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The three-dimensional vortical nature of atmospheric and oceanic
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Using a novel numerical method at unprecedented resolution, we demonstrate that structures of
small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such
flows are characterized by vortices~spinning volumes of fluid!, regions of large vorticity gradients,
and filamentary structures at all scales. It is found that such structures have predominantly
three-dimensional dynamics below a horizontal scaleL' 1

2LR, whereLR is the so-called Rossby
radius of deformation, equal to the characteristic vertical scale of the fluidH divided by the ratio of
the rotational and buoyancy frequenciesf /N. The breakdown of two-dimensional dynamics at these
scales is attributed to the so-called ‘‘tall-column instability’’@D. G. Dritschel and M. de la Torre
Juárez, J. Fluid. Mech.328, 129 ~1996!#, which is active on columnar vortices that are tall after
scaling by f /N, or, equivalently, that are narrow compared withLR. Moreover, this instability
eventually leads to a simple relationship between typical vertical and horizontal scales: for each
vertical wave number~apart from the vertically averaged, barotropic component of the flow! the
average horizontal wave number is equal tof /N times the vertical wave number. The practical
implication is that three-dimensional modeling is essential to capture the behavior of rotating,
stratified fluids. Two-dimensional models are not valid for scales belowLR. © 1999 American
Institute of Physics.@S1070-6631~99!02405-8#
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I. SCIENTIFIC MOTIVATION

The motion of the atmosphere and oceans is trem
dously complex, involving a huge range of spatial and te
poral scales. Its prediction is one of the most challeng
problems facing science today, and it is remarkable t
broadly realistic, short-term forecasts can be made at al
variety of physical, chemical, and dynamical processes c
pete to shape the motion, not all of which are well und
stood, and then there is the problem of observing and in
porating those observations into computer models.

In this article, we focus on the fundamental flui
dynamical processes of atmospheric and oceanic flo
Physical and chemical processes like the supply of latent
sensible heat by the Earth’s surface or the absorption of s
wave radiation by ozone or long wave radiation by carb
dioxide are instrumental in shaping the observedlarge scale
circulation of the atmosphere but tend to operate on m
longer time scales compared to fluid-dynamical proces
The same is true for the oceans. These physical and chem
processes act to establish a flow which, however, isdynami-
cally unstable. The flow continuously breaks down and
forms, the net result being the observed circulation.1

a!Electronic mail: dgd@mcs.st-and.ac.uk
1511070-6631/99/11(6)/1512/9/$15.00
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Fluid dynamical instability is thus seen to be at the he
of the problem. Rarely, though, are the atmosphere
oceans close to a basic state or equilibrium in any w
defined sense, certainly not at small to intermediate sca
which might best be described as turbulent. The turbule
there~below horizontal scales of 500 km in the atmosphe
and 25 km in the ocean! is not pure in any sense, but i
strongly affected by both rotation and density stratificati
~lighter fluid lying over denser fluid!. Rotation favors the
formation of ‘‘deep’’ flows having weak variations along th
axis of the fluid’s rotation~a result known as the Taylor
Proudman theorem!, whereas stratification favors the forma
tion of ‘‘shallow’’ flows having strong variations acros
stratification surfaces~isentropic, constant entropy surface
in the atmosphere or isopycnal, constant density surface
the oceans! and motion parallel to these surfaces. These t
effects have antagonistic consequences in the Earth’s a
sphere and oceans, and, even to the present day, their
bined role is not well understood.

Why does this matter? A cursory examination of t
governing equations of motion suggests that these two
fects are of the same order of magnitude around a horizo
scaleL5LR, whereLR5NH/ f is the so-called ‘‘Rossby ra
dius of deformation,’’H is a characteristic depth scale of th
2 © 1999 American Institute of Physics
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fluid ~about 7 km in the atmosphere and the full depth in
ocean!, while N and f are the frequencies associated w
stratification and rotation, respectively.N is the oscillation
frequency that a small fluid volume would exhibit if it wer
displaced by a small vertical distance~for the ocean,N
5A2gr21]r/]z wherer is the density andg is the accel-
eration due to gravity!; this is called the buoyancy frequenc
and is here taken to be constant for purposes of argum
though in reality it varies by more than a factor of 2 in bo
the atmosphere and the oceans.f is twice the local rotation
rate of the fluid, i.e., the component of the rotation vec
that projects on the local vertical~parallel to the effective
gravity!; this is called the Coriolis parameter and equ
2Ve sinf at the latitudef, whereVe is the rotation rate of
the Earth, and againf is here taken to be constant over sca
L small compared with the radius of the Earth. For typic
atmospheric and oceanic values ofN andf, the Rossby radius
LR'1000 and 50 km, respectively, a scale which is mu
smaller than the Earth’s radius.

The practical problem is that in numerical modelin
scales smaller thanLR are only marginally resolved and thu
subject to significant numerical dissipation@and note, ac-
cording to Ref. 2, the breakdown of two-dimensional~2-D!
vortical structures occurs at scalesL&LR/3#. In recognition
of the difficulty of properly resolving these scales, model
parametrize the collective effects of unresolved scales by
enormously enhanced viscosity, called ‘‘eddy viscosity
which, however, has little justification apart from ensuri
numerical stability. Without knowing what actually occurs
this dynamically active, weakly dissipative range of scales
is presently impossible to formulate a sensible parametr
tion for it. Yet, to adequately resolve these scales in pres
atmospheric and oceanic models is equally impossible:
present study suggests that a grid at least ten times fin
necessary, and this cannot be done without computerat
least103 times more powerful.

This article is concerned with the nature of rotatin
stratified turbulence, a subject that has been debated now
nearly 30 years. The key points of this debate are reviewe
Sec III. This is proceeded by a short description of the phy
cal system studied, the simplest one relevant to rotat
stratified turbulence. In Sec. IV we briefly describe the n
numerical method3 used in this study, and in Sec. V w
present new—and to a great extent unexpected—simula
results obtained at exceptionally high numerical resoluti
In Sec. VI we examine the time development of the ene
spectra, in particular the characteristic vertical/horizon
scale ratio. Further implications of these results and th
generalizations are discussed in Sec. VII.

II. THE PHYSICAL SYSTEM

We consider here only conservative motion, that is
forcing or dissipation. In this case, the fluid moves predo
nantly parallel to the basic stratification surfaces~which
makes sense only if these surfaces do not overturn!. This is
an intrinsic characteristic of conservative rotating, sta
stratified flows: layerwise two-dimensionality.4,5 Under the
quasi-geostrophic~QG! approximation,6 these stratification
e
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surfaces are nearly flat~and never overturn!, so the motion
may sensibly be regarded as horizontal, i.e., with only t
nonzero velocity componentsu and v in the x and y direc-
tions, respectively. The horizontal momentum equations
leading order, simplify to a balance between the Corio
force and the horizontal pressure gradient, this balance b
called ‘‘geostrophy’’, while the vertical momentum equatio
reduces to hydrostatic balance. The momentum equation
used at higher order in two small, comparable paramet
the ‘‘Rossby number’’ R0 and the ‘‘Froude number’’ Fr ,
along with mass conservation and incompressibility to der
a leading-order approximation to thepotential vorticity~PV!
q, a field involving the effects of both rotation and stratific
tion which is conserved following fluid elements, i.e
]q/]t1u•¹q[Dq/Dt50, under adiabatic conditions~for
further details, see Ref. 4!.

The Rossby number R0 is defined asu¹3uu/ f , where
¹3u, the curl of the horizontal velocityu, is thevorticity in
the frame of reference rotating with the Earth, andf
52Ve sinf. The Froude number Fr is defined asuuu/c,
wherec5NH is the characteristic speed of waves associa
with the displacement of the stratification surfaces fro
equilibrium. The QG theory requires Fr

2!R0!1.
There are many situations when these parameters ca

be considered small, in equatorial regions~wheref→0) or in
the vicinity of strong topographic features, the upper atm
sphere, or near strong thermal activity~where stratification
surfaces may overturn!. The QG equations cannot sensib
be used in weather prediction, as a result, but their inap
cability tends to be geographically localized; there are ma
situations of interest in which their use as a basic resea
tool is justified.4,7–12 Likewise, their use here to study th
fundamental properties of rotating, stably stratified turb
lence is justified, since, according to comparative studie13

higher-order Rossby and Froude number effects are not
pected to cause qualitative changes as long as these pa
eters are small compared to unity.@Notably, primitive-
equation simulations of the tall-column instability perform
by Dritschel ~unpublished! show insignificantquantitative
differences from QG simulations even for R0 as large as 0.5.#

The expression for the potential vorticityq in QG theory
is

q5 f 1¹h
2c1

1

r0

]

]z S r0

f 0
2

N2

]c

]z D , ~1!

where c is the streamfunction, from which the horizont
velocities can be determined usingu52]c/]y and v
5]c/]x. In Eq. ~1!, f is the Coriolis parameter@f 0 is the
constant part of it, and (f 2 f 0)/ f 0&O(R0) for consistency#,
¹h

25]2/]x21]2/]y2, r0(z) is the basic-state density profil
with ‘‘height’’ z ~in fact, z stands for log pressure, which i
equivalent to geometric height for an isothermal atm
sphere!, andN(z) is the buoyancy frequency profile. This s
of equations is closed once boundary conditions are p
scribed forc, and here we consider the simplest, most co
monly employed conditions, namely]c/]z50 ~uniform sur-
face temperature! at the horizontal boundariesz50 andH.
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These conditions enable one to invert the elliptic operato
Eq. ~1! to obtainc from the instantaneous distribution ofq,
and thenu5(u,v) by differentiation of c. One can then
evolve q to the next instant of time by pure advectio
Dq/Dt50.

In this article, only the case of constantf, N, andr0 is
considered, following most previous works on QG turb
lence. For the scales of present interest, which are s
compared with the Earth’s radius, it is highly accurate
consider constantf. VariableN deserves exploration, since
appears to favor more strongly baroclinic behavior, but t
is beyond the scope of the present paper. Variabler0 , inves-
tigated in Ref. 1, also deserves further exploration, but
main effect is to favor vortices near the lower surface, wh
the fluid is relatively dense.

III. HISTORICAL SURVEY

Most previous studies of rotating, stratified turbulen
have focused, almost exclusively, on the energy spectr
the distribution of energy~kinetic1potential! with spatial
scale. The spectrum reflects the relative importance of e
scale within a turbulent flow, and its temporal change rela
to the tendency for the flow to build up bigger structures~as
in 2-D flows! or to fragment into smaller structures@as in
three-dimensional~3-D! nonrotating, unstratified flows#.

The association of these ‘‘structures’’ with vortices
commonly assumed; however, the spectrum itself does
contain the information necessary to make this associat
Structures depend on phase correlations, information ab
in the energy spectrum. The precise form of these ph
correlations depends on the flow properties, i.e., whethe
not the flow organizes into coherent, persistent spatial st
tures. Such organization appears to be an inherent chara
istic of many flows, including rotating, stratified flows.14

Furthermore, in such flows~including 2-D ones!, the orga-
nized structures, that is, the vortices, appear to dominat
the sense that they contain most of the kinetic energy. W
is left over is a largely passive sea of disorganized filam
tary PV structure which is swept around the organized str
tures. This filamentary structure tends to cascade, at an
ponential rate, to smaller and smaller scales where i
ultimately dissipated. It is replenished by sporadic inter
tions between the coherent, organized vortices~see Ref. 15
for further remarks in the 2-D case!.

Little attention has been given to the physical charac
istics of these coherent structures, and even less to the n
of their interactions, which is, in the end, responsible for
energy spectrum. Nonetheless, given the historical pro
nence of the energy spectrum, one can scarcely avoid a
cussion of it.

Studies of atmospheric turbulence have primarily us
the QG system of equations following Charney,12 who found
that they could be used to explain the observed form of
kinetic energy spectrumE(k);k23 at mid-latitudes for lon-
gitudinal wavelengths~2p/k! between 1500 and 4000 km
He arrived at this result by assuming that

~a! one can ignore local variations of the Coriolis para
eter f over the scales of interest,
n
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~b! the vertical scale of the turbulence is small compared
the scale over which the buoyancy frequencyN varies
significantly,

~c! far from the boundaries, the turbulence is locally h
mogeneous and isotropic in horizontal planes, and

~d! nonlinear interactions are local in wave number spa

Assumptions~a! and~b! are well founded, but~c! and~d! are
questionable for flows dominated, energetically, by coher
structures. Notwithstanding, using these assumptions, C
ney proved that enstrophy (q2) must in general cascade t
smaller scales, whereas energy ‘‘cascades’’ to larger sca
where it is presumed to be dissipated~e.g., by thermal damp-
ing!. Considerations along the lines used by Kraichnan16 to
infer the spectrum for 2-D turbulence led Charney to in
E(k);k23 for QG turbulence, wherek is the 3-D ~total!
wave numberk25kx

21ky
21kz

2, and here thez coordinate has
been scaled byN/ f . In this stretchedz-coordinate system
the energy spectrumE(k) is isotropic. Observations in the
atmosphere at 500 hPa pressure~about 5 km in mid-
latitudes! were shown to be consistent with this behavior.

As pointed out above, it is difficult to draw any conclu
sions about physical flow structures from this result. T
physical interpretation of ‘‘local, nonlinear wave number i
teractions’’ and ‘‘up-scale energy cascade’’ has remain
obscure, at best. The situation is made worse by the fact
the same inverse energy cascade and direct enstro
cascade—as well as thek23 spectrum—follow from a scale
analysis of 2-D turbulent flows ifk is taken as the 2-D wave
number. This has been ascribed to the intrinsic quasi-t
dimensionality of atmospheric flows, and work has conc
trated for decades on the strictly 2-D problem as a protot
of real atmospheric flows.17

A statistical interpretation of the 3-D isotropy found b
Charney was put forward by Herring,18 who developed a
spectral transfer theory for an unbounded flow~infinite LR)
with energy injection at a prescribed wave number,k0 .
Simulations of these equations indicated spectral isotrop
small scales,k.k0 , but strong anisotropy~characteristic of
dominantly 2-D behavior! at large scales,k,k0 . However,
in direct numerical simulations of the forced QG equatio
~in a triply periodic box!, Métais et al.19 found isotropy in
the large-scale spectrum; moreover, they found thatE(k)
;k25/3 there.

In an effort to interpret Charney’s result physicall
laboratory experiments~and some associated numeric
simulations! were performed by Colin de Verdie`re,20 who
confirmed the prediction that the dissipation of energy occ
principally at large scales~if a means of dissipation like ther
mal damping or surface friction is available there!. The ob-
served large-scale structures were 2-D and formed from
amalgamation of smaller-scale structures over time. T
theory though says nothing about the physical form of a
large-scale structures. Charney recognized that the pres
of horizontal boundaries would violate the isotropy assum
tion at large scales,L*LR5NH/ f , since at these scales
structures would be taller than the fluid depthH.

Still, an important question remained unresolved: giv
there are structures at small scales (L,LR), what is their
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form? Herring suggested that they are isotropic vortic
McWilliams14 addressed this issue directly by developing
vortex identification procedure and applying it to a numeri
simulation of QG turbulence~between rigid horizonta
boundaries!. From isotropic, very-small-scale initial cond
tions, he found the emergence of roughly ellipsoidal vortic
having a height to width aspect ratio of about 1.6f /N. This
suggested that the coherent, small-scale spatial structu
QG turbulence is not isotropic, but nor is it completely a
isotropic, i.e., 2-D. However, a more recent work by McW
liams and co-workers21 modified this earlier conclusion. Us
ing higher resolution and a triply periodic domain of equ
dimensions~after scalingz by N/ f , as usual!, these authors
illustrated that, at much later times than simulated pre
ously, the ellipsoidal vortices align vertically into two ta
roughly columnar vortices having the same sign of P
throughout their depth, suggesting a final state consistin
~2-D! columnar vortices with small-scale 3-D disturbanc
superposed, in other words, a highly anisotropic final sta

This result appears to be inconsistent with the instabi
mentioned at the outset of this article. It is conceivable t
the two-dimensionalization observed in Ref. 21 is due to
fact that these authors used periodic boundaries in the v
cal, rather than rigid boundaries. However, such bound
conditions do not alter the fact that vortices of diameterL
& 1

3LR are unstable,1 and indeed a recent study22 has found
that 2-D columns do break down even under periodic bou
ary conditions; moreover, the resultant small-scale vorti
are close to isotropic.~Rigid isothermal boundaries, at whic
the vertical shear]u/]z→0, enable vortices there to be talle
than thef /N scaling would suggest.! A more plausible ex-
planation for the behavior observed in Ref. 21 is that
initial conditions used and the accumulation of small-sc
dissipation over a long period cause the energy to eventu
fill the lowest wave numbers. By this time, the simulati
ceases to be turbulent; a larger horizontal domain would
low the turbulence to be sustained for a longer period, p
haps indefinitely in the absence of dissipation.22

IV. THE NEW SIMULATION METHOD

Many numerical algorithms have been written to so
the QG set of equations. For the study of turbulence,
pseudo-spectral~PS! method, which employs the fast Fourie
transform to take fields from physical to spectral space
order to deal with the nonlinear advection terms (u•¹q), is
without doubt the most popular algorithm. However, it h
two serious limitations:~a! the time step used in the numer
cal integration ofq is proportional to the grid size~to main-
tain numerical stability!, and~b! enough dissipation must b
introduced to prevent the build up ofq near the grid scale
Insufficient dissipation leads to erroneous behavior or e
numerical blow up. But, the dissipation employed does
just take away cascading PV as it passes the grid sca
damps PV structures above grid scale as well. Moreo
becauseq is advected, its spectrum is shallow compared w
other fields~like the velocity!, and therefore dissipation a
and above grid scale is particularly destructive.23,24
s.
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Recently, a means of overcoming these limitations w
introduced by Dritschel and Ambaum,3 who replaced the
way q is evolved in the PS method by pure advection, i.
solving dx/dt5u and dy/dt5v for points (x,y) lying on
isolevels~contours! of q in each stratification surface~at each
z!. This is formally equivalent to solvingDq/Dt50. In prac-
tice, a finite number of points are used to describe each c
tour, and a finite number of contours are used to describe
field q.25 A finite number of stratification surfaces are used
well, just as in the PS method. The point is that pure adv
tion can be carried out numerically without any constraint
stability, and representingq as contours permits one to re
solve, at low computational cost, fine-scale structure such
sharp gradients and filaments at least an order of magni
beyond the limits of the PS method. Eventually, fine-sc
filamentary PV is removed by a topological reconnecti
scheme called ‘‘surgery,’’25 but the result is a much reduce
dissipation of PV and indeed a complete preservation
high-gradient~frontal! structures, structures that contribu
most to the flow evolution.

This new method, called the ‘‘contour-advective sem
lagrangian’’ ~CASL! algorithm, still makes use of the ma
chinery in the PS method that gets the velocity fieldu from
q ~recall, one has to invert a 3-D linear operator, and a sp
tral method is here particularly efficient!. But, in order to do
this,q must be converted from its contour representation t
temporary grid representation~this is done by a fast domain
filling routine!, and onceu is obtained, it must be interpo
lated from the grid to the points on the contours. Using
dual representation forq in the same algorithm permits on
to use a larger time step and to dissipateq in a far less drastic
way than before. The result is a gain in computational e
ciency of at least three orders of magnitude in simulations
QG turbulence3 enabling us to perform simulations at un
precedented resolution.

V. SIMULATION RESULTS

Choosing an appropriate initial condition is the first ta
in any numerical simulation. Ideally, one would like to sta
with a flow which has been pushed, by slowly changing e
ternal influences, to the brink of instability, since it is diffi
cult to imagine a flow getting far past this point, to a high
unstable state, without a qualitative change.26 Turbulence
may be triggered in this way, but one can also imagine
continually unsteady, 3-D state, one which is arguably m
appropriate for the atmosphere and the oceans, flows w
appear ever more unsteady with decreasing scale~cf. Ref.
27!.

Here, we imagine turbulence arising from a down-sc
cascade of PV@as is observed,28 at least down to the 400 km
scale ('LR/2) in the atmosphere#, the large scales being
predominantly 2-D~vertically-coherent! in character. The
2-D flows generically exhibit this downscale cascade16

which is characterized in part by the production of an
creasing number of small-scale vortices at ever fi
scales15,29 until dissipation becomes important. One may e
pect from Charney’s12 prediction some qualitative similarity
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This motivates choosing a distribution of columnar vortic
as the initial condition.

Vortices may be loosely defined as regions of anomal
q8[q2 f . This definition is made sharper by the fact th
when dissipative processes are very weak, vortices dev
high gradients ofq8 at their periphery through the process
‘‘vortex stripping.’’30,2 High gradients are generic in thes
weakly dissipative flows,23 to the extent that vortices, par
ticularly small-scale vortices, are stripped of essentially
their peripheral vorticity. This motivates the use of vort
patches, regions of uniformq8 bounded by infinite gradients

Reference 3 has already presented a moderate-dur

FIG. 1. Snapshots of simulationB at t50, 14, 34, and 108~time in units of
T54p/Q). The flow ~the distribution ofq8) is viewed from an infinite
vantage point in the planex50 at an angle of 60° from the zenith. Struc
tures seen through the front face are faded, and the bottom of the dom
darkened. The first panel shows the initial condition, consisting of colum
vortices with 3-D perturbations that are too small to be visible in this p
ture. Note that initially 2-D interactions~second panel! produce tall columns
that are unstable to 3-D disturbances. The third panel is near the maxi
of complexity in the simulation~731 526 nodes, 26 755 contours!. The
fourth panel shows a typical ensuing state of the fluid, with a large amo
of 3-D structure.
s

s
,
op

ll
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simulation of QG turbulence starting with such column
tubes of uniformq8. We have performed additional, longe
duration simulations using virtually identical initial cond
tions, varying only the domain height, to quantify the flo
characteristics. We have also performed simulations star
with vortices of varying sizes, as well as two starting with
2-D jet ~two adjacent walls of uniform, but opposite,q8). All
of these simulations exhibit similar characteristics; the
sults are sensitive only to the ratio of the typical vortex sc
L divided by the Rossby radius of deformationLR5NH/ f .

Three simulations are described, all starting with c
umns of equal diameterL and uniform PV anomalyq8
56Q ~with equal volumes of positive and negativeq8, fill-
ing a fraction 5p/256 or 6.136% of the domain!. The simu-
lations differ principally in the ratioL/LR; in simulationA,
L5LR/3, the domain heightH5( f /N)3W/16 ~the domain
width W52p), and there are 20 columns initially; in simu
lation B, L5LR/2, H5( f /N)W/16, and there are 80 col
umns; in simulationC, L5LR, H5( f /N)W/16, and there are
20 columns. In simulationA, the columns are marginally
unstable, and one expects them to rapidly break down
3-D volumes. However, in simulationsB andC, the columns
are ~initially ! stable to 3-D disturbances. All simulation
were conducted using a grid of 5123512364, with q8 fea-
tures kept to a scale ten times finer. The time step used
1
40. All simulations were taken to timet5264 ~time is scaled
on the vortex rotation period,T54p/Q).

Figure 1 showsq8 at a few selected times from simula
tion B; lightly shaded structures haveq85Q, while darkly
shaded ones haveq852Q. The ratio of rotational and buoy
ancy frequenciesf /N is used to scale the height coordinatez
in all of the images displayed, so that the displayed heigh
the domain equalsLR. It can be seen that the initial 2-D flow
breaks down into different types of vortical structures. T
flow at late times is dominated by a set of semi-ellipsoid
vortices attached to the upper and lower surfaces
changes little in form after the time shown in Fig. 1~d!. Only
the widest vortices are able to resist the differential straini
and thus remain columnar over the whole depth of the flu
they are usually very tilted, however. The rest of the flu
contains 3-D structures like vortex filaments~normally ex-
tending over more than one layer! and smaller ellipsoidal
vortices. Similar observations were made also in Ref. 3,
the present simulations have been taken five times furthe
clearly reveal the structure of the emergent vortices and
demonstrate their long-time persistence.

Figure 2 shows a snapshot ofq8 in simulationC ~L/LR
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FIG. 2. Snapshot of simulationC at t5192.
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51 initially! at a late time (t5192). The columnar vortices
are initially stable, but due to 2-D vortex interactions, n
rower ~taller! columns are produced, which are again pro
to instability. Again, a 3-D picture emerges, which is in e
sence not different from the other simulations: only the w
est vortices remain columnar, but these show so much tilt
that also for these vortices one cannot speak of them as

Figure 3 shows the enstrophy, the mean-square valu
q8 (**q82 dx dy/** dx dy), as a function ofz/H, for all
three simulations at late times. Initially, it is uniform, but,
a result of very fine-scale dissipation~at 1

5120 of the domain
width!! it decreases, especially in the middle of the dom
for the L5LR/3 case, so that by the end of that simulatio
the enstrophy is primarily located near the upper and lo
surfaces. With increasing initial vortex size, there is less d
sipation of interior PV, and the dissipation becomes appro
mately uniform with height. The striking variation of enstr
phy dissipation observed in theL5LR/3 case is a
consequence of the nonuniform vertical distribution of str
g5u]u/]xu, which must be less, on average, at the surface
account of the isothermal boundary conditions there.~The
survival of a vortex depends critically ong/q8 being small,
less than about 0.1.31–33 Greater ratios hasten the cascade
filamentary structures to small scales, where they are
mately dissipated.! For wider initial vortices,c is more uni-
form with height, and the strain is dominated by horizon
derivatives of the velocity field.

The important point made by this set of simulations
that, even if initially all structures are sufficiently wide not
be prone to breakdown, interactions between the colum
generate smaller columns and not just bigger ones, nume

FIG. 3. The mean enstrophyq̄82 as a function of scaled heightz/H for
simulationsA–C averaged over the period 250<t<264. At t50, q̄82

55p/6450.2454... , independent ofz. The inevitable dissipation of enstro
phy is clear from this figure, though the dissipation is relatively low near
surfaces for simulationA in particular; the imposed boundary condition
~which imply ]u/]z50 atz50 andH! on average allow for less shear ne
the surfaces.
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permitting, as has been demonstrated repeatedly.15,34,35Thus,
sufficiently narrow columns are inevitably produced, an
subsequently, they break down into 3-D vortical structur
ScalesL, 1

2 LR are intrinsically three-dimensional.

VI. ENERGY SPECTRA AND SCALE RATIOS

The physical-space picture of rotating, stratified turb
lence as a collection of large-scale, predominantly 2-D str
tures coexisting with small-scale, 3-D structures seems
mote from the notion of isotropy first envisioned by Charn
three decades ago. Of course, the simulations conducted
are strongly influenced by the top and bottom boundaries,
strictly, one can only look for evidence of isotropy amon
the smaller-scale structures in the middle of the domain
satisfy the conditions of Charney’s theory. But then real
mospheric and oceanic flows have boundaries, so it is w
examining the nature of turbulence under these condition

Quite by chance, while trying to produce very simp
diagnostics of the simulation results, we obtained a surp
ing result that is virtually independent of boundary infl
ences. Our object was to examine the typical vertical to h
zontal scale ratiol in rotating, stratified turbulence
expecting mild anisotropy, withl*2 f /N, as suggested by
physical-space images from these and many other sim
tions. We decided to quantifyl spectrally, in the following
way. In a horizontally doubly periodic domain, here of d
mensions 2p32p, the horizontal wave numberskx and ky

are integers. The vertical wave numbers,kz , may be indexed
by m starting from 0, and these generally depend on
depth of the domainH as well as vertical discretization
adopted~see Ref. 2 for details!. Thekz are also proportiona
to N/ f . One may writekz5amN/ f , m50,1,2,... . For an
infinite number of layers,am5mp f /(NH). The simulation
results were Fourier analyzed to produce a horizontal ene
spectrumEm(K) for each ‘‘vertical mode’’ m, where K2

[kx
21ky

2. The vertical modes, again for an infinite numb
of layers, are proportional to cosmpz/H, so they are a Fou-
rier series. Note that them50 mode is height independent—
this is the ‘‘barotropic’’ mode. Since the vertical modes a
orthogonal, the energy may be sensibly decomposed
parts due to each vertical mode, as we have done. In d
the Fourier analysis,ukxu and ukyu were truncated atng/2,
whereng is the basic grid resolution~512 here!, andm at 64,
the number of layers in each simulation. Several other
ferent simulations were also analyzed and suggest that
results described below appear to apply to a broad clas
flows.

Figure 4 shows the spectraEm for the first ten vertical
modes plotted againstK at four selected times in simulatio
B ~the one havingL/LR51/2). The first three times corre
spond to the last three images shown in Fig. 1, i.e., timet
514, 34, and 108, while the last is fort5264 ~the end of the
simulation!. The barotropic energyE0 , shown in bold, domi-
nates the other energy components at all times at la
scales. Even att5264, the total energy in the barotrop
mode exceeds 90%. Even at the smaller scales, the bar
pic component dominates. At early times (t514), the 3-D
instability is just beginning and the ‘‘baroclinic’’ modes (m

e
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.0) are very weakly excited. In time, these modes grow a
particularly at small to intermediate scales, they beco
comparable to the barotropic mode. But there is more to
seen: at early times, the spectra are remarkably shallow
badly approximated by aK25/3 behavior at intermediateK
~though the largeK spectra are influenced by the discre
nature of the data set—this generally leads to a shallow
for large K compared with the spectrum of a continuo
function from which the discrete function may be thought
be a sample of!. This behavior is consistent with a sel
similar cascade from large to small scales, which here oc
by the initial production of smaller-scale structures duri
vortex interactions and 3-D breakdown. This initial casca
leads to a significant dissipation of the total energy~a 50%
decrease byt5100), which is, however, not directly attrib
utable to the 3-D dynamics—an analogous 2-D simulat
~the same in every respect except for one layer only! exhibits
a very similar energy decay. At later times, the spec
steepen to betweenK24 and K25, indicative of a slow up-
scale ‘‘cascade,’’ during which the total energy is appro
mately conserved~it decreases by a further 10% betweent
5100 andt5264). Like in 2-D flows, the flow in this period
is dominated by widely separated vortices which seldom
interact strongly. There is much less filamentary debris ab
than at early times, when vortex interactions were more
quent and energetic.

There is more still. Note that the peaks in the spec
shift to greaterK with increasingm. We decided to quantify
this behavior by computing Km[(KKEm(K)/
(KEm(K)—this is the mean horizontal wave number for t
vertical modem. We plotted Km versusam ~the vertical
wave numberkz multiplied by f /N), and the results, for the
times shown in Fig. 4 are shown in Fig. 5. The surprisi
result is thatKm'am except at early times for all but th
barotropic modem50. The relationship breaks down a
wave numbers higher than 128, which is half of the ma

FIG. 4. The horizontal energy spectraEm(K) for the first ten vertical modes
m50,1,... ,9 in simulationB at ~a! t514, ~b! t534, ~c! t5108, and~d! t
5264. The barotropic spectrumE0(K) is shown in bold.
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mum horizontal wave number, indicating that the small
scale structures~below two grid lengths! are shallow com-
pared to isotropy. It is as yet unclear whether this breakdo
is real or a numerical artifact, although more recent simu
tions using higher vertical resolution indicate the latt
However, the fact remains that a high degree of correlat
exists betweenKm andam . This correlation may be taken a
evidence that QG flows are isotropic, in the sense that ve
cal to horizontal scale ratios are equal tof /N. The barotropic
mode behavior, however, stands out from this scaling re
tion. In physical space, one would expect it to enhance
spatialanisotropyof PV structures by extending them vert
cally, and this is consistent with the observed results.

VII. CONCLUSIONS

The results presented here underscore the inadequa
2-D models for simulating rotating, stratified flows. Previo
work by Hua and Haidvogel36 arrived at these conclusion
for baroclinically unstable QG flows, i.e., flows forced b
unstable surface temperature gradients, as a model of
Earth’s troposphere. Here, we have found more genera
even for baroclinically stable flows, 2-D models are va
only in the absence of stratification and under rapidly rot
ing conditions. The presence of stratification fundamenta
alters the behavior of the fluid at horizontal scales com
rable to and below the Rossby radius of deformation,NH/ f .
Adequate vertical resolution is needed not only in equato
regions, wheref→0 and strong variations may occur acro
stratification surfaces, it is also needed to capture the in
ent three-dimensionality of extra-tropical motions, which d
pends essentially on the ratio of rotational to buoyancy f
quencies,f /N. Globally, it is reasonable to expect that th
typical vertical/horizontal scale ratio of small t
intermediate-sized vortices is comparable to the ratio of
rms absolute vorticityva5u f êz1¹3uu to N.

FIG. 5. The scaled vertical wave numberam[kzf /N plotted against the
mean horizontal wave numberKm[(KKEm(K)/(KEm(K) of each vertical
modem at the times shown in Fig. 4.
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In present large-scale numerical models of the atm
sphere and oceans, particularly in climate models, scales
low the Rossby radius of deformation are only margina
resolved. Such scales are affected by numerical dissipa
which may be acting to suppress 3-D behavior by preven
the formation of smaller-scale vortices. To the extent t
these scales, in the atmosphere, play a critical role in che
cal mixing and therefore ozone depletion,5,37,38 and, in the
ocean, contain the greatest proportion of the flow’s kine
energy,27 there is a clear need for vastly more efficient mo
els, capable of resolving these scales. The CASL algori
could be a prototype of such a model. One simply can
afford to increase the resolution in present models to
required level; just to double the resolution requires at le
eight times more computer power~and storage space!, and
already these models consume a significant proportion of
computer resources available on the fastest supercompu
Much more than a doubling is necessary.

The fluid motion within the rotating, stratified atmo
spheres of other planets, in particular the gaseous outer p
ets, host a plethora of vortical structures, which are thou
by some to be vertically shallow, 3-D, and by others to
deep, practically 2-D~see Ref. 39 for a review!. The findings
of the present work may help to resolve what form the
structures take.

The extension of these results beyond quasi-geostro
is a challenging problem, at present under scrutiny. There
indications19,40 that turbulent flows in this regime tend t
collapse back to quasi-geostrophy, perhaps because
anomalously talland shallow structures tend to break dow
into preferentially isotropic structures. Though a care
study remains to be carried out, we conjecture that isotr
is a generic feature of rotating, stratified flows.
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