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Abstract

This paper describes a novel numerical approach for simulating �ne�scale� dominantly
advected �elds� such as tracers� in layerwise two�dimensional �ows� the most important
examples of which are the Earth�s atmosphere and oceans� In particular� we describe how
one can modify an approach previously developed for perfectly conserved tracers so that
it can handle predominantly large�scale� non�conservative forcing� Such forcing is called
�diabatic� in the atmosphere and oceans and is mainly the result of absorption or emission
of radiation by chemical constituents �e�g� carbon dioxide or ozone	 in the atmosphere
or Ekman pumping by wind�stress in the oceans� This forcing plays a fundamental role
in shaping the observed atmospheric and oceanic circulation on long time scales� It
�spins up� a circulation which is dynamically unstable� and sets o
 a sequence of events
involving� indeed depending upon� complex� turbulent interactions� whose mean e
ect
is to signi�cantly modify the circulation that would otherwise develop in the absense
of instability� It has become recognised that �ne�scale structure is both abundant and
intimitely connected with the present circulation� However� the numerical models widely
employed in studying the atmosphere and the oceans inadequately cope with this �ne�
scale structure� solution convergence is poor with increasing resolution� and the numerical
cost is great� Here� we introduce a hybrid method that overcomes the di�culties of
resolving �ne�scale structure� This method combines a contour�based� grid�free numerical
model with a conventional� grid�based one� and introduces a means for accumulating the
forcing into the motion of the contours� via the grid�based model� The new approach
could ultimately lead to signi�cant improvements in modelling and understanding the
atmospheric and oceanic circulation�

� Introduction

Recently� a new algorithm was developed by Dritschel � Ambaum ���� who fused two radically
di�erent approaches for simulating conservative �elds �purely 	advected
 �elds q obeying the
evolution equation �q��t � u � rq � 
� in layerwise�two�dimensional �ows� the most impor�
tant examples of which are the Earth�s atmosphere and oceans� In such �ows� the in�uence
of rotation and stable density strati�cation force motion to be predominantly parallel to
the strati�cation surfaces ����� In the atmosphere any cross�surface motion is due to dia�

batic �entropy�changing� processes� most signi�cantly thermal heating or damping�c�f� ������
These diabatic processes� though weak and operating on a long time scale� to a great ex�
tent shape the observed large�scale circulation of the atmosphere� They destroy� weakly� the
conservative evolution of a particularly fundamental �eld� the potential vorticity q� whose
distribution largely determines all other dynamic �elds �e�g� velocity� pressure and temper�
ature � see ������ Nevertheless� the potential vorticity still behaves like a nearly conserved
tracer on time scales of a week or so� and as such� it is characterised by abundant �ne�scale

�
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structure ���� ���� This �ne�scale structure contributes only weakly to the induced velocity
�eld� etc�� but plays a crucial role in determining the form and location of the tropopause di�
viding weakly strati�ed air below about �
km from strongly strati�ed air above ��� as well as
ozone depletion within the polar stratospheric vortex� a �


km wide region of super�rotating
air situated over the wintertime pole extending from a height of roughly ��km upwards to
�
km ���� ����
Present research relies strongly on numerical simulation to understand the factors con�

tributing to the observed circulation� to ozone depletion� to climate change� etc� However�
the numerical methods employed poorly resolve �ne�scale structure� and serious questions
have been raised about the research �ndings� in particular the poor convergence of the re�
sults with increasing numerical resolution ��� �� �� �
� ���� The object of the present article
is to introduce an alternative numerical method capable of resolving �ne�scale behaviour at
a tiny fraction of the cost that would be necessary using present numerical methods� This
new method builds on the conservative algorithm introduced by Dritschel � Ambaum ����
The details are described in the following section� In Section �� numerical tests are presented
for the relaxation of parallel �ows to a prescribed equilibrium� In Section �� non�parallel
�ows are considered� and the dependence on numerical parameters is exhibited� This study
justi�es the basic approach and pins down the optimal numerical parameter relationships� In
Section �� we describe future applications of the method�

� The Structure of the Algorithm

The new algorithm combines a grid�based model for handling the diabatic input of potential
vorticity �hereafter PV� and a contour�based model for the advective part of the evolution�
This combination is necessary because a contour�based model alone could never account for
diabatic processes in a part of the domain where it is impossible to accurately de�ne a PV
gradient or where the PV gradient vanishes� The former is the case wherever the contour
density is low � a situation that will inevitably occur during the evolution� The latter occurs
at extrema of the PV distribution�
The PV that builds up in the grid�based model through diabatic processes will attain

ever smaller scales through advection� It is here important to stress that these processes are
quite unlike those associated with ordinary �molecular� di�usion� The latter are e�cient at
destroying �ne�scale structure� but in the real atmosphere� such di�usive e�ects are utterly
negligible over the range of scales that could ever be conceivably modelled� Diabatic processes�
by contrast� act most strongly at large scales� due to the broadly distributed nature of thermal
heating in the atmosphere� They can either destroy or enhance PV� Essentially� they act to
drag the PV back to some quasi�equilibrium pro�le �one which only slowly changes on the
advective time�scale�� with large scales being dragged back faster than small scales ���� In
fact� the relaxation of the small scales is so slow that they never come into equilibrium in
reality� which is why �ne�scale structure is so abundant in the atmosphere�
This natural tendency to produce �ne�scale structure by advection strongly limits the

success of grid�based models� however� this is where one can exploit the advantages of a
contour�based model� In the latter� the PV advection is solved explicitly by advecting PV
contours� i�e� by computing the trajectories of the �in practice �nite� collection of points com�
prising each contour� Pure advection can be carried out numerically without any constraint
on stability� and representing PV as contours permits one to resolve� at low computational
cost� �ne�scale structure such as sharp gradients and �laments at least an order of magnitude
beyond the limits of grid�based methods� Eventually� �ne�scale �lamentary PV is removed
by a topological reconnection scheme called 	surgery
 but the result is a much reduced dis�
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sipation of PV and indeed a complete preservation of high�gradient structures �see ��� �
refs��
The crux of the algorithm is that it is possible to use a grid�based model to explicitly

account for the diabatic input of PV� and to transfer this PV to a contour�based model�
before it mixes down to scales that are too small to be accurately resolved by the grid�based
model� the grid�based model is used as a temporary reservoir of 	diabatic PV�

Here is how to do this� The PV �eld q is written as the sum of a gridded �eld qd and a

contoured �eld qa� The contoured �eld will be written as

qa�x� y� t� � q��t� � q��t�h�x� y� t� �

Here q� and q� are functions of time alone� and h is the �eld represented by contours with
unit PV jumps�
The basic equation to be solved is

Dq

Dt
� S � �����

with D�Dt � ���t � u � r and S the diabatic source term� This source term is assumed to
contain predominantly large scales� so that it can be accurately represented on a �moderately�
coarse� grid� The velocity �eld u is obtained by whatever standard method used by the
grid�based model � u itself is not a �ne�scale �eld ��� ���� Here� in the simple single�layer
�two�dimensional� model that we are using for illustration� u is obtained from the total PV
by 	inversion
� i�e� by inverting the 	Helmholtz
 operator

r�� �
�

L�

R

� � q

for the streamfunction �� and calculating the incompressible velocity �eld from

u � �
��

�y
� v �

��

�x

�this is the simplest version of the widely�used 	quasi�geostrophic
 model ��� ��� ��� ��� and
is su�cient to demonstrate the potential utility of the new algorithm in a far wider context��
Eq� ��� can be split into the following set of equations�

Dh

Dt
� ud � rh � 
 � ����a�

Dqd
Dt

� S �
Dqa
Dt

� S � �q� � �q�h� q�ud � rh � ����b�

where an extra 	diabatic velocity
 ud has been introduced� The �rst equation is solved by
contour advection� i�e�

dx

dt
� u� ud �

which� apart from advection errors arising from using a �nite time step� is accurate down
to the surgical scale �the scale below which the surgery scheme starts to act� normally a
tenth of the grid scale�� The second equation is solved on the grid with a 	semi�Lagrangian

algorithm ��� �
� ��� ���� the method most widely used now in weather forecasting� The semi�
Lagrangian method� like contour advection� uses particle trajectories �now backwards in

�
LR is the so�called Rossby radius of deformation� a fundamental length scale dependent on the

external rotation and strati�cation of the �uid� In the atmosphere at mid�latitudes it is some 
���km�
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time� to �nd qd on grid points at the next time step� An important di�erence is that the
semi�Lagrangian scheme requires interpolation of qd� and this is strongly di�usive for �elds
that readily generate �ne�scale structure� like the total PV �eld here �see ��� for a comparison
between contour advection and the semi�Lagrangian method�� This is the reason why we have
used contour advection to represent as much of the �ne�scale character of q as possible� the
new algorithm attempts to keep qd broad� thereby permitting it to be accurately represented
on a moderate�resolution grid� The formation of small scales in the qd �eld can be suppressed
by having the right�hand side of Eq� ���b be equivalent to some damping D on qd� In fully
grid�based models� this damping is often a hyperviscosity �i�e� r�pq with p � ��� but we will
take a linear damping for reasons given below�

With this damping term de�ned� we can rewrite Eq� ���b as

Dqd
Dt

� q�ud � rh�W �D � ����a�

W � �q� � �q�h�D � S � ����b�

Now the introduction of ud becomes clear� we will choose ud such that q�ud �rh compensates
for W as much as possible� In this case the right�hand side of the qd equation has become
a damping term� At the same time ud will be chosen smooth so that advection errors in
the h �eld will be minimized� The quantities �q� and �q� are also chosen to achieve maximal
compensation between q�ud � rh and W�

Theoretically the optimal choice for ud would be

ud �
W

q�

rh

jrhj�
�

but this is ill�de�ned for vanishingrh� or whererh itself is ill�de�ned because of a low contour
density� The �rst problem is solved by desingularizing the denominator in the expression for
ud� The second problem is solved by smoothing the terms in the expression for ud with a
Fourier �lter �see below� such that ud is de�ned everywhere� The value ofrh is determined on
the grid after converting the contoured h �eld to gridded values using the fast domain��lling
technique described in ����

The ensuing expression for ud becomes

ud �
�

q�

�
Wrh

jrhj� � ��

�
f

� �����

where the subscript f denotes the Fourier �lter� which makes ud a smooth �eld� The param�
eter � is related to a spatial scale �m � ��km by � � ���m� and it limits the maximum value
of ud to

max�ud� � max

�
W

�q�

�
f

�m � �����

The �lter f is of the form �����k��k�c � in Fourier space� with k the total wavenumber of the
�ltered mode and �c � ��kc the �lter scale� The �lter is chosen this way because now the
expected spectrum for ud is steeper than k

��� so that ud may e�ectively be represented on a
grid �just as the velocity u itself� see ��� ��� ��� ��� for justi�cation�� Furthermore� this �lter
does not lead to fringes in the �ltered �eld� From inspection of the equations it may be seen
that the strain tensor rud is maximally proportional to km and inversely proportional to kc�
This is formalized in Appendix A� where it is shown that� for stability reasons that limit the
norm of the strain tensor� we should choose km � kc�



Inclusion of Forcing into a Contour Advection Algorithm �

Now that we have found ud in terms of W� h� q�� and kc� we still have to �x �q� and �q��
These will now be chosen such as to minimize the mean�square production of qd� i�e� the
functional Z

�q�ud � rh�W�
� dxdy � �����

where the integral extends over the whole domain� In Appendix B it is shown that this
minimization leads to a system of two linear equations with unknowns �q� and �q��
In Eq� ��� it can be seen that the diabatic input of PV directly a�ects qd� insofar as the

diabatic velocity of the contours cannot compensate this diabatic input through the term
q�ud � rh� The transfer of PV from the grid�based model to the contour�based model is
e�ected through the action of D� For suppose that at some moment the forcing is turned
o�� Then the qd �eld will be damped with a strength D and at the same time this PV
is transferred to the qa �eld through the advection of the contours by ud and through the
contour level changes �q� and �q�� When qd vanishes� W vanishes� so that ud vanishes also and
we end up with a fully adiabatic contour advection model with evolution equation Dh�Dt � 
�
As the transfer of PV from the grid�based to the contour�based model is determined by the

strength of D� we can �nd the optimal form of D by the preferred behaviour of the transfer�
For example� one should not choose a di�usion type of damping� because the transfer of
this term to the qa �eld would lead to a velocity associated with antidi�usion on qd� This
would make the scheme unstable whenever qa and qd would correlate in some regions� In our
implementation� we take a linear damping of the form

D � �qd�	tr �

where 	tr is the transfer timescale� This timescale should be long enough to have the transfer
mechanism work e�ectively� i�e� long enough to have signi�cant contour gradients in qa
coinciding with PV structures in qd� The timescale should be shorter� though� than the
mix�down time of the velocity �eld u� The optimal values for 	tr and the other numerical
parameters are next deduced from direct simulation results in the next two sections�

� Relaxation of Parallel Flows to Equilibrium

In testing the new model� we will employ a commonly�used simple form for the diabatic
forcing ��� �� ���� namely

S �
� � ���x� y�

	rL
�

R

� �����

where � is the streamfunction de�ned above� ���x� y� is a prescribed 	radiative equilibrium

pro�le� and 	r is the relaxation time scale towards radiative equilibrium� For simplicity� we
have developed the algorithm �rst for a doubly�periodic domain� of side length ��� though
the extension to the more realistic spherical geometry is straightforward�
If one spectrally tranforms this forcing� it becomes readily apparent that large scales relax

back to equilibrium faster than do small scales� In fact� for a �D wavenumber k� the relaxation
rate of a spectral component of � back to equilibrium �ignoring nonlinear interactions� is
simply ���	r�k

�L�

R � ���� In the one�dimensional� parallel �ow problem considered in this
section� nonlinear interactions cannot occur� so all �ows do relax back to radiative equilibrium�
This is not generally the case for �D �ows� since the radiative equilibrium pro�le is often
unstable�
In all of the simulations performed� the grid resolution was �xed at ��� in each direction

�of course only one direction is required in the �D simulations�� This resolution is adequate to
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Figure �� One�dimensional simulation results� �a� max jq� �qj versus t� �b� r�m�s� qd versus t�
and �c� r�m�s� rqd versus t� The line types corresponding to the di�erent parameter values
are tabulated in panel �a� and are the same for panels �b� � �c��

accurately capture the �ne�scale structure in the �D simulations� as has been demonstrated
by Dritschel et al� ��� for a nearly identical �ow con�guration�

The basic parallel �ow is prescribed by the initial PV� a zig�zag pro�le�

q�x� y� 
� � �Qsgn�y��a � jjyj � aj� �����
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for jyj 
 �a� and q � 
 otherwise� Note� q � ��Q at y � �a� As for the diabatic forcing� the
radiative equilibrium pro�le �� is chosen to be the streamfunction one gets by inverting the
above PV when � � �� To force an adjustment� � �� � is used for q�x� y� 
�� in fact� we have
chosen � � 
������� This forces q to adjust to its equilibriumpro�le �q � Qsgn�y��a�jjyj � aj��
We have taken a � 
�� and LR � 
�� as in ���� as well as Q � ��� and 	r � �
�

The object in this section is to determine what choice of numerical parameters leads to
the smoothest� most accurate adjustment to equilibrium� To that end� we varied the time
step  t� the �lter wavenumber kc� and the damping time scale 	tr in a series of simulations�
No signi�cant sensitivity was found for  t� as shown below� The recommended time step�
for accurate advection� is

 t �
�

�
max jqj
� �����

��� where max jqj is the maximum PV amplitude in the equilibrium pro�le� i�e� Q here� With
Q � ���� the above formula gives  t � 
���

Results for kc � �� �
 � �
� 	tr � �� �� �� �
 � �
 and  t � 
�� � 
�� are shown next
in �gures ��a�!�c�� Fig� ��a� shows max jq � �qj versus time t� Fig� ��b� shows the root�mean�
square �r�m�s�� value of qd versus t� and Fig� ��c� shows the r�m�s� value of rqd versus t �see
caption for a description of the line styles used to di�erentiate the results��

The decay of max jq � �qj varies little across the range of numerical parameters investi�
gated� Within numerical errors� this quantity should behave the same in all simulations� Even
so� it is evident that large values of 	tr and small values of kc lead to signi�cant numerical
errors� This is borne out in Figs� ��b� � �c�� which display much more sensitive measures
of the numerical solution accuracy� In fact� the algorithm is designed to minimise the r�m�s�
value of rqd �Fig� ��c�� for given kc� 	tr and  t� the above results show how one can best
choose these global parameters to minimise the r�m�s� value of rqd overall� In fact� Figs� ��b�
� �c� collectively point to 	tr � � or � and kc � �
 or �
 being optimal� with no signi�cant
dependence on the time step  t� Hence� the optimal timescale over which to transfer qd to qa
is approximately the characteristic time�scale T � ��max jqj� The optimal �lter wavenumber
is approximately one tenth of the maximum wavenumber� We next consider the much richer
two�dimensional �ow to see if these parameter relationships continue to hold�

� Non�Parallel Flows and Numerical Parameter Choices

In this section� the initial PV distribution considered in the previous section is modi�ed by
replacing y in Eq� ��� by

"y � y � cm sinmx� cn sinnx � �����

Furthermore� � � � is used now and the 	radiative�equilibrium
 �ow �� is determined by
inverting this initial� non�parallel pro�le of PV� In Eq� ���� we have taken m � �� c� � �
�
�
and n � �� c� � 
�
�� All other physical parameters are the same as previously�

The initial �ow is unstable despite the e�ect of the relaxation term S� as Fig� � illustrates�
However� one sees that the instability collapses and a new nearly parallel �ow emerges� which
is itself unstable� The �ow destabilizes and recovers repeatedly� though non�periodically� and
this can be ascribed to the e�ect of the relaxation term� With S � 
� the initial �ow breaks
down and spreads throughout the domain �not shown��

The dependence on the numerical parameters is discussed next� The time evolution of
r�m�s� qd and rqd for kc � �
� �
 � �
 and 	tr � 
��� �� �� �� �� � � �
 �all for  t � 
���
are shown in �gures ��a� � �b�� These results con�rm that 	tr � � or � and kc � �
 or �

�the latter being marginally better� give the best results in terms of keeping qd a smooth�
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Figure �� Evolution of the PV �eld in the two�dimensional simulation� Here� a ��� by ���
grid was used� kc � �
� 	tr � � and  t � 
��� Time �in 	days
� advances from left to right
and then downwards� The times shown are 
� �
� �
� �
 and �
 �top panel�� �

� ��
� ��
�
��
 and �

 �second panel�� ��
� ��
� ��
� �

 and ��
 �third panel�� and ��
� ��
� ��
� �


and ��
 �bottom panel��

low�amplitude �eld� In particular� either too small or too large 	tr leads to poorer results�
These results justify the choice of the �lter wavenumber kc and transfer timescale 	tr

kc � 
���kmax � 	tr �
�

Q
�����

or up to a factor of two smaller�

� Future Work

The feasibility of including diabatic forcing in a contour�based numerical algorithm opens up
a timely opportunity for greatly improved modelling of atmospheric and oceanic phenomena�
The new algorithm results in much less dissipation of �ne�scale� principally�advected �ow
structures� such as fronts in the atmosphere and their analogues in the oceans� The pro�
liferation of these structures in the real atmosphere and oceans� and generally in planetary
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Figure �� Two�dimensional simulation results� �a� r�m�s� qd versus t� and �b� r�m�s�rqd versus
t� The line types corresponding to the di�erent parameter values are tabulated in panel �a�
and are the same for panel �b��

atmospheres� is a consequence of the practically negligible di�usion in these �ows� Rather�
dissipation �and forcing� occurs principally at large scales� e�g� by solar radiation� These
�ows are consequently di�cult to model using conventional� grid�based numerical models�
which cannot cope with the natural tendency for the formation of �ne�scale structure� The
new algorithm represents a breakthrough in this respect�

Presently an e�ort is made to set up comparative experiments with semi�Lagrangian
models� in order to assess the relative gain of the new method� At the same time the
algorithm is being extended to represent more realistic descriptions of the dynamics of the
atmosphere� First steps are the inclusion of spherical geometry� multilayered versions of the
algorithm� non�linear dependency of the velocity �eld on the PV� or a primitive equation
version of the algorithm� These steps could ultimately lead to a General Circulation Model�
with the diabatic CASL algorithm as its dynamical kernel�
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Appendix A Relation of parameters to Lifshitz number

The 	stability
 of an advection scheme is related to the so�called Lifschitz�number ���� L
which is de�ned as the norm of the strain matrix multiplied by the timestep

L �  t krvk �

with v the advecting velocity� Here 	stability
 does not refer to the absence of numerical
instabilities� but rather to the absence of trajectory crossings during one timestep  t� The
criterion for a stable advection scheme is then

L
�
� � �

The Lifschitz number should pertain to the total advective velocity� so v � u�ud� As we can
only give a rather crude a priori estimate of ud we will demand that the Lifschitz number Ld
pertaining to ud is smaller than the Lifschitz number Lu pertaining to u alone� so Ld 
 Lu�
The norm of the strain matrix ru can be estimated as the inverse of the eddy turnover
time 	e� so Lu �  t�	e� The upper bound of the Lifschitz number Ld can estimated by using
Eq� ��� to �nd an estimate of the maximum norm of the strain matrix of ud� the velocity �eld
ud is proportional to the magnitude ofWf and its gradient is limited by the Fourier �lter with
�lter wavenumber kc� Therefore the norm of the strain matrix of ud is approximately limited
by �kc�km�max �Wf ��q�� The magnitude of Wf will be minimised during the simulation
because of the minimisation of the functional in Eq� ���� which is more�or�less proportional



�� Dritschel � Ambaum

to W� But W can never fully vanish because in Eq� ���b the term �q�h makes discrete jumps
over contours with magnitude �q� whereas all other terms are smooth �elds� This means
that W can only be reduced to values of about �q�� As �q� is inversely proportional to the
number of contours m� we then have that W is limited by a value of the order of max �S��m�
The magnitude of max �S� is for a radiative forcing inversely proportional to the radiative
timescale 	r and proportional to the PV contrast in the �uid which is equal to mq�� So
max �W��q� � max �S��mq� � ��	r� This then leads to an estimated upper bound on Ld of

Ld
�
�

kc
km

	e
	r

 t

	e
�

where we have introduced the eddy turnover time 	e for convenience� Using the previous
estimate for Lu� it then immediately follows that

Ld
�
�

kc
km

	e
	r
Lu �

As normally 	e 
 	r� it is save to choose kc � km� An interesting consequence is that now
the estimated upper bound on Ld is independent of kc�

Appendix B Determination of �q� and �q


We want to determine �q� and �q� from minimizing the functional in Eq� ���� Now introducing

g �
rh

jrhj� � ��
and W� � D � S �

we can rewrite the functional in Eq� ��� as

Z
� �q��gf � rh� �� � �q���hg�f � rh� h� � �W�g�f � rh�W��

� dxdy �

which is of the form Z
� �q�A� �q�B � C�� dxdy �

with A� B� and C known �elds� This functional can be minimized with respect to variations
in �q� and �q�� by having the partial derivatives of the functional with respect to these two
quantities equal to zero� This leads to two linear equations in the unknowns �q� and �q��
Writing the domain integral of any function � as 
 � �� we can write these two linear
equations as


 A� � �q�� 
 AB � �q� � 
 AC � �


 AB � �q�� 
 B� � �q� � 
 BC � �

This set of equations is always solvable because A �� B whenever contours are present�


