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Instability of surface-temperature filaments in strain and shear
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The effects of uniform straining and shearing on the stability of a surface quasi-
geostrophic temperature filament are investigated. Straining is shown to stabilize
perturbations for wide filaments but only for a finite time until the filament thins
to a critical width, after which some perturbations can grow. No filament can be
stabilized in practice, since there are perturbations that can grow large for any strain
rate. The optimally growing perturbations, defined as solutions that reach a certain
threshold amplitude first, are found numerically for a wide range of parameter
values. The radii of the vortices formed through nonlinear roll-up are found to be
proportional to θ/s, where θ is the temperature anomaly of the filament and s the
strain rate, and are not dependent on the initial size of the filament.

Shearing is shown to reduce the normal-mode growth rates, but it cannot stabilize
them completely when there are temperature discontinuities in the basic state;
smooth filaments can be stabilized completely by shearing and a simple scaling
argument provides the shear rate required. Copyright c© 2010 Royal Meteorological
Society
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1. Introduction

The surface quasi-geostrophic (SQG) equations provide an
accurate model for the motion of rapidly rotating stratified
fluids near horizontal boundaries. In the atmospheric
context, there is a body of work applying the SQG
equations to the dynamics of surface-temperature anomalies
(Müller, et al., 1989; Schär and Davies, 1990; Ambaum and
Athanasiadis, 2007) and also to the dynamics of tropopause-
height anomalies (Juckes, 1994, 1995, 1999; Tulloch and
Smith, 2006). More recently their application to upper-level
ocean dynamics has also been demonstrated (Lapeyre and
Klein, 2006).

The model consists of two-dimensional advection of
the boundary-temperature field under the assumption of
uniform potential vorticity in the fluid interior. The surface
streamfunction is related to the surface-temperature field by
a Green’s function that decays like 1/r (see (4) later). This
induces a more localized dynamics compared with the more
familiar barotropic vorticity equation, which has a Green’s

function with a − log r decay. The 1/r Green’s function is the
same as the full three-dimensional quasi-geostrophic flow,
and the SQG system exhibits flavours of three-dimensional
flows despite its two-dimensional form (Constantin, et al.,
1994).

Here we investigate the striking ‘curdling’ at small scales
that is apparent in many SQG turbulence simulations
(Pierrehumbert, et al., 1994; Held, et al., 1995; Juckes,
1995). This curdling is an explanation for the instability
of filamentary stratospheric intrusions as well as surface-
temperature features. The production and stretching of
filamentary structures is a ubiquitous feature of two-
dimensional fluid flows, providing a mechanism for the
transport of enstrophy to small scales. In the SQG case,
however, the filaments appear prone to instability, leading
to their break-up and the subsequent formation of smaller-
scale vortices. These vortices in turn shed smaller filaments
themselves and the process repeats to ever smaller scales.
The smaller-scale SQG filaments have larger perturbation
growth rates (see below) and therefore this process can
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Surface QG Filament Instability 1507

potentially accelerate, resulting in intense activity at small
scales on very short time-scales, hence the curdling.

The stability of an isolated SQG temperature filament
was studied in detail by Juckes (1995). In this article we
investigate the filament instability under typical turbulence
conditions by considering separately the effects of external
straining and shearing flows. Such flows provide a first-order
approximation to the general tendency of the large-scale
components of flows to form, stretch, thin and shear smaller-
scale filamentary structures.

That external flows can strongly affect fluid dynamic
instabilities has long been understood. Dritschel (1989)
and Dritschel, et al. (1991) study the most basic cases of a
barotropic vorticity filament in shear and strain respectively,
and we follow a similar methodology in this study. They find
that suitably strong shear or strain can completely stabilize
vorticity filaments. Other studies have subsequently applied
these ideas to the stability of frontal potential vorticity
anomalies in the atmosphere (Bishop and Thorpe, 1994;
Dacre and Gray, 2006).

Because the SQG system is less familiar than the barotropic
system, we briefly outline its structure and the notation we
employ in section 2. We then review the basic instability
mechanism of SQG filaments in the absence of external
flow fields in section 3. The analysis of the straining case
is presented in Sections 4-6. In section 4 we consider the
instantaneous growth rates of perturbations analytically,
while in section 5 we present numerical integrations of the
initial-value problem to study the evolution of perturbations
in detail. Finally in section 6 we consider an alternative
approach to the initial-value problem whereby we suppose
perturbations are continually applied to the filament since,
as we show, the first perturbation to be applied is not always
the first to become large. The analysis of the shear case
is more straightforward and is presented in section 7. We
present some concluding remarks in section 8.

2. Governing equations

With the atmospheric surface-temperature anomaly appli-
cation in mind for the choice of notation, we write the SQG
system as follows:

Dθ

Dt
= 0 at z = 0 (1)

and ∇2ψ = 0 in z > 0, (2)

where θ is proportional to the potential temperature
anomaly and ψ is the geostrophic streamfunction, D/Dt =
∂/∂t + u∂/∂x + v∂/∂y is the geostrophic Lagrangian
derivative and (2) represents the condition of zero interior
PV. The geostrophic variables are given by

(u, v, θ) = (−ψy, ψx, ψz), (3)

and u, v and θ are all assumed to decay at large z. Given a
surface θ distribution, (2)–(3) then determine all other fields
uniquely. For the atmospheric lower boundary application,
θ is the potential temperature anomaly scaled by g/θ00N
and therefore has the dimension of a velocity field, z is the
vertical coordinate scaled with the Prandtl ratio, N/f , and
θ00 is a constant background reference temperature.

In the following we suppress the z-dependence of all
variables and consider only their surface values. The

inversion of a surface-temperature distribution θ(x), where
x = (x, y), then takes the form

(u, v)(x) = − 1

2π

(
− ∂

∂y
,

∂

∂x

) ∫ ∫
θ(x′)

|x − x′|
d2x′, (4)

which can be derived by considering the Fourier transform
of the full three-dimensional system. For a one-dimensional
surface-temperature profile θ = θ(y) this inversion reduces
to a Hilbert transform,

u(y) = − 1

π

∫ ∞

−∞

θ(y′)

y − y′ dy′, v = 0. (5)

3. Analysis of an isolated filament

Here we briefly outline the stability analysis of an SQG
filament in a quiescent background flow. Many of the
results were derived by Juckes (1995); the purpose of this
review is to introduce notation and define several important
parameters used in later sections.

The problem considered is that of a filament of anomalous
surface temperature with a ‘top-hat’ profile as illustrated in
Figure 1(a):

θ = %(y) ≡
{

θ0 for
∣∣y

∣∣ < L/2,
0 for

∣∣y
∣∣ > L/2.

(6)

The velocity field induced by this temperature anomaly is
also sketched in the figure. From (5), it is proportional to
the Hilbert transform of the temperature field,

u = U(y) = θ0

π
log

∣∣∣∣
y − L/2

y + L/2

∣∣∣∣ , v = 0. (7)

The logarithmic singularities in the velocity field along
the edges of the filament are a generic feature of temperature
discontinuities under SQG inversion (Held, et al., 1995).
Juckes (1995) shows that despite this singularity the stability
characteristics of a slightly smoothed version of this filament
are regular in the limit of sharp edges, at least for wave
numbers k ' δL−1, where δL is the width of the smoothing.
We concentrate on the sharp-edge case in the following.

In the sharp-edge limit, the dynamics are governed
entirely by the positions of the filament edges. Suppose the
edges are perturbed to the new positions y1(x, t) = [1/2 +
εη1(x, t)]L and y2(x, t) = [−1/2 + εη2(x, t)]L, where ε is
a small non-dimensional parameter. Conservation of θ
requires the filament edges to be material lines, and so their
evolution is given by

∂η1

∂t
= u(x, y1 + δ) ·

(
−∂η1

∂x
,

1

εL

)T

, (8)

∂η2

∂t
= u(x, y2 + δ) ·

(
−∂η2

∂x
,

1

εL

)T

(9)

in the limit δ → 0. These equations represent the advection
of the boundary by the velocity field at the positions
y = y1 + δ and y = y2 + δ respectively. At these locations
the velocity field is finite. In the limit δ → 0 the velocity
components become large, but the inner products remain
finite: the large velocities always run parallel to the edges,
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Figure 1. Sketches of (a) the basic-state temperature and velocity fields, (b) the strain flow of (20) and (c) the shear flow of section 7.

leaving evolution of the temperature field on finite time-
scales. For a more detailed discussion see Held, et al. (1995),
Juckes (1995) and Harvey and Ambaum (2010).

Juckes (1995) simplifies the system (8)–(9) by linearizing
the velocity field for small ε. The dynamics of perturbations
on each edge of the filament then consist of a contribution
from self-propagation and a contribution from interaction
with the opposite edge, a process which can be written
succinctly in terms of Fourier components:

i
dη̂

dt
=

(
P(κ) I(κ)

−I(κ) −P(κ)

)
η̂ ≡ Fη̂, (10)

where

κ = kL (11)

is the non-dimensional wave number and the Fourier
components of the disturbance are defined by (η1, η2) =
η̂(t)eikx. The propagation (P) and interaction (I) coefficients
for the SQG filament problem are given by

P(κ) = θ0

πL
κ(log κ + γ − log 2), (12)

I(κ) = θ0

πL
κK0(κ), (13)

where γ = 0.57721 . . . is the Euler constant and K0 is the
modified Bessel function of order zero.

The general solution to (10) can be written as

η̂(t) =
(
I cosh σ t − F

i sinh σ t

σ

)
η̂(0), (14)

where σ =
√

detF =
√

I2 − P2 is the normal-mode growth
rate and I is the identity matrix. Note from (12) and (13)
that σ ∝ θ0/L and so perturbation growth rates are inversely
proportional to the filament width.

To measure the amplification of disturbances we use the
r.m.s. wave slope norm which, for a single Fourier mode, is
given by

N(t) = κ√
2

|η̂(t)| . (15)

This norm represents the size of the dominant nonlinear
terms in the governing equations, which typically consist of
derivatives, and as such is a useful diagnostic for nonlinear
development (Dritschel, et al., 1991). The corresponding
norm amplification factor is (taking |η̂(0)| = 1)

A(t) ≡ N(t)

N(0)
= |η̂(t)| , (16)

the rate of change of which can be shown to be given by

dA
dt

= − 2

|η̂|
I(κ)+(η̂1η̂

∗
2 ), (17)

where +(·) represents the imaginary component of the
argument. This growth rate takes a maximal value of I(κ) for
waves of equal amplitude and a phase difference of π/2. This
is therefore the disturbance configuration that undergoes
maximum instantaneous growth under this norm.

Two further quantities of interest are the value of
the amplification factor (16) maximized over all initial
conditions of a given wave number,

A∗(t) ≡ max
η̂(0)

[A(t)], (18)

and the corresponding equivalent growth rate

σ ∗
eq = log[A∗(t)]/t. (19)

Initially (when σ t ' 1), σ ∗
eq ∼ I(κ) and in the long time

limit (when σ t . 1) σ ∗
eq ∼ σ : the equivalent growth rate

collapses on to the normal-mode growth rate in the long
time limit. This represents the possibility of transient growth
at a rate larger than σ initially, followed by what is effectively
normal-mode growth. A full explanation of this process is
given by Juckes (1995), who plots σ ∗

eq (see figure 2b of that
study). We have also reproduced the plot in Figure 8a to
allow easy comparison with our shearing case of section 7.

4. External strain

We now investigate the effects of external strain on this
stability problem. We will demonstrate that straining is a
stabilizing process in the sense that all linear perturbations
eventually decay when there is an external strain present.
However, we will also show that at intermediate times
perturbation growth to any specified amplitude can occur.
In this sense, the SQG filament cannot be stabilized by strain.

The external strain is written as

(us, vs) = s(x, −y), (20)

where s is the strain rate. The effect of this flow on the
basic state of (6) is to thin the filament exponentially in
the y-direction so that at later times its width is given by
L = L0e−st , where L0 is the width of the filament at t = 0.
Note that this increases the growth rate of perturbations
in the absence of straining which, from (12) and (13), is
proportional to θ0/L.

The straining also has a direct effect on perturbations,
which are squashed in the y-direction and stretched in the
x-direction. The linear evolution is still given by (10) but
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now with time-varying wave numbers, k = k0e−st , which
correspond to

κ = κ0e−2st , (21)

and the wave-slope norm of (16) becomes

A(t) = e−2st|η̂|, (22)

where η̂ represents the Fourier components of both edge
perturbations.

We thus see that the strain introduces two competing
effects: there is a kinematic decay of perturbations at constant
rate 2s, which is stabilizing, whilst the thinning of the
filament causes an exponential increase in the instantaneous
perturbation growth rates.

The analytic solution of (14) is not valid for non-zero
strain rates, so in sections 5 and 6 we resort to numerical
integration to analyze the problem in detail. As a first
consideration of the combined effects, however, we consider
the instantaneous growth rates of perturbations for which
there is a simple analytic result. From (17) and (22) it is
clear that the rate of change of A takes a maximum value
of I(κ) − 2s when there is straining, and therefore for each
strain rate there is a critical filament width above which no
perturbations can grow,

L = Lc = max
κ

(
κK0(κ)

2π

)
θ0

s
≡ C

θ0

s
, (23)

where C ≈ 0.0742. This maximum value is achieved at non-
dimensional wave number κ ≈ 0.595. Note also that in the
long time limit, whereby κ → 0, all perturbations will decay
at the kinematic rate of −2s.

The result of (23) suggests two regimes for the filament.
Either L < Lc initially and there are some perturbations
that can grow, or else L > Lc initially and all perturbations
initially decay. At the later time

t = tc = 1

s
log

(
sL0

Cθ0

)
, (24)

where L0 is the initial filament width, there will be
some perturbations that can grow. Therefore instantaneous
perturbation growth can occur for any strain rate but only
after the filament has thinned to the critical width Lc.

Applying this argument to the initial-value problem,
which we study in detail in section 5, we note that the
amplitude of a perturbation applied to a wide filament,
in the sense that initially L > Lc, will have decayed
kinematically by the time t = tc and will therefore be
smaller at this time than its initial value. Whether the
perturbation can subsequently become large will depend
on whether the ensuing period of growth is sufficient to
overcome the initial decay. Note also that if the filament
was perturbed with a further disturbance of amplitude
A = 1 at time t = tc then this new disturbance would
possibly grow large before the initial perturbation, because
it would not have undergone an initial decay. We consider
this alternative to the initial-value problem in section 6.

Finally, we briefly note the similarity of the result (23)
with that of Dritschel, et al. (1991) for the barotropic
vorticity case: they found that perturbation growth in
vorticity filaments is prevented if s > 0.25q0, where q0 is
the filament vorticity. Likewise, the condition of (23) means
that perturbation growth in the SQG case is prevented if
s > Cθ0/L. The difference here is the factor L which, due
to the exponential thinning of the filament, means that the
condition cannot be met indefinitely.

5. Initial value problem

We scale time with respect to the constant strain rate, s:

T = st, (25)

leaving only two non-dimensional parameters in the linear
equations, the initial values of L/Lc and κ = kL. which we
write as L0/Lc and κ0 = k0L0 respectively. In addition, the
solution depends on the initial structure of the perturbation,
η̂(0), but here we only consider the maximum amplification,
A∗(t), introduced in (18). Recall that the wave number of
each Fourier mode evolves according to (21) so that the full
solution is

η(x, t) = η̂(t)exp(ik0e−stx). (26)

The maximum amplification, A∗(t), can be calculated
from numerical integrations using the method of Dritschel,
et al. (1991) as follows. For given values of L0 and κ0, we
numerically integrate the system just twice with different
initial conditions to obtain linearly independent solutions
µ̂(t) and ν̂(t). As the equations are linear, any solution η̂(t)
can be obtained from linear combinations of the form

η̂(t) = αµ̂(t) + β ν̂(t), (27)

where α and β are complex constants. A(t) then takes the
form

A(t) = e−2st [
|α|2|µ̂|2 + |β|2|ν̂|2 + 2Re(αβ∗µ̂ · ν̂∗)

] 1
2 ,
(28)

which can be maximized over all α and β . Choosing µ̂
and ν̂ to satisfy µ̂(0) · ν̂∗(0) = 0 simplifies the expressions,
since then |η̂(0)| = 1 only requires |α|2 + |β|2 = 1 which,
combined with the phase invariance of the dynamics, means
we can write

α = eiγ cos δ, (29)

β = e−iγ sin δ, (30)

and maximize (28) with respect to the real constants γ and
δ. The maximum of A resulting from this calculation is

A∗(t)= e−2st

√
2

[
|µ̂|2+|ν̂|2+

{
(|ν̂|2−|µ̂|2)2+4|µ̂ · ν̂∗|2

} 1
2

] 1
2

.

(31)

To simplify the integration numerics, we use alternative
variables defined by (λ̂1, λ̂2) = [η̂1 + η̂2, i(η̂1 − η̂2)]/

√
2, as

then all the coefficients in (10) are real. The natural choices
of λ̂(0) = (1, 0) and (0, 1) for the two linearly independent
solutions correspond to

µ̂(0) = 1√
2

(1, 1), (32)

ν̂(0) = i√
2

(−1, 1), (33)

and this is what we use.
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The integration scheme used is a second-order
semi-implicit scheme. Accuracy is ensured by systemati-
cally reducing the time step until convergence is achieved.
Integrations have been performed over a wide range of
parameter space (L0/Lc, κ0), and we now discuss the results.

As an initial illustration, Figure 2 shows the evolution of
A∗ as a function of the scaled time, T, for various parameter
values. Panel (a) shows integrations with initial filament
width L0 = 0.8Lc and several initial wave numbers, κ0. Panel
(b) conversely shows integrations with equal initial wave
numbers and a selection of L0/Lc values. In all simulations
the long time behaviour is that of decay at the kinematic
rate. In some cases, however, there is intermediate growth
prior to this decay. We are interested in the magnitude of
this growth and as such we define Amax(L0/Lc, κ0) as the
maximum value of A∗ achieved throughout the integration
period for each pair of parameter values (L0/Lc, κ0).

Figure 3(a) shows Amax computed for a wide range of
(L0/Lc, κ0) values, and the corresponding time at which
the maxima occur, i.e. Tmax such that A∗(Tmax) = Amax, is
shown in Figure 3(b). Note the logarithmic scales in these
plots. The parameter values of the integrations in Figure 2
are also shown on the figure, as well as the border between
positive and negative initial growth predicted by (23).

There are two features of Figure 3 that we now discuss.
The first, and most important, is that for all values of the
initial width L0 there appear to be wave numbers that have
large Amax values and therefore may be unstable in the
sense that nonlinear terms may dominate the dynamics and
cause the filament to ‘roll up’. The initial wave numbers,
κ0, of the perturbations that grow large increase with L0,
as expected, a result of the following combined effects: (1)
the intermediate period of growth seen in Figure 2 occurs
when κ = O(1) and (2) perturbation growth rates are larger
on thinner filaments. Therefore the largest Amax values
are achieved by the largest κ0 experiments for which the
filaments are very thin by the time κ = O(1). Note that,
despite this prediction of nonlinear instability at all strain
rates, an initial disturbance of any given wave number can
be stabilized if a suitably strong strain is applied.

The second feature of Figure 3 is the small wiggle of the
contours in panel (a) in the region of log κ0 = 0.5. This is
near the border between positive and negative initial growth
and it is associated with the non-modal transient evolution
of the isolated filament case (see section 3). In this case,
small-scale perturbations beyond the short-wave cut-off of
normal-mode growth exhibit oscillatory behaviour due to a
lack of phase-locking between the edge waves, as can be seen
in Figure 8 of this article or figure 2b of Juckes (1995). The
wiggle in Figure 3(a) is a manifestation of this behaviour in
the straining case, although here the effect is only temporary
because the short waves are stretched to a wavelength where
phase-locking can occur and the subsequent perturbation
growth then dominates.

We now consider an alternative diagnostic from the
integrations: the smallest time at which a certain threshold
amplitude Ath is achieved, i.e. the first Tth such that
A∗(Tth) = Ath. The motivation for this approach is that
the amplification factor A is a measure of the importance
of nonlinear terms in the corresponding full nonlinear
problem, and as such filament ‘roll up’ may be expected
to occur when this reaches some threshold value. Without
knowing this value, which will of course depend on the

absolute size of the initial perturbation, we calculate our
results for a range of different threshold amplitudes.

Figure 4 shows Tth for the cases Ath = e1 = 2.72 . . . and
Ath = e4 = 54.6 . . . . The plots show that for each L0 there is
an optimal initial wave number, κopt(L0;Ath), that achieves
the threshold amplitude first. This is marked on the plots
by the dashed lines. Figure 5(a) shows the corresponding
optimal times Topt(L0,Ath), which are the times at which
the optimal wave number perturbations reach the threshold
amplitudes, as a function of L0. As expected, the Ath = 4
case has larger Topt values than theAth = 1 case. Also shown,
in Figure 5(b), is an estimate of the radii of vortices formed
from the instability, aopt(L0,Ath). This is defined such that
the area of one vortex is equal to the area of filament
contained within one wavelength of the optimally growing
mode:

πa2
opt = 2π

κopt(L0)
L2

0. (34)

Both panels of Figure 5 show a regime change at a certain
value of L0, which depends on the choice of Ath. A
comparison with Figure 4 suggests the interpretation that for
small L0 values perturbations can grow immediately, whereas
for large values none of the initially growing perturbations
reaches Ath. Instead, the first perturbation to do so is
an initially decaying one, which must then overcome the
kinematic decay. The result is that for filaments with large
L0 values the resultant vortices are significantly smaller than
the initial filament width.

6. Continued perturbations

We next consider a different approach to the problem,
that of a filament under continued perturbations. By this
we mean a filament that is perturbed at each instant in
time during the integration. We still assume that each
perturbation evolves independently of the others but expect
that, since the quasi-stationary growth rate increases in
time, a perturbation applied at time T = τ > 0 may grow
and reach the threshold amplitudeAth before a perturbation
applied at time T = 0.

Note that the evolution of a perturbation applied at
T = τ is equivalent to that of an initial-value problem with
initial value of L given by L0e−τ , and therefore all the
information we require to test this hypothesis is included in
the initial-value integrations already performed.

The motivation for the continued perturbation approach
comes from the fact that the wave number of the optimally
growing modes is often very large. A filament with initial
width L = 3Lc has, for Ath = e4, an optimally growing
mode of initial wave number κ0 ≈ e6, and this appears to
increase for stronger strain rates (see Figure 4). Clearly
a consideration of numerical resolution or other diffusive
effects may make these modes unrealistic. Further, defining
the initial condition of a filament in a turbulent flow is not a
well-defined procedure since there is no time t = 0. Instead
we suppose that the perturbations are generated throughout
the straining period by a noisy background velocity field.

To calculate whether a later perturbation can grow
to a particular threshold amplitude before an initial
perturbation, consider minimizing the sum of waiting until
the perturbation release time τ and the subsequent optimal
growth time for a filament of width L0e−τ , over all possible
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Increasing κ0

Increasing L0

(a) (b)

Figure 2. Evolution of log[A∗(T)] for various parameter values. (a) L0 = 0.8Lc and κ0 = exp[−2, −1, 0, 1, 2, 3], as indicated. (b) L0 =
0.8Lc exp[−1.5, −1, −0.5, 0, 0.5, 1] and κ0 = exp(1), as indicated. The dashed lines show the kinematic decay log[A∗(T)] = −2T.
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Figure 3. (a) Contours are Amax, the dotted line represents the boundary between positive and negative initial growth given by I(κ) = 2s (see (23)
and discussion) and the symbols indicate the parameter values used in Figure 2. (b) Contours are Tmax. In both plots the shading indicates regions of
parameter space that were not investigated.

release times:

Tcp = min
τ<Topt(L0)

[
τ + Topt(L0e−τ )

]
. (35)

Either the minimizing τ is zero and it is the initial
perturbation that is important or else the minimizing value
is positive and it is a perturbation applied later that reaches
the threshold amplitude first.

Figure 6(a) shows Tcp as a function of L0 for bothAth = e1

and Ath = e4. For L0 larger than some critical value, Tcp
is indeed smaller than Topt, indicating that perturbations
applied later are the fastest growing ones. Figure 6(b) shows
the corresponding vortex radii of the first perturbations to
reach the threshold amplitude, now defined by

πa2
cp = 2π

κopt(L0e−τ∗)
(L0e−τ∗

)2, (36)

where τ ∗ represents the minimizing τ value from (35). This
is constant for precisely the same L0 values and from this we
infer the following: if a filament is initially wide, in a sense
made precise below, and is continually perturbed, then it
has no ‘memory’ and will become unstable only once it has
thinned to a critical width that is independent of L0. The
resultant vortices will have radii proportional to θ0/s, again
independent of how the filament was formed.

The relevant width in this statement refers to the transition
in Figure 6 between the regime whereby initial perturbations
dominate and the regime whereby later perturbations

dominate, which depends on the value chosen for Ath.
Figure 7(a) shows the critical width for various Ath values,
and the the resulting vortex radii are shown in Figure 7(b).

Both the critical width and the vortex radii values reduce to
zero for large Ath. For Ath = e4 ≈ 54.6, the theory predicts
that instability will occur in a wide filament once the width
has reduced to L ≈ 0.3Lc and the resultant vortices will have
radii a ≈ 0.3Lc.

7. External shear

In this section we consider the effects of an alternative
external flow field, that of a shear flow aligned with the
filament as illustrated in Figure 1(c). We find that such a
flow can act to stabilize smooth temperature filaments in a
manner to be explained, but not the discontinuous ‘top-hat’
profile.

The shear flow is written

(uu, vr) = r(y, 0), (37)

where r is the rate of shear. The analysis of this case is
much simpler that the strain case, since the basic state
does not evolve in time. The perturbation evolution is still
given by (10) with a simple modification to the propagation
coefficient,

P(κ) = θ0

πL
κ(log κ + γ − log 2) − κr

2
, (38)

which represents the modification of the local wave speed
due to advection by the shear flow. The analytic solution
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(a) (b)

Figure 4. Contoured Tth values for threshold amplitudes (a) Ath = e1 and (b) Ath = e4. The dashed line indicates the minimum values, the dotted line
is as in Figure 3.

Ath = exp(1)
Ath = exp(4)

Ath = exp(1)

Ath = exp(4)

Figure 5. Upper panel: Topt values for the threshold amplitudes Ath = e1

and Ath = e4. Lower panel: aopt values for the same threshold amplitudes,
see (34).

Ath = exp(1)

Ath = exp(4)

Ath = exp(1)

Ath = exp(4)

Figure 6. Upper panel: Tcp values for the threshold amplitudes Ath = e1

andAth = e4 (solid lines); dashed lines are Topt (see Figure 5). Lower panel:
acp values for the same threshold amplitudes, see (36).

of (14) also holds with this modification and we plot, in
Figure 8, the corresponding equivalent growth rates (see
(19)) for various shear values.

The figure shows qualitatively similar behaviour for all of
the shear values. The σ ∗

eq values are all initially equal to I(κ)
and then collapse on to the normal-mode values. An adverse
shear (Figure 8(c)) shifts the unstable normal modes to
higher wave numbers, thus reducing the wavelength of the

most unstable perturbations. Likewise, a complementary
shear (Figure 8(b)) shifts the unstable normal modes to
smaller wave numbers and hence larger wavelengths. The
normal-mode growth rate curve always lies below the I(κ)
curve, which is not affected by the shear. In contrast to the
barotropic vorticity case, there is no critical shear value that
stabilizes the filament completely; there are always unstable
modes, albeit with reduced growth rates. This can be seen
from (38): for any value of r there is a κ such that P(κ) = 0,
hence σ =

√
I2 − P2 is real.

The inability of shear to prevent normal-mode growth of
the SQG ‘top-hat’ filament is consistent with a consideration
of the Fjortoft condition. Applied to this problem, the
condition assures stability provided that the basic-state
velocity profile is anti-correlated with the sign of the
temperature gradients at each edge of the filament. Clearly
(see Figure 1) the velocity singularities at the filament edges
prevent this from occurring for any finite shear value.

If, instead, we consider the case of a filament with slightly
smoothed edges, then the singularities disappear. Suppose
the filament edge is smoothed slightly over a width δL. The
peak in the basic-state velocity field will then scale as

Upeak ∼ θ0

π
log(L/δL) (39)

and the Fjortoft condition will be met when

r ∼ 2θ0

πL
log(L/δL). (40)

Therefore we conclude that smooth temperature filaments
can be stabilized by suitably strong shearing, the strength of
which is dependent on the filament profile.

8. Conclusions

Straining and shearing tend to inhibit the development
of various fluid dynamical instabilities. However, we have
shown that straining is unable to stabilize temperature
filaments in the surface quasi-geostrophic system, since it
acts to thin filaments and thus increase the instantaneous
growth rates of perturbations.

Shearing is also unable to stabilize SQG ‘top-hat’ filaments
and this is due to the velocity singularities they induce.

For the straining case, our numerical integrations show
that the increase in perturbation growth rate is large enough
that following the evolution of a single perturbation is
not the fastest way to reach large amplitude. Instead, by
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(a) (b)

Figure 7. (a) Critical widths versus threshold amplitude, see text. (b) Resultant vortex radii versus threshold amplitude, see text.

0

5

10
20

0

5

10

20

0
5

1020

(a) (b) (c)

Figure 8. Equivalent growth rate values (see (19)) for rates of shear (a) r = 0.0, (b) r = −0.6θ0/L and (c) r = 0.3θ0/L. The times plotted are
t = (0, 5, 10, 20)L/θ0 as indicated and the bold line indicates the normal-mode growth rate.

considering many perturbations applied continuously in
time, we found that there is an optimal width for applying
a perturbation such that it grows to a given threshold
amplitude first. According to this simple theory, the size of
the resultant vortices is independent of the previous history
of the filament, instead being proportional to θ0/s, with θ0
the temperature anomaly of the filament and s the strain
rate.

Diffusion will act to smooth the ‘top-hat’ filaments studied
here, possibly making the method unsuitable. However, it
can be shown analytically that the combined effects of
straining and diffusion introduce a critical filament width

lν =
(ν

s

)1/2
, (41)

where ν is the diffusion coefficient, above which diffusion
plays a minor role. We therefore expect filament instability
to occur readily if Lc . lν , or alternatively if filament
amplitudes typically satisfy

θ0 .
√

νs

C
, (42)

where C ≈ 0.0742. For filaments satisfying these criteria,
diffusion can be ignored.
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