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ABSTRACT

A large fraction of papers in the climate literature includes erroneous uses of significance tests. A Bayesian
analysis is presented to highlight the meaning of significance tests and why typical misuse occurs. The sig-
nificance statistic is not a quantitativemeasure of how confident one can be of the ‘‘reality’’ of a given result. It
is concluded that a significance test very rarely provides useful quantitative information.

1. Introduction

In the climate literature, one can regularly read state-
ments such as ‘‘this correlation is 95% significant’’ or
‘‘areas of significant anomalies at the 90% significance
level are shaded’’ or ‘‘the significant values are printed
in bold.’’ Unfortunately, this is amisleading way of using
significance tests. The significance test does not quantify
how likely the hypothesis is, given the observation we
just made; it quantifies how likely the observation is, given
that some opposite hypothesis is true. These are two dif-
ferent things. In this notewewill formalize this notion.We
will also indicate what a significance test does mean.
Although this note does not add new theory to sig-

nificance tests, it does employ a Bayesian framework to
exemplify the issues. Practitioners in climate science are
generally familiar with the technical aspects of Bayesian
statistics, but they will perhaps be less familiar with its
use in the analysis of significance tests.
We tested a recent, randomly selected issue of the

Journal of Climate for at least one instance in each arti-
cle of misusing a significance test to quantify the validity
of some physical hypothesis. The Journal of Climate
was not selected because it is prone to include such er-
rors, but because it can safely be considered to be one
of the top journals in climate science. In that particular
issue, we observed a misuse of significance tests in about
three-quarters of the articles; a randomly selected issue

published 10 years prior showed such misuse of signifi-
cance tests in about half of the articles. The examples
mentioned above were rephrased from those articles.
The two sampled issues perhaps would not pass a tradi-
tional significance test, but they do indicate that such
errors occur in the best journals with the most careful
writing and editing. Indeed, in one of this author’s pa-
pers, such erroneous use occurred.
Comparing the papers in the two examined issues, it

appears that papers with a more dynamical focus gen-
erally do not stray as much into significance testing as
papers with a more geographical, diagnostic focus. The
distinction between these two categories is necessarily
vague. We also wonder whether an increased ease with
which such tests can be performed with data processing
and plotting software has lead to a near-default inclusion
of significance tests in papers. From experience, we are
also aware that reviewers often insist on the inclusion of
significance tests.
This reported misuse of significance tests does not

necessarily invalidate the results from those parts of the
papers. The significance test is usually only a small part
of the evidence presented; often it is only a subsidiary,
if misleading, piece of information. Furthermore, many
papers contain somewhat neutral statements, such as
‘‘this correlation is highly significant (p , 0.01).’’ Such
a statement could be read at face value, namely, that the
correlation was subjected to a significance test and a
p value of less than 0.01 was found. In such a neutral
reading, the statement is also quite meaningless, as will
be shown below.
Such a statement is more likely intended to mean that

the correlation is in some sense ‘‘real’’ and the p value
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is a quantification of that. We will show here that this
quantification of confidence is wrong. Data highlighted
as significant may easily be less meaningful than data
that were suppressed as not passing the significance
threshold. Simply put, the significance statistic is not
a quantitative measure of how confident we can be of
the ‘‘reality’’ of a given result.
A typical scenario in which people use significance

tests in climate science is the following: some experi-
ment produces two time series, and we find that they are
correlated. Is the observed correlation real or is it a
fluke? We will use this correlation scenario throughout
to be able to exemplify specific aspects of significance
testing; however, the discussion is valid for any signifi-
cance test that is based on assessing the probability of
a distinct hypothesis, the null hypothesis, which is taken
to be complementary to the hypothesis. In our scenario,
the null hypothesis is that the two time series are as-
sumed to have no physical relation, and the observed
correlation is simply due to sampling noise.
So let us concentrate on the typical question of whether

an observed correlation is real or a statistical fluke. The
correct answer to this question is in fact very difficult to
obtain. Indeed, it is usually impossible to quantify our
degree of belief either way by statistics alone. Unfor-
tunately, it is widely held that a standard significance test
(e.g., a t test) provides an answer. Standard significance
tests hardly ever give a useful answer to the question we
are trying to answer.
It can be argued that the significance test more accu-

rately should be named the insignificance test, as it may
be a reasonable test for insignificance; see section 2 be-
low andHunter (1997). Clearly, if R. A. Fisher had called
his test the insignificance test, then it would probably not
be used very much. Marketing plays an important role in
science.
There is quite a bit of literature on the use and misuse

of statistical significance tests. It has been argued that
the power of Fisher, the great proponent of significance
testing, is the real reason why significance tests are so
ubiquitous; see Ziliak and McCloskey (2008), who also
discuss the widespread use and misuse of significance
tests in several fields. In the psychological literature, the
false use of significance tests has been regularly pointed
out, although, perhaps not with much success; see, for
example, Cohen (1994), Hunter (1997), or Armstrong
(2007). In the geophysical literature, there has been
much less attention to the misuse of significance tests. A
nice review of significance testing in atmospheric sci-
ence, including a stern critique of significance testing,
can be found in Nicholls (2001). A thorough and de-
tailed discussion in the context of scientific hypothesis
testing can be found in Jaynes (2003).

In the next section, we will highlight the general
structure of a significance test and exemplify, using fre-
quency tables, the relationship between what the sig-
nificance test provides and what we really would like to
know. Section 3 provides a Bayesian analysis of signifi-
cance tests. This quantifies the relationship between sig-
nificance tests and hypothesis tests. It also quantifies what
we do get out of a significance test. Some concluding re-
marks regarding the practical use of significance tests are
in section 4.

2. General structure of significance tests

First, let us examine the structure of a typical signifi-
cance test in the scenario described earlier. A brief in-
troduction can also be found in Jolliffe (2004). The
hypothesis we are trying to test is as follows: ‘‘the two
time series are related; the correlation r0 we find in our
experiment is a measure of this relation.’’ Note the dis-
tinction between relation and correlation here. A corre-
lation is a statistical property of two time series, while
a relation indicates that the two time series are depen-
dent in some physical way. We then define the so-called
null hypothesis, which in some sense states the opposite
[see, e.g., Wilks (1995) or von Storch and Zwiers (1999)
for a more detailed discussion of null hypotheses]. In our
case, the two time series are not related; the observed
correlation r0 is a fluke. We then attempt to test the val-
idity of the null hypothesis.
Here is where the first confusion comes in.We want to

devise a way to assign a probability to the validity of the
null hypothesis, given the observed correlation. But
what we end up doing is calculating the probability for
a correlation at least as big as the observed correlation
when the null hypothesis is assumed to be true. These
two probabilities are different, although they are related
by Bayes’ theorem. This common error is called the error
of the transposed conditional. The discussion of Bayesian
statistics below formalizes this.
Let us continue with the usual significance test. There

are standard procedures for assigning a probability to
the observed correlation, assuming the null hypothesis
is true: t tests for Gaussian data, parametric or non-
parametric tests for non-Gaussian data. In general, we
study synthetic time series with similar properties, per-
haps similar temporal autocorrelation, or other relevant
properties, to the original time series but are unrelated
by construction. Note that this is by no means a trivial
exercise: to produce the synthetic data, we need to use
a model that is as faithful as possible to the original
model, except for the fact that, by construction, the
synthetic series is based on a model in which the hy-
pothesized relationship is explicitly switched off; Wilks
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(1995) and von Storch and Zwiers (1999) provide some
of the background. Having produced a set of synthetic,
unrelated time series, we can then see what the proba-
bility is to find a correlation between such an unrelated
series at least as large as the observed correlation r0. This
probability is called the p value.
There is a distinction between the use of the absolute

value of the correlation or the actual value; this then
corresponds to a two-sided or a one-sided test, respec-
tively. The presented arguments work the same for ei-
ther test and also for wider classes of tests: significance
tests always find the probability, the p value, of an ob-
servation at least as distinctive as the one observed, as-
suming the truth of the null hypothesis.
If the p value is large, then two unrelated time series

can easily produce a correlation as large as r0.
1 We must

then conclude that the observed correlation provides
little evidence for an actual relation between the two
original time series. If the p value is low (typically, values
of 5% or even 1% are chosen to define what is ‘‘low’’),
then the observed correlation is unlikely to occur in
unrelated time series.
What can we conclude from those two possible out-

comes? It is reasonable to conclude that, if we only have
these statistics available, a high p value is a good in-
dicator that the observed correlation r0 is not particu-
larly special. Any pair of unrelated time series could
easily (high p value) have a correlation as large as r0,
assuming the null hypothesis; this does notmean that the
null hypothesis is highly probable. Beware of the error
of the transposed conditional.
Further confusion occurs when the p value is low. All

it means is that it not likely that the observed correlation
would occur in two unrelated time series. However, we
cannot conclude from such an outcome that the two
original time series are likely related, that is, signifi-
cantly correlated.
It can be argued that ‘‘significantly correlated’’ is de-

fined to correspond to a low p value. Although this
would be technically correct, it would render the state-
ment of significant correlation quite insignificant in any
practical sense. The low p value is a property of un-
related time series; it says nothing about related time
series. In philosophy such a situation is called a category
error (Ryle 1949): a property is wrongly ascribed to
something that cannot have this property. Statements
such as ‘‘the two time series are significantly correlated

at the 95% level’’ (that is p is lower than 5%) commit
a category error.
It is instructive to work this out using a 2 3 2 fre-

quency table. Suppose a researcher, with much more
prior knowledge, knows beforehand that the time series
are indeed physically related and that he can repeat in-
dependent experiments that produce the two time series
as often as he likes. In each experiment, he finds some
correlation r between the two time series. He can then
compare that correlation with the threshold correla-
tion, say, rp, which corresponds to a given p value for
the null hypothesis that the two series are unrelated.
For example, he can choose a p value for significance of
5%. This will correspond to a particular threshold cor-
relation rp. The correlation between the related time
series of any experiment will be either larger or smaller
than rp.
We have not dwelled on what is meant when we know

something to be true beforehand. In science, we need to
use an operational definition stating that there is a wide
body of historical evidence that supports the hypothesis.
For example, Newton’s laws are known to be ‘‘true.’’
This example is so well known that we immediately can
understand the subtleties of scientific truths. We know,
for example, that Newton’s laws have a limited validity.
Scientific truth always has to be qualified; it cannot be
compared with logical truth. Further discussion can be
found in Jaynes (2003).
In our example, the knowledgeable researcher runs

100 experiments (these experiments are assumed to be
independent)2 and divides them into two categories with
either high (r . rp) or low (r , rp) correlation. Because
the time series are related by construction, we should
expect a fairly large fraction to produce a high correla-
tion. Let us, for the sake of argument, say that 60% of
the experiments show a high correlation.
We now do the same thing for 100 synthetic time se-

ries that, by the null hypothesis, are unrelated by con-
struction. If our significance test is designed properly,
then out of 100 unrelated synthetic time series, on av-
erage, 5 will have a high correlation and 95 will have
a low correlation. The results are summarized in Table 1.
From the table we see that the p value of 5% is a

statement about the unrelated time series. It says

1 The implied meaning is that under repeated sampling under
the null hypothesis, the p value is the probability that a correlation
at least as large as r0 is found.

2 In practice, this requirement is very hard to fulfill: in what sense
do different model runs provide independent experiments? After
all, all general circulation models have very similar formulations.
We cannot then interpret each experiment as being independently
sampled from some notional model space corresponding to our
best knowledge of theworld. Such problems of interpretation seem
to impel one to consider a more Bayesian view of significance
tests.
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nothing about the related time series. To get a statement
about the related time series, we need to be able to re-
peat our experiment a sufficient number of times to pro-
duce a trustworthy probability density of the correlation
values for the related time series. This is often impossible.
Regularly, we only have a single series, say, from a cli-
mate record.We then cannot infer the probability density
without extra information or some physically based esti-
mates about the sizes and properties of the signal and the
noise.
On the basis of this example table, we can now partly

answer the question thatmost people are interested in: is
my observed correlation r0 an indication of a real re-
lation or is it a fluke? In other words, we try to calculate
the probability that the relation is real, given that we
measured a correlation r0. If we assume that the ob-
served correlation is larger than the threshold correla-
tion rp, then we see from the Table 1 that the probability
that the relation is real is 60/(60 1 5) ’ 92%, where we
have employed equal prior odds on the time series be-
ing related or unrelated; this probability is different
from the 95% that the significance test would have us
believe.
Note that the 92% value given above depends on the

prior odds. If we do not know whether the time series
are related or unrelated, then it does not mean these
two options have equal odds; it just means that the
odds are undefined (see Cox 1961, p. 31). The assump-
tion of equal odds is a strong additional assumption,
although it can be thought of as the maximum entropy
prior; that is, it is the assumption that is maximally
noncommittal given the lack of any further information
regarding the relation between the time series (see
Jaynes 1968, 2003). Of course, in reality such equal
prior odds are unlikely, and it is usually impossible to
quantify the actual prior odds. The prior odds are
a measure of what prior information is available and
how this information is used. In a precisely controlled
situation, this may lead to quantitative statements;
however, in science such precise control is not available
in practice.
The actual probability also depends on the division

between the high and low probabilities for the set of
experiments that by construction correspond to related
time series (the top row in Table 1). If the signal-to-noise

ratio is low in our experiments,3 we expect a weak dis-
tinction between related and unrelated time series. In
the limit of very low signal-to-noise ratio, the related
series would also show 95% low correlations and 5%
high correlations (see Table 2).
The probability that our observed r0 with r0 . rp is

indicative of an actual relation is then 5/(5 1 5) 5 50%,
again assuming equal prior odds for the time series to be
related or unrelated: the observed correlation does not
provide evidence either way, even though it is thought
to be ‘‘significant’’ according to a significance test. Of
course, this should not come as a surprise. If the signal-
to-noise ratio is very low, then any observed correlation
essentially provides information about the noise; there-
fore, it is impossible to use this observation to infer any-
thing about the signal. Although this last case represents
an extreme example, it does demonstrate that the p value
can be very far from the actual probability of the truth of
a null hypothesis.

3. Bayesian analysis

We can formalize the situation by using Bayes’ equa-
tion. Let us define the hypothesis H as ‘‘the time series
are related.’’ We observe that the time series have
a correlation of r0, which we find to be larger than some
predetermined threshold correlation rp. We are now
interested in the conditional probability, p(Hjr . rp),
that the hypothesis is true, given that we observe the
time series to have a correlation larger than rp. The
significance test gives us the conditional probability
p(r. rpjH) that we observe a correlation of at least rp
given that the hypothesis is false (H). The threshold
value rp is often chosen such that p(r. rpjH) equals
some specific low value (typically, 0.01 or 0.05). We can
also choose rp 5 r0. In this case, the conditional proba-
bility p(r. r0jH) is called the p value of the observation.
Therefore,

p value[ p(r. r0jH). (1)

It is important to keep this explicit expression for the
p value in mind.

TABLE 1. Example frequency table for a typical test of significance
of a correlation.

Low r High r

Related 40 60
Unrelated 95 5

TABLE 2. As in Table 1, but for a low signal-to-noise ratio.

Low r High r

Related 95 5
Unrelated 95 5

3 That is, the size of the contribution of any physical relation is
low compared to the sampling variance, as present under the null
hypothesis.
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A common mistake is to assume that p(Hjr. r0) 5
1! p(r. r0jH). This is the mistake of the transposed

conditional: it is wrongly assumed that p(r. r0jH) 5
p(Hjr. r0). It is straightforward to do the correct algebra:

p(Hjr. r0)5 1! p(Hjr. r0) (complementarity)

5 1! p(r. r0jH)
p(H)

p(r. r0)
(Bayes’ theorem)

5 1! p(r. r0jH)
p(H)

p(r. r0jH)p(H)1p(r. r0jH)p(H)
(exclusive propositions)

5 1! p(r. r0jH)
1

p(r. r0jH)O(H)1 p(r. r0jH)
, (2)

where we have introduced the (prior) odds ratio for the
hypothesis H,

O(H)5p(H)/p(H). (3)

This equation is essentially Bayes’ theorem written out
to indicate the relationship between the posterior prob-
ability p(Hjr. r0) and the p value. With this equation, it
is obvious that we cannot use the p value alone to esti-
mate the probability of the truth of the hypothesis. We
also need the prior odds ratio as well as the conditional
probability p(r. r0jH). Note that, if we assume an odds
ratio of O(H) 5 1, then we recover the results we pre-
sented in the previous section.
Perhaps in hindsight, it should come as no surprise

that the probability of the truth of H needs to depend
on the prior odds for H. If H is overwhelmingly likely
(O(H)/ ‘), then the observation of correlation r0 does
very little to change this: p(Hjr . r0) / 1. If H is very
unlikely (O(H)/ 0), then the observation of correlation
r0 does, again, very little to change this: p(Hjr. r0)/ 0.
This may seem a little counterintuitive. Clearly, any

observation in some sense adds the same amount of in-
formation to our knowledge, irrespective of the prior
odds. However, the formal structure of Bayes’ theorem
stipulates that low prior odds need an extraordinary
amount of positive evidence for the hypothesis to
change this to high posterior odds [see Eq. (6)]. The
discovery of Neptune is a case in point: the observed
anomalies in the trajectory of Uranus could be inter-
preted as evidence for the hypothesis H 5 ‘‘Newton’s
laws are false.’’ However, this hypothesis was consid-
ered so unlikely that the anomalous observations still
left Newton’s laws intact and alternative hypotheses,
such as the presence of an extra planet, had to be found.
It is also interesting to consider again the case of low

signal-to-noise ratio. In this limit, the conditional prob-
abilities p(r . r0jH) and pðr. r0jHÞ become indistin-
guishable. From Eq. (2), we then find

p(Hjr. r0)’
O(H)

11O(H)
5 p(H). (4)

As expected, in this case the observation of r0 changes
nothing to the probability ofH; the observed correlation
is mainly a measure of the noise and says little about the
signal. For a prior odds ratio of 1, the probability for the
hypothesis to be true remains 50%after the observation.
Written out like this, it seems surprising that so many

of us regularly get confused by significance tests at
all. Let us analyze the following apparently innocuous
statements that in some form or another seem to be the
mainstay of many investigations, for example, a physi-
cal measurement:

(i) My measurement stands out from the noise.
(ii) So, my measurement is not likely to be caused by

noise.
(iii) It is therefore unlikely that what I am seeing is

noise.
(iv) The measurement is therefore positive evidence

that there is really something happening.
(v) This provides evidence for my theory.

The first two statements are essentially expressions of
the fact that we have a situation with a low p value: the
chance that the observation is produced by noise is low.
The main error occurs in the third statement. It is the
error of the transposed conditional. The probability of
the data to be noise, given our measurements, is not the
same as the probability of our measurements, given that
the data are noise. The fourth statement would follow
from the third statement if it were true. The truth of the
fifth statement depends on what alternatives there are to
the noise hypothesis; this is where physics comes in as
well as Occam’s razor: is my theory the next most likely
explanation of the observation? The presence of alter-
native theories also influences prior odds for hypotheses.
For example, if there are many plausible alternative
hypotheses, then the present hypothesis will have low
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prior odds. A beautiful quantification of such ideas can
be found in Jaynes (2003, chapter 5).
A more compact form of Eq. (2) can be found by

writing Bayes’ theorem in terms of prior odds ratio
O(H) and posterior odds ratio O(Hjr . r0) with

O(Hjr. r0)5 p(Hjr. r0)/p(Hjr. r0). (5)

We find

O(Hjr. r0)5O(H)
p(r. r0jH)

p(r. r0jH)
. (6)

The factor that updates the prior odds to the posterior
odds is called the Bayes factor. For example, in the case
of a low signal-to-noise ratio, the Bayes factor equals 1;
in this case, the posterior and prior odds are the same.
Note again, that to find the posterior odds, the p value,
pðr. r0jHÞ, is insufficient; we need the prior odds and
the Bayes factor.
So, what do we do? Equation (6) gives some quanti-

tative clues. It is true that from Eq. (6) it follows that
a low p value seems to indicate that the odds for H
typically have increased by our ‘‘statistically significant’’
observation. By how much depends on the value of the
Bayes factor p(r. r0jH)/p(r. r0jH). If the p value is
low compared to p(r. r0jH), then the posterior odds for
H are larger than the prior odds. Although its value is
usually hard to determine, we normally assume that our
threshold is such that p(r . rpjH) is not small (after all,
we would have devised the experiment to detect a hy-
pothesized effect as clearly as possible). In this sense,
a low p value can provide positive evidence for the hy-
pothesis. What it does not provide is any quantitative
measure of what the posterior odds are or by what
amount the odds might have improved. The 5% (or 1%)
significance bound is utterly irrelevant: the improve-
ment or deterioration of the odds forH depends on how
large the p value is compared to p(r . r0jH), a quantity
that in practice is hard to determine.

4. Conclusions

So, are significance tests at all useful? As indicated
earlier, a high p value is a useful indication that our
observed correlation is not particularly noteworthy. A
high p value does not mean that the probability for truth
of the hypothesis is low [see Eq. (2)]. It just means that
the observed correlation is easily consistent with null
hypothesis H, so that H cannot be rejected. But the

observed correlation could equally well be consistent
with the hypothesis H; the p value simply contains no
information either way. Occam’s razor now tells us that
we should not hypothesize a relationship for which there
is no evidence. In this specific sense, a significance test
can be a reasonable test for insignificance; it can be used
for debunking spurious hypotheses.
Oppositely, a low p value is not indicative of much at

all except that the observed correlation is not very
probable if the null hypothesis were true. There is a
tentative, but unquantified and possibly incorrect, in-
dication that the posterior odds for our hypothesis may
have increased, as expressed by Eq. (6). But, especially
in this case, which is often used as positive evidence for
the hypothesis, any quantitative information assuming
the null hypothesis is quite irrelevant.
A so-called significant correlation is meaningless in

any practical sense; such a statement is a category error.
Significance tests of a single experiment alone cannot be
used to provide quantitative evidence to support a physi-
cal relation.
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