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Using a novel numerical method at unprecedented resolution, we demonstrate that structures of
small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such
flows are characterized by vorticespinning volumes of fluig regions of large vorticity gradients,

and filamentary structures at all scales. It is found that such structures have predominantly
three-dimensional dynamics below a horizontal sdatesL g, whereLy is the so-called Rossby
radius of deformation, equal to the characteristic vertical scale of theHlwitvided by the ratio of

the rotational and buoyancy frequenciébl. The breakdown of two-dimensional dynamics at these
scales is attributed to the so-called “tall-column instabilityD. G. Dritschel and M. de la Torre
Juaez, J. Fluid. Mech328 129(1996], which is active on columnar vortices that are tall after
scaling byf/N, or, equivalently, that are narrow compared with. Moreover, this instability
eventually leads to a simple relationship between typical vertical and horizontal scales: for each
vertical wave numbefapart from the vertically averaged, barotropic component of the) ftoe
average horizontal wave number is equalftdl times the vertical wave number. The practical
implication is that three-dimensional modeling is essential to capture the behavior of rotating,
stratified fluids. Two-dimensional models are not valid for scales bélgw © 1999 American
Institute of Physics.S1070-663(99)02405-9

I. SCIENTIFIC MOTIVATION Fluid dynamical instability is thus seen to be at the heart
of the problem. Rarely, though, are the atmosphere and

The motion of the atmosphere and oceans is tremen-

dously complex, involving a huge range of spatial and tem-oceans close to a basic state or equilibrium in any well-

poral scales. Its prediction is one of the most challengind!€fined sense, certainly not at small to intermediate scales,
problems facing science today, and it is remarkable thapvhich might begt be described as turbule:'nt. The turbulence
broadly realistic, short-term forecasts can be made at all. Ahere(below horizontal scales of 500 km in the atmosphere
variety of physical, chemical, and dynamical processes conNd 25 km in the ocearis not pure in any sense, but is
pete to shape the motion, not all of which are well under-strongly affected by both rotation and density stratification
stood, and then there is the problem of observing and incordighter fluid lying over denser fluid Rotation favors the
porating those observations into computer models. formation of “deep” flows having weak variations along the

In this article, we focus on the fundamental fluid- axis of the fluid’'s rotation(a result known as the Taylor-
dynamical processes of atmospheric and oceanic flowsroudman theoremwhereas stratification favors the forma-
Physical and chemical processes like the supply of latent aniion of “shallow” flows having strong variations across
sensible heat by the Earth’s surface or the absorption of shostratification surface$isentropic, constant entropy surfaces
wave radiation by ozone or long wave radiation by carborin the atmosphere or isopycnal, constant density surfaces in
dioxide are instrumental in shaping the obserlsgde scale the oceansand motion parallel to these surfaces. These two
circulation of the atmosphere but tend to operate on muckffects have antagonistic consequences in the Earth’s atmo-
longer time scales compared to fluid-dynamical processesphere and oceans, and, even to the present day, their com-
The same is true for the oceans. These physical and chemigghed role is not well understood.

processes act to establish a flow which, howevedyisami- Why does this matter? A cursory examination of the
cally unstable. The flow continuously breaks down and reqgyerning equations of motion suggests that these two ef-
forms, the net result being the observed circulation. fects are of the same order of magnitude around a horizontal
scaleL=Lg, whereLg=NH/f is the so-called “Rossby ra-
dElectronic mail: dgd@mcs.st-and.ac.uk dius of deformation,”H is a characteristic depth scale of the
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fluid (about 7 km in the atmosphere and the full depth in thesurfaces are nearly fldand never overtupn so the motion
ocean, while N and f are the frequencies associated with may sensibly be regarded as horizontal, i.e., with only two
stratification and rotation, respectiveli. is the oscillation nonzero velocity componentsandv in the x andy direc-
frequency that a small fluid volume would exhibit if it were tions, respectively. The horizontal momentum equations, at
displaced by a small vertical distand¢éor the ocean,N leading order, simplify to a balance between the Coriolis
= \/—gp_I&p/z?Z wherep is the density and is the accel- force and the horizontal pressure gradient, this balance being
eration due to gravity this is called the buoyancy frequency called “geostrophy”, while the vertical momentum equation
and is here taken to be constant for purposes of argumemn¢duces to hydrostatic balance. The momentum equations are
though in reality it varies by more than a factor of 2 in both used at higher order in two small, comparable parameters,
the atmosphere and the oceahs twice the local rotation the “Rossby number” R and the “Froude number” R
rate of the fluid, i.e., the component of the rotation vectoralong with mass conservation and incompressibility to derive
that projects on the local verticgparallel to the effective a leading-order approximation to tipetential vorticity(PV)
gravity); this is called the Coriolis parameter and equalsq, a field involving the effects of both rotation and stratifica-
2Q0.sing at the latitudep, where() is the rotation rate of tion which is conserved following fluid elements, i.e.,
the Earth, and agaihis here taken to be constant over scalesdg/dt+u-Vq=Dqg/Dt=0, under adiabatic condition§or
L small compared with the radius of the Earth. For typicalfurther details, see Ref)4
atmospheric and oceanic valueshoandf, the Rossby radius The Rossby number Ris defined agV xul|/f, where
Lg~1000 and 50 km, respectively, a scale which is muchVXu, the curl of the horizontal velocity, is thevorticity in
smaller than the Earth’s radius. the frame of reference rotating with the Earth, afd

The practical problem is that in numerical modeling =2Q.sin¢. The Froude number Fis defined as|ul/c,
scales smaller thalbg are only marginally resolved and thus wherec=NH is the characteristic speed of waves associated
subject to significant numerical dissipatipand note, ac- with the displacement of the stratification surfaces from
cording to Ref. 2, the breakdown of two-dimensiof@iD)  equilibrium. The QG theory require$&R,<1.
vortical structures occurs at scalessLg/3]. In recognition There are many situations when these parameters cannot
of the difficulty of properly resolving these scales, modelersbe considered small, in equatorial regidnderef —0) or in
parametrize the collective effects of unresolved scales by athe vicinity of strong topographic features, the upper atmo-
enormously enhanced viscosity, called “eddy viscosity,” sphere, or near strong thermal activiiyhere stratification
which, however, has little justification apart from ensuringsurfaces may overtuynThe QG equations cannot sensibly
numerical stability. Without knowing what actually occurs in be used in weather prediction, as a result, but their inappli-
this dynamically active, weakly dissipative range of scales, itability tends to be geographically localized; there are many
is presently impossible to formulate a sensible parametrizasituations of interest in which their use as a basic research
tion for it. Yet, to adequately resolve these scales in preseribol is justified®’~12 Likewise, their use here to study the
atmospheric and oceanic models is equally impossible: thtundamental properties of rotating, stably stratified turbu-
present study suggests that a grid at least ten times finer isnce is justified, since, according to comparative stutfies,
necessary, and this cannot be done without compuers higher-order Rossby and Froude number effects are not ex-
least10® times more powerful. pected to cause qualitative changes as long as these param-

This article is concerned with the nature of rotating, eters are small compared to unitjiNotably, primitive-
stratified turbulence, a subject that has been debated now fequation simulations of the tall-column instability performed
nearly 30 years. The key points of this debate are reviewed iby Dritschel (unpublished show insignificantquantitative
Sec Ill. This is proceeded by a short description of the physidifferences from QG simulations even fog Rs large as 0.5.
cal system studied, the simplest one relevant to rotating, The expression for the potential vorticigyin QG theory
stratified turbulence. In Sec. IV we briefly describe the newis
numerical methotlused in this study, and in Sec. V we
present new—and to a great extent unexpected—simulation 1 2

. . : ) ; d fo dy

results obtained at exceptionally high numerical resolution. q:f+vﬁ¢+ __( )
In Sec. VI we examine the time development of the energy Po 92
spectra, in particular the characteristic vertical/horizontal
scale ratio. Further implications of these results and theitvhere ¢ is the streamfunction, from which the horizontal
generalizations are discussed in Sec. VII. velocities can be determined using=—d¢/dy and v
=dylox. In Eq. (1), f is the Coriolis parametdff is the
constant part of it, andf(-f,)/f;=<O(R,) for consistency,
V2= %1 9x?+ 3l 9y?, po(z) is the basic-state density profile

We consider here only conservative motion, that is nowith “height” z (in fact, z stands for log pressure, which is
forcing or dissipation. In this case, the fluid moves predomi-equivalent to geometric height for an isothermal atmo-
nantly parallel to the basic stratification surfacgghich  spherg, andN(z) is the buoyancy frequency profile. This set
makes sense only if these surfaces do not overtlinis is  of equations is closed once boundary conditions are pre-
an intrinsic characteristic of conservative rotating, stablyscribed fory, and here we consider the simplest, most com-
stratified flows: layerwise two-dimensionality. Under the  monly employed conditions, namedys/ 9z=0 (uniform sur-
quasi-geostrophidQG) approximatiorf, these stratification face temperatudeat the horizontal boundaries=0 andH.

PONZ 77 1
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These conditions enable one to invert the elliptic operator ib) the vertical scale of the turbulence is small compared to

Eq. (1) to obtainy from the instantaneous distribution qf the scale over which the buoyancy frequemtyaries
and thenu=(u,v) by differentiation of . One can then significantly,

evolve g to the next instant of time by pure advection, (c) far from the boundaries, the turbulence is locally ho-
Dg/Dt=0. mogeneous and isotropic in horizontal planes, and

In this article, only the case of constaitN, andpg is  (d) nonlinear interactions are local in wave number space.

considered, following most previous works on QG turbu- i
lence. For the scales of present interest, which are Smaﬁssumptlons(a) and(b) are well founded, butc) and(d) are

compared with the Earth's radius, it is highly accurate toquestionable for_ﬂows d(_)minate_zd, energetically, by coherent
consider constarft VariableN deserves exploration, since it Structures. Notwithstanding, using these assumptions, Char-
appears to favor more strongly baroclinic behavior, but thid!®Y Proved that enstrophygf) must in general cascade to
is beyond the scope of the present paper. Varipglenves- ~ Smaller scales, whereas energy “cascades” to larger scales,
tigated in Ref. 1, also deserves further exploration, but it¢Vhere itis presumed to be dissipatedg., by thermal damp-

main effect is to favor vortices near the lower surface, wherd"9)- Considerations along the lines used by Kraicfiao

the fluid is relatively dense. infer the spectrum for 2-D turbulence led Charney to infer
E(k)~k ™3 for QG turbulence, wheré is the 3-D (total)
L. HISTORICAL SURVEY wave numbek?=k?+k3+kZ, and here the coordinate has

been scaled byN/f. In this stretchedz-coordinate system,

Most previous studies of rotating, stratified turbulencethe energy spectrur(k) is isotropic. Observations in the
have focused, almost exclusively, on the energy spectrumytmosphere at 500 hPa pressuabout 5 km in mid-
the distribution of energykinetic+potentia) with spatial  |atitudeg were shown to be consistent with this behavior.
scale. The spectrum reflects the relative importance of each As pointed out above, it is difficult to draw any conclu-
scale within a turbulent flow, and its temporal change relategjons about physical flow structures from this result. The
to the tendency for the flow to build up bigger structu(@s  physical interpretation of “local, nonlinear wave number in-
in 2-D flows) or to fragment into smaller structur¢as in  teractions” and “up-scale energy cascade” has remained
three-dimensional3-D) nonrotating, unstratified flows obscure, at best. The situation is made worse by the fact that

The association of these “structures” with vortices is the same inverse energy cascade and direct enstrophy
commonly assumed; however, the spectrum itself does nQtyscade—as well as the 3 spectrum—follow from a scale
contain the information necessary to make this associatiorhnawsis of 2-D turbulent flows ¥ is taken as the 2-D wave
Structures depend on phase correlations, information absefmper. This has been ascribed to the intrinsic quasi-two-
in the energy spectrum. The precise form of these phasgimensionality of atmospheric flows, and work has concen-

correlations depends on the flow properties, i.e., whether ofateq for decades on the strictly 2-D problem as a prototype
not the flow organizes into coherent, persistent spatial strugss reg] atmospheric flow¥.

tures. Such organization appears to be an inherent character- a gtatistical interpretation of the 3-D isotropy found by

istic of many flows, including rotating, stratified flows. Charney was put forward by Herrif§,who developed a
Furthermore, in such flowéincluding 2-D onejs the orga-  gpeciral transfer theory for an unbounded fifinite L)
nized structures, that is, the vortices, appear to dominate i, energy injection at a prescribed wave numbles

the sense that they contain most of the kinetic energy. Wham jations of these equations indicated spectral isotropy at
is left over is a largely passive sea of disorganized filameng,q scalesk>k,, but strong anisotropycharacteristic of
tary PV structure which is swept around the organized Strucdominantly 2-D behaviorat large scalesg<k,. However
tures. This filamentary structure tends to cascade, at an ey girect numerical simulations of the forced QG equations

ponential rate, to smaller and smaller scales where it %in a triply periodic boy, Métais et al® found isotropy in
ultimately dissipated. It is replenished by sporadic interac-,[he large-scale spectru’m' moreover, they found gk
tions between the coherent, organized vortitsese Ref. 15 | -3 0re ’ '

for fu_rther rem"?“"s in the 2—D.ca)se . In an effort to interpret Charney’s result physically,
Little attention has been given to the physical CharaCterIaboratory experimentsand some associated numerical

istics of these coherent structures, and even less to the nat%ﬁnulatiom were performed by Colin de Verdie?® who

of their interactions, which is, in the end, responsible for the.confirmed the prediction that the dissipation of energy occurs

energy spectrum. Nonetheless, given the historical promi-

fth ¢ | id d_%rincipally at large scale@f a means of dissipation like ther-
gsggii:of i? ENergy spectrum, one can scarcely avold a digs,) damping or surface friction is available ther€he ob-

) _ L erved large-scale structures were 2-D and formed from an
Studies of atmospheric turbulence have primarily use

the QG system of equations following Charréyyho found malgamation of smaller-scale structures over time. The
that they could be used to explain the observed form of th theory though says nothing about the physical form of any

L ; ) ?ar e-scale structures. Charney recognized that the presence
kinetic energy spectruri(k)~ « 2 at mid-latitudes for lon- 9 y 9 P

- of horizontal boundaries would violate the isotropy assump-
ﬂteuglrrr]i?/le:jvz\tlieiggtehsizltﬂ é’;) aiitt\jvnﬁﬁg tlrig[o and 4000 km. tion at large scalesl.=Lz=NH/f, since at these scales,

structures would be taller than the fluid depth
(@ one can ignore local variations of the Coriolis param-  Still, an important question remained unresolved: given
eterf over the scales of interest, there are structures at small scalés<(Lg), what is their
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form? Herring suggested that they are isotropic vortices. Recently, a means of overcoming these limitations was
McWilliams** addressed this issue directly by developing aintroduced by Dritschel and Ambautnwho replaced the
vortex identification procedure and applying it to a numericalway q is evolved in the PS method by pure advection, i.e.,
simulation of QG turbulence(between rigid horizontal solving dx/dt=u and dy/dt=v for points (,y) lying on
boundaries From isotropic, very-small-scale initial condi- isolevels(contours of g in each stratification surfadat each
tions, he found the emergence of roughly ellipsoidal vortices). This is formally equivalent to solvingq/Dt=0. In prac-
having a height to width aspect ratio of aboutfIM. This tice, a finite number of points are used to describe each con-
suggested that the coherent, small-scale spatial structure faur, and a finite number of contours are used to describe the
QG turbulence is not isotropic, but nor is it completely an-field .2° A finite number of stratification surfaces are used as
isotropic, i.e., 2-D. However, a more recent work by McWil- well, just as in the PS method. The point is that pure advec-
liams and co-workefd modified this earlier conclusion. Us- tion can be carried out numerically without any constraint on
ing higher resolution and a triply periodic domain of equal stability, and representingy as contours permits one to re-
dimensions(after scalingz by N/f, as usugl these authors solve, at low computational cost, fine-scale structure such as
illustrated that, at much later times than simulated previsharp gradients and filaments at least an order of magnitude
ously, the ellipsoidal vortices align vertically into two tall, beyond the limits of the PS method. Eventually, fine-scale
roughly columnar vortices having the same sign of PVfilamentary PV is removed by a topological reconnection
throughout their depth, suggesting a final state consisting afcheme called “surgery?® but the result is a much reduced
(2-D) columnar vortices with small-scale 3-D disturbancesdissipation of PV and indeed a complete preservation of
superposed, in other words, a highly anisotropic final state.high-gradient(frontal) structures, structures that contribute
This result appears to be inconsistent with the instabilitymost to the flow evolution.
mentioned at the outset of this article. It is conceivable that This new method, called the “contour-advective semi-
the two-dimensionalization observed in Ref. 21 is due to thdagrangian” (CASL) algorithm, still makes use of the ma-
fact that these authors used periodic boundaries in the vertehinery in the PS method that gets the velocity fieletom
cal, rather than rigid boundaries. However, such boundaryg (recall, one has to invert a 3-D linear operator, and a spec-
conditions do not alter the fact that vortices of diamdter tral method is here particularly efficionBut, in order to do
<1 ; are unstablé,and indeed a recent studyhas found  this, g must be converted from its contour representation to a
that 2-D columns do break down even under periodic boundtemporary grid representatidthis is done by a fast domain-
ary conditions; moreover, the resultant small-scale vorticeéilling routine), and onceu is obtained, it must be interpo-
are close to isotropi¢Rigid isothermal boundaries, at which lated from the grid to the points on the contours. Using a
the vertical shea#u/9z— 0, enable vortices there to be taller dual representation fay in the same algorithm permits one
than thef/N scaling would suggestA more plausible ex- to use a larger time step and to dissipgia a far less drastic
planation for the behavior observed in Ref. 21 is that thewvay than before. The result is a gain in computational effi-
initial conditions used and the accumulation of small-scaleciency of at least three orders of magnitude in simulations of
dissipation over a long period cause the energy to eventuall®G turbulencé enabling us to perform simulations at un-
fill the lowest wave numbers. By this time, the simulation precedented resolution.
ceases to be turbulent; a larger horizontal domain would al-
low the turbulence to be sustained for a longer period, per-
haps indefinitely in the absence of dissipatfon. V. SIMULATION RESULTS

Choosing an appropriate initial condition is the first task
IV. THE NEW SIMULATION METHOD in any numerical simulation. Ideally, one would like to start
with a flow which has been pushed, by slowly changing ex-
Many numerical algorithms have been written to solveternal influences, to the brink of instability, since it is diffi-
the QG set of equations. For the study of turbulence, theult to imagine a flow getting far past this point, to a highly
pseudo-spectrdPS method, which employs the fast Fourier unstable state, without a qualitative chad§elurbulence
transform to take fields from physical to spectral space irmay be triggered in this way, but one can also imagine a
order to deal with the nonlinear advection termisYq), is  continually unsteady, 3-D state, one which is arguably more
without doubt the most popular algorithm. However, it hasappropriate for the atmosphere and the oceans, flows which
two serious limitations(a) the time step used in the numeri- appear ever more unsteady with decreasing s(leRef.
cal integration ofg is proportional to the grid sizéo main-  27).
tain numerical stability, and(b) enough dissipation must be Here, we imagine turbulence arising from a down-scale
introduced to prevent the build up ofnear the grid scale. cascade of PVas is observetf at least down to the 400 km
Insufficient dissipation leads to erroneous behavior or evescale &Lg/2) in the atmosphele the large scales being
numerical blow up. But, the dissipation employed does nopredominantly 2-D(vertically-coherent in character. The
just take away cascading PV as it passes the grid scale, 2D flows generically exhibit this downscale cascalle,
damps PV structures above grid scale as well. Moreovemvhich is characterized in part by the production of an in-
because) is advected, its spectrum is shallow compared withcreasing number of small-scale vortices at ever finer
other fields(like the velocity, and therefore dissipation at scale$>2°until dissipation becomes important. One may ex-
and above grid scale is particularly destructivé? pect from Charney’ prediction some qualitative similarity.
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FIG. 2. Snapshot of simulatiofi att=192.

simulation of QG turbulence starting with such columnar
tubes of uniformg’. We have performed additional, longer-
duration simulations using virtually identical initial condi-
tions, varying only the domain height, to quantify the flow
characteristics. We have also performed simulations starting
with vortices of varying sizes, as well as two starting with a
2-D jet (two adjacent walls of uniform, but opposit,). All
of these simulations exhibit similar characteristics; the re-
sults are sensitive only to the ratio of the typical vortex scale
L divided by the Rossby radius of deformatibp=NH/f.
Three simulations are described, all starting with col-
umns of equal diametet and uniform PV anomalyq’
=+ Q (with equal volumes of positive and negatigg, fill-
ing a fraction 57/256 or 6.136% of the domainThe simu-
lations differ principally in the ratid_/Lg; in simulation.A,
L=Lg/3, the domain heightH=(f/N)3W/16 (the domain
width W=2), and there are 20 columns initially; in simu-
lation B, L=Lg/2, H=(f/N)W/16, and there are 80 col-
umns; in simulatior?, L=Lg, H=(f/N)W/16, and there are
20 columns. In simulationd, the columns are marginally
unstable, and one expects them to rapidly break down into
3-D volumes. However, in simulatior3 andC, the columns
are (initially) stable to 3-D disturbances. All simulations
FIG. 1. Snapshots of simulatidhatt=0, 14, 34, and 10&ime in units of ~ Were conducted using a grid of 5%x812x64, withq' fea-
T=47/Q). The flow (the distribution ofq’) is viewed from an infinite  tures kept to a scale ten times finer. The time step used was

vantage point in the plane=0 at an angle of 60° from the zenith. Struc—_ %_ All simulations were taken to time= 264 (time is scaled
tures seen through the front face are faded, and the bottom of the domain 5n the vortex rotation period; = 4/Q)

darkened. The first panel shows the initial condition, consisting of columna . , i i
vortices with 3-D perturbations that are too small to be visible in this pic- Figure 1 showsy’ at a few selected times from simula-
ture. Note that initially 2-D interaction@econd panglproduce tall columns  tion 3; lightly shaded structures hawg =Q, while darkly
that are unstable to 3-D disturbances. The third panel is near the maximughaded ones hawg = — Q. The ratio of rotational and buoy-
of complexity in the simulation(731526 nodes, 26 755 contoursThe f ie§/N i dt le the height dinat
fourth panel shows a typical ensuing state of the fluid, with a large amounlancy reque_nC|e '_S used 1o scale the e.'g coor 'n_a e
of 3-D structure. in all of the images displayed, so that the displayed height of
the domain equalkg. It can be seen that the initial 2-D flow
breaks down into different types of vortical structures. The
flow at late times is dominated by a set of semi-ellipsoidal
This motivates choosing a distribution of columnar vorticesvortices attached to the upper and lower surfaces and
as the initial condition. changes little in form after the time shown in FigdL Only
Vortices may be loosely defined as regions of anomaloughe widest vortices are able to resist the differential straining,
g'=q—f. This definition is made sharper by the fact that,and thus remain columnar over the whole depth of the fluid;
when dissipative processes are very weak, vortices develdpey are usually very tilted, however. The rest of the fluid
high gradients ofy’ at their periphery through the process of contains 3-D structures like vortex filamer(sormally ex-
“vortex stripping.”%? High gradients are generic in these tending over more than one layeand smaller ellipsoidal
weakly dissipative flow$® to the extent that vortices, par- vortices. Similar observations were made also in Ref. 3, but
ticularly small-scale vortices, are stripped of essentially allthe present simulations have been taken five times further to
their peripheral vorticity. This motivates the use of vortexclearly reveal the structure of the emergent vortices and to
patches, regions of uniforep’ bounded by infinite gradients. demonstrate their long-time persistence.
Reference 3 has already presented a moderate-duration Figure 2 shows a snapshot gf in simulationC (L/Lg
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permitting, as has been demonstrated repeatedf**Thus,
sufficiently narrow columns are inevitably produced, and,
subsequently, they break down into 3-D vortical structures.

08 |~ = ScalesL < ;L areintrinsically three-dimensional.

06 - VI. ENERGY SPECTRA AND SCALE RATIOS

The physical-space picture of rotating, stratified turbu-
lence as a collection of large-scale, predominantly 2-D struc-
- tures coexisting with small-scale, 3-D structures seems re-
mote from the notion of isotropy first envisioned by Charney
three decades ago. Of course, the simulations conducted here
- are strongly influenced by the top and bottom boundaries, so,
strictly, one can only look for evidence of isotropy among
the smaller-scale structures in the middle of the domain, to
satisfy the conditions of Charney’s theory. But then real at-
000 002 004 006 008 010 012 014 016 mospheric and oceanic flows have boundaries, so it is worth

q2 examining the nature of turbulence under these conditions.
Quite by chance, while trying to produce very simple

z/H
T

0,4 =

02 =

NN P BN P PR ) B

_, . . _ _ _ _ _ _
FIG. 3. The mean enstrophy'™ as a function of scaled heighttH for — giggnostics of the simulation results, we obtained a surpris-
simulations A-C averaged over the period 280<264. At t=0, q'

=57/64=0.2454..., independent af The inevitable dissipation of enstro- Ing result that_ IS Vlrtua"y mde_pendent 9f bounqary 'nﬂu'.
phy is clear from this figure, though the dissipation is relatively low near the€NC€S. Our object was to examine the typical vertical to hori-
surfaces for simulationd in particular; the imposed boundary conditions zontal scale ratioA in rotating, stratified turbulence,
(which imply gu/9z=0 atz=0 andH) on average allow for less shear near expecting mild anisotropy, with =2f/N, as suggested by
the surfaces. . . .
physical-space images from these and many other simula-
tions. We decided to quantify spectrally, in the following
way. In a horizontally doubly periodic domain, here of di-
mensions zrX2m, the horizontal wave numbets, and k,
=1 initially) at a late time {(=192). The columnar vortices are integers. The vertical wave numbées, may be indexed
are initially stable, but due to 2-D vortex interactions, nar-by m starting from 0, and these generally depend on the
rower (taller) columns are produced, which are again pronedepth of the domairH as well as vertical discretization
to instability. Again, a 3-D picture emerges, which is in es-adopted(see Ref. 2 for details Thek, are also proportional
sence not different from the other simulations: only the wid-to N/f. One may writek,= «,N/f, m=0,1,2,.... For an
est vortices remain columnar, but these show so much tiltingnfinite number of layersg,,=m=f/(NH). The simulation
that also for these vortices one cannot speak of them as 2-Desults were Fourier analyzed to produce a horizontal energy
Figure 3 shows the enstrophy, the mean-square value spectrumE,,(K) for each “vertical mode” m, where K2
q' (ffq'2dxdyffdxdy), as a function ofz/H, for all ~ =kZ+kZ. The vertical modes, again for an infinite number
three simulations at late times. Initially, it is uniform, but, as of layers, are proportional to casrz/H, so they are a Fou-
a result of very fine-scale dissipatidat =iz, of the domain  rier series. Note that the=0 mode is height independent—
width!) it decreases, especially in the middle of the domainthis is the “barotropic” mode. Since the vertical modes are
for the L=Lg/3 case, so that by the end of that simulation,orthogonal, the energy may be sensibly decomposed into
the enstrophy is primarily located near the upper and loweparts due to each vertical mode, as we have done. In doing
surfaces. With increasing initial vortex size, there is less disthe Fourier analysisik,| and |k,| were truncated anhy/2,
sipation of interior PV, and the dissipation becomes approxiwhereng is the basic grid resolutiofb12 her¢, andm at 64,
mately uniform with height. The striking variation of enstro- the number of layers in each simulation. Several other dif-
phy dissipation observed in thd=Lg/3 case is a ferent simulations were also analyzed and suggest that the
consequence of the nonuniform vertical distribution of strainresults described below appear to apply to a broad class of
y=|aulax|, which must be less, on average, at the surfaces ofiows.
account of the isothermal boundary conditions théfde Figure 4 shows the specti,, for the first ten vertical
survival of a vortex depends critically op/q’ being small, modes plotted again$ at four selected times in simulation
less than about 0.*.733Greater ratios hasten the cascade off3 (the one havind_/Lg=1/2). The first three times corre-
filamentary structures to small scales, where they are ultispond to the last three images shown in Fig. 1, i.e., times

mately dissipated.For wider initial vortices is more uni- =14, 34, and 108, while the last is for 264 (the end of the
form with height, and the strain is dominated by horizontalsimulatior). The barotropic energl,, shown in bold, domi-
derivatives of the velocity field. nates the other energy components at all times at large

The important point made by this set of simulations isscales. Even at=264, the total energy in the barotropic
that, even if initially all structures are sufficiently wide not to mode exceeds 90%. Even at the smaller scales, the barotro-
be prone to breakdown, interactions between the columngic component dominates. At early times=14), the 3-D
generate smaller columns and not just bigger ones, numeriésstability is just beginning and the “baroclinic” modes(
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FIG. 5. The scaled vertical wave numbep,=k,f/N plotted against the
mean horizontal wave numbé&t, =2 (KE(K)/Z«E,(K) of each vertical
modem at the times shown in Fig. 4.

FIG. 4. The horizontal energy spectg(K) for the first ten vertical modes
m=0,1,...,9 in simulation3 at (a) t=14, (b) t=34, (c) t=108, and(d) t
=264. The barotropic spectruffy(K) is shown in bold.

mum horizontal wave number, indicating that the smallest

Scale structuregbelow two grid lengthsare shallow com-
ared to isotropy. It is as yet unclear whether this breakdown

real or a numerical artifact, although more recent simula-

>0) are very weakly excited. In time, these modes grow and
particularly at small to intermediate scales, they becom
comparable to the barotropic mode. But there is more to b
seen: at early times, the spectra are remarkably shallow n?%o : : : L

. ’ . . ) ’ tions using higher vertical resolution indicate the latter.
badly approximated by & >3 behavior at intermediat& g Mg

. : However, the fact remains that a high degree of correlation
(though the largeK spectra are influenced by the d'scret.eexists betweelK,, and«,,. This correlation may be taken as

hature of the data set—this generally leads to a ShallOW'n%vidence that QG flows are isotropic, in the sense that verti-

Ior I?rgefK con;]par:et(rj] V\gth thte ?pectt_rum of z Ct(?]ntmuh(:liscal to horizontal scale ratios are equaft®l. The barotropic
unction from which the discreéte function may be thought 1o, , o behavior, however, stands out from this scaling rela-

b.e T sampledt)ff Th'sl beh?wor 'S” con|S|stenrt].mr/]|trr]1 a self- tion. In physical space, one would expect it to enhance the
simrar cascagde from farge o smafl scales, which here occ ur§patialanisotropyof PV structures by extending them verti-
by the initial production of smaller-scale structures during

. . R cally, and this is consistent with the observed results.
vortex interactions and 3-D breakdown. This initial cascade y

leads to a significant dissipation of the total enefgy50%
decrease by=100), Which is, however, not directly attrib'- VIl. CONCLUSIONS
utable to the 3-D dynamics—an analogous 2-D simulation
(the same in every respect except for one layer oekhibits The results presented here underscore the inadequacy of
a very similar energy decay. At later times, the spectra&2-D models for simulating rotating, stratified flows. Previous
steepen to betweeld ~* andK ~°, indicative of a slow up- work by Hua and Haidvog® arrived at these conclusions
scale “cascade,” during which the total energy is approxi-for baroclinically unstable QG flows, i.e., flows forced by
mately conservedit decreases by a further 10% betweden unstable surface temperature gradients, as a model of the
=100 andt=264). Like in 2-D flows, the flow in this period Earth’s troposphere. Here, we have found more generally,
is dominated by widely separated vortices which seldomlyeven for baroclinically stable flows, 2-D models are valid
interact strongly. There is much less filamentary debris aboutnly in the absence of stratification and under rapidly rotat-
than at early times, when vortex interactions were more freing conditions. The presence of stratification fundamentally
guent and energetic. alters the behavior of the fluid at horizontal scales compa-
There is more still. Note that the peaks in the spectraable to and below the Rossby radius of deformathHi/f.
shift to greateiK with increasingm. We decided to quantify Adequate vertical resolution is needed not only in equatorial
this  behavior by computing K, ,=Z«KE.(K)/ regions, wherd —0 and strong variations may occur across
> kEm(K)—this is the mean horizontal wave number for the stratification surfaces, it is also needed to capture the inher-
vertical modem. We plottedK,, versus«,, (the vertical ent three-dimensionality of extra-tropical motions, which de-
wave numbek, multiplied by f/N), and the results, for the pends essentially on the ratio of rotational to buoyancy fre-
times shown in Fig. 4 are shown in Fig. 5. The surprisingquencies,f/N. Globally, it is reasonable to expect that the
result is thatK,,~ «a,, except at early times for all but the typical vertical/horizontal scale ratio of small to
barotropic modem=0. The relationship breaks down at intermediate-sized vortices is comparable to the ratio of the
wave numbers higher than 128, which is half of the maxi-rms absolute vorticityn,=|fe,+ VX u| to N.
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