes are not “pure”, but can be made
so by an appropriate linear combination of modes.

The vertically expanded equations are formally equivalent to the original equations
because any vertical profile can be expressed as an infinite sum over vertical modes with
coeflicients as in Egs. 19 and 22. To reduce the number of vertical degrees of freedom, one
may choose to truncate the vertical representation of the field to a finite number of vertical
modes. The truncated equations are obviously not equivalent to the original equations.
The most serious difference is that the potential vorticity with surface sheet is written as
a finite series of continuous functions. This means that the surface sheet contribution to
the potential vorticity is only poorly represented in the truncated system.

5 The equivalent barotropic vorticity equation

We are now able to work out how the equations look like for a system that is truncated
to the barotropic mode. Using Eqs. 26 and 28 the resulting equations can be written as
(omitting the subscript “0” of the barotropic components)

0
- . = 2
<6t+v v)q 0, (20)
_ 2 r=2Y), n
=1+ (V* - LR") ¥+ fog, (30)
where we have introduced the Rossby radius of deformation Ly and the scale height H as
1/2
Ps — Pt Ps — Dt
Lp= < > , H= . 31
fps 9ps (31)

Equation 29, with ¢ defined as in Eq. 30, is known as the equivalent barotropic vorticity
equation.

Our boundary conditions necessarily lead to a finite Rossby radius for the lowest index
vertical mode. Implementing the boundary condition in Eq. 13 directly would lead to
the conclusion that the model had no true barotropic mode; the lowest eigenvalue v
would necessarily be nonzero. Implementing it by using a vorticity sheet at the bottom
surface, while restoring homogeneous boundary conditions, as in Eqs. 17, in effect gives



a true barotropic mode, as in Eq. 25, but in the dynamics of this barotropic mode a
finite effective Rossby radius shows up. This leads to the conclusion that, under natural
boundary conditions (z’ = 1), a quasigeostrophic model should never show true barotropic
dynamics. This may give us a clue why barotropic models performed rather poorly in
numerical weather prediction (Wolff 1958): the atmosphere does not show barotropic
behaviour; the lowest order behaviour is necessarily equivalent barotropic.

The term —L5%% is known as the “Cressman term.” In the early practice of numerical
weather prediction it was originally introduced as a correction to the barotropic vorticity
equation — which is obtained by setting L]_%2 = 0 — to suppress the excessive retrogression
of the largest planetary waves in barotropic models (Cressman 1958). In the derivation as
presented here the Cressman term naturally comes into the equations. It originates from
the boundary condition Eq. 13 as a result of the allowed pressure variations at the lower
boundary. Together with the orographic term in Eq. 30 it is related to vortex stretching
effects. This can be understood if one rewrites Eq. 13, using Eqs. 8 and 31, as

P'(05) = fopsto(8s) — psgn = psf_opt <L1§2¢(9s) - fo%) : (32)

The left-hand side of this equation is proportional to the variation of the total mass above
a given point at the surface. So the stretching terms indeed express the variations in the
potential vorticity due to the atmospheric mass content between 6, and ;.

The relation between the Rossby radius of deformation and the scale height is given

by

(gH)'?

fo
which is a familiar relationship that, for example, can also be found in quasigeostrophic
theory of the shallow-water equations (Pedlosky 1979). We may estimate the Rossby
radius and the scale height from Eq. 31. The parameters p;, = 1000 hPa, p; = 0 hPa,
ps =1.2kg m™2, fo = 10"*%~", and g = 10 m s™2, lead to Ly ~ 2900 km, and H ~ 8.3 km.
This value of the Rossby radius is larger than the value used in the early numerical
prediction models. These models used an effective Rossby radius of about 800 km. This
Rossby radius was estimated by fitting the behaviour of the equivalent barotropic model
to the behaviour of the long waves in the real atmosphere. A more recent survey of
the Cressman term (Rinne and Jirvinnen 1993) indicated, though, that a broad range
of Rossby radii could give comparable skill to the models. But the most optimal choice
seemed to be a radius that was a function of position.

One may wonder why the value of the Rossby radius, that is obtained from the quasi-
geostrophic model, does not optimally describe the behaviour of the atmosphere. One
of the reasons may lie in the quasigeostrophic approximation itself. The basic state is
barotropic in nature (all background fields are functions of # alone). One may there-
fore speculate that the behaviour of the quasigeostrophic model remains too barotropic

Lp= (33)

in nature compared to the state of the atmosphere, which is highly baroclinic in nature,
especially near the tropopause. Note, for example, that the higher baroclinic modes have
a lower Rossby raius, which indicates that baroclinic behaviour may be associated with



lower effective Rossby radii. Indeed, earlier derivations of the equivalent barotropic vortic-
ity equation (e.g., Thompson 1961) used a single vertical mode with a baroclinic structure.
The derived Rossby radii could be considerably smaller than the Rossby radius which was
derived above. This single vertical mode was determined empirically.

The large Rossby radius of the lowest index mode has a somewhat limited relevance
for the modeling of the troposphere, because boundary condition Eq. 10 is only valid for
isentropic levels that are high in the stratosphere. This means that this Rossby radius
corresponds to the vertically integrated behaviour of the complete atmosphere instead of
the troposphere alone. We must introduce baroclinic modes, in order to be able separate
the behaviour of the troposphere from that of the stratosphere. This is the subject of the
next section.

6 Multi-mode systems

Truncating Eq. 26 to higher maximum mode indices gives rise to multi-mode systems, in
which baroclinic behaviour is included by the introduction of further vertical degrees of
freedom. Let us write out how the general two-mode system looks like. Here we include
the barotropic mode and the first baroclinic mode.

The interaction coeflicients in the two-mode system are

Ao =1, Ao=0, Apo=1, An=a (34)

where o depends on the vertical structure. The other elements Ay, follow from these by
the complete symmetry of the interaction coefficients for the permutation of the indices.
The equations of motion are

0
%+UO‘VQO+U1'VQ1 =0, (35)
oq _
W—I—’Uo'vghﬁ-’l]]'VQ0+OZU1'VQ]—O. (36)
These two-mode equations are equivalent to certain two-layer equations. Define thereto
95 = qo + Bai- (37)
We then have the two-layer equations
0
B v Vs, =0, (38)
Dqp_
86 _I_ ,Uﬁ_ . Vqﬁ_ = 07 (39)

if
Bt = %(oz:t Va4 4). (40)

For these values of § the potential vorticity in each layer can be written as a function of
the streamfunction g, in the two layers as

(x _5_:)5%:‘_ 7lﬂ'¢@+ n (X —B+)Tg+mp

g5 = f+ Vs — bs_ + %an, (41)

By = B- f
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where we have introduced

fgps
Ps — Pt

x=xis), Tg= (1+x8). (42)

The terms with y result from the inclusion of the non-Doppler term in the lower boundary
condition.

For this two-layer system, we can write the streamfunction and potential vorticity
fields as a sum of contributions of the two layers, instead of the two modes. This is done
by expressing 1 as as sum of ¥3, and 95_, instead of ¥y and 9);. So we have

Y =vPoxo + Y1x1 = ¢ﬁ+ﬁ7ﬂﬂxo_¢ 5 _ﬂ-lﬂ-i(o

We have numerically calculated the vertical structure of the modes and the layers for

(43)

an atmosphere consisting of a troposphere and a stratosphere. The vertical stratification
of the atmosphere was fixed by setting 02z9/00 = 333 mK™! when 283 K = 4, < § < 318 K
and 029/00 = 55 mK~! when 318 K =< 0 < #; = 483 K. The tropopause is thus
represented by a discontinuous change of 0z,/00 at a potential temperature of 318 K.
The surface pressure was taken to be 1000 hPa, which results in a tropopause pressure
of 189 hPa at 11.7 km height and a top pressure of 39 hPa at 20.7 km height. This
stratification is typical for summer conditions at mid-latitudes.

The amplitudes of the normalized vertical modes with m = 0,1, 2, 3,4 are plotted in
Fig. 1, both as a function of potential temperature and as a function of height. The corre-
sponding eigenvalues are in Table 1. The eigenvalues increase more-or-less quadratically
with index, which means that the inverse Rossby radii increase more-or-less linearly with
index. This is the result of the index being a generalized wave number (the index equals
the number of zero’s of the corresponding mode) and the Rossby radius being proportional
to a generalized vertical wavelength.

‘ Index ‘ Eigenvalue ‘

0 0

1 6.04425
2 28.0487
3 49.8233
4 93.2223
5 151.439

Table 1: The eigenvalues of the first six vertical modes in units of fip,/(ps — p:)-

The vertical structure of the layers in the two-layer model are given by Kq. 43. They
are plotted in Fig. 2. The 3, layer corresponds to the troposphere and the §_ layer
corresponds to the stratosphere. The potential vorticity in the two layers equals

G5, = F+ V2, — LTA56L7 705, + 0.5990 L7205 + 1.1466%, (44)
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Figure 1: Vertical profiles of the barotropic and first four baroclinic modes, plotted as a
function of height.

G5 = [+ Vs + 5.01TL7 s, — 5.9760L 520 — 0.4622%. (45)

The effective Rossby radii are different for all streamfunction terms in the two layers.
This is the result of the alternative derivation of the two-layer equations. If the same
equations were to be derived from a vertical discretisation by finite differences of the
quasigeostrophic potential vorticity, this asymmetry would vanish. The effective Rossby
radii of the stratosphere are much smaller than those of the troposphere; in this model
vortex stretching plays a much stronger role in the stratosphere than in the troposphere.
The orography has the largest impact on the tropospheric layer as a vortex squeezing
term, but it also has a direct but opposite effect on the stratospheric layer.

Truncations of Eq. 26 to a baroclinic mode with index M in general cannot be written
as a M + 1 layer system, as was the case for M = 1 and, trivially, for M = 0. This is
related to the fact that the M-mode system for M > 2 has more degrees of freedom than
the M + 1-layer system. The degrees of freedom of the M-mode system correspond to
the interaction coefficients Ag;,,, which for M > 2 have more independent values than the
number of degrees of freedom for linear combinations of the ¢,,. For example, for M = 2
we have 4 independent A, (namely Aq11, A112, A122, and Ag22), but only 2 independent
coefficients for linear combinations of the ¢, (namely ¢g,5, = q + B1¢1 + P2¢z). This
asymmetry between mode-systems and layer-systems was already noted by Flierl (1978).
He also showed that the excess number of degrees of freedom generally led to a better
calibration of the mode system compared to the corresponding layer system, the best
calibration corresponding to a direct solution of the Sturm-Liouville equation for a given
background stratification.

12
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Figure 2: Vertical profiles of the two layers, plotted as a function of height.

7 Diabatic effects in the equivalent barotropic vorticity equation

In the quasigeostrophic approximation, the general expression for the influence of diabatic
and frictional effects on the potential vorticity (e.g. Holton 1992) may be written as

0 _ Jo 9 (,;(dpo
<E+V'V>q_dp0/d0%<0 <W>>+k vk 1o

Here F, represents frictional effects, and @ represents diabatic effects. This equation
may also be projected on the barotropic mode to give the diabatic generalization of the
equivalent barotropic vorticity equation. The result is

9 ___Jo ~%>_-<%>]
<at+v v>q_ — [0t<d0 t bs (g S +k-V x Fp, (47)

with F,q the projection of the frictional force onto the barotropic mode.

The diabatic effects will be chosen so weak, that the basic stratification remains un-
altered. Under this constraint on the diabatic effects, the vertical modes do not change
in structure because the Sturm-Liouville equation, Eq. 20, is only dependent on the basic
stratification. Forcing at the lower and upper boundaries are also not of influence on
the basic stratification. For example, we can introduce a forcing on the lower boundary
without changing the value of 8, because 8, is allowed to be somewhat different from the
true lower boundary potential temperature @, as expressed by equation 12. The same
considerations hold for the upper boundary.

As an example we will propose a simple forcing model, which represents a temperature
relaxation toward some prescribed surface temperature distribution. The physical process
that should be associated with this relaxation is the vertical turbulent exchange of latent

13



and sensible heat between the planetary boundary layer and the rest of the atmosphere.
The model for this relaxation will be written as
_T7(0s) = T(6s)

6, = 4
- ; (48)

where 17, is the temperature variation towards which the temperature relaxes, and 75 is
a relaxation timescale. The right-hand side of this equation can be rewritten in terms of
the streamfunction, by using Eqs. 2 and 3, as

T6) - THO) _ o

— = (0(6:) — YR(0:) + Z—((0:) — Zh(0.)). (49)
TR »TR

CpTr

The second term is an order of magnitude smaller than the first term on the right-hand
side of this equation. This can be easily seen by linearizing the second term around Oy,
as in Eq. 12. We then have

0z 0z
/08_/08218_/ 5_0,<__ R)
Z( ) ZR( ) z (6 ) ZR(® ) s\ 90 o0 (50)
The first term on the right-hand side vanishes, because the level O, was defined to be the
earth’s surface. The second term on the right-hand side is a second order term, because
it is a product of two first order terms.
The lower boundary forcing in Eq. 47 can now be rewritten as

ot (i), = —m (%) (566.) - v(6)

1 2
= N R (H(8)  R(8)15)
where in the last equality the definition of the Brunt-V&isila frequency NV is used. The term
g*/Cy0sN2 is a constant with a typical value of about 3. This constant can be absorbed
into the definition of the timescale Tr. Note that this relaxation term is proportional
to the streamfunction deviation from a prescribed streamfunction. As the streamfunction
follows from the potential vorticity via a smoothing operation, this means that the thermal
relaxation contribution to the potential vorticity budget is a smooth contribution, which
acts on the larger scales. A great advantage of this model is that it will hardly damp
the smallest scales, so that the forcing of large-scale phenomena by small-scale eddies can
be described using this model. Specific examples are the effect of Reynold’s stresses on
the large-scale flow, or the triggering of regime transitions by small-scale eddies. The
equivalent barotropic vorticity equation with this temperature relaxation model has, for
example, been used to illustrate the origin of the tropopause as the eroded edge of the
polar vortex (Ambaum 1997). The same temperature relaxation model in combination
with the barotropic vorticity equation, has proven to produce a realistic atmospheric
model if judged on its average behaviour and its variability (Anderson 1995).

14



Bibliography

Ambaum, M. H. P., 1997: Isentropic formation of the tropopause. J. Atmos. Sci., 54,
555 — 568.

Anderson, J. L., 1995: A simulation of atmospheric blocking with a forced barotropic
model. J. Atmos. Sci., 52, 2593 — 2608.

Berrisford, P., J. C. Marshall, and A. A. White, 1993: Quasigeostrophic potential vorticity
in isentropic coordinates. .J. Atmos. Sci., 50, 778 — 782.

Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. .J. Roy. Me-
teor. Soc., 92, 325 — 334.

Chapman, S., and R. S. Lindzen, 1970: Atmospheric tides. Thermal and gravitational, D.
Reidel Publishing Company.

Cressman, G. P., 1958: Barotropic divergence and very long atmospheric waves. Mon.

Wea. Rev., 86, 293 — 297.

Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models.
Dyn. Atmos. Oceans, 2, 341 — 381.

Holton, J. R., 1992: An introduction to dynamic meteorology, 3rd. edition. Academic
Press, Inc.

Ledermann, W., and S. Vajda, 1982: Handbook of applicable mathematics, Volume IV.
Analysis. John Wiley & Sons.

Pedlosky, J., 1979: Geophysical fluid dynamics. Springer-Verlag.

Rinne, J., and H. Jarvinen, 1993: Estimation of the Cressman term for a barotropic model
through optimization with use of the adjoint model. Mon. Wea. Rev., 121, 825 — 833.

Thompson, P. D., 1961: Numerical weather analysis and prediction, The Macmillan Com-
pany.

Wolff, P. M., 1958: The error in numerical forecasts due to the retrogression of ultra-long
waves. Mon. Wea. Rev., 86, 245 — 250.

15



