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ABSTRACT

The stability characteristics of the surface quasigeostrophic shielded Rankine vortex are found using
a linearized contour dynamics model. Both the normal modes and nonmodal evolution of the system are
analyzed and the results are compared with two previous studies. One is a numerical study of the instability
of smooth surface quasigeostrophic vortices with which qualitative similarities are found and the other is
a corresponding study for the two-dimensional Euler system with which several notable differences are
highlighted.

1. Introduction

The surface quasigeostrophic (SQG) model (Held
et al. 1995) is an approximation of the motion of a rap-
idly rotating stratified fluid near a horizontal boundary.
It represents planar advection of the boundary tempera-
ture field under the assumption of uniform interior po-
tential vorticity. This is in essence a two-dimensional
system whereby the streamfunction is determined en-
tirely by the boundary temperature field via a Green’s
function proportional to 1/r. Applications of the model
include the evolution of tropopause undulations (Juckes
1994; Juckes 1995; Muraki and Snyder 2007) and near-
surface oceanic vortices (Lapeyre and Klein 2006). This
type of dynamics has also been studied by Blumen (1978)
under the name of uniform potential vorticity flow.
Carton (2009, hereafter C09) provides a numerical

study of smooth shielded vortices in the SQGmodel and
compares the evolutions with those of unstable vortices
under the more familiar two-dimensional Euler dynam-
ics. Here the complementary analytic study is presented
in which linear growth rates of perturbations are calcu-
lated for a simple class of shielded SQG vortex, the
shielded surface Rankine vortex. By this we mean the

SQG analog of the usual shielded Rankine vortex of
two-dimensional Euler dynamics: an inner circle of tem-
perature u 5 u0 surrounded by an outer annulus of tem-
perature u5 u1. In the followingweuse the samenotation
and conventions as C09, which should also be referred to
for a full description of the model and its applications.
The shielded surface Rankine vortex provides the

simplest analytically tractable example of an unstable
SQG vortex. Furthermore, the corresponding two-
dimensional Euler problem is well studied (Flierl 1988)
so that this setup provides a fruitful source of compari-
sons between the two systems. The analytical treatment
has become possible sinceHarvey andAmbaum (2010b)
derived the dispersion relation for a single-step sur-
face Rankine vortex, that is, a circular patch of uniform
temperature anomaly analogous to the Rankine vortex
of two-dimensional Euler dynamics. We review the meth-
odology and the main results we require from this study in
section 2 and then analyze the shielded problem in sec-
tion 3. A comparison is made with the results of C09 in
section 4 and conclusions are provided in section 5.

2. Single-step surface Rankine vortex
dispersion relation

The dispersion relation for linear perturbations to
a single-step surface Rankine vortex, or temperature
‘‘patch,’’ of the following form:
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u(r)5
u0 r, a

0 r. a,

!
(1)

where a is the patch radius and u0 is the temperature
anomaly of the vortex, is derived inHarvey andAmbaum
(2010b). Here we review the methodology and the main
results from that study. It is shown there that the azi-
muthal velocity field corresponding to (1) can be writ-
ten as

u(r)5 u0E1(r/a), (2)

where we introduce the following notation:

En(r/a)[
ð‘

0
Jn(k)Jn(kr/a) dk, (3)

where Jn is the Bessel functions of the first kind. Figure 1a
illustrates (1) and (2) graphically. Note the logarithmic
singularity in u at r 5 a, which we discuss below.
The dispersion relation is derived by perturbing the

patch boundary to the new position:

r5 a 11Re[h(t)einu]
# $

, (4)

where u is the azimuthal coordinate, and then lineariz-
ing the equation for material advection of the boundary
for small h. The linearized equation of motion is

dh

dt
5 lim

r!a
!in

r
uh1

1

a
y9e!inu

% &
, (5)

where y9(r, u, t), the linearized perturbation radial ve-
locity field, is derived in Harvey and Ambaum (2010b)
as

y95
in

r
ahu0En(r/a)e

inu. (6)

Note that the right-hand side of (5) is the sum of the
azimuthal advection of the perturbation by the basic
state (first term) and the radial advection of the basic
state by the perturbation (second term). Both of these
terms are singular at r 5 a, but the combination in (5)
is regular. The velocity singularity is a generic feature
of temperature discontinuities under SQG inversion.
However, the singular component of the velocity is al-
ways aligned along the discontinuity and the normal
component remains finite. Therefore, the evolution of
the temperature field remains relatively slow (Held et al.
1995). This alignment is apparent here through the can-
cellation of the singularities in (5), as discussed in detail
by Juckes (1995). The justification for using this basic
state, despite the qualitative difference with the smooth
profiles of C09, comes from the fact that wave propaga-
tion on a slightly smoothed discontinuity is regular in the
sharp edge limit, as shown by Juckes (1995).
Putting h(t)} e!ivnt and substituting for u and y9 from

(2) and (6) in (5) gives the dispersion relation we seek:

vn 5
u0n

a
lim
r!a

[E1(r/a)! En(r/a)], (7)

which is evaluated analytically in Harvey and Ambaum
(2010b) as

vn 5
u0n

a

1

p
!
n

j52

1

j! 1/2

% &
[

u0n

a
an. (8)

We note that the two-dimensional Euler dispersion
relation for waves on a vortex patch can be obtained

FIG. 1. (a) Basic-state temperature and velocity profiles for the one-step surface Rankine vortex as in (1) and (2).
(b) Example of the temperature and velocity profile for a shielded surface Rankine vortex, as in (10), with parameter
values b 5

ffiffiffi
2

p
a and u1 5 2u0.
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similarly. The less localized Green’s function, propor-
tional to log r in that case, introduces a factor k21 into
the integrand of (3) and the integrals can then be eval-
uated as a/2n (Gradshteyn and Ryzhik 2000) so (7) re-
duces to the standard result:

v2DE
n 5

q0
2
(n! 1), (9)

where q0 is the vorticity value of the patch. An important
difference between (9) and (8) is the a in the prefactor:
the phase speeds of perturbations cp (5va/n) on the
SQG vortex are independent of the vortex radius. This is
to be expected on dimensional grounds since u has the
dimension of a velocity field whereas the vorticity q in
the two-dimensional Euler system has the dimension of
a frequency.

3. Shielded surface Rankine vortex
dispersion relation

Wenow use the method from section 2 to find analytic
expressions for the linear growth rates of perturbations
on a shielded surface Rankine vortex.Wewrite the basic
state as

u(r)5

u0 r, a

u1 a, r,b

0 r. b,

8
<

: (10)

where a , b are the radii of the temperature jumps and
u0 and u1 are the inner and outer temperature anomalies,
respectively. Through linearity and (2) the correspond-
ing basic-state velocity field is

u(r)5 (u0 ! u1)E1(r/a)1 u1E1(r/b), (11)

an example of which is illustrated, along with the profile
in (10), in Fig. 1b.
To analyze the evolution of perturbations on this basic

state we follow the procedure from section 2, but that here
there are two boundaries that must be taken into account.
Consider perturbing each boundary independently to the
new positions:

r5 r1(u, t)[ a 11Re[h(t)einu]
# $

and

r5 r2(u, t)[ b 11Re[n(t)einu]
# $

, (12)

and linearizing the equation for material advection of
each boundary, for small h and n. The result is a pair of
equations analogous to (5):

dh

dt
5 lim

r!a
!in

r
uh1

1

a
y9e!inu

% &
(13)

dn

dt
5 lim

r!b
!in

r
un1

1

b
y9e!inu

% &
, (14)

where u(r) is given by (11) and y9(r, u, t) is likewise
a linear sum of contributions from each boundary of the
form in (6):

y95
in

r
[ah(u0 ! u1)En(r/a)1 bnu1En(r/b)]e

inu. (15)

We now substitute for u and y9, from (11) and (15) into
(13) and (14), and write the system in matrix form for
convenience. First we define the nondimensional pa-
rameters:

l5 b/a and m5 u1/u0 (16)

to simplify notation, and note from (3) that En(1/l) 5
lEn(l). The system in (13)–(14) can then be written as

i
d

dt
h
n

% &
5

u0n

a

(1! m)an 1 lmE1(l) !l2mEn(l)

!
(1! m)En(l)

l2
man

l
1

(1! m)E1(l)

l

2

4

3

5 h
n

% &
(17)

[ F
h
n

% &
, (18)

where an is defined in (8). The matrix F contains all the
information for the evolution of linear perturbations.
The diagonal elements represent the propagation of
the disturbances on each boundary whereas the off-
diagonal elements represent the interaction between
the boundaries. Here we have chosen u0/a as the

dimensional frequency scale for consistency with the
study of Flierl (1988). That is, we imagine a central
vortex of amplitude u0 and radius a and ask how the
different ‘‘shields’’ modify the vortex behavior. An
alternative, which we discuss further below, is to focus
on the filament-like nature of the instability. That is,
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consider the outer annulus as a circular filament of width
b 2 a, the instability of which is modified by the circular
geometry and the presence of the central vortex.
The normal mode frequencies of the system are given

by the eigenvalues of F which take the following form:

V6
n 5

tr(F)

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr(F)

2

( )2
!det(F)

s

. (19)

There are therefore unstable normalmodeswhen tr(F)2,
4det(F). This boundary of stability in (l, m) space is
shown in Fig. 2a for several wavenumbers. To interpret
the figure we note that the SQG analog of the Rayleigh
theorem requires a radial temperature profile to contain
regions of opposing gradient for growing normal modes
to exist (see C09). These are only present in (10) if m. 1
orm, 0 and the regions of normalmode growth in Fig. 2a
are indeed contained within these regions.
Figure 2b shows the corresponding two-dimensional

Euler calculation for comparison, following Fig. 2 of
Flierl (1988). That is, the stability boundaries for a shiel-
ded Rankine vortex consisting of an inner circular patch
with vorticity q0 and an outer annulus with vorticity q1.
The two plots havemany qualitative similarities, themain
difference being that the n5 2 mode is stable for all q5
q1/q0 . 0 in the two-dimensional Euler case, whereas for
the SQG system there is a region of parameter space with
m . 0 where the n 5 2 mode is unstable. Another dif-
ference is that for the SQGcase the boundaries of stability
do not all continue to large l. For the two-dimensional
Euler case the boundaries of stability all tend toward q5
(n2 1)/(n2 2) at large l (see Flierl 1988) whereas for the
SQG system modes n 5 2–4 satisfy

m; 11
1

2an

! 1

% &
1

l
for l " 1, (20)

but modes with n $ 5 (for which an . ½) are stable for
allm at l larger than a critical value given by the solution
to lc

2E1(lc)5 an. This expression is found by noting that
the stability boundary is given by the implicit equation
tr(F)2 5 4det(F). Expanding this equation for l " 0 we
find the expression in (20), where we have also used the
asymptotic result derived in Harvey and Ambaum
(2010b), that is, En ; Cn/l

n11 with C1 5 ½.
The normal modes of (19) are special perturbation

configurations that preserve their shape in time. In
general, unstable solutions to equations of the form in
(18) undergo an initial period of transient development
during which they align toward the growing normal
mode shape [see Farrell and Ioannou (1996) and Carton
et al. (2010) for a full description of such nonmodal
behavior]. The main result is that the transient devel-
opment can exhibit a temporary period of growth at
rates larger (or smaller) than the normal mode growth
rate, depending on the initial configuration of the per-
turbation [i.e., h(0) and n(0)]. Similarly, stable solutions
can exhibit periodic cycles of transient growth and decay
that, while not causing a long-term net growth to per-
turbations, may temporarily increase the perturbation
size.
A standard method of analysis is to consider the so-

called singular mode amplitude, which is the value of
a given norm at any given timemaximized over all initial
conditions. The singular mode amplitude can be calcu-
lated analytically in terms of the elements of F following
the methods of Farrell and Ioannou (1996). This has
been done for the rms waveslope norm and Fig. 3 shows
values of the corresponding singular mode equivalent
growth rate:

ss(t)5
log[Ns(t)/N(0)]

t
, (21)

FIG. 2. (a) Stability boundary in (l, m) space for n 5 2–7. The solid line indicates vortices with zero integrated
temperature [see (24)] and the asterisks indicate the positions of the profiles in (30)–(31) for severala values. (b) Stability
boundary for the two-dimensional Euler problem. The solid line indicates vortices with zero integrated vorticity.
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where Ns(t)/N(0) is the singular mode amplitude scaled
by the initial perturbation amplitude. It can be shown
that (Farrell and Ioannou 1996) Ns has the following
asymptotic limit for small times (t # V6

n

** **!1
):

Ns(t) ; N(0) 11
F12 ! F21

** **
2

t

% &
, (22)

where F12 and F21 are the off-diagonal elements of F,
and for large times (t " V6

n

** **!1
):

Ns(t) ; N(0)
F12 ! F21

** **

2 Im(V1
n )

eIm(V1
n )t, (23)

if Im(Vn
1). 0 andNs(t); 0, otherwise. The figure shows

these two limits graphically as well two intermediate
times. It is consistent with the notion that nonmodal
disturbances of wavenumberswithin the range of growing
normal modes undergo a transient period of growth po-
tentially larger than the corresponding normal mode
growth rate during which they adjust toward the normal
mode shape, followed by what is effectively normal
mode growth. Nonmodal disturbances outside the range

of the growing normal modes continually undulate
around their initial configuration resulting in a ss,
which decays in time. The ridges, particularly appar-
ent in Fig. 3c, are a result of this undulatory nonmodal
behavior.

4. Completely shielded vortices

Returning now to analyze the normal modes in more
detail, we focus on vortices with zero net integrated tem-
perature anomaly:

(l2 ! 1)m5!1, (24)

which is illustrated in Fig. 2a by the solid line. This class
of vortices is important because it represents vortices
with a more localized influence than not completely
shielded cases. In particular, the class of vortices studied
by C09 is completely shielded.
Figure 4a shows the normal mode growth rates of

perturbations for completely shielded vortices as a func-
tion of l. The SQG vortices display the familiar behavior

FIG. 3. Contoured values of ss for n 5 2 and t values as indicated. The small and large t plots are given by the
formulas in (22) and (23), respectively. The contour interval is 0.05u0/a with dark shading indicating high values and
black shading indicating values greater than u0/a.
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also observed in the two-dimensional Euler case, through
theory and experiment, that the wavenumber of the
fastest-growing normal mode is dependent on the vor-
tex profile, with progressively higher modes being rel-
evant for smaller l, or larger m. The increase in growth
rate as l / 1 is consistent with a consideration of fila-
ment instability, as we show below. First we compare the
growth rates to those of the C09 study.
The family of vortices studied by C09 has temperature

profiles of the following form:

u5Q(r)[Q0(a) 1!
a

2

r

R

+ ,ah i
e!(r/R)

a

, (25)

where r is the radial coordinate, R and a are positive
constants, and Q0(a) is a normalization factor such that
the corresponding azimuthal velocity field u rð Þ satisfies
max(u) 5 u0. These profiles consist of a central tem-
perature maximum surrounded by an annulus of nega-
tive temperature anomaly, as illustrated in Fig. 5. We
approximate them as shielded surface Rankine vortices
by choosing suitable values for u0, u1 and the sizes of the
inner and outer regions.
There is freedom in choosing these parameters; we

choose them to satisfy the following four constraints:

r5 a minimizes dQ/dr, (26)

r5 b maximizes dQ/dr, (27)

ð‘

0
u(r)r dr5 0, and (28)

ða

0
u(r)r dr5

ða

0
Q(r)r dr. (29)

That is, the locations of the jumps coincide with the
points of steepest temperature gradient and u0 and u1 are

chosen so that both the total integrated temperature
anomaly is zero and the integrated temperature anom-
aly in the range r, a equals that of the smooth profiles.
The choice is of course not unique, but it suffices to
provide a qualitative comparison between the systems.
Figure 5 illustrates this choice of parameters for several
values ofa. The differences between the two growth rates
is expected to be sensitive in particular for small a where
the smooth profiles differmost from theRankine profiles.
The vortex parameters satisfying the constraints (26)–

(29) are given by

a

b

% &
5R

3a1 1

2a
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a1 1

2a

% &2
! (a1 2)(a! 1)

a2

s2

4

3

5
1/a

,

(30)

FIG. 4. (a) Normal mode growth rates for completely shielded vortices as a function of l. (b) Normal mode growth
rates for the parameter values in (30)–(31) as a function of a. In both (a) and (b), wavenumbers 2–4 are indicated, the
higher modes follow the pattern. In (b) the broken lines show data fromC09 (see text), where dotted is n5 2, dashed
is n 5 3, and dot–dashed is n 5 4.

FIG. 5. Some example temperature profiles. Smooth curves are
the C09 profiles of (25), for the a values shown, and the discon-
tinuous profiles are the corresponding shielded Rankine vortices
given by (30)–(31).
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u0 5Q0(a)e
!(a/R)a , u1 5

!u0a
2

b2 ! a2
, (31)

where Q0 and a are as in (25). Figure 4b shows the
corresponding normal mode growth rates, Im(Vn), as
a function of a. Note that the data plotted here are
identical to those of Fig. 4a except for the choice of
scalings.
Also shown in Fig. 4b are the numerically obtained

growth rates from C09 for the corresponding smooth
cases. There is a clear similarity between the two cases.
The main difference is a shift toward higher a values
in our figure since the first unstable mode appears near
a 5 3, whereas there are unstable modes from a 5 2 in
C09. The magnitude of the growth rates, however, is
comparable between the two cases.
As mentioned above, the increase in growth rates for

l close to 1, or equivalently large a, is consistent with the
nature of filament instability in SQG dynamics. For
comparison, a straight temperature filament of width L
with a ‘‘top hat’’ profile, analogous to the Rayleigh
problem of two-dimensional Euler dynamics, is unstable
with normal mode growth rates given by

sfil 5
u

L
F(k), (32)

where F is a function of the nondimensional wave-
number k 5 kL (Juckes 1995). As such, we define a
scaling factor:

S[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1(u0 ! u1)
** **

q

b! a
5

u0
a

l

(l1 1)(l! 1)2
, (33)

which is the ratio of a temperature scale (the geometric
mean of the two temperature jumps) and the annulus
width. Figure 6a shows that for unstable SQG vortices
satisfying (24), the maximum growth rate is always re-
markably close to max(F)S ’ 0.1292S. We expect a
similar result to hold for the two-dimensional Euler
system, but in that case there is no length scale so the
instability growth rates will just be proportional to the
geometric mean of the two vorticity jumps.
To highlight the link to the filament instability further,

Fig. 6b shows the dispersion relation calculated for
several vortices toward the limit of a large, but weak,
central vortexwith an outer annulus of fixedL (i.e., l/ 1
with b2 a5 L). The wavenumber n is scaled to coincide
with the wavenumber k of the filament in this limit:

kequiv 5
n

a
(b! a)5 n(l! 1), (34)

and the growth rates are again scaled by S of (33). The
growth rates do indeed appear to coincide with those
of the straight filament in the limit of l / 1. The cor-
rection for larger l shifts the growth rate curve to slightly
larger kequiv values on average but, consistent with the
discussion above, does not alter the maximum growth
rate by verymuch. This shift in the maximum growth rate
seems to be purely a geometric effect of the curvature.

5. Discussion and conclusions

The linear stability of the SQG shielded Rankine
vortex has been investigated analytically. The results
show that the behavior found numerically by C09 for
a class of similar, but smooth, temperature profiles is
captured well by this simpler model. In addition, the

FIG. 6. (a) Normal mode growth rates scaled by S for vortices with zero integrated temperature anomaly.
Wavenumbers 2–4 are indicated; the higher modes follow the pattern. The most unstable mode at each l is em-
phasized by the heavy line and the dashed line represents max(F )S ’ 0.1292S (see text). (b) Scaled normal mode
growth rates vs kequiv for l 5 1.7, 1.5, 1.3, and 1.1, labeled a–d, respectively. The dashed line shows the dispersion
relation for a straight temperature filament.
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study provides a comparison to the well-studied two-
dimensional Euler case.
The instability is shown to be related to filament in-

stability in the relevant limit and is remarkably similar
even far from this limiting case. The interesting differ-
ences to the two-dimensional Euler case are a result of
the scaling between the advected quantity and the flow
field, which is apparent in the growth rate of the filament
instability. Harvey and Ambaum (2010a) discuss this
further in the context of a filament under strain and shear.
As a check of the theory, nonlinear simulations of the

completely shielded vortices have been run at high res-
olution with a pseudospectral code. This was achieved
by (very) slightly smoothing the vortex profile discon-
tinuities. The experiments showed vortex instability on
the linearly most unstable mode within a shift toward
larger l of order 0.05. In a similar fashion to the corre-
sponding two-dimensional Euler case of Morel and
Carton (1994), the numerical experiments did not evi-
dence nonlinear stabilization into multipoles. Instead
the outer annulus breaks nonlinearly into smaller vor-
tices that then pull the central vortex apart and disperse
as dipoles. However, as in the two-dimensional Euler
case, stable multipoles can be achieved if an annulus of
zero temperature is introduced between the core vortex
and the active periphery.
An interesting problem following on from this study is

to investigate the corresponding baroclinic problem,
that is, to consider two vertically separated SQG tem-
perature patches of opposite sign. This can be done ei-
ther in an unbounded fluid, as an approximation to an
oceanic heton, or confined by horizontal boundaries,
as a model of atmospheric baroclinic instability on the
hemispheric scale. This would put the model of Eady
(1949) into a more realistic setting. A similar framework
could be applied in either case.
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