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Atmospheric thermodynamic variables are commonly computed under approxima-

tions. Although exact formulas are available, they are rarely used. This paper addresses

some potential issues arising when using approximate formulas by taking the moist

static energy as an example. An important conclusion is that the temperature depen-

dence of latent heat must be taken into account. We also demonstrate that the zero-

point energies of various species do not affect the moist static energy budget. The use

of an exact formula for moist static energy increases its surface value by 15 K for a

typical tropical sounding. However, the change of the parcel buoyancy by using the exact

formula is less dramatic, although not negligible. Calculating, for example, the CAPE

for convection parameterization, the use of an exact formula is likely not be critical for

the practical purposes, but quantitative discrepancies can be as large as 50–200 J/kg.
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1. Introduction

Thermodynamic variables are often presented in approximate forms. Studies exist presenting the definitions of these variables in exact

forms (Hauf and Höller 1987, Ooyama 1990, Marquet 1993, 2011, 2015, Emanuel 1994, Murphy and Toop 2005; Marquet and Geleyn

2013). However, data analysis and modelling studies in the literature rarely use these exact definitions. The motivation of this study is

to examine whether the exact definitions of thermodynamic variables have important consequences, or whether approximate relations

may be sufficient.

We take the moist static energy (cf., Marquet 1993, 2015, Emanuel 1994) as a specific example in this study. We address the

following issues: first, we relate the exact definition of the moist static energy to the standard approximation (Sec. 2). Second, as

it turns out, under a rigorous derivation, its definition contains reference constants, which can only be determined by laboratory

measurements or full quantum–mechanical calculations. An obvious question to ask is the role of these constants in order to maintain a

conservation law associated with the moist static energy (Sec. 3). Some further issues concerning these constants are also discussed in
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the Appendix A, being partially inspired by an analogous discussion on entropy by Pauluis et al. (2010). Third, perhaps surprisingly, a

large discrepancy between the exact definition and the standard approximate definition of moist static energy is found, reaching about

15 K for typical tropical values. But how serious is this discrepancy? In order to answer this question, we evaluate the lifting–parcel

buoyancy based on these two definitions by invoking the conservation of moist static energy under this process (Sec. 4). We also address

the change of the values in CAPE (convective available potential energy) as a result.

2. Definition

Moist static energy is conserved under moist adiabatic processes and under hydrostatic balance, thus it is a useful quantity to understand

moist convection. Under the standard approximation, its specific value (value per total air mass) is defined by

h = cpdT + qvL+ gz, (1)

where cpd is the heat capacity of the dry air at constant pressure, T the temperature, qv the specific vapour value, L latent heat of

vapourization of liquid water, g acceleration of the gravity, z the altitude. The geopotential contribution, gz, is an approximation of

g0Z with g0 a reference value for the acceleration of gravity and Z the geopotential height. The present approximation is very accurate

for altitudes below about 50km, and its effect will therefore be ignored here.

The physical meaning of this definition of moist static energy is relatively intuitive: the first term is the dry–air enthalpy (or “heat

content”), the second term is a potential contribution to the first term due to latent heating, and the last term is the specific gravitational

potential energy. It is also intuitively expected that the sum of these three terms would be conserved under adiabatic and hydrostatic

transformations. Hydrostatic balance ensures that any change in gravitational potential energy is compensated for by a change of

enthalpy through a change in pressure.

In deriving an exact expression, we may divide the above expression into the two contributions: the “proper” enthalpy (the first two

terms), h̃, and the gravitational potential energy. Thus,

h = h̃+ gz. (2)

Here,

h̃ ≃ cpdT + qvL, (3)

which corresponds to a standard definition of enthalpy found in textbooks on thermodynamics, which are mostly concerned

with laboratory–scale processes, where changes in gravitational potential can be neglected. When changes in potential energy are

important, the quantity h becomes the conserved variable. Ambaum (2010, Sec. 5.4) calls h the generalized enthalpy. Under standard

approximations (namely the ideal gas law for any gaseous components and incompressibility assumptions for the solid and liquid

components), the generalized enthalpy reduces to what is normally called the moist static energy. Here, we will adopt this standard

terminology, and call h̃ the enthalpy, and h the moist static energy.

Taking the ideal gas approximation, the specific enthalpy is given by a sum of contributions from dry air, hd, water vapour, hv, and

the liquid water, hl. Thus,

h̃ = (1− qt)hd + qv hv + ql hl, (4)

where ql is the specific liquid water, and qt = qv + ql. A contribution of ice is considered separately in Appendix B for keeping the

mathematical expressions in main text as simple as possible.

This article is protected by copyright. All rights reserved.
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Each specific enthalpy value is defined by

hd = h0d + cpdT, hv = h0v + cpvT, hl = h0l + clT, (5)

in which the first term is a reference constant (a zero-point energy), and the second term is a relative value proportional to the specific

heat at constant pressure for each component. This simple form for the gaseous components assumes that they are ideal gases, an

assumption which is very accurate for atmospheric temperature and pressure ranges. The simple form for the liquid component assumes

a constant specific heat capacity as well as incompressibility. Again, these assumptions are accurate for atmospheric temperature and

pressure ranges down to -20 ◦C (cf., Fig. 6 of Murphy and Koop 2005). The effect of the temperature dependence in the liquid–water

heat capacity is examined separately in Appendix C.

Strictly speaking, each expression in Eq. (5) must be written in the form

hj = h0j +

∫ T

0

cpj(T
′)dT ′

with the subscript j suggesting a component with the heat capacity, cpj , at constant pressure defined as a function of temperature.

Under this strict expression, the reference value, h0j , has a clear physical meaning as an enthalpy value extrapolated to zero absolute

temperature, excluding phase transitions (cf., Kittel and Kroemer 1980, Ch. 6). However, the use of this strict expression for practical

computations is difficult especially considering the large uncertainties in data towards the limit of the absolute zero temperature, as

reviewed by Murphy and Koop (2005). For this reason, we take Eq. (5), that is considered a good approximation for this rigorous

expression around a temperature range of interest.

The specific enthalpies for vapour and liquid water are related to the latent heat of vapourization, L, by

L = hv − hl. (6)

Removing hv by Eq. (6) in Eq. (4), and substituting the remaining expressions from Eq. (5), we obtain

h̃ = c̃p T + qv L+ (1− qt)h0d + qt h0l, (7)

where

c̃p = (1− qt)cpd + qt cl. (8)

Eq. (7) may be considered the final expression sought, as presented in e.g., Marquet (1993, 2015), Emanuel (1994). An alternative form

called “liquid–water” enthalpy (e.g., Emanuel 1994), obtained by removing hl instead, is discussed separately in Appendix A.

Equation (7) is, however, hard to interpret in an intuitive manner: we expect that the heat capacity, cpd, for the dry air in Eq. (3)

would be replaced by that for the total air (including contained condensed water), which is equal to

cp = (1− qt)cpd + qv cpv + ql cl. (9)
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However, instead of cp, we get c̃p defined by Eq. (8). It is also not obvious why the total water is weighted by the reference constant

h0l, for liquid–water enthalpy in the last term. It might have been more intuitive to expect, h0v , especially when the air is unsaturated,

thus qt = qv . Of course this counterintuitive outcome is the result of standard algebraic manipulation. However, its form is not unique.

This counterintuitive outcome may be alleviated when we notice that substitution of Eq. (5) into Eq. (6) leads to an integral version

of Kirchhoff’s equation for ideal gases (Ambaum, 2010, Sec. 3.6):

L = L0 − (cl − cpv)T, (10)

and

L0 = h0v − h0l, (11)

which can be seen as the linear extrapolation of the latent heat of evaporation to zero absolute temperature. For water vapour

extrapolated from typical atmospheric temperatures, we find

L0 = 3.14 × 106 J kg−1.

Recall that the latent heat of evaporation for typical atmospheric temperatures is approximately

L ≃ 2.5× 106 J kg−1.

Substitution of Eq. (10) into Eq. (7) finally leads to:

h̃ = cp T + qv L0 + h0d + qt (h0l − h0d). (12)

This expression (12) is much easier to interpret against the standard approximate expression (3): an exact expression (12) is obtained63

from an approximation (3) by replacing cpd by cp and L by L0. Furthermore, a reference constant value must be added. Although the64

value of the reference constant may remain somewhat counterintuitive, it is now clear that its value is determined by splitting it out65

into the dry–air and the water dependences on the reference constants. Note also that L0 is about 25% larger than the typical expected66

value of latent heat, L, of evaporation. This will have a substantial effect on the calculated values of moist static energy, as is going to67

be addressed in Sec. 4.68

It may be tempting to conclude that for achieving physically consistent expressions involving enthalpy, all we need to do is to replace

the dry heat capacity, cpd, by the full parcel heat capacity, cp, and the latent heat, L, by its extrapolated value L0. However, this is not

generally the case. For example consider the effect of condensation on the temperature of a parcel. A standard procedure, as found in

Asai (1965), Yau and Austin (1979), Rutledge and Hobbs (1983), Grabowski(1988, 1989), invokes the relation:

−L∆qv = cp∆T, (13)

This article is protected by copyright. All rights reserved.
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where −∆qv is the amount of condensation, and ∆T is the resulting increase of temperature by latent heating. Often, the heat capacity

at constant pressure is approximated by that of the dry air, thus cp ≃ cpd. Here, this equation simply states that the amount of latent

heating (left hand side) balances with the increase of the “heat content” of the air (right hand side).

The above formula appears to be based on the assumption that the enthalpy is defined by

h̃ = cpT + qvL,

and that enthalpy is conserved under the condensation process (Ambaum 2010, Sec. 5.4). If we replace this equation by the exact

version Eq 12, then it does not follow that −L0∆qv = cp∆T, because the changing composition following condensation also changes

the heat capacity. So the appropriate equation for the condensation is

−L0∆qv = cp∆T + T∆cp, (14)

This equation turns out to be equivalent to Eq. (13), when the full heat capacity is used, L is the usual temperature dependent latent

heat as given by Eq. (10), and conservation of total water is invoked so that ∆ql = −∆qv .

3. Reference Constants and a Conservation Law

The final result, Eq. (12) above, is fairly close to the standard approximate expression, Eq. (3), except for the two additional terms

involving the reference constants. The first reference constant term, h0d, is just a constant, and it does not change by any processes.

Thus, h0d can take any arbitrary value, and we may set h0d = 0 without loss of generality. On the other hand, the second reference

constant term is proportional to the specific total water, qt. Thus, the value of this term changes with qt, and it looks like that the

choice of the value for h0l − h0d would affect the whole budget for the moist static energy when rain falls out of the parcel (e.g., when

considering pseudo-adiabatic ascent). We now examine how the value of h0l − h0d affects the budget more precisely.

For this purpose, we take the total derivative of the moist static energy defined by Eq. (12):

dh̃ = cp dT + T dcp + L0 dqv + (h0l − h0d) dqt. (15)

The heat capacity at constant pressure is not constant anymore, but

dcp = (cl − cpd) dqt − (cl − cpv) dqv . (16)

By substituting Eq. (16) into Eq. (15), and after some rearrangements by recalling Eq. (10), we obtain

dh̃ = cp dT + Ldqv + (hl − hd) dqt. (17)

This equation provides the rationale for E. (13), and the subsequent discussion. Note that the value of hl − hd depends on the reference

constants h0l − h0d. This is different from the dependence on reference constants of L = hv − hl; the latter is a measurable property

of a given substance which only depends on the change in reference constants across the phase transition, not on the absolute value

of the constants themselves, whilst h0l − h0d is not directly measurable in classical experiments and is not a property of a given
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substance. It is an artificial property in the specific enthalpy budget resulting only from changing the mass ratio between the liquid and

dry components.

Inspection of Eq. (17) leads to two conclusions:

(i) When the total water is conserved, and dqt = 0, the constant, h0l − h0d, does not affect the budget.

(ii) When the total water is not conserved, and dqt 6= 0, the constant, h0l − h0d, must be specified. Especially, when the total water

is lost by precipitation, the constant, h0l − h0d, defines the rate, (hl − hd) dqt, that the enthalpy is lost locally by transport

associated with precipitation. Thus, the enthalpy transport rate by precipitation depends on a choice of the value of h0l − h0d.

In order to close the enthalpy budget, the enthalpy transport rate must be specified. For this purpose, the value of h0l − h0d must also

be specified. As an amount of total water, dqt, is transported from one position to another, an amount of enthalpy, (h0l − h0d)dqt, is

also transported. However, as the above argument suggests, its actual value plays no other part in the thermodynamics of the parcel. It

is needed only for book keeping the specific enthalpy, when a parcel composition changes through gravitational separation of the liquid

(and solid) parts of the parcel. The consistency of the enthalpy budget is maintained regardless of the value assigned to h0l − h0d.

Thus, h0l − h0d can be specified in an arbitrary manner.

The reason for h0l − h0d not playing any part in the thermodynamics of the parcel may further be understood in the following

manner. The precipitation process (i.e., dqt = dql < 0) separates out the precipitable water from the rest of the parcel by taking the two

steps: 1) the separation within the parcel of the precipitating liquid and the rest of the mixture in the parcel, and 2) the removal of the

precipitating liquid from the parcel. In the first step, nothing happens to the total parcel, but the enthalpy in the parcel can be allocated

separately to the precipitable water (an amount of −hl dqt per unit total mass) and to the rest of the mixture. In the second step of the

precipitation process, the liquid and its enthalpy is removed from the parcel mixture, but in this step the mass fraction of the dry air

in the parcel mixture has increased by an amount −dqt. Any first order effect of changing mass fraction of the vapour is captured in

the second term of Eq. (17), but is in any case small because it is proportional to dqt. The net change in specific enthalpy, therefore,

must be (hl − hd) dqt. Here, there is no thermodynamic transformation involved, just a recognition that different composition mixtures

will have different values for the zero-point specific enthalpy values. When re-calculating the enthalpy of the new mixture, the same

reference constants for the components can be used.

Under these considerations, we can set h0l − h0d = 0 in the following analysis, so that the change of composition due to precipitation

does not show up as an apparent change of reference constant of the mixture.

As a final word of warning (and unfortunate additional confusion), however, different choices for these constant values indeed lead

to different values for the enthalpy. An equivalent issue with entropy is extensively discussed by Pauluis et al. (2010). The same is

discussed in the Appendix A separately with a further discussion on the significance of those constant values.

4. Data Analysis

Our next goal is to examine the extent that any data analysis results are modified by using the exact definition (12) for the enthalpy

instead of the standard approximate definition (3). For this purpose, we use two data sets. The first is a mean Caribbean sounding for

July–October (for the hurricane season) assembled by Jordan (1958), and as given by his Table 5. This sounding provides values from

the surface (1015 hPa) to 30 hPa level with a vertical resolution of 50 hPa from 1000 hPa to 200 hPa, 25 hPa above 200 hPa, 20 hPa

above 100 hPa, and 10 hPa above 60 hPa.

This article is protected by copyright. All rights reserved.
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The second data set is over the Intensive Flux Array (IFA) during the TOGA–COARE (Tropical Ocean Global Atmosphere Coupled

Ocean Atmosphere Response Experiment) Intensive Observing Period (IOP — 1 November, 1992 through to 28 February, 1993). The

data set is processed at the State University of Colorado and available from the web

(http://tornado.atmos.colostate.edu/togadata/ifa data.html: Ciesielski et al. 2003). The data consists of surface values, and values from

1000 hPa to 25 hPa level with a vertical resolution of 25 hPa. Soundings are given every 12 hours.

Fig. 1 shows the vertical profiles of the moist static energy computed by the two definitions (12) and (3) of the enthalpy for the

Jordan mean sounding. By adopting the exact expression (12), the moist static energy increases by 15 K at the surface compared to

the approximate expression (3). However, we also note that the local absolute value of moist static energy does not play a role in the

budget, for the same reason as the constant, h0l − h0d, can be arbitrary chosen as discussed in the last section. (Note that moist static

energy also introduces an arbitrary constant offset for the potential energy, which is typically chosen to be zero so that geopotential

height and geometric height above the geoid coincide near the surface.)

In seeking more physical impacts, we now turn to examine the change of the lifting–parcel buoyancy by adopting the exact definition

for the moist static energy. Recall that the parcel buoyancy is defined by a difference of the virtual temperature between the parcel

and the environment (cf., Roff and Yano 2002). Here, in computing the lifting–parcel buoyancy, the moist static energy is used as

a conserved variable for the lifting parcel. The parcel is lifted from the 950 hPa level, as an approximate height for the top of the

well–mixed boundary layer. Below the saturation level, the specific vapour value, qv, is also conserved, thus the parcel temperature is

evaluated in a straightforward manner. Above the saturation level, we set the specific vapour to the saturated value, thus qv = q∗v(T ),

and also assume that the total water, qt, is conserved. As a result, the specific liquid water is ql = qt − q∗v(T ). Under these constraints,

the parcel temperature at a given level is calculated by a Newton–Raphson method assuming the conservation of the moist static energy.

The resulting buoyancy based on this computation leads to the reversible buoyancy, as no water falls out from the parcel. The alternative

definition, called “pseudo-adiabatic” buoyancy, is obtained by setting ql = 0 in the final result.

The obtained parcel buoyancy under these two definitions for the buoyancy (reversible and pseudo–adiabatic) and the two definitions

for the moist static energy are shown in Fig. 2 for the Jordan sounding. The pseudo–adiabatic buoyancy decreases by 1 K when

adopting the exact definition (12), and the reversible buoyancy decreases by a similar but lesser extent. At face value the change in

parcel buoyancy is not as dramatic as the change in the absolute value of the moist static energy. However, the relative change can be

very large, and for the reversible case we find altitudes where the sign of the buoyancy changes between the two definitions.

The vertical integral of the positive parcel buoyancy under these two definitions leads to reversible and pseudo–adiabatic CAPE

(convective available potential energy). These two CAPE time series are plotted for the first 30 days of the TOGA–COARE IOP over

IFA in Fig. 3(a) and (b) along with the precipitation rate in (c). These time series, again, confirm the conclusion from Fig. 2: though

the change of CAPE values by adopting the exact definition (12) is clearly not negligible, it is not dramatic. As discussed for example

in Yano et al. (2013), CAPE is useful mainly as a qualitative measure of convective instability. Especially, the value of convective

buoyancy is substantially reduced from that of a simple lifting–parcel buoyancy by an entrainment process as suggested for example

by Fig. 2 of Yano (2003). Since the uncertainties associated with the convective entrainment (cf., de Rooy et al. 2013) is so large that

a difference found in Fig. 3 appears less significant.

However, when using CAPE in a quantitative fashion, the adoption of the exact definition (12) seems imperative. Figure 4 shows

scatter plots of two types of CAPE for the whole TOGA-COARE period calculated between the approximate expression (Eq. 3:

horizontal axis) and the exact expression (Eq. 12: vertical axis). It is seen that the exact expression of the reversible CAPE consistently

gives a value 50 J/kg larger than the approximated expression below 250 J/kg (a). Above this value, the approximated expression tends

This article is protected by copyright. All rights reserved.
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to lead to an underestimation, though such cases are rare. For the pseudo–adiabatic CAPE (b), the approximation (3) consistently

overestimates the value by 15 % compared to the exact value. The maximum difference reaches 200 J/kg for large CAPE values.

5. Discussions and Conclusions

Exact definitions for the atmospheric thermodynamic variables are known in the literature. However, in practical data analysis, these

definitions are rarely used. Instead, standard approximations are adopted. Then what kind of consequences would such approximations

have? This paper has examined this question by taking the moist static energy as an example.

At first sight, the exact definition (7) for the moist static energy appears not as physically intuitive as the standard approximate

definition (3). Here, we have shown that a re–writing of the definition (12) makes it more physically intuitive. An important corollary

of this re–writing is the crucial importance of taking into account the temperature dependence in the latent heat.

As emphasized by Marquet (2015), when absolute values of thermodynamic variables are concerned, the reference constant values

must also be specified. However, in practical applications, only the relative values across phase transitions (latent heats) are of

importance. We have explicitly shown that the conservation law for the moist static energy can consistently be defined without defining

the absolute values of the enthalpy constants.

Practical consequences of using the exact definition or the standard approximations are examined by computing both the lifting–

parcel buoyancy value as well as CAPE from tropical data sets based on both of them. We show that the modifications are

relatively minor when only qualitative properties of the parcel buoyancy or CAPE are concerned, especially in context of convection

parameterization (cf., Yano et al. 2013). For example, the actual value of CAPE for a real parcel would likely be more strongly affected

by an entrainment rate, when the change of buoyancy by entrainment is also taken into account (cf., Fig. 2, Yano 2003). The latter

parameter is vastly uncertain (cf., de Rooy et al. 2013). Nevertheless, the two definitions give quantitatively very different values, with

the approximate equations typically overestimating the reversible CAPE by about 50 J/kg, and the pseudo–adiabatic CAPE by up to

200 J/kg.
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Appendix A: Liquid–Water Enthalpy and Reference Constants

The present paper emphasizes that the choice of undefined constants in thermodynamics formulas has no practical consequence: this

point is made in Sec. 3. On the other hand, Pauluis et al. (2010) point out a difference of the mean meridional circulations defined in

isentropic coordinates under different definitions of entropy: moist and liquid–water.

In this respect, the enthalpy considered in the main text corresponds to the “moist” definition. Alternative definition (“liquid water”)

is obtained by removing hl from Eq. (4) by Eq. (6) instead of hv to find an alternative form of the expression for specific enthalpy:

h̃w = cp T − ql L0 + hd0 + qt(hv0 − hd0). (A.1)

Here, the subscript w is added to emphasize the “liquid water” definition. An argument parallel to the one made in the main text says,

again, that the constants, hd0 and hv0, can be chosen arbitrary by maintaining the consistency with the conservation law of h̃w .

This article is protected by copyright. All rights reserved.
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Thus, by setting hd0 = hl0 = 0 in Eq. (12), and hd0 = hv0 = 0 in Eq. (A.1), we obtain two different expressions for the enthalpy:

h̃ = cp T + qv L0, (A.2a)

h̃w = cp T − ql L0. (A.2b)

Clearly, these two definitions lead to two different numerical values for enthalpy, as emphasized by Pauluis et al. (2010) in the case of

entropy. However, this does not contradict the fact that the enthalpy under both definitions can be used to maintain the consistency with

thermodynamic conservation law.

To elucidate this point, we can take the difference of the two definitions:

h̃− h̃w = qt L0.

Recall that the conservation of enthalpy is satisfied only under a conservation of total water, as suggested by Eq. (17). So long as the

total water is conserved, the above difference, qtL0, only contributes a fixed constant.

However, when the condensed water is lost from an air parcel, say, due to the precipitation, the issue becomes more involved. Now,

the enthalpy is lost by a rate, hl − hd and hv − hd, respectively, under the two definitions. From that point, the difference, qtL0, no

longer remains constant, and as a result, the two definitions of enthalpy will show different spatio–temporal distributions. By applying

the same analysis to entropy, Pauluis et al. (2010) show that the isentropic–coordinate based mean circulation analysis leads to different

results depending on the choice of the definition of entropy. However, to interpret such circulations in a Lagrangian sense we implicitly

assume some underlying conservation of entropy or moist static energy. As indicated above, this requires Lagrangian conservation of

total water content. When this is not the case, the variance in entropy or moist static energy will be due to the varying composition

and the subsequent effects of defining the arbitrarily–related zero-point energies of the dry air and water components, as explained in

Sec. 3.

Appendix B: Contribution of Ice to the Moist Static Energy

The contribution of ice is obtained by adding the ice enthalpy, hi, to the formulas presented in the main text. Here, similar to Eq. (6),

we find

hi = hl − Li, (B.1)

where Li is the latent heat by ice fusion. As a result, in place of Eq. (7), we obtain

h̃ = c̃p T + qv L− qi Li, (B.2)

with the definition of c̃p remaining the same but the contribution of the specific ice, qi, included to in the definition of the total specific

water, qt. Here, the arbitrary constants are set zero for clarity. This expression further reduces to

h̃ = cpd T + qv L− qi Li, (B.3)

under the standard approximation.

This article is protected by copyright. All rights reserved.
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We also note, similar to Eq. (10),

Li = L0i − (ci − cpv)T (B.4)

with L0i = 3.0× 106 K/kg. Here, by considering a relatively strong temperature dependence of the ice heat capacity, ci, we adopt

-20◦C as a reference temperature in applying Eq. (B.4) in computations below (i.e., ci = 2106 J/kg/K). Substitution of Eq. (B.4) into

Eq. (B.2) leads to the final expression:

h̃ = cp T + qv L0 − qi L0i. (B.5)

Here, the definition of cp remains the same as in the main text, but the specific ice, qi, included to the total water, qt.

By introducing these modified definitions, Eqs. (B.3) and (B.5), of the enthalpy into the definition (2) of the moist static energy, we

can investigate the change of the reversible parcel buoyancy by adding the ice fusion effect. It is well known that when all the water is

frozen above the freezing level, CAPE is increased homogeneously by 1000 J/kg approximately in tropical data analysis as shown by

e.g., Roff and Yano (2002). In reality, a substantial fraction of water remains supercooled liquid water below the freezing point. Here,

we assume that the fraction of ice among the total condensate linearly increases from zero to unity from Tw = −5◦C to Ti = −20◦C.

We also linearly interpolate the saturated specific water–vapour from Tw to Ti from the liquid value to the ice value by following

Grabowski (1998).

The obtained modifications of the reversible buoyancy profile from Fig. 2 are shown in Fig. 5 both with the approximation (Eq. B.3:

long dash) and the exact formula (Eq. B.5: solid). Note that the difference of the two curves essentially comes from the errors due to

an assumption of a constant ice–fusion heating under Eq. (B.3).

Appendix C: Temperature Dependence of the Liquid Water

As remarked in the main text, the heat capacity of the liquid water is fairly constant down to -20 ◦C. Below this temperature, however,

its temperature dependence becomes important, as shown by e.g., Fig. 6 of Murphy and Koop (2005). This appendix examines this

effect.

For this purpose, we idealize the optimal curve shown in Fig. 6 of Murphy and Koop (2005) for the heat capacity of the liquid water

by a curve shown in Fig. 6 (a). Here, a further decrease of the heat capacity below 210 K is not considered, because that is beyond

the considered data range. The unit is taken to be J/K/mol in order to facilitate a direct comparison with Fig. 6 of Murphy and Koop

(2005), but it can easily be converted into the unit of J/K/kg by dividing it by the molar mass of the water, 18.015 × 10−3 kg/mol.

When the temperature dependence is considered for the heat capacity, the definition of the liquid–water enthalpy must be changed

from

hl = cl0T (C.1)

to

hl = h0l +

∫ T

0

cldT (C.2)

In Eq. (C.1) the subscript 0 is added in defining of the heat capacity in order to explicitly indicate that the heat capacity is constant.

The temperature–dependent heat capacity, cl, in Eq. (C.2) may be separated into the two parts:

cl = cl0 +∆cl, (C.3)

where ∆cl is the change of the liquid–water heat capacity by considering its temperature dependence,.
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By substituting Eq. (C.3) into Eq. (C.2), and noting that we need to recover the original definition (C.1) in the high temperature

limit (i.e., T → ∞) for consistency, the liquid–water enthalpy taking into account of the temperature dependence of the heat capacity

is given by

hl = (cl0 −∆c∗l )T (C.4)

where

∆c∗l =
1

T

∫ ∞

T

∆cldT

is an effective change of the heat capacity by considering the temperature dependence: the effective heat capacity reduces from the

reference value, cl0, by fraction of ∆c∗l /cl0. This factional reduction is shown in Fig. 6(b).

Note that rather unintuitively, the liquid water effectively feels less heat capacity in the low temperature limit although the heat

capacity itself presents higher values. More importantly, although the heat capacity itself increases more than 60 % over a low

temperature range, the fractional change, ∆c∗l /cl0, of the effectively heat capacity felt by the liquid water is less than 10 %. Thus,

we expect that the change of the buoyancy taking into account of this effect is also proportionally small.

The resulting change of the reversible buoyancy by taking this effect into account is shown for the Jordan sounding in Fig. 7 by a

long–dashed curve against the default value without this effect (solid curve). The effect of the temperature dependence of the liquid–

water heat capacity is fairly minor, and seen only above 250 hPa, where the buoyancy is already negative. Note that above this level,

the temperature is below -30◦C, and most of the supercooled water is expected to freeze above this temperature in reality. Thus, this

effect is likely to be neglected in most of the practical applications of the lifting–parcel buoyancy calculations.
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Figure 1. Vertical profiles of the moist static energy obtained under the Jordan sounding: the result based on the exact formula (Eq. 12: solid) and with the standard

approximation (Eq. 3: long dash) for the enthalpy.
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Figure 2. Vertical profiles of the lifting–parcel buoyancy under the Jordan sounding: the solid and long–dash curves (left side) show the reversible case, whereas the short–
dash and chain–dash (right side) the pseudo–adiabatic case. The solid and short–dash curves are based on the exact formula (12), whereas the long–dash and chain–dash

curves are under the standard approximation (3).
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Figure 3. Time series for the first 30 days of the TOGA–COARE period: (a) reversible and (b) pseudo-adiabatic CAPE (J/kg), in which the solid curves show those based

on the exact formula (12), the short–dash curves are with the standard approximation (3); (c) precipitation rate (mm/day). Note that the precipitation rate is indirectly
estimated from the water-vapour budget, thus it is occasionally negative due to both the observation and diagnosis errors.
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Figure 4. Scatter plots between the exact (vertical axis) and the approximate estimates (horizontal axis) of CAPE based on Eqs. (12) and (3), respectively, for the whole

TOGA–COARE period: (a) reversible, (b) pseudo-adiabatic (J/kg).
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Figure 5. The vertical profiles of the reversible buoyancy, as in Fig. 2, but with the ice fusion effect taken into account: for the exact formula (Eq. B.5: solid), and the

approximation (Eq. B.3: long dash).
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Figure 6. (a) An idealized temperature–dependence of the liquid–water heat capacity considered by following Fig. 6 of Murphy and Koop (2005). (b) A relative change,
∆c∗

l
/cl0, of the effective liquid–water heat capacity, when its temperature dependence is considered as in (a).
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Figure 7. Reversible–buoyancy profile for the Jordan sounding by taking into account of the temperature dependence of the liquid–water heat capacity shown in Fig. 6

(long dash), to be compared against the default case without (solid curve).
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