Self-organized criticality in tropical convection?

Bob Plant

Climate Thermodynamics Workshop 22nd April 2010 With thanks to: Tom Jordan, Chris Holloway, Jun-Ichi Yano, Ole Peters

Outline

- Traditional picture of tropical convection
- What is self-organized criticality?
- Evidence for SOC in convection
- 1st attempt at SOC model of convection
- No conclusions, just open questions

Traditional picture of tropical convection

The cumulus ensemble

The Arakawa and Schubert (1974) picture

- Convection characterised by ensemble of many cumulus clouds
- Scale separation in both space and time between cloud-scale and the "large-scale"

Large-Scale State

- A region containing many cumulus elements over which the forcing is toleraby uniform
- i.e., a macroscopic state (cf. thermodynamic limit)
- Basis for many convective parameterizations, with grid-box identified with large-scale state
- In statistical equilibrium, properties of the cumulus ensemble are a function of the large-scale state (as in gas kinetics)

For example...

Can predict pdf of mass flux (or rainfall) in a finite-sized region, assuming (say) that the microscopic components are non-interacting (Cohen and Craig 2006, Davoudi et al 2009)

Traditional picture stresses statistical equilibrium and no or weak cloud-cloud interactions The University of Reading

What is self-organized criticality?

SOC characteristics

- Dynamical system of many dof's whose self-interactions tend to organize the system towards a macroscopic state analogous to an equilibrium system at a critical point
- Key features:
 - A slow, external driving of the system
 - A threshold for the dynamics of individual dof's
 - Interactions between the dof's once the threshold is crossed
 - Fast internal relaxation once the threshold is crossed

SOC expectations

- Expect to find signals of scale invariance:
 - power laws just above the critical point
 - 1/f behaviour in power spectra
 - Exponents should be insensitive to any "tuning" of (say) driving process or interaction characteristics
- For a power spectrum $S(f) \sim f^{-\alpha}$ then auto-correlation function $\sim t^{\alpha-1}$
- \bullet So very long-range correlations for $\alpha\approx 1$
- No characteristic space or timescale in the system

SOC in practice

 Has provided useful insights for ricepiles, earthquakes, forest fires, raindrops rolling down a window...

Health warning

- Some systems labelled as SOC are probably not
- Least-squares regression on a log-log plot can be highly misleading! (Clauset et al 2009)

Evidence for SOC in convection

Scale invariance

Peters and Christensen (2002): radar rainfall data over Germany

 Rainfall from an event, and event duration show power laws over 3 orders of magnitude

1/f behaviour in tropical Pacific

Yano et al 2003: data from 13 stations in TOGA-COARE

 Long-range correlations in near-surface temperature, moisture and wind speed

Critical point

Peters and Neelin 2006: TRMM satellite data for various ocean basins

Threshold in column water vapour, with power law above and large variance near threshold

Exploratory attempt at SOC model of convection

What do we need to believe SOC?

- A physical system with the basic ingredients (slow drive, local thresholds etc)
- 2. A simple model of the physical system that predicts SOC, with key exponents
- 3. Robust empirical evidence

Where are we now?

Peters and Neeelin 2006:

...these findings beg for a simple model of the atmospheric dynamics responsible...

Muller et al 2009:

the empirical evidence fror SOC is essentially circumstantial... until a clear physical mechanism is provided...

Possible interaction mechanism

- Cold pool outflow perturbs boundary-layer moist static energy
- Increased chance to activate new convection in neighbourhood of an active cell

The model algorithm

On a grid of $N \times N$ points, doubly periodic, randomly initialized...

- Apply a small forcing increment everywhere
- If threshold is crossed anywhere then
 - Rapid relaxation event occurs here reset the point
 - Test if an interaction perturbation can cause a neighbour to pass the threshold
 - If so signal the neighbour(s) to activate at the next step

Limit of small timestep

- As $\delta t \rightarrow 0$, the model reduces to a textbook SOC system (Sinha-Ray and Jensen 2000)
- Each avalanche that occurs is complete before another event starts

 Storm size distribution for a parameter set close to the SOC limit

For finite timestep

• $\delta t \neq 0$ related to a ratio of timescales: interaction timescale for cold pool perturbation / driving timescale for spontaneous triggering in the absence of interactions

- For a timescale ratio of 10⁻²
- Power-law like behaviour but over reduced range: breaks down for larger clusters

My own view...

- Tropical oceanic convection has basic features consistent with an SOC system
- Empirical evidence for SOC is strongly suggestive
- SOC stresses role of self-interactions, but what is the key interaction mechanism for convection?
- SOC deals with two timescales, $\tau_{drive} >> \tau_{relax}$
- \bullet There are two aspects to relaxation, τ_{cloud} and $\tau_{interact}$
- I can believe $\tau_{drive} >> \tau_{cloud}$ but how about $\tau_{interact}$??

