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Abstract

A thermodynamic expression for the analog of the canonical ensemble for nonequilibrium systems is described based
on a purely information theoretical interpretation of entropy. It is shown that this nonequilibrium canonical distribu-
tion implies some important results from nonequilibrium thermodynamics, specifically, the fluctuation theorem and the
Jarzynski equality. Those results are therefore expected to be more widely applicable, for example, to macroscopic
systems.

1 Introduction
The derivations of the fluctuation theorem [1, 2] and the
Jarzynski equality [3] appear to depend on the underlying
microscopic Hamiltonian dynamics. From this it would
follow that these theorems are only relevant to micro-
scopic systems, with their associated definitions of en-
tropy and temperature. In contrast, a statistical mechani-
cal description of macroscopic systems often depends on
more general forms of entropy, primarily information en-
tropy [4, 5, 6]. Two notable examples from fluid dynamics
are the statistical mechanics of point vortices [7] and the
statistical mechanics of two-dimensional incompressible
flows[8]. In such cases, ‘temperature’ is defined in terms
of the change of entropy with the energy of the system [9]
or, equivalently, in terms of the Lagrange multiplier for
the energy under the maximization of entropy at a given
expectation value of the energy [10].

The question is whether for such macroscopic systems
we can derive a fluctuation theorem or Jarzynski equal-
ity. This is of particular importance for climate science as
there are strong indications that the global state of the cli-
mate system and, more generally, other components of the
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Earth system may be governed by thermodynamic con-
straints on entropy production [11, 12, 13, 14, 15]. The
theoretical underpinning of those thermodynamic con-
straints is still lacking. The presence of a fluctuation the-
orem for such systems would be of great importance.

Here we demonstrate that the information-theoretical
definition of entropy implies the fluctuation theorem and
the Jarzynski equality. It is shown that these results are
due to the counting properties of entropy rather than the
dynamics of the underlying system. As such, both these
results are applicable to a much wider class of problems,
specifically, macroscopic systems for which we can define
an entropy and which are thermostatted in some general
sense.

The central tenet is that for two states A and B of a
system, defined by two sets of macroscopic parameters,
the ratio of the probabilities pB/pA for the system to be in
either state is

pB/pA = exp(∆ABS/k), (1)

with ∆ABS the difference in entropy between the states B
and A. This is essentially the Boltzmann definition of
entropy: entropy is a counting property of the system.
The theoretical background can be found in [10], where
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it is shown that this information theoretical interpretation
reproduces the statistical mechanics based on Gibbs en-
tropy, but furthermore gives a justification of the Gibbs
formulation as a statistical inference problem under lim-
ited knowledge of the system. Of note is that the entropy
only has meaning in relation to the macroscopic con-
straints on the system (indicated by the subscripts A and B
above), constraints which can be arbitrarily complex and
prescriptive, as may be needed for systems far from equi-
librium. In an information-theoretical setting the above
definition of entropy is equivalent to the principle of in-
difference: the absence of any distinguishing information
between microscopic states within any of the macroscopic
states A or B is equivalent to equal prior (prior to obtaining
additional macroscopic constraints) probabilities for the
microscopic states [16]. Note also that we do not need to
specify precisely at this point how the states are counted,
or how an invariant measure can be defined on the phase
space confined by A or B. The principle of indifference
does not imply that all states are assumed equally proba-
ble; it is a statement that we cannot a priori assume a cer-
tain structure in phase space (such as a precisely defined
invariant measure) in the absence of further information.
The principle of indifference is not a statement about the
structure of phase space; it is a principle of statistical in-
ference and it is the only admissible starting point from
an information theoretical point of view.

2 A general form for the canonical
ensemble

Following Boltzmann, we define the entropy SA as the
logarithm of the number of states accessible to a system
under given macroscopic constraints A. For an isolated
system, the entropy is related to the size ΦA of the acces-
sible phase space,

SA = k lnΦA. (2)

For a classical gas system, A is defined by the energy U ,
volume V and molecule number N, and the phase space
size ΦA is the hyper-area of the energy shell, and it de-
fines the usual microcanonical ensemble. For more com-
plicated systems, where A may include several macro-
scopic order parameters, the energy shell becomes more

confined; in the following we will still refer to the ac-
cessible phase space under constraints A as the energy
shell. The hyper-area ΦA is non-dimensionalised such
that ΦA(U)dU is proportional to the number of states
between energies U and U + dU . We will not consider
other multiplicative factors which make the argument of
the logarithm non-dimensional; these contribute an addi-
tive entropy constant which will not be of interest to us
here. Note also that the microcanonical ensemble does not
include a notion of equilibrium: the system is assumed to
be insulated so it cannot equilibrate with an external sys-
tem. It just moves around on the energy shell (defined by
A) and the principle of indifference implies that all states,
however improbable from a macroscopic point of view,
are members of the ensemble. Of course, the number of
unusual states (say, with non-uniform macroscopic prop-
erties not defined by A) is much lower than the number
of regular states (say, with uniform macroscopic density)
for macroscopic systems. Only for small systems, the dis-
tinction becomes important but it does not invalidate the
above formal definition of entropy. The above definition
of entropy also ensures that entropy is an extensive prop-
erty such that for two independent systems considered to-
gether the total entropy is the sum of the individual en-
tropies, S = S1 + S2. The Boltzmann constant k ensures
dimensional compatibility with the classical thermody-
namic entropy when the usual equilibrium assumptions
are made [10, 17].

The hyper-area of the energy shell, and thus the en-
tropy, can be a function of several variables which are set
as external constraints, such as the total energy U , system
volume, V , or particle number N for a simple gas system.
For the canonical ensemble we consider a system that can
exchange energy with some reservoir. We consider here
only a theoretical canonical ensemble in that we consider
the coupling between the two systems to be weak such
that the interaction energy vanishes compared to the rele-
vant energy fluctuations in the system.

First, we need to define what a reservoir is. Follow-
ing equilibrium thermodynamics, we formally define an
‘inverse temperature’ β = (kT )−1 as

β = k−1
∂S/∂U = Φ

−1
∂Φ/∂U. (3)

We make no claim about the equality of β and the classi-
cal equilibrium inverse temperature; β is the expansivity
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of phase space with energy and as such can be defined
for any system, whether it is in thermodynamic equilib-
rium or not. When an isolated system is prepared far from
equilibrium (for example, when it has a local equilibrium
temperature which varies over the system) then β is still
uniquely defined for the system as a non-local property
of the energy shell that the system resides on. Because
both energy and entropy in the weak coupling limit are
extensive quantities, β must be an intensive quantity.

Now consider a large isolated system R with total (in-
ternal) energy UR. Let this system receive energy U ′ from
the environment. By expanding its entropy SR in powers
of U , we can then write the entropy of this large system
as

SR(UR +U ′) = SR(UR)+ kU ′
(

β +
1
2

U ′
∂β

∂U
+O(U ′2)

)
.

(4)
We see that for finite U ′, (∂β/∂U)−1 has to be an exten-
sive quantity. But that means that for a very large system
∂β/∂U = O(N−1), where N is a measure of the size of
the system (such as particle number). For a classical ther-
modynamic system ∂β/∂U =−kβ 2/CV with CV the heat
capacity at constant volume. We conclude that for a very
large system (N→ ∞), the entropy equals

SR(UR +U ′) = SR(UR)+ kβU ′ (5)

for all relevant, finite energy exchanges U ′. This expres-
sion for the entropy defines a reservoir. The size of the
energy shell accessible to the reservoir is, for all relevant
energy exchanges U ′, exactly proportional to exp(βU ′),
with β an intensive and constant property of the reservoir.
We do not require the reservoir to be in thermodynamic
equilibrium. A change of energy in the reservoir pushes
the reservoir to a different energy shell A′; the functional
dependence of the size of the energy shell with energy de-
fines the ‘inverse temperature’ β , as in Eq. 3. However,
it is not assured that a small and fast thermometer would
measure an inverse temperature equal to β at some point
in the reservoir; only if the reservoir is allowed to equili-
brate, its inverse temperature is everywhere equal to β . Of
course, this is how the temperature of a classical reservoir
is determined in practice.

Now suppose a system of interest has energy U0. We
then allow it to exchange heat U with a reservoir. If the
system has energy U0 +U , the reservoir must have given

up energy U . We can write the hyper-area of the energy
shell of the system Φ0 as a function of U . The total en-
tropy of the system plus reservoir R can then be written as
a function of the exchange energy, U , as

S = S0(U)+SR(UR)− kβU, (6)

with S0 = k lnΦ0. The number of states at each level of
exchange energy therefore is proportional to

Φ(U) ∝ Φ0(U) exp(−βU), (7)

where we omitted proportionality constants related to the
additive entropy constants. Nowhere we assume that the
system is in equilibrium with the reservoir. This means
that Φ(U) is the relevant measure to construct an ensem-
ble average for the system, even for far-from-equilibrium
systems. Even the reservoir can be locally out of equilib-
rium, as discussed above. We have also made no refer-
ence to the size of the system of interest, as long as it is
much smaller than the reservoir. However, in contrast to
systems in thermodynamic equilibrium, there is no guar-
antee that the extensive macroscopic variables, such as U ,
V , or N define the state of the system in any reproducible
sense. To fully define an out-of-equilibrium system we
need to introduce order parameters that can describe the
non-equilibrium aspects of the system.

The above density is an integrated version of the usual
canonical distribution. The size of the energy shell of the
system of interest, Φ0, can be written as an integral over
states Γ such that

Φ0(U) =
∫

H0(Γ)=U
dΓ, (8)

with H0 the Hamiltonian of the system of interest . With
this definition, the density in Eq. 7 reduces to the usual
canonical distribution exp(−βH0(Γ)) for states Γ. We
will not make further use of this microscopic version of
the density.

3 Fluctuation theorems
The canonical density in Eq. 7 can be expanded by
parametrizing each energy shell with some continuous co-
ordinate v, so that every part of phase space has coordi-
nates (U,v). The coordinate v is again a macroscopic co-
ordinate so that any combination (U,v) can correspond
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to many microscopic states. At each value of v the dif-
ferential φ(U,v)dUdv is proportional to the number of
states between coordinate values U and U + dU , and v
and v+dv, and it is normalised such that∫

φ(U,v)dv = Φ0(U). (9)

The parametrisation is arbitrary at this point and can be
chosen such as to divide the phase space in as fine a struc-
ture as desired for a given application. We can define an
entropy S0(U,v) again as the logarithm of the number of
available states for the system of interest corresponding to
the subset of phase space defined by (U,v),

S0(U,v) = k lnφ(U,v). (10)

Now consider a process that occurs on the energy shell
U where some variable changes from A→ B . On the
parametrized energy shell this corresponds to a coordinate
shift from v(A)→ v(B). The number of corresponding
states changes from φ(U,v(A))→ φ(U,v(B)). We can
use detailed balance to express the ratio of the probability
of making this transition to the probability of making the
reverse transition as the ratio of the number of states at
(U,v(A)) to the number of states at (U,v(B)):

pA→B

pB→A
=

φ(U,v(B))
φ(U,v(A))

= exp(∆ABS/k), (11)

where ∆ABS/k = S0(U,v(B))− S0(U,v(A)). If, in addi-
tion, during the process A→ B the energy of the system
of interest changes from UA→UB through exchange with
the reservoir, then the above ratio of probabilities can still
be expressed as exp(∆ABS/k) but now with

∆ABS = S0(UB,v(B))−S0(UA,v(A))− kβ (UB−UA).
(12)

We can always write the entropy change of the system
of interest as the sum of the entropy change due to heat
exchange with the reservoir and an irreversible entropy
change associated with uncompensated heat [18, 14], viz.
S0(UB,v(B))− S0(UA,v(A)) = kβ (UB−UA)+∆iS0. We
thus conclude that ∆ABS = ∆iS0, that is, the relevant en-
tropy change in Eq. 11 equals the irreversible entropy
change of the system of interest. So for processes that
occur either on or across energy shells, we have

pA→B

pB→A
= exp(∆iS0/k), (13)

with ∆iS0 the irreversible entropy change of the system
in a process A→ B. The right-hand-side of this equation
is only dependent on the irreversible entropy change ∆iS0
between the two states of the system of interest. So this
equation must be true for any pair of states (A,B) that are
related by the same irreversible entropy change. We thus
arrive at the fluctuation theorem [1, 2],

p(∆iS)
p(−∆iS)

= exp(∆iS/k), (14)

with p(∆iS) the probability the system of interest makes
a transition with irreversible entropy change of ∆iS and
p(−∆iS) the probability for the opposite change.

The fluctuation theorem applies to spontaneous pro-
cesses that occur in thermostatted but otherwise isolated
systems. We next consider processes that occur when we
modify the system of interest by changing some exter-
nal macroscopic parameters. The entropy of the energy
shell U is then also a function of some parameter λ , viz.,
S = Sλ (U,v). Without loss of generality we set λ = 0 at
A and λ = 1 at B. In this case the irreversible entropy
change in, Eq. 13, is

∆iS/k = S1(UB,v(B))−S0(UA,v(A))− kβ (UB−UA).
(15)

Apart from this, there is no change in the considerations
leading to the fluctuation theorem. By definition, ther-
mostatted systems that receive work WAB from their envi-
ronment have an irreversible entropy change equal to

∆iS/k = β (WAB−∆ABF), (16)

with ∆ABF the change in free energy going from A to B.
Recognising that the right-hand-side is again only a func-
tion of the difference between the two states, we arrive at
the Crooks fluctuation theorem [19],

p01(W )

p10(−W )
= exp(β (W −∆01F)), (17)

with p01(W ) the probability that the system absorbs work
W when λ changes from 0 to 1, and p10(−W ) the proba-
bility that the system performs work W when λ changes
in reverse from 1 to 0. Because the transition probabilities
can be normalised with respect to the exchanged work, it
is straightforward to use this equation to show that the ex-
pectation value of exp(−β (W −∆01F)) equals unity, or
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equivalently,

〈exp(−βW )〉= exp(−β∆01F). (18)

This is the Jarzynski equality [3].
The consistency of the above argument is strengthened

by the following independent route to calculate free en-
ergy changes. The phase space measure Φ(U) can be nor-
malised with the partition function Zλ ,

Zλ =
∫

Φλ (U) exp(−βU)dU. (19)

where Φλ (U) is proportional to the number of accessible
states of the isolated the system of interest when the ex-
ternal parameter is set to λ . The equilibrium free energy
for the thermostated system is

Fλ =−β
−1 lnZλ . (20)

Next we consider what happens to the equilibrium free
energy of the system when we vary λ from 0 to 1. The
partition function at λ = 1 satisfies

Z1 =
∫

Φ1(U) exp(−βU)dU

=
∫

Φ0(U) exp(∆S/k) exp(−βU)dU

= Z0 〈exp(∆S/k)〉 (21)

where 〈.〉 denotes an ensemble average over the initial
ensemble, and ∆S = k ln(Φ1(U)/Φ0(U). As before, the
entropy change can be written as the sum of the entropy
change due to heat exchange with the reservoir and the
irreversible entropy change due to uncompensated heat.
Because the system plus the reservoir are thermally in-
sulated, any heat given to the reservoir must be com-
pensated by work performed by the external parameter
change. The entropy change, above can therefore be writ-
ten as 〈exp(∆S/k)〉= 〈exp(∆iS/k−βW )〉 so that we find

Z1/Z0 = 〈exp(∆iS/k−βW )〉. (22)

Because Eq. 16 is true for any microscopic realisation of
the process, we find that the right-hand-side of the above
equation is the same for every realisation and it is equal
to exp(−β∆F). This is consistent with the equilibrium
expression for the free energy, Eq. 20, from which fol-
llows that exp(−β∆F) = Z1/Z0. The above equation is

only apparently in contradiction to the Jarzynski equal-
ity, Eq. 18. To arrive at the Jarzynski equality we
recognise that Eq. 16 implies that 〈exp(β (∆F −W ))〉 =
〈exp(−∆iS/k)〉 = 1, where the last equality follows from
integrating the fluctuation theorem over all values of ∆iS.

4 Discussion

We have shown that the fluctuation theorem Eq. 14 and
Jarzynski equality Eq. 18 follow from general counting
properties of entropy and not from the underlying dynam-
ics. As such we expect both results to be widely applica-
ble to systems that are in some sense thermostatted, that
is, systems that are able to settle on a given expectation
value for the total energy by interaction with a reservoir.

The climate system is potentially a non-trivial example
of such a system: the incoming short-wave radiation from
the Sun is depleted by long-wave (thermal infrared) radi-
ation from the Earth to space. The corresponding equi-
librium temperature is the bolometric temperature of the
planet (about 255K in case of the Earth [14]).1 It is not ob-
vious how to apply the fluctuation theorems to the climate
system and how the entropy production in the climate sys-
tem is related to the actual climate on Earth. For example,
most of the entropy production in the climate system is
due to degradation of radiation (e.g. [20]), namely, short
wavelength visible sunlight is thermalized by molecular
absorption into molecular thermal energy corresponding
to long wavelength infrared radiation. This degradation of
radiative energy is the main source of entropy production
in the climate system, but as this entropy production only
resides in the photon field, its relation to, for example, ki-
netic energy dissipation in the atmosphere is not clear. So
from this example it appears that we need to select the rel-
evant forms of entropy production before we can use it to
make inferences about the climate system.

It remains to be seen whether the fluctuation theorems
can be usefully applied to complex systems such as the
climate, but we believe that the derivation presented here
can pave the way for attempts in that direction.

1The bolometric radiation temperature of the Earth is substantially
lower than the observed average surface temperature of about 288K, be-
cause of the greenhouse effect of the atmosphere.
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