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Abstract

This paper describes a novel numerical approach for simulating fine-scale, dominantly
advected fields, such as tracers, in layerwise two-dimensional flows, the most important
examples of which are the Earth’s atmosphere and oceans. In particular, we describe how
one can modify an approach previously developed for perfectly conserved tracers so that
it can handle predominantly large-scale, non-conservative forcing. Such forcing is called
“diabatic” in the atmosphere and oceans and is mainly the result of absorption or emission
of radiation by chemical constituents (e.g. carbon dioxide or ozone) in the atmosphere
or Ekman pumping by wind-stress in the oceans. This forcing plays a fundamental role
in shaping the observed atmospheric and oceanic circulation on long time scales. It
“spins up” a circulation which is dynamically unstable, and sets off a sequence of events
involving, indeed depending upon, complex, turbulent interactions, whose mean effect
is to significantly modify the circulation that would otherwise develop in the absense
of instability. It has become recognised that fine-scale structure is both abundant and
intimitely connected with the present circulation. However, the numerical models widely
employed in studying the atmosphere and the oceans inadequately cope with this fine-
scale structure; solution convergence is poor with increasing resolution, and the numerical
cost is great. Here, we introduce a hybrid method that overcomes the difficulties of
resolving fine-scale structure. This method combines a contour-based, grid-free numerical
model with a conventional, grid-based one, and introduces a means for accumulating the
forcing into the motion of the contours, via the grid-based model. The new approach
could ultimately lead to significant improvements in modelling and understanding the
atmospheric and oceanic circulation.

1 Introduction

Recently, a new algorithm was developed by Dritschel & Ambaum [7], who fused two radically
different approaches for simulating conservative fields (purely “advected” fields ¢ obeying the
evolution equation dq/9dt + u - Vq = 0) in layerwise-two-dimensional flows, the most impor-
tant examples of which are the Earth’s atmosphere and oceans. In such flows, the influence
of rotation and stable density stratification force motion to be predominantly parallel to
the stratification surfaces [14]. In the atmosphere any cross-surface motion is due to dia-
batic (entropy-changing) processes, most significantly thermal heating or damping(c.f. [12]).
These diabatic processes, though weak and operating on a long time scale, to a great ex-
tent shape the observed large-scale circulation of the atmosphere. They destroy, weakly, the
conservative evolution of a particularly fundamental field, the potential vorticity g, whose
distribution largely determines all other dynamic fields (e.g. velocity, pressure and temper-
ature — see [14]). Nevertheless, the potential vorticity still behaves like a nearly conserved
tracer on time scales of a week or so, and as such, it is characterised by abundant fine-scale
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structure [18,25]. This fine-scale structure contributes only weakly to the induced velocity
field, etc., but plays a crucial role in determining the form and location of the tropopause di-
viding weakly stratified air below about 10km from strongly stratified air above [1] as well as
ozone depletion within the polar stratospheric vortex, a 6000km wide region of super-rotating
air situated over the wintertime pole extending from a height of roughly 12km upwards to
60km [13, 15].

Present research relies strongly on numerical simulation to understand the factors con-
tributing to the observed circulation, to ozone depletion, to climate change, etc. However,
the numerical methods employed poorly resolve fine-scale structure, and serious questions
have been raised about the research findings, in particular the poor convergence of the re-
sults with increasing numerical resolution [3,6,9,10,26]. The object of the present article
is to introduce an alternative numerical method capable of resolving fine-scale behaviour at
a tiny fraction of the cost that would be necessary using present numerical methods. This
new method builds on the conservative algorithm introduced by Dritschel & Ambaum [7].
The details are described in the following section. In Section 3, numerical tests are presented
for the relaxation of parallel flows to a prescribed equilibrium. In Section 4, non-parallel
flows are considered, and the dependence on numerical parameters is exhibited. This study
justifies the basic approach and pins down the optimal numerical parameter relationships. In
Section 5, we describe future applications of the method.

2 The Structure of the Algorithm

The new algorithm combines a grid-based model for handling the diabatic input of potential
vorticity (hereafter PV) and a contour-based model for the advective part of the evolution.
This combination is necessary because a contour-based model alone could never account for
diabatic processes in a part of the domain where it is impossible to accurately define a PV
gradient or where the PV gradient vanishes. The former is the case wherever the contour
density is low — a situation that will inevitably occur during the evolution. The latter occurs
at extrema of the PV distribution.

The PV that builds up in the grid-based model through diabatic processes will attain
ever smaller scales through advection. It is here important to stress that these processes are
quite unlike those associated with ordinary (molecular) diffusion. The latter are efficient at
destroying fine-scale structure, but in the real atmosphere, such diffusive effects are utterly
negligible over the range of scales that could ever be conceivably modelled. Diabatic processes,
by contrast, act most strongly at large scales, due to the broadly distributed nature of thermal
heating in the atmosphere. They can either destroy or enhance PV. Essentially, they act to
drag the PV back to some quasi-equilibrium profile (one which only slowly changes on the
advective time-scale), with large scales being dragged back faster than small scales [2]. In
fact, the relaxation of the small scales is so slow that they never come into equilibrium in
reality, which is why fine-scale structure is so abundant in the atmosphere.

This natural tendency to produce fine-scale structure by advection strongly limits the
success of grid-based models; however, this is where one can exploit the advantages of a
contour-based model. In the latter, the PV advection is solved explicitly by advecting PV
contours, i.e. by computing the trajectories of the (in practice finite) collection of points com-
prising each contour. Pure advection can be carried out numerically without any constraint
on stability, and representing PV as contours permits one to resolve, at low computational
cost, fine-scale structure such as sharp gradients and filaments at least an order of magnitude
beyond the limits of grid-based methods. Eventually, fine-scale filamentary PV is removed
by a topological reconnection scheme called “surgery” but the result is a much reduced dis-
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sipation of PV and indeed a complete preservation of high-gradient structures (see [7] &
refs).

The crux of the algorithm is that it is possible to use a grid-based model to explicitly
account for the diabatic input of PV, and to transfer this PV to a contour-based model,
before it mixes down to scales that are too small to be accurately resolved by the grid-based
model; the grid-based model is used as a temporary reservoir of “diabatic PV.”

Here is how to do this. The PV field ¢ is written as the sum of a gridded field ¢4 and a
contoured field g,. The contoured field will be written as

Qa($7y7t) = QO(t) + QI(t)h(xayat) :

Here qp and ¢; are functions of time alone, and h is the field represented by contours with
unit PV jumps.
The basic equation to be solved is

Dgq
Dt = S, (2.1)
with D/Dt = 0/0t +u-V and S the diabatic source term. This source term is assumed to
contain predominantly large scales, so that it can be accurately represented on a (moderately-
coarse) grid. The velocity field u is obtained by whatever standard method used by the
grid-based model — u itself is not a fine-scale field [7,16]. Here, in the simple single-layer
(two-dimensional) model that we are using for illustration, u is obtained from the total PV
by “inversion”, i.e. by inverting the “Helmholtz” operator

1
Vi — =g
Lk

for the streamfunction 1! and calculating the incompressible velocity field from

o
dy ’ Y

u =

(this is the simplest version of the widely-used “quasi-geostrophic” model [5,11,12,14] and
is sufficient to demonstrate the potential utility of the new algorithm in a far wider context).
Eq. 2.1 can be split into the following set of equations,

Dh

o T Vh=0, (2.2a)
DQd DQa . .

—d¢ _ g _ =S —dy — . 2.2
De S D S—qgo— qgih+qug-Vh, (2.2b)

where an extra “diabatic velocity” uy has been introduced. The first equation is solved by
contour advection, i.e.

dx .
— =u+tuy,
dt d

which, apart from advection errors arising from using a finite time step, is accurate down
to the surgical scale (the scale below which the surgery scheme starts to act, normally a
tenth of the grid scale). The second equation is solved on the grid with a “semi-Lagrangian”
algorithm [4, 20, 22, 23], the method most widely used now in weather forecasting. The semi-
Lagrangian method, like contour advection, uses particle trajectories (now backwards in

'Ly is the so-called Rossby radius of deformation, a fundamental length scale dependent on the
external rotation and stratification of the fluid. In the atmosphere at mid-latitudes it is some 1500km.
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time) to find g4 on grid points at the next time step. An important difference is that the
semi-Lagrangian scheme requires interpolation of ¢4, and this is strongly diffusive for fields
that readily generate fine-scale structure, like the total PV field here (see [8] for a comparison
between contour advection and the semi-Lagrangian method). This is the reason why we have
used contour advection to represent as much of the fine-scale character of ¢ as possible; the
new algorithm attempts to keep g4 broad, thereby permitting it to be accurately represented
on a moderate-resolution grid. The formation of small scales in the g4 field can be suppressed
by having the right-hand side of Eq. 2.2b be equivalent to some damping D on ¢4. In fully
grid-based models, this damping is often a hyperviscosity (i.e. V?Pq with p > 1), but we will
take a linear damping for reasons given below.
With this damping term defined, we can rewrite Eq. 2.2b as

D
# = qug-Vh—-W+D | (2.3a)
W=go+Gh+D-35. (2.3b)

Now the introduction of u; becomes clear: we will choose u, such that ¢gyu,- Vh compensates
for WW as much as possible. In this case the right-hand side of the g4 equation has become
a damping term. At the same time ug will be chosen smooth so that advection errors in
the h field will be minimized. The quantities ¢y and ¢; are also chosen to achieve maximal
compensation between q;uy - Vh and W.

Theoretically the optimal choice for ug would be

LW Vh
v

but this is ill-defined for vanishing V&, or where Vh itself is ill-defined because of a low contour
density. The first problem is solved by desingularizing the denominator in the expression for
uy. The second problem is solved by smoothing the terms in the expression for uy with a
Fourier filter (see below) such that ug is defined everywhere. The value of V is determined on
the grid after converting the contoured & field to gridded values using the fast domain-filling
technique described in [7].

The ensuing expression for ug becomes

udzi(%) , (2.4
@ \|Vh|" + €2/ ;

where the subscript f denotes the Fourier filter, which makes ug a smooth field. The param-
eter e is related to a spatial scale A\,, = 7/ky,, by € = 1/, and it limits the maximum value
of uy to

max(ug) = max <£> Am - (2.5)

2QI f

The filter f is of the form 1/(1+ k% /k?) in Fourier space, with k the total wavenumber of the
filtered mode and A\, = 7 /k. the filter scale. The filter is chosen this way because now the
expected spectrum for u, is steeper than k=2, so that uy may effectively be represented on a
grid (just as the velocity u itself, see [7,16,17,24] for justification). Furthermore, this filter
does not lead to fringes in the filtered field. From inspection of the equations it may be seen
that the strain tensor Vuy is maximally proportional to k., and inversely proportional to k..
This is formalized in Appendix A, where it is shown that, for stability reasons that limit the
norm of the strain tensor, we should choose k,,, = k..
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Now that we have found uy in terms of W, h, ¢1, and k., we still have to fix gy and qj.
These will now be chosen such as to minimize the mean-square production of g4, i.e. the
functional

/(q1ud -Vh —W)? dady , (2.6)

where the integral extends over the whole domain. In Appendix B it is shown that this
minimization leads to a system of two linear equations with unknowns ¢y and ¢j.

In Eq. 2.3 it can be seen that the diabatic input of PV directly affects ¢4, insofar as the
diabatic velocity of the contours cannot compensate this diabatic input through the term
qiug - Vh. The transfer of PV from the grid-based model to the contour-based model is
effected through the action of D. For suppose that at some moment the forcing is turned
off. Then the gy field will be damped with a strength D and at the same time this PV
is transferred to the ¢, field through the advection of the contours by uy and through the
contour level changes ¢y and g;. When g4 vanishes, W vanishes, so that uy vanishes also and
we end up with a fully adiabatic contour advection model with evolution equation Dh/Dt = 0.

As the transfer of PV from the grid-based to the contour-based model is determined by the
strength of D, we can find the optimal form of D by the preferred behaviour of the transfer.
For example, one should not choose a diffusion type of damping, because the transfer of
this term to the ¢, field would lead to a velocity associated with antidiffusion on gz. This
would make the scheme unstable whenever ¢, and gg would correlate in some regions. In our
implementation, we take a linear damping of the form

D= _qd/Ttr )

where 7y, is the transfer timescale. This timescale should be long enough to have the transfer
mechanism work effectively, i.e. long enough to have significant contour gradients in ¢,
coinciding with PV structures in ¢gg. The timescale should be shorter, though, than the
mix-down time of the velocity field u. The optimal values for 73, and the other numerical
parameters are next deduced from direct simulation results in the next two sections.

3 Relaxation of Parallel Flows to Equilibrium

In testing the new model, we will employ a commonly-used simple form for the diabatic
forcing [1,2,19], namely B

S — Y TP(;Uay)’ (3.1)

7L

where 1 is the streamfunction defined above, t(x,v) is a prescribed “radiative equilibrium”
profile, and 7, is the relaxation time scale towards radiative equilibrium. For simplicity, we
have developed the algorithm first for a doubly-periodic domain, of side length 27, though
the extension to the more realistic spherical geometry is straightforward.

If one spectrally tranforms this forcing, it becomes readily apparent that large scales relax
back to equilibrium faster than do small scales. In fact, for a 2D wavenumber k, the relaxation
rate of a spectral component of 1) back to equilibrium (ignoring nonlinear interactions) is
simply 1/(7(k?L% + 1)). In the one-dimensional, parallel flow problem considered in this
section, nonlinear interactions cannot occur, so all flows do relax back to radiative equilibrium.
This is not generally the case for 2D flows, since the radiative equilibrium profile is often
unstable.

In all of the simulations performed, the grid resolution was fixed at 128 in each direction
(of course only one direction is required in the 1D simulations). This resolution is adequate to
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Figure 1: One-dimensional simulation results. (a) max |q — g| versus ¢, (b) r.m.s. g4 versus ¢,
and (c) r.m.s. Vgg versus t. The line types corresponding to the different parameter values
are tabulated in panel (a) and are the same for panels (b) & (c).

accurately capture the fine-scale structure in the 2D simulations, as has been demonstrated
by Dritschel et al. [8] for a nearly identical flow configuration.
The basic parallel flow is prescribed by the initial PV, a zig-zag profile,

q(z,y,0) = nQsgn(y)(a — [|y| — al) (3.2)
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for |y| < 2a, and g = 0 otherwise. Note, ¢ = £1Q at y = ta. As for the diabatic forcing, the
radiative equilibrium profile ¢ is chosen to be the streamfunction one gets by inverting the
above PV when n = 1. To force an adjustment, n # 1 is used for ¢(z,y,0); in fact, we have
chosen n = 0.66845. This forces ¢ to adjust to its equilibrium profile § = Qsgn(y)(a—||y| — a|).
We have taken a = 0.5 and L = 0.5 as in [8], as well as Q = 7/2 and 7, = 10.

The object in this section is to determine what choice of numerical parameters leads to
the smoothest, most accurate adjustment to equilibrium. To that end, we varied the time
step At, the filter wavenumber k., and the damping time scale 74, in a series of simulations.
No significant sensitivity was found for At, as shown below. The recommended time step,

for accurate advection, is
7

At (3.3)

~ 10max|q| ’
[7] where max |¢| is the maximum PV amplitude in the equilibrium profile, i.e. @ here. With
Q@ = 7/2, the above formula gives At = 0.2.

Results for k. = 5, 10 & 20, 7, = 1, 2, 5, 10 & 20 and At = 0.2 & 0.1 are shown next
in figures 1(a)—(c). Fig. 1(a) shows max |q — g| versus time ¢, Fig. 1(b) shows the root-mean-
square (r.m.s.) value of gy versus ¢, and Fig. 1(c) shows the r.m.s. value of V¢4 versus ¢ (see
caption for a description of the line styles used to differentiate the results).

The decay of max |q — g| varies little across the range of numerical parameters investi-
gated. Within numerical errors, this quantity should behave the same in all simulations. Even
s0, it is evident that large values of 7 and small values of k. lead to significant numerical
errors. This is borne out in Figs. 1(b) & (c), which display much more sensitive measures
of the numerical solution accuracy. In fact, the algorithm is designed to minimise the r.m.s.
value of Vg, (Fig. 1(c)) for given k., 14 and At; the above results show how one can best
choose these global parameters to minimise the r.m.s. value of Vg, overall. In fact, Figs. 1(b)
& (c) collectively point to 74 = 1 or 2 and k. = 10 or 20 being optimal, with no significant
dependence on the time step At. Hence, the optimal timescale over which to transfer gy to ¢,
is approximately the characteristic time-scale T' = 7/ max |g|. The optimal filter wavenumber
is approximately one tenth of the maximum wavenumber. We next consider the much richer
two-dimensional flow to see if these parameter relationships continue to hold.

4 Non-Parallel Flows and Numerical Parameter Choices

In this section, the initial PV distribution considered in the previous section is modified by
replacing y in Eq. 3.2 by
J =1y + ¢y sinmz + ¢, sinnz . (4.1)

Furthermore, 7 = 1 is used now and the “radiative-equilibrium” flow ¢ is determined by
inverting this initial, non-parallel profile of PV. In Eq. 4.1, we have taken m = 2, c; = —0.05
and n = 3, c¢3 = 0.05. All other physical parameters are the same as previously.

The initial flow is unstable despite the effect of the relaxation term S, as Fig. 2 illustrates.
However, one sees that the instability collapses and a new nearly parallel flow emerges, which
is itself unstable. The flow destabilizes and recovers repeatedly, though non-periodically, and
this can be ascribed to the effect of the relaxation term. With § = 0, the initial flow breaks
down and spreads throughout the domain (not shown).

The dependence on the numerical parameters is discussed next. The time evolution of
ram.s. gg and Vgq for k. = 10, 20 & 40 and 7, = 0.5, 1, 2, 3, 4, 5 & 10 (all for At = 0.2)
are shown in figures 3(a) & (b). These results confirm that 7, = 1 or 2 and k. = 10 or 20
(the latter being marginally better) give the best results in terms of keeping g4 a smooth,
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Figure 2: Evolution of the PV field in the two-dimensional simulation. Here, a 256 by 256
grid was used, k. = 20, 7 = 1 and At = 0.2. Time (in “days”) advances from left to right
and then downwards. The times shown are 0, 10, 20, 40 and 60 (top panel), 100, 140, 160,
180 and 200 (second panel), 240, 260, 280, 300 and 320 (third panel), and 340, 360, 380, 400
and 420 (bottom panel).

low-amplitude field. In particular, either too small or too large 74 leads to poorer results.
These results justify the choice of the filter wavenumber k. and transfer timescale 7y,

s
ke = 015kmar T = 5 (4.2)

or up to a factor of two smaller.

5 Future Work

The feasibility of including diabatic forcing in a contour-based numerical algorithm opens up
a timely opportunity for greatly improved modelling of atmospheric and oceanic phenomena.
The new algorithm results in much less dissipation of fine-scale, principally-advected flow
structures, such as fronts in the atmosphere and their analogues in the oceans. The pro-
liferation of these structures in the real atmosphere and oceans, and generally in planetary
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Figure 3: Two-dimensional simulation results. (a) r.m.s. gq versus ¢, and (b) r.m.s. Vg, versus
t. The line types corresponding to the different parameter values are tabulated in panel (a)
and are the same for panel (b).

atmospheres, is a consequence of the practically negligible diffusion in these flows. Rather,
dissipation (and forcing) occurs principally at large scales, e.g. by solar radiation. These
flows are consequently difficult to model using conventional, grid-based numerical models,
which cannot cope with the natural tendency for the formation of fine-scale structure. The
new algorithm represents a breakthrough in this respect.

Presently an effort is made to set up comparative experiments with semi-Lagrangian
models, in order to assess the relative gain of the new method. At the same time the
algorithm is being extended to represent more realistic descriptions of the dynamics of the
atmosphere. First steps are the inclusion of spherical geometry, multilayered versions of the
algorithm, non-linear dependency of the velocity field on the PV, or a primitive equation
version of the algorithm. These steps could ultimately lead to a General Circulation Model,
with the diabatic CASL algorithm as its dynamical kernel.

References

[1] M. H. P. Ambaum. On the formation of the tropopause. J. Atmos. Sci., 54:555-568,
1997.



10

2]

Dritschel & Ambaum

J. L. Anderson. A simulation of blocking with a forced barotropic model. J. Atmos.
Sci., 52:2593-2608, 1995.

C. Appenzeller, H. C. Davies, and W. A. Norton. Fragmentation of stratospheric intru-
sions. J. Geophys. Res., 101:1435-1456, 1996.

J. R. Bates, Y. Li, A. Brandt, S. F. McCormick, and J. Ruge. A global shallow-water
numerical model based on the semi-lagrangian advection of potential vorticity. Q. J.
Roy. Meteorol. Soc., 122:1981-2005, 1995.

J. G. Charney. On the scale of atmospheric motion. Geofys. Publ., 17 No. 2, 1948. 17pp.

W. K. Dewar and P. D. Killworth. Do fast gravity-waves interact with geostrophic
motions? Deep-sea Res., Part I, 42:1063-1081, 1995.

D. G. Dritschel and M. H. P. Ambaum. A contour-advective semi-lagrangian algorithm
for the simulation of fine-scale conservative fields. Q. J. Roy. Meteorol. Soc., 123:1097—
1130, 1997.

D. G. Dritschel, L. M. Polvani, and A. R. Mohebalhojeh. The contour-advective semi-
lagrangian algorithm for the shallow water equations. Mon. Wea. Rev., 1998. (submit-
ted).

S. Edouard, B. Legras, F. Lefevre, and R. Eymard. The effect of small-scale inhomo-
geneities on ozone depletion. Nature, 384:444-447, 1996.

S. Edouard, B. Legras, and V. Zeitlin. The effect of dynamical mixing in a simple model
of the ozone hole. J. Geophys. Res., 101(D11):16771-16779, 1996.

A. E. Gill. Atmosphere-Ocean Dynamics. Academic Press, 1982. 662pp.

J. R. Holton. An introduction to dynamic meteorology (3rd edition). San Diego, Academic
Press, inc., 1982. 511pp.

J. R. Holton, P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister.
Stratosphere-troposphere exchange. Revs. Geophys., 33(4):403-439, 1995.

B. J. Hoskins, M. E. MclIntyre, and A. W. Robertson. On the use and significance of
isentropic potential vorticity maps. Q. J. Roy. Meteorol. Soc., 111:877-946, 1985.

M. E. Mclntyre. The stratospheric polar vortex and sub-vortex: fluid dynamics and
midlatitude ozone loss. Phil. Trans. Roy. Soc. London, 352:227-240, 1995.

J. Methven and B. J. Hoskins. On the advection of high resolution tracers by low
resolution winds. J. Atmos. Sci., 1998. (submitted).

W. A. Norton. Breaking rossby waves in a model stratosphere diagnosed by a vortex-
following coordinate system and a technique for advecting material contours. J. Atmos.
Sci., 51:654-673, 1994.

R. A. Plumb, D. W. Waugh, R. J. Atkinson, M. R. Schoeberl, L. R. Lait, P. A. Newman,
E. V. Browell, A. Simmons, M. Loewenstein, and D. W. Toohey. Intrusions into the lower
stratospheric arctic vortex during the winter of 1991/1992. J. Geophys. Res., 99:1089—
1106, 1994.



Inclusion of Forcing into a Contour Advection Algorithm 11

[19] L. M. Polvani, D. W. Waugh, and R. A. Plumb. On the subtropical edge of the strato-
spheric surf zone. J. Atmos. Sci., 52:1288-1309, 1994.

[20] H. Ritchie, C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Harmud.
Implementation of the semi-lagrangian method in a high resolution version of the ecmwf
forecast model. Mon. Wea. Rev., 123:489-514, 1995.

[21] P. K. Smolarkiewicz and J. A. Pudykiewicz. A class of semi-lagrangian approximations
for fluids. J. Atmos. Sci., 49:2082-2096, 1992.

[22] A. Staniforth and J. C6té. Semi-lagrangian integration schemes for atmospheric models
— a review. Mon. Wea. Rev., 11(9):2206-2223, 1991.

[23] C. Temperton and A. Staniforth. An efficient two-time-level semi-lagrangian semi-
implicit integrating scheme. Q. J. Roy. Meteorol. Soc., 113:1025-1040, 1987.

[24] D. W. Waugh and R. A. Plumb. Contour advection with surgery: a technique for
investigating finescale structure in tracer transport. J. Atmos. Sci., 51:530-540, 1994.

[25] D. W. Waugh, R. A. Plumb, R. J. Atkinson, M. R. Schoeberl, L. R. Lait, P. A. Newman,
M. Loewenstein, D. W. Toohey, L. M. Avallone, C. R. Webster, and R. D. May. Transport

of material out of the stratospheric arctic vortex by rossby wave breaking. J. Geophys.
Res., 99:1071-1078, 1994.

[26] C. Wunsch and D. Stammer. The global frequency-wavenumber spectrum of oceanic
variability estimated from TOPEX/POSEIDON altimetric measurements. J. Geophys.
Res., 100(C12):24895-24910, 1996.

Appendix A Relation of parameters to Lifshitz number

The “stability” of an advection scheme is related to the so-called Lifschitz-number [21] L
which is defined as the norm of the strain matrix multiplied by the timestep

L= At]|Vv]

with v the advecting velocity. Here “stability” does not refer to the absence of numerical
instabilities, but rather to the absence of trajectory crossings during one timestep At. The
criterion for a stable advection scheme is then

LS.

The Lifschitz number should pertain to the total advective velocity, so v = u+uy. As we can
only give a rather crude a priori estimate of ugy we will demand that the Lifschitz number L4
pertaining to ug is smaller than the Lifschitz number L, pertaining to u alone, so Ly < L,.
The norm of the strain matrix Vu can be estimated as the inverse of the eddy turnover
time 7¢, so L, &~ At/7,. The upper bound of the Lifschitz number L4 can estimated by using
Eq. 2.5 to find an estimate of the maximum norm of the strain matrix of uy: the velocity field
ug is proportional to the magnitude of Wy and its gradient is limited by the Fourier filter with
filter wavenumber k.. Therefore the norm of the strain matrix of uy is approximately limited
by (k¢/km)max (Wy¢)/qi. The magnitude of Wy will be minimised during the simulation
because of the minimisation of the functional in Eq. 2.6, which is more-or-less proportional
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to W. But W can never fully vanish because in Eq. 2.3b the term ¢;h makes discrete jumps
over contours with magnitude g; whereas all other terms are smooth fields. This means
that W can only be reduced to values of about ¢;. As ¢; is inversely proportional to the
number of contours m, we then have that W is limited by a value of the order of max (S)/m.
The magnitude of max (S) is for a radiative forcing inversely proportional to the radiative
timescale 7, and proportional to the PV contrast in the fluid which is equal to mgq;. So
max (W)/q1 = max (§)/mq; = 1/7,. This then leads to an estimated upper bound on L, of

where we have introduced the eddy turnover time 7, for convenience. Using the previous
estimate for L,, it then immediately follows that

kC e
Ly S Zelep

m Tr

As normally 7, < 7., it is save to choose k. ~ k,,. An interesting consequence is that now
the estimated upper bound on L, is independent of k..

Appendix B Determination of g, and ¢;

We want to determine ¢y and ¢; from minimizing the functional in Eq. 2.6. Now introducing

Vh

=——— —and Wy =D -8,
IVh|? + ¢2 ‘

g

we can rewrite the functional in Eq. 2.6 as
/ ldo(gr - Vh = 1) + Gi((hg)s - Vh — h) + (Wog) s - Vh = Wy dzdy ,

which is of the form
/Mﬁ+¢B—ﬂ2M®,

with A, B, and C known fields. This functional can be minimized with respect to variations
in ¢y and ¢i, by having the partial derivatives of the functional with respect to these two
quantities equal to zero. This leads to two linear equations in the unknowns ¢y and ¢j.
Writing the domain integral of any function ¢ as < ¢ >, we can write these two linear
equations as

<A’ > g+ < AB > g = < AC >
<AB > o+ < B?>>q, = < BC > .

This set of equations is always solvable because A # B whenever contours are present.



