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An analytical dispersion relation is derived for linear perturbations to a Rankine vortex
governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of
uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with
uniform interior potential vorticity. The dispersion relation is analysed in detail and compared
to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler
equations. The results are successfully verified against numerical simulations of the full
equations. The dispersion relation is relevant to problems including wave propagation on
surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.
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1. Introduction

The simplest model for a two-dimensional (2-d) fluid is the familiar 2-d Euler equations
and there are many studies of vortices in this system. This note is concerned with
vortices in an alternative 2-d geophysical fluid model which has received renewed
interest recently, namely that of surface quasi-geostrophic (SQG) dynamics (Held et al.
1995). This system is relevant to quasi-geostrophic dynamics near horizontal
boundaries, and it has been applied to several different components of the
atmosphere–ocean system including near-surface temperature anomalies in the atmo-
sphere (Müller et al. 1989, Schär and Davies 1990, Ambaum and Athanasiadis 2007),
height perturbations of the tropopause (Juckes 1994, 1995, Tulloch and Smith 2006)
and upper-level density anomalies in the ocean (Lapeyre and Klein 2006).

In the following, we use the terminology of near-surface temperature anomalies in the
atmosphere. Vortices which form in this system correspond to regions of anomalous
surface temperature and are often called ‘‘surface enhanced’’ vortices, since the velocity
field is strongest near the surface and decays with height. We consider vortices
composed of circular patches of uniform anomalous temperature analogous to the
Rankine vortex of the 2-d Euler system. We derive a dispersion relation for linear
perturbations to such patches and present numerical tests of its validity.

*Corresponding author. Email: b.j.harvey@reading.ac.uk

Geophysical and Astrophysical Fluid Dynamics
ISSN 0309-1929 print/ISSN 1029-0419 online ! 2011 Taylor & Francis

DOI: 10.1080/03091921003694719

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f R

ea
di

ng
], 

[B
. J

. H
ar

ve
y]

 a
t 0

0:
55

 1
4 

Ju
ly

 2
01

1 



The motivation is three-fold. Firstly, vortices commonly form in all of the physical
situations to which SQG dynamics has been applied, so an understanding of their
behaviour is of strong interest. Secondly, the dynamics of waves at surface temperature
fronts is of interest. The simplest case of an isolated one-dimensional (1-d) temperature
front is not a possible basic state under the SQG inversion operator since in this case
Green’s function is not integrable. The circular case provides a de-singularised
alternative. Finally, a comprehensive comparison between the 2-d Euler and SQG
systems is of inherent interest as several components of the atmosphere–ocean system
can arguably be modelled by either system or a system which lies between the two.

We express the SQG system as follows:

D!

Dt
¼ 0 at z ¼ 0, ð1Þ

r2 ¼ 0 in z4 0, ð2Þ

where ! is proportional to the potential temperature anomaly and  is the
streamfunction, D/Dt¼ @/@tþ u@/@xþ v@/@y is the geostrophic Lagrangian derivative
and (2) represents the condition of zero interior PV. The geostrophic variables are
given by

ðu, v, !Þ ¼ ð% y, x, zÞ ð3Þ

and u, v and ! are all assumed to decay at large z. Given a surface ! distribution, the
inversion (2)–(3) then determines all other fields uniquely. In the following, we
suppress the z-dependence of all variables and consider only their surface values. The
inversion of a surface temperature distribution !(x), where x¼ (x, y), then has Green’s
function G(x)¼%(2"jxj)%1 (Held et al. 1995). In spectral space the inversion of the
surface fields takes the form  ̂ðkÞ ¼ %!̂ðkÞ=jkj where k¼ (k, l ) is the horizontal
wave vector, as can be shown by taking Fourier transforms of the full three-dimensional
(3-d) fields.

For the atmospheric lower boundary application, ! is the potential temperature
anomaly scaled by g/!00N, and therefore has the dimension of a velocity field, and z is
the vertical coordinate scaled with the Prandtl ratio, N/f. Here the ‘‘lower boundary’’ is
usually interpreted as the top of the planetary boundary layer, !00 is a constant
background reference temperature, N is the buoyancy frequency and f the Coriolis
parameter.

We write the surface temperature for the basic state Rankine vortex as

! ¼ !ðrÞ &
!0 for r5 a,

0 for r4 a,

!
ð4Þ

where r is the radial coordinate. That such a patch is stable, and therefore supports
neutral perturbations, follows from the SQG analogue of Rayleigh’s stability theorem
applied in radial coordinates: exponential growth of linear perturbations is only
possible if !0(r) takes positive and negative values. This was shown by Carton (2009) for
the case of smooth temperature profiles. As with the Rayleigh theorem the extension to
discontinuous profiles takes an intuitive form whereby temperature discontinuities are
considered as regions of infinite gradient with the appropriate sign.

In section 2, we invert the basic state (4) analytically and derive a dispersion relation
for linear perturbations to the patch boundary. In section 3, we present numerical tests
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of the dispersion relation before presenting a closing discussion and conclusions in
section 4.

2. Dispersion relation

In the following, we apply the SQG inversion in cylindrical coordinates. This is done by
expanding the temperature field in terms of Bessel functions of the first kind, that is, by
using Hankel transforms. The Bessel functions of the first kind, denoted Jn, form
separable solutions to the 3-d Laplace equation with cylindrical symmetry since they
satisfy

r2
"
JnðkrÞein’%kz

#
¼ 0, ð5Þ

where (r,’, z) are the usual cylindrical coordinates, k is a positive real number and n is
an integer label of the modes. Therefore, if the surface temperature field is written as

!ðr; ’Þ ¼
X1

n¼0

Z 1

0
!̂ðk; nÞJnðkrÞein’k dk, ð6Þ

then the full 3-d temperature field is recovered by multiplying the integrand by e%kz.
From the fact that !¼ z, the corresponding surface streamfunction has the form

 ðr; ’Þ ¼
X1

n¼0

Z 1

0

%!̂ðk; nÞ
k

 !

JnðkrÞein’ k dk: ð7Þ

Comparing (6) and (7) we see that the inversion, therefore, has the familiar form of the
spectral space SQG inversion,  ̂ ¼ %!̂=k: The inverse of the transform (6) is given by

!̂ðk, nÞ ¼ 1

2"

Z 1

0

Z 2"

0
!ðs, ’0ÞJnðksÞe%in’0s d’0 ds, ð8Þ

as can be checked using the Bessel function orthogonality relationR1
0 JnðksÞJnðkrÞk dk ¼ #ðr% sÞ=r:
We now use this method to invert the basic state profile (4). Due to the azimuthal

symmetry only the n¼ 0 term contributes in the expansion (6) so we write

!ðrÞ ¼
Z 1

0
!̂ðkÞJ0ðkrÞkdk, ð9Þ

where the inverse is given by (8):

!̂ðkÞ ¼
Z 1

0
!ðsÞJ0ðksÞs ds: ð10Þ

Substituting for ! from (4) and using the relation $J0($)¼ ($J1($))0, this inverse yields

!̂ðkÞ ¼ !0a

k
J1ðkaÞ: ð11Þ
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The streamfunction induced by the basic state (4) is therefore given by

"ðrÞ ¼ %!0a

Z 1

0

J1ðkaÞ
k2

J0ðkrÞkdk, ð12Þ

and the corresponding basic state azimuthal velocity field, U(r)¼ @"/@r, is

UðrÞ ¼ !0

Z 1

0
J1ð$ÞJ1ð$r=aÞd$, ð13Þ

where we have substituted $¼ ka and used a further relation, J00ð$Þ ¼ %J1ð$Þ. We now
introduce the notation

Enðr=aÞ &
Z 1

0
Jnð$ÞJnð$r=aÞd$, ð14Þ

so that the function E1 is proportional to the basic state azimuthal velocity field,

UðrÞ ¼ !0E1ðr=aÞ: ð15Þ

The higher order En are used below to describe perturbation quantities. Figure 1(a)
shows plots of the functions En for various n.

We derive some asymptotic results for the function E1 in Appendix A. We show that
the singularity in U at r¼ a takes the form

UðrÞ ' !0
"

"
% log

$$1% ðr=aÞ2
$$þ 4 log 2% 2

#
ð16Þ

and this is consistent with other studies which show that ! discontinuities induce
velocity fields with logarithmic singularities under SQG inversion (see e.g. Held et al.
1995, Juckes 1995). Note that since this singular velocity is directed parallel to the
temperature discontinuity it does not induce a singular displacement of the
discontinuity. Any perpendicular velocities turn out to be finite – see below. We also
show in Appendix A that for r( a,

UðrÞ ' !0a2

2r2
, ð17Þ

which is consistent with the form of the SQG Green’s function, G(x)¼%(2"jxj)%1. Both
of these asymptotic fits are plotted in figure 1(b).

Next, we analyse the evolution of perturbations on the patch. Suppose the patch
boundary is moved to the new position

r ¼ Rð’; tÞ & aþ %ð’; tÞ ð18Þ

with %) a. We obtain the dispersion relation by considering the condition of material
advection of this boundary, which is expressed formally as

DR

Dt
& @R

@t
þ u’

R

@R

@’
¼ ur, ð19Þ

where ur and u’ are the radial and azimuthal components of the velocity field evaluated
at r¼R. Both ur and u’ are singular at the boundary but the combination in (19)
represents the velocity component perpendicular to the boundary, which Held et al.
(1995) show to be regular in general for temperature discontinuities. This can be
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checked directly for this case by expressing ur and u’ as contour integrals around the
patch boundary (not shown). Juckes (1995) further demonstrates that the linear version
takes the form

@%

@t
¼ lim

r!a
u0rðr,’Þ %

UðrÞ
a

@%

@’

% &
, ð20Þ

where U(r) is the basic state velocity of (15) and u0r is a linear version of the radial
velocity field given by approximating the perturbation temperature distribution as a
ring of #-functions. That is, by inverting

!ðr, ’, tÞ ¼ !ðrÞ þ !0%ð’, tÞ#ðr% aÞ: ð21Þ

(a)

(b)

Figure 1. (a) Examples of the functions En. The solid line, E1, is proportional to the basic state velocity
profile, see (13). The cases n>1 are proportional to the perturbation streamfunction of a mode n disturbance,
see (24). (b) The dashed line is the asymptotic result for jr/a% 1j) 1 of (16) and the dotted line is the
asymptotic result for r( a of (17). Finally, the dot–dashed line shows E1%E3, see (26) and Appendix B, to
illustrate that this combination is finite in the limit r! a.
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This linearisation can also be verified directly for this case via the contour integral
representation (not shown).

We invert the perturbation part of (21) using the transform (6). For each azimuthal
mode, i.e. % ¼ %̂ðtÞein’, the transform of the final term in (21) takes the form

%ð’; tÞ#ðr% aÞ ¼ %̂ðtÞein’
Z 1

0
#̂ðkÞJnðkrÞk dk, ð22Þ

where #̂ðkÞ is given by (8):

#̂ðkÞ ¼
Z 1

0
#ðs% aÞJnðksÞs ds ¼ aJnðkaÞ: ð23Þ

The induced perturbation streamfunction is therefore

 ðr, ’, tÞ ¼ %!0%̂ðtÞein’
Z 1

0
Jnð$ÞJnð$r=aÞd$ ¼ %!0%̂ðtÞein’Enðr=aÞ, ð24Þ

using the notation introduced in (14), and the corresponding perturbation radial
velocity field, u0r ¼ %r%1@ =@’, is given by

u0rðr, ’Þ ¼
in

r
!0%̂ðtÞEnðr=aÞein’: ð25Þ

Finally, we substitute for U and u0r in (20) and put %̂ðtÞ / e%i!nt to obtain

!n ¼
!0n

a
lim
r!a

"
E1ðr=aÞ % Enðr=aÞ

#
: ð26Þ

This limit is finite, as illustrated in figure 1(b) for the case n¼ 3. In Appendix B, we
evaluate the limit analytically for all n via a recursion relation and find that the
dispersion relation can be written as

!n ¼
!0n

a

2

"

Xn

j¼2

1

2j% 1
ð27Þ

for n* 2. The case n¼ 1 has, trivially, !1¼ 0. The limit in (26) can also be evaluated for
non-integer values of n, the result being continuous, but this case is not so analytically
tractable or physically relevant. The dispersion relation (27) is the main result of this
article. Below, we examine its properties in detail and in section 3 we verify it
numerically.

First, we note for comparison the corresponding result for linear perturbations to a
barotropic Rankine vortex, that is, a patch of uniform vorticity evolving under the 2-d
Euler equations. Taking # as the uniform patch vorticity the dispersion relation is
(Saffman 1995)

!n ¼
#

2
ðn% 1Þ: ð28Þ

For both these cases, (27) and (28), the corresponding phase and group speeds can be
calculated as

cp, n ¼
a!n

n
and cg, nþ1=2 ¼ að!nþ1 % !nÞ, ð29Þ
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respectively. Note that the SQG phase speeds are independent of the patch radius
whereas the barotropic phase speeds are proportional to the patch radius, a result which
is obvious from dimensional grounds. Figure 2 shows plots of the phase and group
speeds as functions of wavenumber, n. We have nondimensionalised the speeds by !0 in
the SQG case and a# in the barotropic vorticity case.

To analyse the form of the SQG dispersion relation (27) we note that for large n
(Gradshteyn and Ryzhik 2000):

Xn

j¼2

1

2j% 1
¼ 1

2
ðlog nþ &Þ þ log 2% 1þOðn%2Þ, ð30Þ

where &¼ 0.57721 . . . is Euler’s constant. The dispersion relation (27) therefore satisfies

!n ¼
!0
"a

nðlog nþ 'Þ þOðn%1Þ, ð31Þ

where '¼ &þ 2(log 2% 1)+%0.03649. Truncating the O(n%2) terms gives a remarkably
accurate approximation with fractional errors of only 1.5% for n¼ 2 and 0.4%

(a)

(b)

N
o

n
-d

im
e

n
s
io

n
a

l 
s
p

e
e

d
s

N
o

n
-d

im
e

n
s
io

n
a

l 
s
p

e
e

d
s

Surface quasi-geostrophic

Figure 2. Non-dimensional phase and group speeds (cp and cg, respectively) for (a) the SQG and (b) 2-d
Euler systems. Symbols mark the exact analytic results of (27) and (28). The lines in panel A show the
corresponding quantities for the truncated version of the dispersion relation (31).
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for n¼ 3. The solid lines in figure 2(a) show this accuracy visually for the corresponding
phase and group speeds, group speed now defined as cg¼ a@!n/@n, and table (1) shows
the values numerically. This truncated version of the dispersion relation has the same
form as that of waves on straight ! discontinuities which is (taken implicitly from
Juckes 1995)

! ¼ $!

"
kðlog kþ CÞ, ð32Þ

where k is the perturbation wavenumber, $! the size of the ! discontinuity and C a
constant depending on the basic state velocity profile. It is worth noting that the natural
choice of basic state for studying waves at ! discontinuities, a single 1-d temperature
Heaviside discontinuity, is not invertible under the SQG inversion operator. Any other
1-d profile must contain at least one additional lengthscale and this will balance the
dimension of k in the logarithm. Any other profile will also, however, contain
additional regions of non-zero temperature gradient which will influence the wave
propagation at the discontinuity so (32) is only a local approximation.

Finally, we note that the dispersion relation for the SQG Rankine vortex (27) satisfies
a peculiar group speed–phase speed relation,

cg, nþ1=2 ¼
1

2
ðcp, n þ cp, nþ1Þ þ

!0
"
: ð33Þ

This relation also holds for waves on a straight ! discontinuity (32) in that

@!

@k
¼ !

k
þ$!

"
: ð34Þ

This result is independent of any ambiguities associated with the basic state velocity
profile and appears to be a robust property of perturbations at ! discontinuities.

3. Numerical verification

Here, we verify the dispersion relation of (27) via numerical simulation of temperature
patches in an SQG model.

Table 1. Analytic and numerically obtained phase speed values, nondimensionalised with !0. Also shown
are the corresponding fitting errors, see text, and numerical values from the truncated formula (31).

Wavenumber Analytical phase speed Numerical result Fitting error Truncated formula
n cp,n ~cp;n (fit n(log nþ')/"

2 0.2122 0.2091 0.0012 0.2090
3 0.3395 0.3384 0.0020 0.3380
4 0.4305 0.4274 0.0025 0.4297
5 0.5012 0.4953 0.0022 0.5007
6 0.5591 0.5522 0.0032 0.5587
7 0.6081 0.5996 0.0040 0.6078
8 0.6505 0.6401 0.0046 0.6503
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The numerical model runs on a [0, 1], [0, 1] doubly periodic domain. The time
integration is performed with a semi-Lagrangian advection scheme consisting of a
second order back-trajectory calculation and bicubic spatial interpolation. The
temporal resolution is varied dynamically via a Lifschitz criterion such that
jruj$t<C where we choose C¼ 0.3 for the tests presented here. The temperature
field inversion is performed using Fourier transforms and the spatial resolution used
here is 512 gridpoints in each direction. We have repeated the calculations at various
resolutions and found that we could verify the dispersion relation at these resolutions
as well.

We specify the initial condition in the model as a circular patch of anomalous ! with a
small amplitude, single wavenumber perturbation of its circumference and then sum, at
each time step, the squared differences between the current and the initial states,

X

gridpoints

'
!ðtÞ % !ð0Þ

(2
: ð35Þ

We find the location of the first minimum in this time series using a quadratic fitting
technique and this corresponds to the time taken for the perturbation to rotate through
an angle of 2"/n, which we write as ~tn (we use the tilde to denote numerically obtained
values). The corresponding nondimensionalised phase speed is then given by
~cp;n ¼ 2"a=n ~tn!0.
Table 1 shows that the best estimate of the phase speeds achieved from the numerics

is within a suitably defined error of the analytic result for a range of wavenumbers and
this therefore verifies the result. However, our model in not ideally designed for this
simulationy and several issues had to be carefully considered. We discuss these now.

Firstly, the sharp gradients in the basic state (4) cannot be accurately represented by
any grid-based numerical scheme. We choose instead to simulate a smooth version of
the profile given by

!ðrÞ ¼ 1

2
1% tanh

r% að1þ ) cosðn’ÞÞ
#

) *! +
, ð36Þ

where # and ) are measures of the edge steepness and perturbation amplitude,
respectively. This profile is well-behaved numerically for a wide range of # and by
systematically varying # and then extrapolating to #¼ 0 we can verify that the numerical
results are consistent with the analytic result of section 2. It is shown implicitly in Juckes
(1995) that the leading order effect of a slight smoothing of width # to a ! discontinuity
is a reduction in the perturbation phase speeds of the form

csmooth
p ' cp % B#2 logð#=#0Þ, ð37Þ

where B and #0 are constants depending on the form of the smoothing and the
wavenumber of the perturbation. We use this form of the correction to extrapolate our
numerical results to the limit of #! 0. We plot in figure 3(a) some numerically obtained
phase speeds for the profile (36) for various values of # and n¼ 3. Also plotted is the fit
(37) where cp, B and #0 are the fitting parameters. The variation of numerical phase
speed with smoothing width is captured well by this fit.

yA pure contour dynamics method (see e.g. Zabusky et al. 1979, Pullen 1992) appears to be the most natural
choice, but this suffers from the logarithmic singularity in the along-front velocity field.
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We estimate an error in the extrapolated phase speed value based on resolution
effects as follows. We first calculate the number of gridpoints covered by the smoothed
patch-edge region along a cross-section of the patch in each experiment. We then
calculate the error estimate by comparing the variation of this number across the range
of experiments performed with the variation of the corresponding phase speeds
obtained and assume that the finite numerical resolution introduces an error in the
effective smoothing width of -1/2 gridsize. We refer to this error estimate further
below.

The other issue with the numerical scheme is the domain periodicity. This domain is
equivalent to performing the inversion on an unbounded domain with an infinite array
of identical patches centred at coordinates (i, j), with i and j integers. These patches have
basic state circulations of the same sign as the central patch, and therefore induce an
opposite circulation around the central vortex. This induced circulation reduces the
phase speed compared to the non-periodic case. The magnitude of this effect is a
function of the patch radius so we have repeated the above extrapolation process for a

(b)

(a)

P
h

a
s
e

 s
p

e
e

d
P

h
a

s
e

 s
p

e
e

d

Smoothing width

Radius

Figure 3. (a) Numerically obtained phase speeds versus # for the case a¼ 0.15, )¼ 0.00667 and n¼ 3; solid
line is nonlinear fit of (37), dashed line is analytic result cp,3 and squares show the values used for (b). (b)
Numerically obtained phase speeds versus a for the case )¼ 0.00667 and n¼ 3; diamonds are extrapolations
to #! 0 with associated error bar (see text), solid line is nonlinear fit for periodicity (39) and dashed line is
again cp,3.
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range of a values and present the results in figure 3(b), again for the case n¼ 3. Note
that, since the fit (37) appears to be fairly robust, we use fewer # values here than in
figure 3(a) to save computation time.

The fitted line in figure 3(a) is based on the following estimation of the combined
influence of the surrounding patches. The effect is not exactly isotropic around the
circumference of the patch, but tests have shown the anisotropic component to be small
for reasonable a values. Consider just three patches aligned linearly and spaced a distance
L apart. The far-field effect of the outer two patches on the central patch cancels at
leading order, meaning that the central patch does not move. Higher order terms act as a
local adverse shearing. For example, at the point where the central patch meets the line
joining the three patches the induced velocity parallel to the patch boundary is

UðLþ aÞ %Uðr% aÞ + %2!0
a3L

'
L2 % a2

(2 : ð38Þ

The approximation here is from the expansion (17). This correction takes the value
0.017!0 for a¼ 0.2, L¼ 1 which accounts for much of the discrepancy in figure 3(b) for
that case. We estimate the total effect of all the patches as the sum of (38) over many of
the nearest neighbours multiplied by a constant to take account of the anisotropy. That
is, we fit

cperiodicp ' cp % Ca3
X

i40, j*0

Li, j
'
L2
i, j % a2

(2 with Li, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2

p
ð39Þ

to the data in figure 3(b) by varying cp and C. In practice, we avoid the slow
convergence of the sum by truncating it to i, j. 3 and estimate the rest of the sum with
an additional fitting constant, D. The data is weighted in the fit according to the
resolution error described above at each radius value and the corresponding fitting
error, (fit, of the best estimate phase speed is calculated and presented in table 1. The
best estimate phase speed, given by the fitted value of cp, is also shown. The analytical
result of section 2 lies within (fit of the numerically obtained value.

In summary, by extrapolating to the double limit of #, a! 0 we have shown that, to
within a calculated resolution error, the analytical result of section 2 is correct for the
case n¼ 3. We have repeated this process for a range of different wavenumbers and the
results are also summarised in table 1. In each case the numerical result lies within 2(fit
of the analytic result. Noticeably, all numerically obtained phase speeds are slower than
the analytical value and this suggests that other systematic errors are present which
have not been taken into account. However, they appear to be not much larger than the
resolution error. The most likely candidates are the accuracy of the back-trajectory
calculation in the semi-Lagrangian scheme, the hyper-diffusion like effects associated
with interpolation used in the semi-Lagrangian scheme and nonlinear amplitude effects
on the wave propagation.

4. Conclusions

We have derived and tested a dispersion relation for perturbations to the edge of a
circular patch of uniform temperature evolving under SQG dynamics. The dispersion
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relation is similar to that of waves on a straight 1-d temperature discontinuity.
However, unlike the 1-d profile result, the patch solution is global.

The dispersion relation shows qualitative similarities to its 2-d Euler counterpart and
it is expected that further results from barotropic vortices carry over to the SQG case.
For instance, under 2-d Euler dynamics there are nonlinear perturbations to uniform
vorticity patches which rotate steadily, the so-called V-states (Deem and Zabusky 1978,
Verkley 1994, Ambaum and Verkley 1995), and we expect there to be SQG analogues.
In fact, each mode of the linear dynamics in the barotropic case is associated with such
a solution and we expect that the linear modes found here are likewise related to SQG
V-state solutions.

A further inference from our result concerns the behaviour of SQG vortices
embedded within a background flow. Such a flow will in general deform the vortex in a
time dependent manner. For the simple case of a pure straining, (u, v)¼ s(x,%y), there
are illuminating steady state solutions in the small strain rate limit, s) !0/a (assuming s
and !0 are both positive). In that case the deformation is small and so satisfies the
dispersion relation (27). The n¼ 2 mode can propagate against the straining flow
resulting in a steady state provided its phase speed matches the induced rotation speed
of the straining which can be shown to be given by crot¼%a2s/2%0, where %0 is the
perturbation amplitude. Equating this to cp,2 from (29) we find that the steady state
requires

%0
a
¼ 3"

4

as

!0
: ð40Þ

Interestingly, this perturbation aspect ratio is proportional to the patch radius, so a
small vortex will not deform as strongly as a large vortex in the same straining field.
Alternatively, this result suggests that small vortices require stronger strain values to
cause vortex break-up than a larger vortex and this is consistent with the local nature of
the SQG Green’s function. This has obvious consequences for the flow morphology of
SQG turbulence. In contrast, the corresponding 2-d Euler result predicts a perturbation
aspect ratio of %0/a¼ 2s/# which is independent of vortex size. Whether (40) can be
generalised to finite amplitudes as in the case of the Kida vortex is still an open
question.
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Appendix A: Asymptotics of E1(r/a)

Here we derive the two asymptotic results for the function E1 which are referred to in
section 2, equations (16) and (17).

A.1 Small jr/a% 1j

The calculation in Appendix B shows that the leading order term of the singularity at
r¼ a is the same for each of the En. Here we show that E0 is actually a complete elliptic
integral of the first kind for which there are well-known asymptotic results and then the
result for E1 follows. To do this we use the following integral definition of the Bessel
functions which is suitable when n is an integer:

Jnð$Þ ¼
1

2"

Z "

%"
eið$ sin !%n!Þd!: ðA:1Þ

Substituting for J0 in (14) gives

E0ð*Þ ¼
1

4"2

Z "

%"

Z "

%"

Z 1

0
ei$ðsin !þ* sin+Þd$d! d+, ðA:2Þ

where we have put *¼ r/a. Upon use of the identity
Z 1

0
ei$fðxÞd$ ¼ "

X

fxi:fðxiÞ¼0g

#ðx% xiÞ$$f 0ðxiÞ
$$ , ðA:3Þ

the integral (A.2) can be written as

E0ð*Þ ¼
2

"

Z "=2

0

d+
'
1% *2 sin2 +

(1=2 : ðA:4Þ

This is a standard definition of the complete elliptic integral of the first kind. It
therefore follows from a standard result (Gradshteyn and Ryzhik 2000) that

E0ð*Þ +
2

"

-
% 1

2
log

$$1% *2
$$þ 2 log 2

.
ðA:5Þ
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near *¼ 1, and so, by rearranging (B.6) to find

lim
*!1

"
E1ð*Þ % E0ð*Þ

#
¼ % 2

"
, ðA:6Þ

we arrive at

E1ð*Þ +
1

"

'
% log

$$1% *2
$$þ 4 log 2% 2

(
: ðA:7Þ

A.2 Large r/a

The n¼ 1 version of (A.2) is

E1ð*Þ ¼
1

4"2

Z "

%"

Z "

%"

Z 1

0
ei$ðsin !þ* sin+Þe%ið!þ+Þd$d! d+: ðA:8Þ

With the aim of using (A.3) again, note that for large * the zeros of the first exponential
occur at ++%*%1sin ! and ++-"þ *%1sin !. On substituting into (A.8) and
rearranging we arrive at

E1ð*Þ +
1

2"

Z "

%"

sin ! sin
"
ðsin !Þ=*

#

*
$$cos

"
ðsin !Þ=*

#$$ d!, ðA:9Þ

+ 1

2"*2

Z "

%"
sin2 ! d!, ðA:10Þ

¼ 1

2*2
: ðA:11Þ

Similarly it can be shown that En(*)/ *%(nþ1) for large *.

Appendix B: Calculation of limit in (26)

Here we evaluate the limit in (26), which we denote as ,n:

,n ¼ lim
*!1

"
E1ð*Þ % Enð*Þ

#
¼
Z 1

0

"
J1ð$ÞJ1ð$Þ % Jnð$ÞJnð$Þ

#
d$: ðB:1Þ

These integrals are finite even though the two individual components are not.
Substituting for the integral representation (A.1) gives

,n ¼
1

4"2

Z "

%"

Z "

%"

Z 1

0
ei$ðsin !þsin+Þ"e%ið!þ+Þ % e%inð!þ+Þ#d$d! d+: ðB:2Þ

Upon using the identity (A.3), where here the exponent vanishes for !¼%+ and
!¼+-" for +7 0, we find

,n ¼
1

4"

)Z 0

%"

e%ið2+þ"Þ % e%inð2+þ"Þ

j cos+j d+þ
Z "

0

e%ið2+%"Þ % e%inð2+%"Þ

j cos+j d+

*
, ðB:3Þ
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which can be written as

,n ¼
1

2"

Z "

0

cos ! % cos n!

sinð!=2Þ
d! ðB:4Þ

by writing !¼ 2+þ" and !¼ 2+%" in the first and second integrals, respectively. This
integral can now be solved iteratively by considering ,nþ1 and expanding the cosine via
the trigonometric summation formulae. After further use of standard trigonometric
identities we arrive at

,nþ1 ¼ ,n þ
1

"

Z "

0
sin
h-

nþ 1

2

.
!
i
d!, ðB:5Þ

¼ ,n þ
2="

2nþ 1
: ðB:6Þ

So, noting from (B.1) that ,1¼ 0, the result we are after is

,n ¼
2

"

Xn

j¼2

1

2j% 1
: ðB:7Þ
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