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A nonlinear oscillator describing storm track variability
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We construct a two-variable model which describes the interaction between
local baroclinicity and eddy heat flux in order to understand aspects of
the variance in storm tracks. It is a heuristic model for diabatically forced
baroclinic instability close to baroclinic neutrality. The two-variable model has
the structure of a nonlinear oscillator. It exhibits some realistic properties
of observed storm track variability, most notably the intermittent nature of
eddy activity. This suggests that apparent threshold behaviour can be more
accurately and succinctly described by a simple nonlinearity. An analogy
is drawn with triggering of convective events. Copyright c© 2014 Royal
Meteorological Society
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1. Introduction

The nonlinear phase of a baroclinic lifecycle is usually
understood as an extension of the linear instability problem,
in that one is presented with a baroclinically unstable
background state on which an instability evolves. The main
difference is that in a nonlinear lifecycle experiment the
instability is allowed to grow to finite amplitude and this
will modify the background state. However, it can be argued
that this is an unusual setup to study naturally occurring
baroclinic lifecycles as very unstable basic states cannot be
widespread by virtue of their instability.

By analogy, when studying the evolution of thermals we
would not normally start with a statically unstable state and
let the instability evolve. We would start with a statically
stable state and then slowly heat the bottom surface. As
a result the basic state would at some point cross the
instability threshold and thermals would develop. Such a
setup is appropriate for studying a dry convecting boundary
layer. The two key differences between this setup and the
setup starting from a statically unstable state are (1) that
the system is diabatically forced and (2) that the system
mostly resides close to marginal stability. We argue that
the nonlinear phase of baroclinic instability must also be
understood in such a way: diabatically forced and close to
baroclinic neutrality. In this paper we describe a heuristic
model for baroclinic instability and storm track variability
which is based on this viewpoint.

Storm tracks are maintained by a balance between the
production of potential energy, which can be indentified
by baroclinicity, and the erosion of this potential energy
by the eddies in the storm track, which can be identified
by transient eddy heat fluxes (Chang and Orlanski (1993)).
Maxima in either of these fields can be used to diagnose
the location of storm tracks (Hoskins and Valdes (1990)).
However, there is a potential ambiguity about the maxima
of baroclinicity in relation to the maxima of the eddy
activity: a high baroclinicity presumably means a favourable
environment for eddy growth, but a high number of
eddies would, all else being equal, correspond to a low
baroclinicity. The first aspect is, for example, reflected
in studies of energy balance models (e.g. Sellers (1969);
Hwang and Frierson (2010)) where energy fluxes increase
linearly with temperature gradients. The second aspect
reflects the well-established view that eddies feed on the
available potential energy stored in the temperature gradient
(Holton and Hakim (2012)). Here we construct a simple
two-variable model describing these conflicting aspects. We
find that the model corresponds to a nonlinear oscillator
which exhibits some important properties of the observed
variability of the storm track, such as the observed
intermittent, bursting behaviour of the meridional heat
flux in storm tracks (Swanson and Pierrehumbert (1997);
Messori and Czaja (2013a))

Our model is perhaps the simplest possible model which
describes the nonlinear growth of an instability on a
background state, where the feedback of the instability
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on the background state is taken into account. It may
appear surprising that this feedback in our model changes
exponential growth to oscillatory behaviour, although
this has been observed in previous studies of frontal
instability (e.g. Spall (1997)), as well as in weakly
nonlinear extensions of unforced barcolinic instability
theory (Pedlosky (1987), Chapter 7). In other words, the
feedback to the background state becomes strong enough
to dominate, and in our case indeed reverse, the exponential
growth of the instability.

Such behaviour is normally associated with states near
marginal instability. Indeed, the two competing interactions
between baroclinicity and eddies admit an equilibrium state
close to neutrality, where the local diabatic production of
instability is consumed rapidly by the instability itself. Such
a near-neutral state is thought to reflect the mean state of the
atmosphere (Stone (1978); Hall and Sardeshmukh (1998))
and is consistent with a predictive scaling relation for the
height of the tropopause (Lindzen (1993)). However, the
latter arguments do not describe the variance of the state.

One way to understand the variance induced by the
competing effects of eddy growth on high baroclinicity
and decay of baroclinicity due to those eddies is to think
of a gradual diabatic build-up of instability which, above
a certain threshold, will be released by the eddies. Such
models are perhaps reminiscent of archetypal models of
collapsing sand-piles, earthquakes, percolation networks,
and many more model systems, associated with phase
transitions, scaling behaviour, and self-organized criticality
(e.g. Burridge and Knopoff (1967); Bak et al. (1987)). Here
we do not explore any formal associations between such
models and our proposed model, except to indicate that
our model, like models of self-organized criticality, also
includes an external supply of instability which is released
by eddy growth. Contrary to models of self-organized
criticality, our release mechanism is much more simple and
does not admit any scaling behaviour. Ideas of threshold
behaviour have also been successfully applied to the release
of convective instability (Peters and Neelin (2006); Yano
et al. (2012)).

Such models of near critical variance are complex and
can lead to rich behaviour. Here we simplify this picture
drastically by going to first principles on what we know
about the expected interaction between baroclinicity and
eddies. It turns out that this naturally leads to an oscillator
equation with a simple nonlinearity. The model is derived
and discussed in the next section. In section 3 we present
a first comparison of our nonlinear oscillator model with
observed data. Section 4 contains some concluding remarks
and an analogy with convective instability.

2. A nonlinear oscillator model

Here we derive and discuss a two-variable model describing
the interaction between baroclincity and baroclinic eddies.
We take the baroclinicity s to be proportional to the
horizontal temperature gradient near the surface,

s = −kTy. (1)

The baroclinicity represents the maximum growth rate of
baroclinic eddies, such as in the archetypal Eady-model
for baroclinic instability. The fastest growing mode will
likely dominate the baroclinic activity locally, so that the
baroclinicity will provide the correct dominant time scale

for the growth of the eddies. Alternatively, the growth could
be locally dominated by non-modal growth; but in this case
the baroclinicity also provides the relevant bulk time scale
for the baroclinic growth. This is mainly an expression of
the fact that all baroclinic growth extracts its energy from
the vertical wind shear in the background state, and this
vertical shear then provides the physically relevant time
scale.

The evolution of the baroclinicity can be described
in terms of a mean imposed forcing and an erosion by
eddy heat fluxes. The imposed forcing of the baroclinicity
represents the diabatic tendency to increase the temperature
gradient between Pole and Equator, and independent
dissipative tendencies due to eddies generated upstream
of the high baroclinicity area (e.g., lee-cyclogenesis over
N. America for the N. Atlantic storm track), as well as
the tendencies due to the mean winds, such as those
described by a frontal deformation field perhaps imposed
by planetary stationary waves. The effect of an imposed
deformation field on linear instability of baroclinic (Spall
(1997)), barotropic (Dritschel et al. (1991)), and surface
Rossby waves (Harvey and Ambaum (2010)) can have
a complicated interaction with the linear instability. A
deformation field typically increases the potential for
instability but at the same time kinematically suppresses
the growing wave. For example, in the case of described
in Harvey and Ambaum (2010) these two competing effects
become important at different times in the evolution. In the
present setup we simplify the combined effect of diabatic
heating and imposed large-scale flow by a simple, in
our case constant, positive tendency of the baroclinicity,
denoted F ,

ṡ = F + k(v′T ′)yy = F − kl2 v′T ′, (2)

where in the last equality we assumed that the meridional
extent of the eddy heat flux is dominated by a meridional
scale of 1/l. Hereafter we will define a scaled eddy heat
flux as

f = kl2 v′T ′. (3)

The eddy heat flux itself depends on the precise structure
of the eddies, but it scales with the square of the amplitude
of eddies. The baroclinic instability is therefore leads to a
growth rate of 2s for the eddy heat flux. We also expect
dissipative processes to occur and we will model these as
a fixed linear decay rate of 2s0 (see Hall and Sardeshmukh
(1998)). Thus we find the following set of two equations for
the evolution of the baroclinicity and the eddy heat flux:

ṡ = F − f, (4a)

ḟ = 2(s− s0) f. (4b)

The second equation introduces a nonlinearity, because the
growth rate of the heat flux varies with the heat flux itself.
The dissipative processes described by s0 can be absorbed
in a constant offset of the baroclinicity. It turns out that the
solution for the excess baroclinicity, s− s0, is a symmetric
oscillation, which means that s itself oscillates around a
positive value of s0.

This set of equations cannot be solved analytically in
terms of tabulated functions, but we can transform the set
such that their behaviour becomes clear. This is achieved by
transforming the heat flux f to a new flux variable, y, as

y = ln(f/F ), (5)
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Figure 1. Potential V (y) for nonlinear oscillator in Eq. 8, scaled with 2F ,
as a function of the transformed heat flux y. The dashed lines correspond to
the two asymptotic forms for small y, V (y)/2F ≈ y2/2, and for negative
y, V (y)/2F ≈ −y − 1.

a transformation which is well-defined because f can be
assumed positive definite. With the new heat flux variable,
the above set of equations becomes

ṡ = F (1− ey), (6a)
ẏ = 2(s− s0). (6b)

This set of first order equations corresponds to the following
nonlinear oscillator equation in y:

ÿ = 2F (1− ey). (7)

For small y, that is, where the eddy heat flux f closely
compensates for the imposed forcing F , we find a linear
oscillation equation with frequency

√
2F , and from Eq. 6b

it follows that the baroclinicity s oscillates about s0 with the
same frequency and a phase of π/2 ahead of the heat flux as
expected from causality arguments.

To understand the behaviour of this equation for larger
deviations, we can write the above nonlinear oscillation in
terms of a potential V as

ÿ = −∂V/∂y with V (y) = 2F (ey − y − 1). (8)

We include an offset in the potential such that the zero point
of the potential corresponds to y = 0. Figure 1 shows the
potential as a function of y. The potential is positive definite,
everywhere concave, and asymmetric.

From the potential form of the equation it becomes clear
that the nonlinear oscillator has a Lyapunov function, or
conserved “energy” E, defined by

E =
1

2
ẏ2 + V (y). (9)

The different behaviours of the nonlinear oscillator are
parametrized by the value of this energy. For example, the
extreme values of y are defined by the implicit equation
V (y) = E. This is a transcedental equation, which has
trivial asymptotic solutions for small and large E. For
small E and y, the potential is approximated by V (y) ≈
Fy2, so that the extremes of the oscillation correspond to
y = ±

√
E/F . In other words, y oscillates symmetrically

around y = 0 with a frequency of
√

2F . Such an oscillation
corresponds to the untransformed heat flux f varying
between F ±

√
EF with a frequency of

√
2F . Equation 6b

then indicates that s also oscillates with a frequency of√
2F , between values of s0 ±

√
E/2.
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Figure 2. Timeseries of heat flux f (solid lines), rescaled with F , and
excess baroclinicity s− s0 (dashed lines), rescaled with

√
F . The time

is rescaled with the natural frequency of
√
2F of the system and each tick

mark corresponds to one period of this natural frequency. The three panels
correspond to E/2F = 0.1, E/2F = 1, and E/2F = 10.

The behaviour for large E is more interesting, with
different asymptotic behaviour for positive and negative
values of y. Using the language of a mass oscillating on
a nonlinear spring, we find that for positive y the spring
is hardening, and for negative y the spring is softening
and asymptoting to a constant force spring. The extremes
of the oscillation in y are approximated by [−E/2F −
1, ln(1 + E/2F )], so the eddy heat flux f varies in the range
[Fe−E/2F−1, F + E/2]. (The top value underestimates the
real maximum by a sizeable fraction.) So for large E, the
heat flux remains low (negative y) for a substantial period
of time and then rapidly increases to a value of F + E/2,
before collapsing to low values again. According to Eq. 4a,
the baroclinicity builds up nearly linearly during the periods
of low f , and then collapses to a value below s0 before the
quasi-linear build-up starts again. This type of behaviour
resembles a relaxation oscillation, although in most models
of relaxation oscillators explicit threshold properties are
used.

We can derive several more analytical properties of the
system in the various asymptotic regimes, but these may be
considered less relevant for the application of this system,
given the simplifications used to derive the original set
of equations. Instead we illustrate numerical solutions for
various values of E in Figure 2. The figure illustrates
the transition from a simple oscillation for low E to a
relaxation oscillation for larger E. Also notable is the
shift to a larger period for larger E, corresponding to the
increasing time spent at low values of f . In other words,
the nonlinearity decouples the timescale between two bursts
and the timescale of the burst itself.

Despite the obvious simplifications in this model, the
ensuing relaxation oscillation appears to have several
relevant implications to the observed variance in storm
tracks. We will discuss these in more detail in the next
section and in the concluding section.

3. Observational evidence

We have analysed the variations in baroclinicity and heat
flux on the upstream side of the N. Atlantic storm track
using the DJF data of the ERA-40 reanalysis dataset,

Copyright c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1–6 (2014)
Prepared using qjrms4.cls



4 M. H. P. Ambaum and L. Novak

Figure 3. Polar stereographic view of the baroclinicity (solid contours,
displaying values of 0.5 and 0.6 day−1) and heat flux (dashed contours,
displaying values of 10 and 20K m s−1) averaged over the 1957–2002 DJF
winters. The sector used for spatial averaging is outlined by the thin solid
line.

spanning 1957–2002. Climatological results are illustrated
in Fig. 3. As in Hoskins and Valdes (1990), the local
baroclinicity at 775hPa was calculated as

s = 0.31
f

N

∂u

∂Z
, (10)

where f = 2Ω sinφ and N =
√
g d ln θ/dZ. The height

derivatives of u and θ were calculated using a second-order
centred finite difference approximation between 700hPa
and 850hPa, using geopotential height (Z) as the vertical
coordinate. Hoskins and Valdes (1990) note that the
baroclinicity at these levels is dominated by wind-shear
variations rather than stability variations, and we confirmed
this to be true for the ERA-40 reanalysis date set as well.
By the thermal wind relation, we then find that the above
expression for baroclinicity is essentially the same as the
expression used in Eq. 1. In order to analyse the typical
baroclinicity related to the storm track, a sector spanning
30-50◦N and 30-80◦W was selected for spatial averaging to
obtain a time series for baroclinicity, as illustrated in Fig. 3.

The perturbations used to calculate the instantaneous
transient heat flux between 700hPa and 925hPa were
computed by subtracting 10-day running means (which
were calculated using a Lanczos filter) of instantaneous
values for the vertically averaged v and T . This 10-day
cutoff filter is suitable for representing high-frequency
eddies (Athanasiadis and Ambaum (2009); Lorenz and
Hartmann (2001)). Again a specific sector of the
N. Atlantic, spanning 30-60◦N and 30-80◦W, was selected
for spatial averaging to obtain a time series for the eddy heat
flux.

The high-heat flux regions in Fig. 3 are not precisely
co-located with the high baroclinicity regions, as also
emphasized in Chang and Orlanski (1993). Indeed, we
expect the heat-flux maxima to be located somewhat
downstream of the baroclinicity maxima although for the
Atlantic region this offset is fairly small possibly due to lee-
cyclogenesis over N. America.

Figure 4 shows a selection of timeseries for the winters
1995–1999. These were chosen for no particular reason
other than that they reflect the type of variance within
a winter season and variance across different years. It is
clear from these timeseries that the heat flux tends to come

in bursts, reminiscent of the nonlinear oscillator model at
higher energies. The observed baroclinicity does not vary
as drastically as the heat flux, but it can be seen that
maxima of the heat flux tend to coincide with periods
where the baroclinicity decreases. Additionally, the strictly
periodic behaviour of the oscillator model is not really
reflected in the observations, although periods of quasi-
periodic behaviour appear to occur, for example, in the first
half of the 1998–1999 winter season.

Figure 5 shows a composite (superposed epoch) centred
at maxima of the heat flux, where only maxima larger than
30 K m s−1 were selected. This corresponds to an average of
5 events per winter season. The composite is only weakly
dependent on the chosen threshold value. The composite
heat flux shows a clear peak and a uniform, symmetric
decay away from the central time. This is not an entirely
conclusive test, as any signal will show such behaviour
under composites whenever the temporal autocorrelation
decays as it does in the figure. However, the timeseries in
Fig. 4 seem to indicate that the composite is representative
of the behaviour of the observed bursts in the heat flux. The
periodic behaviour of the oscillator model is not evident
in the composite, indicative of a lack of periodicity or a
weak quasi-periodicity in the data. However, the heat flux
beyond two-day lags does not decay to very low values in
the composite, contrary to the quiescent periods in Fig. 4.
This indicates the presence of further bursts in heat flux at
those lags in the full data set.

Figure 5 further shows that the composite excess
baroclinicity (here calculated as the excess over a running
mean which, according to our model, is expected to coincide
with the mean linear dissipation rate s0) is also consistent
with the nonlinear oscillator model. The peak in composite
heat flux coincides with a reduction in the composite
baroclinicity. The maximum of decrease in baroclinicity
is in fact lagged slightly ahead of the peak in heat flux,
perhaps indicating that the eddy heat flux is not completely
coincident with the eddy processes that consume the
available potential energy. It is possible that other measures
of eddy growth rate and eddy activity show a phase relation
which is more aligned with that expected from the oscillator
model.

The build-up of baroclinicity between bursts of heat
flux, as evident in the oscillator model, is not so clear
in the composite because of the regression to the mean
away from the central time. Furthermore, the interquartile
range of the baroclinicity is large, so any trends will be
hard to observe. Nonetheless, the timeseries in Fig. 4 show
anecdotal evidence of a build-up of baroclinicity ahead
of a burst in heat flux, and the fact that the composite
baroclinicity shows a clear decay around the peak of the
heat flux implies that away from the peaks the baroclinicity
has to build up on average.

The lack of periodicity in the observations is evident.
The waiting time distribution shows a broad distribution
(perhaps consistent with Messori and Czaja (2013b)) with
however a possible peak at short waiting times. The
statistics are not strong enough to favour either possibility,
without independent evidence for the underlying models.
It is hard to make further quantitative links between
our observations and the oscillator model. For example,
choosing a lower threshold to define the heat flux maxima
will result in more events, and, correspondingly, a shift
to shorter waiting times. In the context of our nonlinear
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Figure 4. Timeseries of heat flux (solid lines, left axes, units K m s−1) and baroclinicity (dashed lines, right axes, units day−1) for the DJF winter. Time
is in days since 1 December of the indicated year. The heat flux and the baroclinicity are evaluated at the upstream side of the N. Atlantic storm track, as
indicated in Fig. 3.
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Figure 5. Composite of heat flux and baroclinicity for the winters of 1957–
2001, centred around the maxima of the heat flux. The solid line is the
median value of the heat flux and the dashed line is the median value of the
baroclinicity. The shading corresponds to the interquartile range of each
quantity. The anomalous (excess) baroclinicity has been plotted; the mean
offset in the baroclinicity is 0.46 day−1.

oscillator model, this could be related to higher values of
F or smaller values of the E, or both.

4. Concluding remarks

The nonlinear oscillator model described in Section 2
displays some salient features that can be seen in
observations, here illustrated with data from the N. Atlantic
storm track.

Firstly, the heat flux does not appear to be uniform in
time, or even uniformly random, but comes in bursts of
activity. This aspect of the heat flux has been observed

before (Swanson and Pierrehumbert (1997); Messori and
Czaja (2013a)). In the full three-dimensional atmosphere
this burst corresponds to the development of individual
systems or periods of high storm activity. In the model,
the timescale between systems is set by the forcing of
the mean temperature gradient F , which restores the
baroclinicity after its collapse. However, the timescale
between individual bursts is non-trivially associated with
the timescale of the forcing because of the nonlinear nature
of the system. Nonlinear oscillations operating at higher
energies will have longer timescales for the same forcing
timescale.

Secondly, the baroclinicity seems to build up to a
maximum value before collapsing to a stable state where the
dissipative processes dominate the baroclinic instability and
the environment is not conducive to system growth. This
appears to correspond to the increasing northward tilt of
the storm track before it returns to a more zonal regime,
following a mechanism for storm-track tilt proposed by
Orlanski (1998). This latter aspect is currently being
investigated in detail and will be reported on in a separate
paper. Indications of this behaviour in time can be gleaned,
for example, from Frame et al. (2011, 2013); Franzke et al.
(2011) where the N. Atlantic eddy driven jet is seen to tilt
progressively north-eastward, before collapsing back to a
more zonal direction.
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Thirdly, at the timescales of this storm track variability
there is a non-trivial, out-of-phase relationship between
baroclinicity and heat flux. So although the spatial maxima
of the two quantities have both been used to diagnose the
locations of storm tracks, on synoptic timescales they do not
vary together. This reconciles the seemingly contradictory
observation that high baroclinicity should be conducive to
high heat fluxes, but at the same time high heat fluxes should
lead to low baroclinicity.

There are some obvious caveats to our nonlinear
oscillator model. The most serious is possibly the lack
of a clear periodicity in the observed data. Indeed,
recent evidence (Messori and Czaja (2013b)) indicates
that meridional heat flux covers a very broad range
of frequencies from synoptic to planetary wave scales.
In response, we would argue that the strictly periodic
behaviour of the model depends on the external forcing
F being constant in time. Given that the forcing describes
both radiative and kinematic effects it would follow that the
forcing in fact would vary over time. If the timescale of this
variation is longer than the timescale of the forcing itself,
the relevant behaviour of our model does not change, but
the strict periodicity of the model will be broken.

There appears to be a strong analogy in the formation of
vertical convection. In fact Yano and Plant (2012) derive
a formally equivalent set of equations based on mass-
flux schemes (their equations 19a, and 19b). In convective
events, we generally observe a build-up of convective
available potential energy (CAPE) which may then be
released by a convective event (Yano et al. (2012)). The
typical interpretation would be that the convection acts on
a shorter timescale than the build-up of CAPE, which is
implicit in the quasi-equilibrium assumption for convective
parameterizations. Convective parameterizations contain
triggers where a convective event is initiated when a certain
threshold of instability is achieved. The present nonlinear
oscillator model gives a different perspective, in that we
do not need a trigger to achieve the same effect. The
nonlinearity gives the impression of trigger behaviour: a
sudden onset of a perturbation which stabilizes the flow on a
short timescale. The nonlinearity also gives the impression
of timescale separation, where the timescale of an individual
perturbation is much shorter than the timescale between
perturbations. The difference between these timescales is
regulated by the energy parameter (the amplitude) in our
oscillator model. If such a simple nonlinearity could be
included in convective parameterizations then we do not
need to invoke the quasi-equilibrium assumption and we can
remove switches from convective parameterizations. This
has implications for the construction of adjoint numerical
models.
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