Thermodynamic Efficiency and Entropy Production in the Climate System

> Valerio Lucarini University of Reading, Reading, UK <u>v.lucarini@reading.ac.uk</u>

> > Reading, April 21st 2010

Thermodynamics and Climate

Climate is non-equilibrium system, which generates entropy by irreversible processes and keeps a steady state by balancing the energy and entropy fluxes with the environment.

Climate is FAR from equilibrium: FDT?
 MEPP? No, but...

▲ We have recently obtained some new results drawing a line connecting thermodynamic efficiency and entropy production

Today

We present the theory: Lorenz Cycle + Carnot + Entropy Production (L., PRE, 2009)

We focus on diagnostics describing the global thermodynamic properties of the climate system using PLASIM (U. Hamburg)

▲ Onset and decay of snowball conditions due to variations in the solar constant

▲L., Fraedrich, Lunkeit, QJRMS (2010)

Impact of CO₂ changes & generalized sensitivities
 L., Fraedrich, Lunkeit, ACPD (2010)
 Thermodynamic Bounds from TOA budgets
 L., Fraedrich, submitted GRL (2010)

Energy Budget

▲ Let the total energy of the climatic system be:

$$E(\Omega) = \int_{\Omega} dV \rho e = \int_{\Omega} dV \rho (u + \phi + k),$$

where *ρ* is the local density, *e* is the total energy per unit mass, with *u*, *φ* and *k* indicating the internal, potential and kinetic energy components
 Energy budget Ė(Ω) = P(Ω) + K(Ω)

Detailed Balances WORK

 $\dot{W} = C(P, K)$

FLUXES

Kinetic energy budget

$$\dot{K}(\Omega) = -\int_{\Omega} dV \varepsilon^{2} + C(P, K) = -\dot{D} + C(P, K)$$

Potential Energy budget
$$\dot{P}(\Omega) = \int_{\Omega} dV \rho \dot{Q} - \dot{W} \qquad \dot{Q} = 1/\rho \left(\varepsilon^2 - \vec{\nabla} \cdot \vec{H}\right)$$

$$\bigstar Total Energy Budget \dot{E}(\Omega) = \int_{\Omega} dV \left(-\vec{\nabla} \cdot \vec{H} \right) = -\int_{\partial\Omega} dS \hat{n} \cdot \vec{H}$$

DISSIPATION (L&F, PRE 2009)

Johnson's idea (2000)

▲ *Partitioning the Domain*

$$\dot{P}(\Omega) + \dot{W} = \int_{\Omega^+} dV \rho \dot{Q}^+ + \int_{\Omega^-} dV \rho \dot{Q}^- = \dot{\Phi}^+ + \dot{\Phi}^-$$

Better than it seems!

<u></u> <u></u> <u></u> <u></u> <u></u>)	<u></u> <u></u> <u></u>	< 0	
Ω^+		Ω Ω^{-}	6	

Long-Term averages \checkmark Stationarity: $\overline{\dot{E}(\Omega)} = \overline{\dot{P}(\Omega)} = \overline{\dot{K}(\Omega)} = 0$

 $\bigstar Work = Dissipation \qquad -\overline{\dot{K}(\Omega)} + \overline{\dot{W}} = \overline{\dot{W}} = \overline{\dot{D}} > 0$

 $\bigstar Work = Input-Output \quad \overline{\dot{P}(\Omega)} + \overline{\dot{W}} = \overline{\dot{W}} = \overline{\dot{\Phi}^{+}} + \overline{\dot{\Phi}^{-}} > 0$

Inequalities come from 2nd law
 A different view on Lorenz Energy cycle

Entropy

▲ Mixing neglected (small on global scale), LTE: $Q = \dot{s}T$ ▲ Entropy Balance of the system:

$$\dot{S}(\Omega) = \int_{\Omega^{+}} dV \frac{\rho \dot{Q}^{+}}{T} + \int_{\Omega^{-}} dV \frac{\rho \dot{Q}^{-}}{T} = \int_{\Omega^{+}} dV \rho \dot{s}^{+} + \int_{\Omega^{-}} dV \rho \dot{s}^{-} = \dot{\Sigma}^{+} + \Sigma$$

▲ Long Term average:

$$\overline{\dot{S}(\Omega)} = \overline{\dot{\Sigma}^{+}} + \overline{\dot{\Sigma}^{-}} = 0 \Longrightarrow \overline{\dot{\Sigma}^{+}} = \left|\overline{\dot{\Sigma}^{-}}\right| = -\overline{\dot{\Sigma}^{-}} > 0$$

▲ <u>Note</u>: if the system is stationary, its entropy does not grow → balance between generation and boundary fluxes

Carnot Efficiency *▲ Mean Value Theorem:* $\overline{\dot{\Phi}^{-}} = \overline{\dot{\Sigma}^{-}}\Theta^{-}$ $\overline{\dot{\Phi}^+} = \overline{\dot{\Sigma}^+} \Theta^+$ \checkmark We have $\Theta^+ > \Theta^- > 0$ Hot Cold reservoirs $\overline{\dot{W}} = \frac{\dot{\Phi}^{+} + \dot{\Phi}^{-}}{\overline{\dot{\Phi}^{+}}} \overline{\dot{\Phi}^{+}} = \frac{\Theta^{+} - \Theta^{-}}{\Theta^{+}} \overline{\dot{\Phi}^{+}}$ \checkmark Work: ▲ Carnot Efficiency: $\eta = \frac{\overline{\dot{\Phi}^+} + \overline{\dot{\Phi}^-}}{\overline{\dot{\Phi}^+}} = \frac{\Theta^+ - \Theta^-}{\Theta^+}$

Bounds on Entropy Production *Minimal Entropy Production:*

$$\overline{\dot{S}_{in}(\Omega)} \ge \overline{\dot{S}_{min}(\Omega)} = \begin{pmatrix} \int dV \rho \dot{Q} \\ \frac{\Omega}{\int} dV \rho T \\ \int \Omega dV \rho T \end{pmatrix} \approx \frac{\overline{\dot{W}}}{(\Theta^{+} + \Theta^{-})/2} \approx \frac{\eta \dot{\Sigma}^{+}}{\Delta \Theta / (\Theta^{+} + \Theta^{-})} < < \Delta \Theta / (\Theta^{+} + \Theta^{-}) < \Delta \Theta / (\Theta^{+} + \Theta^{-}) < \Delta \Theta / (\Theta^{+} + \Theta^{-}) < < \Delta \Theta / (\Theta^{+} + \Theta^{-}) < \Delta \Theta / (\Theta^{+} + \Theta^{+}) < \Delta \Theta / (\Theta^{+} + \Theta^{+}) < \Delta \Theta / (\Theta^{+} + \Theta^{+}) < \Delta \Theta / (\Theta^{$$

 Efficiency relates minimal entropy production and entropy fluctuations
 Min entropy production is due to dissipation:

$$\overline{\dot{S}_{\min}(\Omega)} \approx \int_{\Omega} dV \left(\frac{\varepsilon^2}{T}\right)$$

and the rest?

Entropy Production

Total entropy production: contributions of viscous dissipation plus heat transport:

$$\overline{\dot{S}_{in}(\Omega)} = \int_{\Omega} dV \overline{\vec{H}} \cdot \vec{\nabla} \left(\frac{1}{T}\right) + \int_{\Omega} dV \frac{\overline{\varepsilon^2}}{T} \approx \int_{\Omega} dV \overline{\vec{H}} \cdot \vec{\nabla} \left(\frac{1}{T}\right) + \overline{\dot{S}_{min}(\Omega)}$$

 We can quantify the "excess" of entropy production, degree of irreversibility with α:

$$\alpha = \int_{\Omega} dV \, \vec{H} \cdot \vec{\nabla} \left(\frac{1}{T}\right) / \vec{S}_{\min}(\Omega)$$

Heat Transport downgradient T field increases irreversibility

MEPP re-examined

▲ Let's look again at the Entropy production:

 $\overline{\dot{S}_{in}(\Omega)} \approx \overline{\dot{S}_{min}(\Omega)}(1+\alpha) \approx \eta \overline{\Sigma^{+}}(1+\alpha)$

If heat transport down-gradient the temperature field is strong, η is small
 If the transport is weak, α is small.

▲ MEPP requires a joint optimization of heat transport and of the production of mechanical work

Can this be useful?

- What we have shown provides a series of diagnostic tools for:
 - ▲ Defining thermodynamics of the climate system
 - ▲ Validating, intercomparing climate models
 - Analyzing impact of natural and anthropogenic forcing on climate
 - ▲ Dynamic Paleoclimatology à la Saltzman
 - ▲ Climate Feedbacks
 - ▲ radiation \Leftrightarrow dynamics
 - ▲ We have tested it together with Fraedrich & Lunkeit on classic climate experiments: Snowball Earth & CO₂ climate sensitivity

PLASIM

- Climate model developed at U. Hamburg (Fraedrich, Lunkeit, Blender, Kirk) from PUMA
- ▲ State-of-the art AGCM but T21
- ▲ 50m mixed-layer swamp ocean with sea ice
- Reasonable present climate
- ▲ Good for long simulations, sensitivity tests; can be adapted to studying other planets...
- ★ We test the theory just proposed, try to analyze macro-climatic variability using 1st and 2nd law diagnostics

Hysteresis experiment

- ▲ In 8000 years we make a swing of the solar constant S_{*} by ±10% starting from present climate
 - \checkmark \rightarrow hysteresis experiment!

\checkmark Global average surface temperature T_S

- ▲ Wide (about 10%) range of S_* with bistable regime
- $\checkmark \Delta T_s$ is about 40-50 K
- ▲ d T_{s} /d S_{*} >0 everywhere, almost linear

Thermodynamic Efficiency

A η /d S_{*} >0 in SB regime
 Large T gradient due to large albedo gradient
 A η /d S_{*} <0 in W regime
 System thermalized by efficient LH fluxes
 A q decreases at transitions → System more stable

D=C(P,K) - Lorenz energy cycle

▲ Energy input increases with S_{*} in both regimes
 ▲ d W/d S_{*} >0 in SB regime

▲ Stronger circulation: more input & higher efficiency

▲ d W/d $S_* \leq 0$ in W regime

▲ Weaker circulation: more input & much lower efficiency

Entropy Production

A S_{in}/d S_{*} >0 in SB & W regime
 ▲ Entropy production is "like" T_s... but better than T_s!
 ▲ ΔS_{in} is about 400% → benchmark for SB vs W regime
 ▲ S_{in} is an excellent state variable

Irreversibility

d α/d S_{*} >0 in W regime
 System is VERY irreversible; α explodes for high S_{*}
 d α/d S_{*} ~ 0 in SB regime
 α is about 1

Again: a qualitative difference between W and SB

Climate sensitivity experiment

- ▲ We explore the statistical properties of climate resulting from CO₂ concentrations ranging from 50 to 1750 ppm
 - $\checkmark \rightarrow$ no bistability!
 - \checkmark \rightarrow We define a set of generalized thermodynamical sensitivities

▲ Temperature variables

▲ Surface temperature has the largest sensitivity

▲ Cold bath becomes relatively warmer → linearity wrt $log([CO_2])$

▲ System tends to become more isothermal with higher $[CO_2]$

▲ The system becomes more isothermal → The efficiency decreases with increasing CO₂ concentration
 ▲ Relative decrease is 6% per CO₂ doubling
 ▲ Latent heat fluxes play a crucial role

Trade-off between higher heat absorption and lower efficiency: Lorenz energy cycle is weaker when [CO₂] [↑]

- ▲ Relative decrease is 3% per [CO₂]doubling
- ▲ Same applies for dissipation: lower surface winds

▲ Lower dissipation & higher temperature → lower entropy production by viscous processes

▲ Nevertheless, total material entropy production increases
 ▲ Greater role by heat transport contributions → LH fluxes

The irreversibility of the system increases with [CO₂]
 The system becomes closer to a "conductive" system producing negligible mechanical work

Generalized Sensitivities

Definition	Value
$\Lambda_{\overline{T_s}}$	2.55 K
Λ_{Θ^+}	1.65 K
Λ_{Θ^-}	2.35 K
Λ_n	-0.002
$\Lambda \frac{1}{\mu}$	$-0.06 \mathrm{Wm}^{-2}$
$\Lambda \frac{n}{\dot{S}}$	$0.0004 \mathrm{Wm^{-2}K^{-1}}$
$\Lambda_{\alpha}^{\circ_{\text{In}}}$	0.7

Parameterisations

Thermodynamic Bounds

▲ All of this looks good, but we need 3D data! ▲ Thermodynamic bounds for entropy production and Lorenz energy cycle based only on average TOA 2D radiative fields

▲ Good for data from planetary objects

$$\begin{aligned} \overline{\dot{S}_{mat}} &> \overline{\dot{S}_{mat}^{diff}} = \int_{A} \frac{\overline{\varepsilon^{2}}}{T_{diss}} d\sigma > \overline{\dot{S}_{mat}^{hor}} = \left(\frac{\left\langle \overline{R_{net}} \right\rangle_{>} |A_{>}|}{\left\langle T_{E} \right\rangle_{>}} + \frac{\left\langle \overline{R_{net}} \right\rangle_{<} |A_{<}|}{\left\langle T_{E} \right\rangle_{<}} \right) \\ \overline{\dot{W}} &\geq \overline{\dot{W}_{min}} = -\left\langle T_{E} \right\rangle \left(\frac{\left\langle \overline{R_{net}} \right\rangle_{>} |A_{>}|}{\left\langle T_{E} \right\rangle_{>}} + \frac{\left\langle \overline{R_{net}} \right\rangle_{<} |A_{<}|}{\left\langle T_{E} \right\rangle_{<}} \right) \end{aligned}$$

Vertical Structure

- ▲ If no vertical temperature structure, the inequalities become identities!
- ▲A minimal model for EP requires 4 boxes (atmo/surf, warm/cold)
- ▲ 2 Boxes (R. Lorenz etc.) just not enough

Earth, Mars, Venus, Titan

- Bounds can be easily computed from coarse resolution TOA data
- With LW data we obtain effective temperatures
- ▲ With SW data we obtain the budgets

Celestial Body	$ A (m^2)$	$\langle T_E \rangle_{<}(K)$	$\langle T_E \rangle_{>}(K)$	η_h	$\overline{F_{\text{max}}}/ A $	$\left \dot{S}_{mat}^{hor} \right A $	$\overline{\dot{W}_{\min}}/ A $
					(Wm^{-2})	$\left(WK^{-1}m^{-2}\right)$	(Wm^{-2})
Earth	5.1×10^{14}	248.3	259.8	0.044	10.01	3.8×10^{-3}	9.7×10 ⁻¹
Mars	1.4×10^{14}	201.9	222.5	0.096	0.32	2.8×10 ⁻⁴	5.9×10 ⁻²
Venus	4.1×10^{14}	227.9	231.0	0.014	7.60	8.8×10 ⁻⁴	2.0×10^{-1}
Titan	8.3×10 ¹³	82.8	85.0	0.026	0.12	3.7×10 ⁻⁵	3.1×10 ⁻³

Energy Scaling

We can scale the thermo terms with respect to suitable powers of average SW=S(1-α)

▲ Differences will depend on circulation

All results are within one order of magnitude

Celestial Body	$ A (m^2)$	$S(1-\alpha)$ (Wm^{-2})	r	$ \begin{array}{c} \left\langle T_E \right\rangle_{<} \\ \left(K \right) \end{array} $	$ \begin{array}{c} \left\langle T_E \right\rangle_{>} \\ \left(K \right) \end{array} $	η_h	$\frac{\overline{H}_{\text{max}}}{\left(Wm^{-2}\right)}$	$\frac{\overline{\dot{S}_{mat}^{hor}}}{\left(WK^{-1}m^{-2}\right)}$	$\overline{\dot{W}_{\min}}/ A $ (Wm^{-2})
Earth	$5.1 \cdot 10^{14}$	237.0	1.000	248.3	259.8	0.044	10.01	3.8×10 ⁻³	9.7×10 ⁻¹
Mars	$1.4 \cdot 10^{14}$	116.7	0.492	241.0	265.6	0.096	0.65	4.8×10 ⁻⁴	1.2×10 ⁻¹
Venus	$4.1 \cdot 10^{14}$	157.3	0.664	252.5	256.0	0.014	11.41	1.2×10 ⁻³	3.0×10 ⁻¹
Titan	8.3·10 ¹³	2.81	0.012	250.9	257.6	0.026	10.08	1.0×10 ⁻³	2.6×10 ⁻¹

Conclusions

- Theoretical framework linking previous finding on the efficiency of the climate system to its entropy production.
- ▲ Unifying picture connecting the Energy cycle to the MEPP;
- Test of these results on Snow Ball hysteresis experiment, and some ideas on mechanisms involved in climate transitions;
- Analysis of the impact of [CO₂] increase, with a generalized set of climate sensitivities and a proposal for parameterizations and diagnosic studies
- ▲ Thermodynamic bounds seem promising! (new results)
- ▲ Issues:
 - ▲ Are climate models balanced in terms of energy budgets? No! (Lucarini & Ragone 2010) Can this be a problem? Yes! (Lucarini & Fraedrich 2009)-We have introduced eqs. also for dealing with biase.
 - ▲ What is the role of the ocean?
 - Climate tipping points?
 - ▲ Other celestial bodies?

References

- Lucarini V., Thermodynamic Efficiency and Entropy Production in the Climate System, Phys. Rev. E 80, 021118 (2009)
- Lucarini V., Fraedrich K., Symmetry breaking, mixing, instability, and low-frequency variability in a minimal Lorenz-like system, Phys. Rev. E 80, 026313 (2009)
- Lucarini V., Fraedrich K., Lunkeit F., Thermodynamic Analysis of Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production, and Irreversibility, QJRMS 135, 2-11 (2010)
- Lucarini V., Fraedrich K., Lunkeit F., Thermodynamics of Climate Change: Generalized sensitivities, ACPD 10, 3699-3715 (2010)
- Lucarini V., Ragone F., Energetics of IPCC4AR Climate Models: Energy Balance and Meridional Enthalpy Transports, submitted to Rev. Geophys. also at arXiv:0911.5689v1 [physics.ao-ph] (2010)
- Lucarini V., Fraedrich K, Bounds on the thermodynamical properties of a planet based upon its radiative budget at the top of the atmosphere: theory and results for Earth, Mars, Titan, and Venus, submitted to GRL (2010); also at arXiv:1002.0157v2 [physics.ao-ph] (2010)