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In curved geometries the hydrostatic pressure in a fluid does not equal the weight per
unit area of the fluid above it. General weight–pressure and mass–pressure relationships
for hydrostatic fluids in any geometry are derived. As an example of the mass–pressure
relationship, we find a geometric reduction in surface pressure as large as 5 mbar on
Earth and 39 mbar on Titan. We also present a thermodynamic interpretation of the
geometric correction which, as a corollary, provides an independent proof of the
hydrostatic relationship for general geometries.
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1. Introduction

The textbook definition of the hydrostatic pressure p0 in terms of the weight W
or the mass M of the fluid aloft, per unit surface area A0, is

p0 Z
W

A0

Z
Mg0
A0

; ð1:1Þ

with g0 the acceleration due to gravity. However, for curved geometries this
relationship is not valid anymore, something that was pointed out by Newton
(1726) in proposition 20 of book 2 of his Principia. Modified versions of equation
(1.1) have been used to estimate the mass of the Earth’s atmosphere by
measuring the surface pressure. Trenberth (1981) provides such an estimate as
well as a historic overview of earlier attempts. Bernhardt (1991a,b) provides an
analysis of all contributions to the surface pressure on Earth, including the
geometric effect. In a didactic article, Bannon et al. (1997), hereafter BBK,
explicitly isolate the effect of geometry on the relationship between surface
pressure and weight of the atmosphere and give a compact formula with the
correction to the weight–pressure relationship expressed as a functional of the
vertical pressure profile. They show how for spherical and cylindrical surfaces it
is found that the pressure is lower because in these geometries lateral pressure
forces will have an upward component, helping to hold up the air column.

We present here a more general version of BBK’s weight–pressure
relationships and also derive the general mass–pressure relationship valid for
any geometry. We also introduce a thermodynamic interpretation of the
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geometric corrections to these relationships. In this interpretation the lateral
(perpendicular to the vertical) pressure forces act as an effective negative surface
tension which contributes a negative capillary pressure to the surface pressure
budget. The thermodynamic interpretation serves as an independent derivation
of hydrostatic balance in general geometries.
2. Hydrostatic pressure and fluid weight

The geopotential F is related to the local acceleration due to gravity by

g ZKVF: ð2:1Þ
We can define the ‘vertical’ as the direction parallel to the gradient of the
geopotential F and use the geopotential as a vertical coordinate. The hydrostatic
pressure p in this vertical coordinate is defined by

dp

dF
ZKr; ð2:2Þ

with both the pressure p and the density r as functions of the geopotential only

pZ pðFÞ; rZ rðFÞ: ð2:3Þ
Without resorting to the equations of motion in a coordinate-free form, it is hard
to see why the hydrostatic relationship in equation (2.2) should be valid for all
geometries. Most informal derivations use variants of equation (1.1) which,
however, is not valid in general geometries. Newton (1726) provides a general
derivation in his Principia. Section 4 provides an independent derivation based
on thermodynamic arguments alone.

If the gravitating mass density is finite, the range of the geopotential is
finite too and it is often defined with a zero value at infinity and a finite negative
value at the surface of the gravitating body. In meteorological applications, the
geopotential at this surface is usually chosen as zero and increasing away from
the surface to some maximum value Fmax. Using this convention, the geopotential
close to the surface equals gz with z, the geometric height above the surface.

The geometry of the geopotential field can be characterized by a function V(F)
giving the geometric volume V inside a geopotential surface F, i.e. the volume
containing geopotentials lower than F. For infinitesimal displacements dF,
the volume between geopotential surfaces F and FCdF is (dV/dF)dF. The
volume derivative dV/dF can be related to the area of the enclosing geopotential
surface by

dV

dF
dFZAhdni; ð2:4Þ

with A the area of the geopotential surface and hdni the surface-averaged
geometric thickness of the geopotential layer. We can now remap the
geopotential onto a ‘height’ field z(F) by defining dzZhdni. With this definition
of z, we can write

dV ZA dz: ð2:5Þ
Because locally dFZðvF=vnÞdnZg dn, we find

dz Z hdniZ hgK1idF: ð2:6Þ
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945Hydrostatic pressure mass relationship
For symmetric geopotential fields, where g is constant on geopotential surfaces,
this new height coordinate is identical to the geometric height. For asymmetric
geopotential fields, z(F) is the average geometric height of the geopotential
surface. Note that z is not the same as the ‘geopotential height’ in meteorological
literature; geopotential height is defined by F/gc for some constant value of gc
(e.g. Trenberth & Guillemot 1994). Note also that the top boundary height
zmaxZzðFmaxÞ is normally infinity, contrary to geopotential height.

The total weight W of the fluid above some reference surface F0 equals

W Z

ð
FOF0

rg dA dn Z

ð
FOF0

r dA dFZ

ðFmax

F0

rA dF: ð2:7Þ

Substituting the hydrostatic equation (2.2) and changing the integration
variables, we can now write

W ZK

ðzmax

z 0

A
dp

dz
dz: ð2:8Þ

Partial integration now leads to the general result

p0 C
1

A0

ðzmax

z 0

p
dA

dz
dz Z

W

A0

; ð2:9Þ

with p0 the surface pressure at geopotential F0. Thus, the pressure p0 at a surface
is not equal to the weight per unit area above the surface, as in equation (1.1); it
needs to be corrected with a geometric factor if the areas of the geopotential
surfaces change with height.

Newton (1726) argues in proposition 20 of book 2 of the Principia that the
surface pressure holds up the weight of a cylinder with the same surface area and
the same vertical structure as the fluid in the curved geometry. In modern
notation he argues that

Wcylh

ð
FOF0

rA0 dFZ p0A0; ð2:10Þ

with Wcyl the weight of the fluid in the described cylinder, which should be
contrasted with the definition of the total weight in equation (2.7). The equality
of Wcyl to p0A0 is an expression of equation (2.2) in integral form. With this
notation we can rewrite equation (2.9) as

WcylC

ðzmax

z 0

p
dA

dz
dz ZW ð2:11Þ

and Newton comments on the difference between Wcyl and W, see §5.
As an example, the surface pressure of an atmosphere around a gravitating

sphere can be easily calculated as the geopotential surfaces are symmetric if the
sphere does not rotate. We therefore can set zZr with r the radial coordinate on
the sphere. In this coordinate, A(r)Z4pr 2 and we find

p0C

ðrmax

r0

2pr

r 20
dr Z

W

A0

ðsphereÞ: ð2:12Þ

This is the same as BBK’s eqn (22). With the integral contribution positively
definite, we find that the surface pressure is less than the weight per unit area
of the atmosphere above it. BBK interpret this as the sideways pressure on a
radial slice of the atmosphere having an upward component. In §4, we give a
thermodynamic interpretation in terms of surface tension and capillary pressure.
Proc. R. Soc. A (2008)
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BBK also discuss a hypothetical cylindrical world with an atmosphere around
a gravitating cylinder. Again introducing a radial coordinate r and using that for
a cylindrical world AZ2prH with H the axial height of the cylinder, we find that

p0 C

ðrmax

r0

p

r0
dr Z

W

A0

ðcylinderÞ: ð2:13Þ

This is the same as BBK’s eqn (20).
For a flat Earth with an atmosphere on top of a gravitating infinite plane, the

area of the geopotential surfaces is not a function of the height of the surface. So
for a flat Earth, we find that the hydrostatic pressure equals the weight of the
atmosphere above it, as in equation (1.1).

A variant of equation (2.13) with the opposite sign of the integral term is valid
in a quickly rotating centrifuge where the centrifugal force dominates the
background gravity force. The height coordinate z is increasing inward into the
centrifuge, against the centrifugal acceleration gZu2(r0Kz). For a liquid of
constant density r, it can be shown that at the surface (zZ0)

p0 1K
a

3

3K2a

2Ka

� �
Z

W

A0

; ð2:14Þ

with aZD/r0 for D the radial depth of the fluid. For small a/1 the geometric
factor is proportional to a, indicating a vanishing geometric correction for
thinner layers of fluid; for a completely filled cylinder, aZ1, the geometric
correction increases the surface pressure by 50% compared with the weight per
unit area. It can also be shown that the surface pressure in the centrifuge can be
written as

p0 Z
Mu2r0
A0

; ð2:15Þ

that is, the pressure is the same as the centrifugal force of a mass M at radius r0
divided by the cylinder area at radius r0. Interestingly, there is no difference in
the surface pressure between liquids of different densities at the same total mass,
even though a denser liquid will have more of its bulk located at higher
centrifugal accelerations. In §3, this is clarified in a more general context.
3. Hydrostatic pressure and fluid mass

Equation (2.9) does not completely isolate the effects of geometry on the surface
pressure because the weight is also dependent on the gravity field and therefore
the geometry. We can perform a similar calculation as in §2 by considering the
mass M rather than the weight W outside a geopotential surface F0. Using the
same vertical coordinate z(F) as before, the mass M is defined by

M Z

ðzmax

z 0

rA dz: ð3:1Þ

Substituting the hydrostatic equation (2.2) and performing a partial integration,
it can be shown that

p0 C
1

A0hgK1
0 i

ðzmax

z 0

p
d

dz
ðAhgK1iÞdz Z M

A0hgK1
0 i ; ð3:2Þ
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947Hydrostatic pressure mass relationship
where we have used equation (2.6) to transform between geopotential and z
coordinates. This mass–pressure relationship is more complex than the weight–
pressure relationship, equation (2.9), but it does completely isolate the geometric
contribution to the surface pressure.

For the centrifuge we can show that AhgK1i is independent of the height
coordinate—both A and g are linear in r—so that the geometric contribution
vanishes and the above equation reduces to equation (2.15).

We can cast equation (3.2) in purely geometric terms if we assume that the
mass of the hydrostatic fluid can be ignored compared with that of the
gravitating body, so we exclude self-gravitating atmospheres and we ignore
contributions of any rotation to the geopotential. In this case the gravitational
potential in terms of the mass density rg of the gravitating body is

V2FZ 4pGrg; ð3:3Þ
with G the gravitational constant. Using Gauss’ theorem we then find

hgiAZ 4pG

ð
rg Z const: ð3:4Þ

The constant can be rewritten using the values of g and A at the reference surface

hgiAZ hg0iA0: ð3:5Þ
This makes explicit that we cannot ignore variations in g while taking into
account geometric effects and vice versa, something that had apparently not
been appreciated in the original calculations for the Earth’s atmosphere by
Trenberth (1981). To first order in variations of the gravitational acceleration
over a geopotential surface, we have hgK1iZhgiK1, which can be substituted in
equation (3.2) to find

p0C
1

A2
0

ðzmax

z 0

p
dA2

dz
dz Z

Mhg0i
A0

: ð3:6Þ

The geometric contribution in this equation is different from that in equation
(2.9) because we have now made explicit the geometric contribution to the
weight as well.

We can make an estimate of the geometric corrections for Earth conditions, as
was done in BBK for the weight–pressure relationship. We use an approximation
of the Earth’s pressure profile of pZp0 expðKz=HÞ with p0 the mean surface
pressure at the Earth’s surface and H the pressure scale height (approx. 8 km).
Assuming a spherical Earth, it can be shown that equation (3.6) becomes

p0ð1C4eð1C3eð1C2eð1CeÞÞÞÞZMg0
A0

; ð3:7Þ

with eZH/a and a the Earth’s mean radius. We find that the geometric correc-
tion changes the flat-Earth mass–pressure relationship by approximately 0.5%.
So for Earth conditions, the geometric effect reduces the surface pressure by
approximately 5 mbar globally. A similar value was found by Bernhardt (1991b)
using different approximations.

Fulchignoni et al. (2005) present profile data for Titan’s atmosphere as
measured by the Huygens probe in 2004. From their results it can be derived that
the pressure scale height in the lowest 75 km can be estimated to be 16.7 km.
With Titan’s radius of 2575 km, we find a geometric correction of 2.7%,
corresponding to a geometric surface pressure reduction of 39 mbar.
Proc. R. Soc. A (2008)
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4. Thermodynamic interpretation

The weight–pressure relationship, equation (2.9), has a thermodynamical interpre-
tation, which sheds light on the physics involved and provides an independent
derivation of the hydrostatic relation, equation (2.2). We consider the work done
by lifting the fluid layer against gravity. On a flat Earth this work would equal
p0A0dz when lifting over an infinitesimal amount dz. This work should equal
the increase in potential energy of the fluid, which is Wdz with W the weight of
the fluid. Equating these two, we get the familiar weight–pressure relationship,
equation (1.1).

However, in a curved geometry, the fluid will not only change its centre of
gravity but also will expand laterally. This will also be part of the energy
budget. To quantify this, we will lift the fluid by an amount dz, where the
vertical coordinate is as before a remapping of the geopotential field, zZz(F).
We can think of the fluid as made up of shells of thickness dz, area A and
volume A dz. As before, the pressure work required to lift the fluid vertically
over dz equals p0A0dz, and the increase in potential energy equals Wdz.
Furthermore, each shell will expand its area by an amount dAZ(dA/dz)dz,
thus increasing its volume by dVZdA dz. This volume increase requires
an amount of work KpdVZKpðdA=dzÞdz. This last contribution has to
be integrated over all shells above the reference level. We now find the
energy budget

p0A0dz ZWdzK

ðzmax

z 0

p
dA

dz
dz

� �
dz; ð4:1Þ

which is equivalent to equation (2.9). Note that we have not used the hydrostatic
equation, equation (2.2), here: the equivalence of the above equation and equation
(2.9) is a proof of the hydrostatic relationship under the imposed conditions, namely
that all fields are functions of geopotential only and that there are no other forms
of energy conversion involved. For example, vertical accelerations would involve
conversions to kinetic energy but, as is well known, would at the same time
invalidate the hydrostatic relationship.

A related way of interpreting the contribution of each shell to the surface
pressure would be to represent the lateral forces on the expansion of the fluid
shells by an effective ‘surface tension’ g defined such that the work required to
change the area of the fluid shell equals gdA (e.g. Adkins 1984). We therefore
find that for each fluid shell,

gZKp dz: ð4:2Þ
The effective surface tension of the shell is negative as an increase in area releases
energy. Each shell under surface tension will represent a capillary pressure jump
across the shell

dpZg
1

R1

C
1

R2

� �
; ð4:3Þ

with R1 and R2 the local radii of curvature of the geopotential surface in two
orthogonal directions (e.g. Batchelor 1967). For example, a spherical surface at
radius r would represent a pressure jump of dpZ2g/r, corresponding to a
downward force of dFZA dpZ8pgr. Integrating this force over all shells and
dividing the total downward force by the surface area A0Z4pr 20, we find the
Proc. R. Soc. A (2008)
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Figure 1. Geometry of masonry arch with keystone highlighted. The keystone has weight W and
experiences a lateral force F on either side.

949Hydrostatic pressure mass relationship
geometric contribution to the surface pressure in equation (2.12), which can now
be interpreted as the integral effect of ‘capillary’ pressure contributions from
different geopotential shells.

For general geometries, the pressure jump dp due to surface tension can be
calculated from (see Adkins 1984)

g dAZdp dV : ð4:4Þ
In our hydrostatic fluid set-up, we have dA=dVZðdA=dzÞ=A, from which the
total downward force dF of each fluid shell can be determined as
dFZA dpZgðdA=dzÞ. Again, integrating this force over all shells and dividing
the total downward force by the surface area A0, we find the geometric
contribution to the surface pressure in equation (2.9).
5. Postscript

The idea that lateral pressures can help to keep up a weight against gravity was
already noted by Newton as corollary 1 to proposition 20 in book 2 of the
Principia.
Proc.
Therefore the bottom is pressed by the whole weight of the incumbent fluid, but sustains
only that part which is described in this proposition, the rest of the weight being sustained
by the vaulted shape of the fluid.

(Newton 1726)
The vaulting effect is of great importance in the study of flowing granular
media (e.g. Baxter et al. 1989; Jaeger & Nagel 1992) where it can lead to
significant pressure drops and flow stagnation.

The vaulting effect is perhaps most striking in masonry arches that are used to
support weight over wide spans. Figure 1 shows a schematic of an arch with the
keystone highlighted. The weight W of the keystone is kept up by the vertical
components of the lateral forces F on the sides of the keystone. A straightforward
analysis of the geometry shows that

2F sinðDa=2ÞZW : ð5:1Þ
However, equation (2.13) should be equally applicable to the geometric pressure
contribution carrying the full weight of the keystone. Because gravity in the arch
always points downward, rather than radially inward, we expect equation (2.13)
to be valid only for small values of Da. With AZDrDa and pZFDH, we find
R. Soc. A (2008)
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from equation (2.13)

FDazW ; ð5:2Þ
which approaches the exact result for small Da. The masonry arch provides a
didactic image to help understand geometric contributions to the pressure.
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