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The horizontal gradient of potential vorticity (PV) across the tropopause typically
declines with lead time in global numerical weather forecasts and tends towards a steady
value dependent on model resolution. This paper examines how spreading the tropopause
PV contrast over a broader frontal zone affects the propagation of Rossby waves. The
approach taken is to analyse Rossby waves on a PV front of finite width in a simple
single-layer model. The dispersion relation for linear Rossby waves on a PV front of
infinitesimal width is well known; here an approximate correction is derived for the case
of a finite width front, valid in the limit that the front is narrow compared to the zonal
wavelength. Broadening the front causes a decrease in both the jet speed and the ability of
waves to propagate upstream. The contribution of these changes to Rossby wave phase
speeds cancel at leading order. At second order the decrease in jet speed dominates,
meaning phase speeds are slower on broader PV fronts. This asymptotic phase speed
result is shown to hold for a wide class of single-layer dynamics with a varying range
of PV inversion operators. The phase speed dependence on frontal width is verified by
numerical simulations and also shown to be robust at finite wave amplitude, and estimates
are made for the error in Rossby wave propagation speeds due to the PV gradient error
present in numerical weather forecast models.

1. Introduction

Large-scale Rossby waves are ubiquitous features of the extra-tropical atmosphere.
They typically reside on, and propagate along, the region of large isentropic potential
vorticity (PV) gradient at the tropopause. The region of large PV gradient is narrow, in
the sense that its width is much smaller than the typical wavelengths of Rossby waves,
and as such the jet stream itself meanders latitudinally. A simple model for this PV
front is obtained in the limit of a single PV step separating two regions of uniform PV,
representing the tropopause as a discontinuity between high PV stratospheric air on
the poleward side and low PV tropospheric air on the equatorward side (e.g. Verkley
1994; Swanson et al. 1997). The dynamics then reduce to an evolution equation for the
lateral displacement of this PV step which can be solved via contour dynamics techniques
(Zabusky et al. 1979; Pullin 1992).

In reality, however, the width of the region of strong isentropic gradient of PV at the
tropopause is finite. Furthermore, the isentropic gradient of PV at the tropopause is found
to be systematically too smooth in current global numerical weather prediction (NWP)
models, with the gradient typically exhibiting a reduction of around 20% from its initial
value over the first three days of a forecast (Gray et al. 2014). It is therefore important
to understand how the behaviour of Rossby waves on a PV front with small but finite
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width differs to those on an infinitely-sharp PV front. Such differences may arise as a
modification of the propagation speeds of linear Rossby waves, and also via nonlinear
processes such as filamentation and wave breaking which may alter the amplitude of
large-scale meanders (see, e.g., Scott et al. 2004).

The focus of this paper is the modification of the dispersion relation for Rossby waves
on a PV front of infinitesimal width (henceforth a sharp PV front) resulting from a
smoothing of the PV front. Smoothing the front fundamentally modifies the problem: in
the sharp PV front case there exists only a single normal mode, representing north-south
meanders of the front, whereas in the smooth case there is an additional continuum of
modes representing sheared disturbances within the PV gradient zone. An additional
complication may also arise if critical lines are present on the jet flanks: in the sharp
PV front problem the PV gradient is nearly everywhere zero so any critical lines are
passive. If the smoothing modifies the basic state PV gradient at the critical line then
the linear theory will cease to remain valid. This problem is avoided here by assuming
the smoothed basic state PV gradient is at least exponentially small in the smoothing
width away from the PV front.

To explore how the phase speed of waves might be modified on a smooth front, consider
the following general form of the dispersion relation of a zonally-propagating wave:

c(k) = Ugdw — Cint (k) (1.1)

where ¢(k) is the zonal phase speed of a wave of zonal wavelength k, U,q, represents
advection by the basic state jet, and ¢, (k) represents the self-induced, or intrinsic,
phase speed of the wave. A westerly extratropical jet is considered for which U,q, and
cint (k) are both positive. Both Ug,g, and ¢;,,¢ (k) depend on the basic state PV profile, and
might both be expected to reduce as a sharp PV front is smoothed. The key questions
addressed here are: what is the sign of the change in phase speed ¢ resulting from a
smoothing, and how does it depend on frontal width? Is a frontal smoothing error of
the magnitude present in NWP models expected to have a measurable impact on the
propagation of Rossby waves in NWP forecasts?

The propagation of waves on a finite-thickness tropopause has been studied previously
using several different approaches. Plougonven & Vanneste (2010) analyse the dynamics
of linear waves on a vertical discontinuity in static stability (see Rivest et al. 1992) in
which the meridional PV gradient is independent of latitude. This represents a broad
baroclinic zone with no meridional jet structure. Smoothing this basic state results in
a continuous transition from low to high stratification across the tropopause, and the
study shows that this acts to increase the Rossby wave phase speeds. In the notation of
(1.1) the smoother vertical PV profile reduces the ability of waves to propagate upstream
(Cint) without directly modifying advection by the jet (Ugdw)-

In contrast, the study of Juckes (1998a,b) explores the growth rates of baroclinic
disturbances in a setup similar to the Eady model: a uniform static stability, uniform
PV atmosphere is considered, bounded by rigid horizontal boundaries at the ground and
tropopause. Unlike the Eady model, the meridional temperature gradient at the bound-
aries is confined into a meridionally-narrow baroclinic zone, representing the tropopause
and temperature gradient at the ground. The associated jet stream is localised in latitude.
In this case, smoothing the basic state acts to reduce the jet maximum but it is shown
that the growth rates of the baroclinically-growing normal modes are relatively insensitive
to the smoothing. Implicit in his equations (e.g. (43a) in Juckes (1998a)) it can be seen
that the smoothing also acts to reduce the phase speeds of the edge waves. This is a
result of the smoothing reducing both U,4, and ¢;pne(k) in (1.1), with the reduction in
Uadr dominating.
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There is clearly a question of which setup is more appropriate, the broad baroclinic
zone of Plougonven & Vanneste (2010) or the narrow baroclinic zone of Juckes (1998a,b).
The present paper follows the approach of Juckes by analysing a model with a narrow
PV gradient zone, and an associated jet stream that is localised in latitude. The setup is
simplified as much as possible by considering a single-layer model and focusing attention
solely on the propagation of Rossby waves. In addition, since the most appropriate 2-
d representation of the full 3-d atmosphere is not known precisely, and a number of
different 2-d simplified models are often used, the robustness of the asymptotic result for
phase speed modification is explored by considering a general family of single-layer PV
inversion operators and smoothing kernels.

The analysis begins with a single-layer model with a step function basic state PV
profile (described in section 2). A smooth PV front is then generated with finite width
ro via convolution with a smoothing kernel. The approximate dispersion relation for
waves propagating on this smooth basic state, valid for krg < 1, is derived in section
3. The analysis assumes small wave slope, such that kn < 1 where 7 represents the
size of lateral displacements. Initially the simplest relevant fluid dynamical model is
considered, the quasi-geostrophic shallow water (QGSW) equations. In section 4 the
results are generalised to a class of similar models with only modest constraints on the
PV inversion operator. Implications for errors in operational NWP models are discussed
in section 5.1 and some finite-amplitude numerical simulations are presented in section
5.2 to test the robustness of the results at finite wave amplitude (where kny ~ 1 but
kro < 1). Section 6 presents the key conclusions.

2. Linear waves on a sharp potential vorticity front

The QGSW model (see, e.g., Vallis 2006) represents the large-scale dynamics of a
single-layer fluid at small Rossby number. It is commonly used as a model of large-scale
atmospheric motions as it incorporates the effects of both rotation and stratification in a
simple fashion. The quasi-geostrophic PV, g, is related to the geostrophic streamfunction
1 via
0=+

R
where f is the Coriolis parameter, assumed constant, and the Rossby radius of deforma-
tion is given by Lr = \/gH / f where g is the acceleration due to gravity and H the average
layer depth. The horizontal wind is related to the streamfunction via (u,v) = (=, ;)
where x = (x,y) are the zonal and meridional coordinates respectively. The dynamics
are governed by the Lagrangian conservation of PV following the geostrophic flow:

Dq
Dt

The QGSW dispersion relation for linear Rossby waves on a sharp PV front is well
known (e.g. Swanson et al. 1997; Esler 2004; Zhu & Nakamura 2010). Here a brief
derivation is provided which highlights, for later reference, the presence of a continuous
spectrum of passive singular modes in addition to the familiar discrete meandering mode.
Whilst passive for a sharp PV front, the continuous spectrum is important for the finite-
width front examined below. The extension to the case of multiple sharp PV steps is
then summarised in section 2.1.

The basic state is given by a step-function in PV located at y = 0:

Qly)=1f+ %sgn(y) (2.3)

(2.1)

0. (2.2)
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FIGURE 1. Example basic state PV profiles (a) and zonal wind profiles (b) for the single sharp
front of (2.3)-(2.4) (dashed lines), the double sharp front of (2.15) (dotted lines), and the smooth
front of (3.3)-(3.4) with the Gaussian smoothing kernel (3.33) (solid lines). PV values are scaled
by A and wind values are scaled by ALr/2. The double sharp front and the smooth front are
shown with width rg = 0.4LR.

where A is the magnitude of the PV jump across the front. The corresponding zonal
wind profile is obtained by solving (2.1) for ¢ = Q(y) to obtain

AL
u=U(y) = TRe_lyl/LR. (2.4)

The profiles of Q(y) and U(y) are illustrated by the dashed lines in Figures la and 1b
respectively.

Considering a perturbation to the basic state, equation (2.2) implies that the PV
front is a material contour. Away from the front the PV gradient vanishes, however for
generality consider a continuum of passive tracer contours which are advected by the
flow but have zero PV contrast: for each y = g of the basic state write the position of the
perturbed contour as y = § + n(x, g,t), where y = n(x,0,t) is the PV contour. Material
advection of these contours implies the kinematic relation

(% + ua%) n(z,y,t) = v (2.5)

where v and v are evaluated at (z,y+n(z,y,t),t). The dispersion relation is obtained by
linearising (2.5) around the basic state (2.3)-(2.4). This is achieved by writing ¢ = Q+¢/,
u = U+ and v = v/ and neglecting terms that are nonlinear in primed quantities,
and evaluating all terms at (z,y,t). In addition, the PV inversion can be calculated by
approximating ¢’ as a line distribution along y = 0:

q = —nAd(y). (2.6)

For a normal mode disturbance of the form n(z,y,t) = A(y)e*@ ") with the small
amplitude condition requiring |k7| < 1, the streamfunction induced by (2.6) is:

0 = Bl K)i(0)e =), (2.7
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where
AL
Olys k) = eI/ En (2:8)
2K
represents the meridional structure of the perturbation streamfunction for a wavenumber
k disturbance, and the effective wavenumber is given by k? = 1+ k?L%. In the following,
the argument k of ¢ is omitted when the meaning is clear.
After linearisation, (2.5) becomes

(Uy) = o) ily) = ¢(y)n(0). (2.9)

This equation admits two types of the solution, a discrete mode representing meridional
meanders of the PV contour:

L By) : _ oy ALr (1
and a continuous spectrum of singular modes:
iy) o< oy —yo) with ¢ =U(yo) for any yo # 0. (2.11)

The discrete mode (2.10) propagates zonally with speed equal to the sum of advection
by the maximum of the basic state jet and an upstream propagation of the Rossby wave
proportional to 1/k. The corresponding group speed:

5} AL 1
cg = %(kc) = TR (1 - F) , (2.12)

is also slower than the jet maximum for all wavenumbers. The structure of the discrete
mode (2.10) is singular where U(y) = ¢, that is at

K
[l —yc—LR10g<H_1), (2.13)
identified with a critical line on each flank of the jet. However, these critical lines are
passive since the PV gradient vanishes at all y # 0 so no PV mixing occurs. Similarly, the
continuous spectrum of singular modes (2.11) represent meridional displacements of the
passive tracer contours which are localised away from the PV front and as such do not
induce any flow. Each mode is localised to a particular value of y and is simply advected by
the basic state wind there. Clearly neither the critical lines nor the continuous spectrum
play a dynamical role in the sharp PV front problem.

The dispersion relation (2.10) for the discrete mode is qualitatively similar to that of
Rossby waves on a uniform PV gradient. For instance, the dispersion relation of linear
waves with zero latitudinal wavenumber on a uniform wind basic state given by Q =

f—i—By and U = BLQR, is
c=pL% <1 - %) (2.14)

(Vallis 2006) so such waves are advected by the basic state jet and propagate upstream
with speed proportional to 1/x2. Therefore, short waves on a uniform PV gradient are less
able to propagate upstream than their PV front counterparts. Furthermore, the group
speed corresponding to (2.14) is easily derived and shown to have a maximum at a finite
wavenumber (k = 4 in this case) which is faster than the basic state jet speed. It is shown
below that these two properties of waves on a uniform PV gradient are recovered when
the single sharp PV front is smoothed.
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2.1. Potential vorticity fronts composed of multiple sharp PV steps

The procedure for analysing perturbations to a single sharp PV front can be extended
to a front composed of multiple parallel PV steps. Instead of the single equation (2.9) for
the evolution of a single PV front, one obtains a system of n coupled equations for the
evolution of n PV steps. This setup could be used to study the smooth PV front problem
by approximating it as a large number of weak PV steps. In the following section the
smooth PV front problem is instead considered directly, however the simplest multiple-
step case of n = 2 is illustrated here since it provides valuable insight into the general

problem.
The two steps are taken to be of equal magnitude and spaced a distance 2ry apart:
1
Qa(y) = 5 (Qy —70) + Qy +10)) (2.15)

where Q(y) is the single front basic state PV profile of (2.3) and the subscript d denotes
the double front case. By linearity, the corresponding zonal jet profile Uy(y) is likewise
equal to the sum of two single front jet profiles and is illustrated in Figure 1b. Due to
symmetry, there are now two equal jet maxima located at the locations of the PV fronts,
with weaker values in the jet core. Repeating the above analysis for this system one finds
two normal mode solutions with phase speeds:

1

cx = 5 (U(0) +U(2ro) — (¢(0) £ 6(270))) (2.16)

which represent a meander of the jet (¢4 ) in which the two contours move in phase with
each other, and a varicose (or jet streak) mode (c—) in which the two contours move in
anti-phase. Expanding (2.16) for € = kro < 1 gives:

cy = % ((1 - 1) _ < ) +0(%) (2.17)

K k+1
_ALR
2

C_

(1 o= ) +0(e) (2.18)
K2 —1
which shows that ¢y reduces to the normal mode solution (2.10) of the single sharp front
problem in the limit e — 0, whereas c_ collapses onto the jet core speed. Increasing
the frontal separation reduces the phase speeds of both modes, but the impact on
the meandering mode is quadratic in € due to a leading-order compensation between
a reduction in advection by the basic state jet and the ability of the waves to propagate
upstream (see equation (1.1)). The phase speed of the varicose mode, in contrast, reduces
linearly with e from the jet maximum suggesting that jet streaks are more sensitive to
ro than the meandering mode. In the next section it is shown that both of these results
carry over to the continuous PV gradient case.

3. Linear waves on a potential vorticity front of finite width

In this section an approximate correction to the dispersion relation (2.10) for a smooth
PV front with finite width rq is derived. The approximation is in terms of the parameter

e = kro (3.1)

and is valid in the limit € < 1, that is, for smoothing width much smaller than the zonal
wavelength. It is also required that ro < Lg.

To generate a smooth basic state, the single sharp front of (2.3) is convolved with a
smoothing kernel w(y; ro) of width ry. Such a function should be everywhere positive, so
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that the PV gradient remains single-signed. It should also have a domain integral equal
to unity, and scale with r¢ in the sense that

w(y;ro) = W(Y)/ro (3:2)

for some function W(Y'), where Y = y/ro. Finally, it is assumed that w(y;ro) decays
exponentially at |y| > ro. The argument ¢ of w is omitted when the meaning is clear.
By linearity of the PV inversion operator, the basic state PV and jet are given by:

:/QWM@—MMy (3.3)
l&m:/UWM@—MMy (3.4)

where Q(y) and U(y) are the single front PV and zonal jet profiles of (2.3) and (2.4)
and the subscript s denotes the smooth front case. All integrals shown span the range
(—00,00). Since Q(y) is a step function, the smoothing kernel is proportional to the PV
gradient of the smooth basic state:

dQs
dy

Therefore the requirement that w(y) decays exponentially at |y| > ro ensures the PV
gradient is small away from the front. Example profiles of Qs(y) and Us(y) for the
Gaussian smoothing kernel of equation (3.33) are illustrated by the solid lines in Figures
la and 1b respectively.

As for the sharp PV front, the dispersion relation is derived by adding meridional
displacements to the basic state PV contours: for each basic state contour position y = 7,
the position of the corresponding perturbed contour is written y = g+ n(x, 7,t). Writing
n(z,y,t) = 7(y)e** =Y and linearising the contour advection equation (2.5) for each §
gives the following condition for linear waves

(Ua(y) — &) i(y) = / oy — )iy uly') dy/, (3.6)

where the right hand side is a Green’s function expression for the meridional wind.
The function ¢(y), defined in (2.8), is the meridional streamfunction structure of a
wavenumber k disturbance in the sharp PV front problem.

Equation (3.6) describes the evolution of linear perturbations to the finite-width PV
front, analogous to (2.9) for the sharp PV front case. The smoothing results in two
modifications to the equation: the advection is by the smooth jet profile Us(y), and the
perturbation streamfunction is given by a convolution over all of the PV contours where
the basic state PV gradient w(y) is nonzero. Equation (3.6) is an eigenvalue problem for
the meridional structure of the modes 7j(y) with corresponding eigenvalues ¢. Multiplying
by w(y) and integrating gives an expression for the eigenvalues in terms of 7j(y):

o JUs) = ¢ )i(y)w(y) dy 3.7)

Jily)w(y) dy
where, analogous to the definition (3.4) of Us(y),

/¢y yw(y')dy'. (3.8)

In the remainder of this section it is shown that, as in the sharp PV front problem,
equation (3.6) admits two types of solution: a single discrete mode representing large-scale

= Aw(y). (3.5)
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meanders of the PV front and a continuous spectrum of singular modes which represent
sheared disturbances within the frontal zone. Continuous spectra are a common feature
of shear flows in unbounded domains, as identified by Orr (1907), in which often the
set of discrete normal modes is incomplete in the sense that it is insufficient to describe
arbitrary initial conditions. In the following, the structure and phase speed of the discrete
mode are shown to be modified by the smoothing, and their leading-order corrections
are derived. The continuous spectrum is shown to be dynamically active, unlike for the
sharp PV front case, and details of its structure are discussed.

3.1. Asymptotic analysis

Equations (3.6) and (3.7) show that the global structure of the modes 7j(y) and the
phase speeds ¢ are both determined solely by the values of 7(y) in the region where the
PV gradient is nonzero, that is where y = O(rg). As such, an asymptotic analysis of (3.6)
is performed in this ‘inner region’, utilising the stretched variable

Y =y/ro. (3.9)

Each term in (3.6) is now expanded in terms of € for Y = O(1), allowing coefficients of
like-powers to be equated.
First, the Taylor expansion of U(y) is written, for Y = O(1), as

U(roY) =U(0) + ro|Y|U'(0) + §Y2U”(O) +0(rd), (3.10)

where it is understood that the derivatives are evaluated at 0+. Upon substitution into
(3.4) the expansion of the smooth basic state jet is found to be

2
Us(roY) = U(0) + ef D (Y)U'(0) + % FOWYU(0) + O(e®) (3.11)
where the following functions have been defined:
L’n.
My)y=—=E__ [y —Y'|"W(")dY’ 3.12
1) = i [ -y (312)

and the identity ro = eLr/v/k? — 1 has been used.

Similarly, the RHS of (3.6) can be expanded in terms of ¢(0) and its derivatives, as
presented in Appendix A. Substitution of (3.11) and (A 2) into (3.6) allows a solution to
be sought for the inner region as a series expansion in e:

(y) = io(y) + e (y) + iz(y) + . (3.13)
¢ =co+ec + 2ca... (3.14)

Collecting together the O(1) terms of (3.6) gives the following condition relating 7jp and
Co-

(U0) = co)in(y) = 9(0) [ in(y)uly') . (315)

There are two types of solution to (3.15). The first is the single solution
7lo(y) = constant (3.16)
co =U(0) — ¢(0), (3.17)

and the other is any function satisfying

/ﬁo(y)w(y) dy=0 (3.18)
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co = U(0). (3.19)

These two types of solution relate respectively to the discrete mode and the continuous
spectrum of singular modes from the sharp PV front problem. More specifically, it is only
that part of the continuous spectrum which is associated with nonzero PV perturbations
and as such solutions to (3.18)-(3.19) are the smooth-front extension of the varicose mode
from the two-step front problem of section 2.1. The leading-order corrections to each of
these solutions are now considered by examining the O(e) and O(e?) terms of (3.6) in
turn, the equations for which are derived in Appendix A.

3.2. The discrete mode

To find the leading-order correction to the normal mode structure and phase speed,
the O(1) solution (3.16)-(3.17) is substituted into the O(e) terms of (3.6), equation (A 5).
The result is

exio = 6(0) (77 )= [ 16w dy’) , (3.20)

where the identity U’(0) = ¢'(0) has been used. This identity can be seen to hold for
the QGSW system from (2.4) and (2.8); it is shown below to also hold for a general PV
inversion operator. Multiplying by w(y) and integrating shows that ¢; must vanish, so
the only solution is
71 (y) = constant (3.21)
c1 = 0. (3.22)
Therefore there is no O(e) correction to the phase speed and an O(e?) correction must
be sought. There is likewise no O(¢) correction to the structure of the solution in the
inner region since the constant 7; can be absorbed into 7).
Next consider the O(e?) terms of (3.6), equation (A 6). Upon substituting for 7o, 1,
co and cq, this reduces to the relation

(c2 - FOFEO 00 ) i = 000) () - [ o) ar) 23

which, again by first multiplying by w(y) and integrating to find ¢, can be seen to have

the solution
) = —%ﬁ@ (f@w) - / RO i (520

o = G ‘b// / fAw’ydy’, (3.25)

where U”(0) — ¢”(0) = (1 k)/2LR < 0. Therefore there is an O(€?) correction to both
the phase speed and the structure of the normal mode in the inner region.

Returning to the full expression for 7 of (3.6), an approximate solution can now be
found for all y by substituting the O(e?) expression for 7(y) in the inner region into the
right hand side of (3.6) to find

. N ¢s(y)
) = o Us(y) —c

Similarly, a convenient form of the phase speed can be recovered from (3.7)

€= cm= / (Ua(y) — 65()) wly) dy + O(eY). (3.27)

+ O(€). (3.26)
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Note that the error here is O(e*), as shown in Appendix B, which is a remarkable result.
The quadratic correction of the normal mode structure in the inner region has yielded a
cubic correction to the phase speed. It can be shown that ¢, = co+e?ca+O(e?), so (3.7)
is equivalent to the series expansion derived above but with an extra order of accuracy.
In addition, the form of (3.27) is particularly attractive since it retains explicitly a term
associated with advection by the basic state, which is given by the jet profile weighted
by the PV gradient, and a term associated with upstream propagation. Both of these
terms reduce linearly with e for small €, but their sum reduces quadratically.

As with the sharp front solution (2.10) there is a critical line on each flank of the jet,
located at |y| = y. with Us(y.) = ¢, associated with singularities in the structure of the
discrete normal mode (3.26). It can be shown that the smoothing does not move the
critical line far from the sharp PV case: the correction to y. from (2.13) is only O(e?).
Unlike the sharp front problem, the critical line may potentially play an active role in the
evolution since the PV gradient does not necessarily vanish at |y| = y.. However, since
the PV gradient w(y) is assumed to decay exponentially at large |y|/ro, any mixing of PV
at the critical line will not influence the leading-order correction of the wave structure
or its phase speed provided y. > ro, which is the case for e <« 1.

3.2.1. Properties of ¢,

A key property of the approximate phase speed ¢, of the discrete normal mode is
that it reduces quadratically for small e. Here it is shown that in addition ¢,, decreases
monotonically for all e. The expression is then evaluated explicitly for a Gaussian
smoothing kernel.

First it is noted that ¢,, can be written directly in terms of the sharp front functions

e = / (U) - 6(y)) 2(y) dy (3.28)

where z(y) is the self-convolution of the smoothing kernel:

x(y) = /w(y =y )w(y')dy'. (3.29)
Substituting for U(y) and ¢(y) and differentiating with respect to o gives
ALr (emw/LR _errmliER

Cm =

- ) X(Y)dy (3.30)

where, analogous to the definition (3.2) of W(Y'), X(Y) = rox(y/ro). Therefore,

(ifT’” _.4 / | (e*TO\Yl/LR - e*le\/LR) X(Y)dY <0 (3.31)
with the inequality a result of the fact that x > 1, implying that the term in parentheses
is non-negative for all Y and rg. Therefore ¢, always reduces if the width of smoothing
is increased, indicating that the influence of smoothing on the advection term dominates
the influence of smoothing on the self-propagation term.

In the limit of large ¢, it is of note that ¢, has the same form as the dispersion relation
(2.14) for Rossby waves on a uniform PV gradient. For large €, expanding X (Y) as a
Taylor series around Y = 0 in (3.30) and integrating gives

Cm = AX(0 )L2 <1—i> +0(e7?), (3.32)
To

which equivalent to (2.14) in the limit € — oo, with corresponding PV gradient given by
0=AX(0)/ro.
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FIGURE 2. The smooth front dispersion relation (3.27) evaluated for the Gaussian smoothing
kernel (3.35). Both panels show phase speeds (solid), group speeds (dashed) and the basic state
jet maxima (dotted). (a) speeds as a function of rg for fixed wavenumber kLr = 1 together with
the quadratic approximation (3.25) (grey line). (b) speeds as a function of k for fixed smoothing
width 7o = 0.4L k. Both panels also show the results of finite amplitude numerical simulations
(kno = 0.1, grey symbols) as described in section 5.2. All values are scaled by Uy = ALg/2.

Finally it is noted that for the Gaussian kernel function,

eV /s o—Y?/2
w(y;ro) = o e, W()= (3.33)
0

the jet maximum takes the value

U.(0) = 2 ( \/;OLR> , (3.34)

where the function E(z) = ™ (1 — erf(z)) is the scaled complementary error function,
equation (3.29) evaluates as z(y) = w(y/v/2)/v/8 and the approximate phase speed (3.30)

can be evaluated as
o ALR 70 1 RTo
=B (5 (1) Ly () o5

Figure 2 shows values of (3.35) and the corresponding group speeds for a range of rg
with fixed k (panel a), and a range of k with fixed ro (panel b). Panel a shows that both
quantities decrease with the smoothing width ry and that their gradients tend to zero at
small rg; panel b shows that the group speed has a maximum at intermediate k which is
faster than the advecting velocity, qualitatively similar to the dispersion relation (2.14)
for Rossby waves on a uniform PV gradient.

3.3. The continuous spectrum of singular modes

Similar to above, the structure of the singular modes are examined further by substi-
tuting what is known of the O(1) solution (3.18)-(3.19) into the O(¢) truncation of (3.6),
equation (A 5), giving

(U5 F) = 1) o = ¢ (0)g V(¥ 57i0) + 6(0) / in(yw(y')dy (3.36)
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where the function g™ (Y;7)) is defined in (A 3). Multiplying by w(y) and integrating
shows that the final term [ 7)(y)w(y) dy must vanish (using U’(0) = ¢/(0) again), resulting
in extra information about 7jo(y): as well as satisfying (3.18) it must satisfy the new
integral eigenvalue equation given by (3.36) with the final term removed. Therefore for
the singular modes the O(1) solution is only determined by considering the O(¢) terms.

Assuming no further discrete modes exist satisfying these criteria, it can be anticipated
that the leading-order singular mode solution should satisfy (3.36), and its phase speed
will take the form ¢ = ¢ + ec; with ¢; = U’(0) f*(Y; 1) for some Y. That is, their phase
speeds reduce linearly with e. More generally, from the form of (3.6) it can be expected
that singular modes exist with any phase speed in the range ¢ € [0, U,(0)]. However,
those that live outside of the inner region examined here, that is those with ¢ = Ug(yo)
with w(yo) small, will be passive, like the entire continuous spectrum of the sharp PV
front problem. Those inside the inner region behave as described above: as ¢ — 0 the
phase speeds of these modes collapse onto the jet core speed of the sharp front problem.

Combining this result with the previous section, it can be expected that a general
initial condition can be projected onto a linear combination of the discrete normal mode
and the continuous spectrum of singular modes. The evolution is then determined by each
mode propagating independently at its phase speed. Typically in sheared flow problems,
the energy contained in singular modes decays with time as they are sheared out (Orr
1907; Farrell 1982; De Vries et al. 2009), although transient growth can occur via the
Orr mechanism. Therefore at long times the solution will reduce to the projection of the
initial condition onto the discrete normal mode. For a linear shear flow the long-time
decay of energy in the continuous spectrum scales like t=2 (Orr 1907), however in the
present case the shear is not linear (there is a stationary point at the jet core for any
smooth w(y)), and it is expected that the decay will be slower than ¢t~2, although no
attempt is made to quantify this here.

4. Generalisation to alternative Green’s functions

The previous sections used the QGSW model. In this section it is shown that the
expression (3.27) for Rossby wave phase speeds on a smooth PV front is valid for a wide
range of inversion operators, and the key property of a quadratic dependence of the phase
speed on € requires only a modest condition on the Green’s function.

The general setup of a 2-d fluid model resulting from an advected PV field with a linear
inversion operator is considered, and the Green’s function for the PV inversion operator,
denoted G(z), is assumed to (i) be differentiable except for a possible singularity at x = 0,
and (ii) not grow as fast as x at large x. The expression (2.4) for the jet induced by a
single sharp PV front formally generalises to the contour integral formula (Pullin 1992)

= _A/ 2 +y ) dx. (4.1)

However, this integral fails to converge if G(z) does not decay sufficiently fast at large
x. To ensure convergence for all relevant G, the integral is instead written

:—A/< a:2+y) G(M)) dz (4.2)

where yo is arbitrary and the second term in the integrand is effectively a constant of
integration such that U(yg) = 0. The integral may fail to converge at small x only when
y = 0 if the singularity in G is not integrable, in the sense that the 1-d integral fo x)dx
is finite for any a. In that case the basic state jet has a singularity at the locatlon of
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the PV front, as is the case for example in surface QG dynamics (Juckes 1995; Harvey
& Ambaum 2010), but is finite at all other y. Similar to (4.2), the expression (2.8) for
the meridional structure of the streamfunction perturbation in the single sharp PV front
case generalises to

$y) = —A/ (G (Vv i) -G (\/m» cos(ka) dz, (4.3)

where the appropriate solution is obtained by taking yy — oo.

An expression for the dispersion relation for disturbances on a single sharp PV front in
this general case is readily obtained by substituting (4.2) and (4.3) into (2.10). Similarly,
the expression (3.27) for the approximate phase speed of the discrete normal mode for
the smoothed PV front is obtained from substituting (4.2) and (4.3) into (3.28):

m = —A / X(Y)(U(roY) — (1Y) dY (4.4)

where X (Y) is defined below (3.30). The Y integral in (4.4) is a smoothing operation
which will not change the dependence on ¢, therefore the behaviour of ¢,, at small r
is determined by the term in parentheses. To test if this variation is quadratic, one can
differentiate the term in parentheses with respect to rg and integrate the z-integrals by
parts to obtain

d(U(roY;; $(roY)) _ ATO/G (\/@) (ksin(xka:) 1 —CxO;(ka:)) dr. (45)

Due to the factor rg in front of the integral, it is clear that c,, will vary quadratically
with 7o for small rg if the integral is finite in the limit rq — 0. At large x the integral
will converge if G(x) does not grow as fast as x, as is assumed, and at small  the term
in parentheses is finite:

ksin(kx) 1—cos(kx) k2

" = =5 O(x?). (4.6)

Therefore the integral will converge if the singularity in G is integrable. This condition
is equivalent to requiring that U(0) is finite. In conclusion, the expression for the
approximate phase speed of the meandering component (4.4) varies quadratically for
ro for small rg for any choice of Green’s function provided the jet of the corresponding
sharp PV front is not singular.

4.1. Illustration for a family of inversion operators
To illustrate this property, and examine the transition from a regular jet to a singular
one, the calculation is performed for the so-called a-turbulence family of Green’s functions
introduced by Pierrechumbert et al. (1994). These inversion operators are defined most
simply in spectral space for which

_a(lk)
k|

B(lkl) = (4.7)
where a@ > 0 is a real number and hats denote 2-d Fourier transforms. Physically-
realisable members of the family include 2-d Euler dynamics (o« = 2) and surface QG
dynamics (o = 1) (Held et al. 1995), which represent the limits of deep and shallow 3-d
QGPYV anomalies respectively. As such, the horizontal structure of a 3-d PV distribution
may be expected to qualitatively satisfy (4.7) with 1 < a < 2. Iwayama & Watanabe
(2010) derive expressions for the corresponding Green’s functions and also argue that
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« > 3 is unphysical, so here the attention is restricted to the range 0 < o < 3 for which
the Green’s function of Iwayama & Watanabe (2010) can be written as

_ —1

- 2esin(ra/2)(a)/2)2"

G(z) =¥ (a)(Jz|*7% - 1) with ¥(a) (4.8)
The function ¥(«) is singular at a = 2, but the combination in (4.8) is regular in the
limit o — 2 and reduces to the familiar 2-d Euler Green’s function G(x) = log(z)/2m
in that case. The Green’s function (4.8) is differentiable everywhere except x = 0 and it
does not grow as fast as x at large x for all @ < 3. However, the singularity at x = 0 is
only integrable when « > 1. Therefore the approximate phase speed (4.4) of the discrete
normal mode is expected to vary quadratically for small ¢ for a > 1, but not for o < 1.

To test this assertion, the integrals (4.2), (4.3) and (4.4) are evaluated explicitly for
the a-turbulence model in Appendix C. The following expressions are obtained for the
basic state jet and dispersion relation of the single sharp PV front

U(y) =Up — A(a)|y|*™" with A(a) = —m (4.9)
B B(a) . _ Al'la—1)

where Up is a constant. As anticipated, the basic state jet (4.9) is finite everywhere
for & > 1 but singular at y = 0 for @ < 1. For the special case @ = 1 the function
A(a) is singular, but the combination in (4.9) is regular in the limit @ — 1 (with a
suitable choice of Uy, see appendix) resulting in the logarithmic velocity singularity of
a surface QG temperature front U(y) = —(A/7)logly/yo| (Harvey & Ambaum 2010).
In contrast, the phase speeds (4.10) are finite for all & > 0, despite the singularity in
the basic state wind field when o < 1. Again o« = 1 is a special transitional case but as
above it is straightforward to recover the well-known relation for surface QG waves on a
temperature front ¢ = (A/7)log |kyo| (Harvey & Ambaum 2010).

The integral (4.4) is also evaluated explicitly in Appendix C, and the leading-order
terms in € = krgy are shown to take the form

Bl 1
|k|a71 |k|a71

em(ro) =~ Ug <e°‘+1cl(a)/X(Y)Ya“dy+6202(a)/X(Y)|Y|2dY>

(4.11)
where the functions Cy(«) and Ca(«) are given in Appendix C. The first two terms
on the right hand side of (4.11) are the exact result for the linear phase speed on a
sharp PV front of (4.10). The final two terms are the two leading-order corrections due
to smoothing. For > 1 the Cy term dominates and Cy(«) < 0 meaning that c¢,,(ro)
decreases quadratically with e. For a < 1 the PV inversion operator becomes more local,
the jet becomes singular, and the C; term dominates resulting in the phase speed varying
faster than a quadratic. These properties confirm the result above that ¢, is quadratic
in € if the singularity in G is integrable.

5. Implications for the error in numerical weather forecast models
5.1. Typical dimensional values
Returning to the dispersion relation for the QGSW model with a Gaussian smoothing
kernel (3.35), typical numbers are now used to estimate the potential error in phase speeds
resulting from the systematic smoothing of the PV at the tropopause by NWP models.
The magnitude of the smoothing error has recently been evaluated for several state-of-
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ro 1o/Lr Us(0) cm(ro) d(kem)/dk(ro)

[km)] [ms™'] [ms™'] [ms™!]
Sharp PV front 0 0 70.0 20.5 45.3
Typical analysis values 308 0.440 50.9 17.7 38.2
Typical 5-day forecast values 381 0.544  47.6 16.8 36.0

TABLE 1. Typical values for the Gaussian smoothing kernel of the jet maximum U,(0) from
(3.34) and the phase and group speeds from (3.35) with wavenumber kLr = 1. The values of ro
are taken from Gray et al. (2014) and all other parameter values are as described in the text.

the-art weather forecast models by Gray et al. (2014). They found that the decrease in
the isentropic gradient of PV at the tropopause typically occurs during the first three
days of a forecast, during which time the maximum isentropic PV gradient decays by at
least 20% from the analysis value to a lower value dependent on model and resolution.

Typical dimensional values for the PV front model relevant to the extratropical
tropopause region are given by Swanson et al. (1997) and Esler (2004) as Lz = 700 km
and A = 2 x 107% s71. These result in a value of U(0) = ALgr/2 ~ 70 ms~! for the
strength of the jet maximum and the following values for the phase speed of Rossby
waves from equation (2.10)

1 Oms™ !, k—0
c~10 (1 KJ) N{ 20 ms™!, kLp=1, (5-1)
where k — 0 is the long wave limit and kL = 1 is typical of baroclinic waves. It should
be noted that this value of jet maximum represents a local wind speed value; nonlinear
waves of realistic amplitude considerably reduce the zonal mean wind speed.

A typical isentropic gradient of Ertel PV at the troposphere-stratosphere boundary
to the northern side of wintertime ridges in analyses is 1.30 PVU per 100 km, and in
5-day forecasts is 1.05 PVU per 100 km (Gray et al. 2014). Taking a typical PV contrast
across the tropopause of 4 PVU therefore gives typical widths of the tropopause front
on an isentropic surface of rp = 308 km and ryp = 381 km in analyses and 5-day
forecasts respectively. The values of the jet maximum and the phase and group speeds
for wavenumber kLr = 1 from these two cases are presented in Table 1, in addition to
the values for a sharp PV front (1o = 0) for reference.

The jet maximum decreases as r( increases, with the analysis value 19 ms~! slower than
the sharp PV front value and the 5-day forecast value a further 3 ms~! slower than the
analysis value. The phase speeds are less sensitive to changes in rg, with the 5-day forecast
value only 1 ms~! slower than the analysis value, and the change in group speed lies
between two with the 5-day forecast value 2 ms~! slower than the analysis value. The near
compensation between the advection and propagation terms in the dispersion relation
means that the phase speed correction is smaller than the basic state jet correction.
However, a 1 ms™! error over a period of 5 days would result in a phase error of 430 km.
There is a similar first-order cancellation in the group speed, although the variation in
group speed with rg is over twice as large as the variation in phase speed in this case.
This may impact the ability of the forecast models to accurately predict downstream
development events which result from the zonal propagation of Rossby wave activity.

5.2. Numerical validation and finite amplitude illustration

A numerical QGSW code has been used to verify the analytic dispersion relation
(3.35) for a smooth PV front. The aim is twofold, first to perform a simple verification
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of the linear theory in the case of small amplitude disturbances and second to present an
illustration of the finite amplitude case.

The code used is based on that used in Harvey & Ambaum (2011): a semi-Lagrangian
scheme is used to advect the PV ¢ around a doubly-periodic domain, and inversion
is performed in spectral space. The initial condition is specified as the smoothed PV
front given by (3.3) with the Gaussian smoothing kernel (3.33) a single wavenumber
perturbation of the form:

q(z,y) = éerf (Lﬁ(m)) with  n(z) = 7o cos(kx). (5.2)
2 27”0

To diagnose the wave speed the quantity (q(¢) — ¢(0))? is considered, where the overbar

denotes the domain average, and the phase speed is calculated from the timing of the

first minimum of this quantity.

The symbols in Figure 2 show results from integrations using small amplitude dis-
turbances (7jp = 0.1Lg). They show that the dispersion relation (3.35) is remarkably
accurate in this case. For kL = 1 (panel a) the accuracy of the numerical result degrades
as the smoothing width increases, but the error is within 2.3% of the analytic value when
ro/Lr < 1, and within 14.2% when ro/Lp < 2. For fixed ro/Lr = 0.4 (panel b) the
accuracy of the numerical result degrades as the wavenumber increases but is within
2.4% of the analytic value when kLp < 2.

The accuracy of the analytic result also varies with the disturbance amplitude 7y
since for larger waveslopes nonlinear terms will become important. Esler (2004) derives
a weakly nonlinear theory for waves on a sharp PV front and shows that the phase
speed decreases quadratically with the wave amplitude, at small amplitudes, due to
a reduction of advection by the basic state. In the smooth PV front case there are
also additional complications such as the presence of nonlinear filamentation of PV. In
this paper attention is restricted to some simple numerical simulations to provide an
illustration of the large amplitude case. The aim is to address the pragmatic question:
does the impact of the smoothing on the phase speeds, as presented in Table 1, vary
strongly with wave amplitude?

Figures 3a and b show PV snapshots from two integrations with wavenumber kLp = 1
and initial waveslope k7 = 1. The two integrations have smoothing widths of ry =
0.440L i and rg = 0.544 L i, corresponding respectively to the analysis and forecast model
estimates from the previous section, and the snapshot time corresponds to approximately
1.3 wave cycles into the integration. Filamentation of PV away from the front is clearly
present and, as anticipated, there is more filamentation in the smoother PV front case
(panel b). Panel ¢ shows the difference between the two PV fields, with the positions of
the zero contours indicating the phase difference between the two cases. The wave on the
smoother PV front travels more slowly than the wave on the sharper PV front, and its
amplitude decays as a result of meridional divergence of wave activity.

To quantify how the phase speed varies with wave amplitude, integrations have been
performed for a range of amplitude values between k7 = 0.1 and k7jg = 1.4 and the phase
speed estimated as above. Figure 4 shows that the phase speeds decrease approximately
quadratically as the wave amplitude increases, consistent with the theory of Esler (2004).
The difference between the two simulations represents the error between propagation
speeds in analyses and model forecasts, and this quantity decreases with wave amplitude:
at waveslope k7jg = 1 the correction due to finite rg is reduced by 35%. The corresponding
dimensional values for the phase speeds, using the typical parameter values discussed
above, are ¢, = 15.5 ms~! and 14.8 ms~!.
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t=75.0

FIGURE 3. PV snapshots at time ¢ = 75/A from QGSW model integrations of the initial
condition (5.2). (a) 7o = 0.440Lg and (b) ro = 0.544Lg, and (c) the difference (b)-(a). Both
integrations have wavenumber £Lr = 1 and initial waveslope k7o = 1. High and low PV values
are indicated by red and blue respectively, and the two contours in panel ¢ are the zero PV
contours from panel a (solid) and panel b (dashed) respectively.
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FIGURE 4. Numerically-obtained phase speeds as a function of wave amplitude for smoothing
widths ro/Lr = 0.440 (light grey) and ro/Lr = 0.554 (dark grey). The solid line shows the
difference in phase speed for the two values of 7o (multiplied by 10 for ease of viewing). The
crosses on the y-axis indicate the results from the linear theory for comparison.

6. Conclusions and Discussion

The dispersion relation for linear Rossby waves on a PV front of infinitesimal width
is well known for the quasi-geostrophic shallow water model (QGSW). In this paper a
smooth PV front of small but finite width rg is considered. It is shown that the single
discrete normal mode of the sharp PV front problem, representing north-south meanders
of the front, still exists on a smooth front provided the PV gradient remains negligible at
the latitudes of the critical lines. In addition there is a continuous spectrum of singular
modes, representing internal structure at the front. The leading-order correction to the
discrete mode structure and phase speed are derived, valid in the limit € = krg < 0 where
k is zonal wavenumber. In addition, the analysis is generalised to the a—turbulence family
of single-layer fluid dynamics models. This paper has demonstrated that
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e Rossby wave phase speeds are relatively insensitive to the smoothing width rg due to
a leading-order cancellation between a reduction in advection by the jet and the ability
of waves to propagate upstream; and

e at O(e?) the reduction in advection dominates, resulting a decrease of phase speeds
with rq.

Both properties are robust across a wide class of single-layer PV dynamics with varying
scale-affect of PV inversion. Therefore, even though the most appropriate single-layer
proxy for Rossby wave propagation in the 3-d atmosphere is unknown, the results derived
here are likely to hold whatever the precise form assumed.

The result is applied to mid-latitude Rossby waves, which reside on the region of large
isentropic PV gradient at the tropopause. In reality the PV front has a finite width, and
furthermore, current global numerical weather prediction models are known to evolve
towards having a PV front which is too broad. Typical numbers from analyses and
forecast models are taken from Gray et al. (2014) and used to estimate a typical error in
the propagation speeds of Rossby waves in the forecast models. The smoother tropopause
in the forecast results in phase speeds that are typically too low by 1 ms™!, which over
a 5-day period amounts to a phase error of 400 km, and group speeds that are too low
by 2 ms~!. The result is systematic for both phase and group speed and therefore likely
to result in systematic large-scale model error in forecasts.

An important caveat to these results is that they are based on linear theory. Typical
atmospheric Rossby waves have non-negligible wave slopes, of order 1, which can act to
slow their eastward propagation (Esler 2004). Whilst the theory presented here is only
valid for small amplitude disturbances, it is shown from numerical simulations that at
finite amplitude the impact of smoothing on phase speeds is smaller than predicted, but
only by around 35% at a realistic waveslope kn = 1.

Finally, it is noted in the discussion of the finite amplitude illustration that additional
processes may be important in that case. In particular, simulations of smoother PV
fronts exhibit stronger filamentation of PV away from the front (see figure 3). Such
filamentation, which is neglected in the linear theory, will lead to a sharpening of the
jet by erosion, but may also be expected to result in a reduction in the amplitude of the
Rossby wave due to enhanced meridional dispersion of wave activity (see, e.g. Scott et al.
2004). This may have two important consequences. First, in addition to quantifying the
systematic smoothing of the tropopause PV gradient in NWP models, Gray et al. (2014)
noted that on average model forecasts tend to under-predict the amplitude of Rossby
waves. The average ridge amplitude typically decreases from the analysis value to a
smaller, model dependent value over the first five days of a forecast. It is possible that
increased filamentation and PV mixing on the jet flanks (a more ‘lossy’ waveguide) could
contribute to this bias and this process is, as explained previously, missing from the
analytical treatment presented above. Second, assuming the reason the tropopause is too
smooth in the models is excessive numerical diffusion, the action of the filamentation to
enhance the PV gradient will be balanced by larger diffusion fluxes of PV in the jet core.
It could be anticipated that these mechanisms combined provide a route whereby small
scale diffusion can systematically damp large scale waves. Both of these consequences
are currently under investigation.

This work was supported by the Natural Environment Research Council through
NCAS-Atmospheric Physics National Capability funding and the DIAMET project [grant
NE/1005196/1].
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Appendix A. Asymptotic expansion of the evolution equation (3.6)

In order to expand (3.6) in powers of ¢ the Taylor expansion of ¢(y) is written, for
Y =0(1), as

6(reY) = 6(0) + rolY |6/ (0) + LY 6" (0) + O(r}), (A1)

where it is understood that the derivatives are evaluated at 0+. Upon substitution into
the RHS of (3.6) the following is obtained:

2
/ o(roY =y )i () dy’ = g (¥Vii)o(0)+eg D (¥3i)d/ (0)+ 59 (V)¢ (0)+O(E?)
(A2)

where the functions g™ (y; ) are defined by

R L -
g (Y5h) = W / Y = Y'["q(roY" )W (Y") dY”, (A3)

the function W(Y') is defined in (3.2) and the identity ro = eLrv/k? — 1 is used.
The expansion of (3.6) is then obtained by substituting from (3.11) and (A 2) together
with (3.13) and (3.14) and collecting like powers of . The O(1) terms give

(U(0) — co) o = 6(0) / fo(roY" YW (Y")dY". (Ad)

Likewise, the O(e) terms give

(TO5D) = ex) o+ (UO) = o) = (019D (Vi) + 6(0) [ i (ra¥ W(V') QY.
(A5)
and the O(e?) terms give

(U’;(O)f@)(y) — CQ) ﬁO + (U/(O)f(l)(y) _ Cl) ,’?1 4 (U(O) o CO) ﬁg

- @gm (Vs5ii0) + & (0)gV (Vi) + ¢(0)/ﬁ2(roY’)W(Y’)dY’~ (A6)

Appendix B. Error estimate for equations (3.26) and (3.27)

Equations (3.26) and (3.27) show the structure and phase speed of the discrete normal
mode, with stated as O(e®) and O(e?) respectively. Here these results are derived in order
to justify the error estimates.

The discrete normal mode has the form

A(roY) = flo + €22 (roY) + € 1i3(rY) + O(€?) (B1)

where 7 is a constant, 72 is given by (3.24), and 73 has not been derived explicitly
but similarly to 72 can be chosen to satisfy [73(y)w(y)dy = 0 by a rescaling of 7.
Substituting into (3.6) gives

. o bs(y) e AP ’ ’ ’
i) = o + o [ oy = raY Yoy W)@y £ o). (B2)

At first sight the second term on the RHS is O(€?), however ¢(y — roY”’) = é(y) + O(e)
and [ e(roY")W(Y’)dY’ = 0 trivially. Therefore (B 2) is equivalent to (3.26). Similarly,
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substituting (B 2) into (3.7) gives

floc = 7o / (Usly) — ¢s(v) w(y) dy+/ (Us(y) = ¢s () (Mia(roY") + €7i3(roY")) W(Y') dY'+0(e*)
(B3)

and the task here is to show that the second term on the RHS is at least O(e*). To this

end, it is noted that Us(rqY) — ¢s(roY) = U(0) — ¢(0) + O(€?), and as above utilising

that [72(roY" )W (Y")dY" = [nj5(roY" )W (Y')dY" = 0 gives the result.

Appendix C. Derivation of dispersion relation for the a-turbulence
model

Here a derivation is presented of the formulae given in section 4.1 for the a-turbulence
family of inversion operators with Green’s function (4.8). These are the sharp PV front
jet profile (4.9) and dispersion relation (4.10), and the leading-order correction to the
dispersion relation for a slightly-smoothed PV front (4.11).

To derive the basic state jet profile (4.9), (4.8) is substituted into (4.2) to give

U() = ~A(a) [ (@ +22)72 = @ 4 4)727) (©1)
This integral is evaluated by first differentiating with respect to y to give
U'(y) = ~AF(@)(a - 2y [+ 5) e, (©2)

which converges at large x for all « < 3, then utilising the identity (obtained from
equations (8.380.3) and (3.384.1), Gradshteyn & Ryzhic (2000))

I(—(A\+1/2
/(x2+y2))‘dx:y|y|2)‘ﬁw for A< —1/2. (C3)
Substituting (C3) into (C2) and integrating with respect to y gives, after substituting
for ¥(a) from (4.8) and using standard gamma function identities given for instance in
Iwayama & Watanabe (2010),
A
2 cos(ma/2) ()’

Uly) = —A(@)(ly|*~" = [yo|*™") with A(a) = (C4)

where yo is the same constant of integration as in (C1). The expression (C4) reduces
trivially to (4.9) when a # 1 by choosing Uy = A(a)|yo|* 1. At a = 1 the function A(«)
is singular, but the combination (C4) is regular simplifies to U(y) = —(A/7) log(|y/yo|)-

Next, the meridional structure of the perturbation streamfunction for the sharp PV
front is derived by substituting (4.8) into (4.3) to give

o(y; k) = —ALP(a)/ ((a:2 + )/ 21 1) cos(kx) dx. (C5)
As above, this is evaluated by first differentiating with respect to y to give
o (i) = ~ AW (a)(a - 2y [ @+ 1) cos(he) d, (C6)

which converges at large x for all @ < 3, and then using the identity (equation (8.432.4),
Gradshteyn & Ryzhic (2000))

2R m Ko (%yl)
2,2\ _ (A+1/2)
/(x +y°)" cos(kx)dz = TN FPT Jhy 0172 for A< —1/2, (C7)
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where K, (x) is the modified Bessel function of the second kind of order v. Substituting
(C7) into (C6) and integrating with respect to y gives, after substituting for ¥(«)
from (4.8), again using standard gamma function identities together with the recurrence
relation [ K,(z)/z""'dz = —K,_1(2)/z"" 1,

Ala)  2K5(kyl)
B)lk|>=t 25[kyl?
where = (1 — a)/2. The result (C8) is now used to derive both the dispersion relation

for waves on a single sharp PV front via (2.10) and also the correction for the smooth
front PV dispersion relation via (4.4). The following expansion is used

S k) =~ (€8)

2K, (z I'(v 22 4 I'(—v 22 4
2”2(”) = 2(2”) <1+m+0(z )) + é2l’) (1+4(1+V)+O(Z )) (C9)
Combining (C4) and (C8) then gives
1Y a-1_ Bla) 1 (Al)kyl*™  B(o)|kyl?
U) - 68 = Al = i + oy (eI B (g

where
A I'((a—1)/2)
B = . 11
@) =5 m " I (1D
The result (4.10) follows directly from (C10) evaluated at y — 0 and the result (4.11)
follows from (C10) by defining

Ala)
2(a+1)

B(e)

Cl(a)z 72(3—0&).

and Ch(a) = — (C12)
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