Energetic analysis of changes in the AMOC under increasing CO_2

Jonathan Gregory^{1,3} and Rémi Tailleux² NCAS-Climate¹, Department of Meteorology², University of Reading and Met Office Hadley Centre³, Exeter

Maximum AMOC streamfunction in IPCC AR4 CO₂ experiments

We want a physical understanding of the different responses

Relationship between meridional density gradient and AMOC

HadCM3 with CO₂ increasing at 2% yr⁻¹, Thorpe *et al.* (2001)

Force balance of the (HadCM3) ocean circulation

Ratio of net ageostrophic force to $\nabla_h p$ 55–800 m in HadCM3

Kinetic energy balance of the ocean circulation

$$\begin{array}{lll} \frac{\partial}{\partial t} \frac{u_h^2}{2} = -\mathbf{u}_h \cdot \left((\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u}_h \right) & -\frac{1}{\rho_0} \mathbf{u}_h \cdot \boldsymbol{\nabla}_h p & -\mathbf{u}_h \cdot \mathbf{f} \times \mathbf{u}_h & +\frac{1}{\rho_0} \mathbf{u}_h \cdot \mathbf{F}_v & +\frac{1}{\rho_0} \mathbf{u}_h \cdot \mathbf{F}_h \\ \text{advection} & \text{pressure} & \text{Coriolis} & \text{vertical} & \text{horizontal} \\ \text{gradient} & \text{mixing} & \text{mixing} \end{array}$$

Global ocean kinetic energy balance

Area-integral of terms in the kinetic energy balance

Atlantic Ocean kinetic energy balance

Area-integral of terms in the kinetic energy balance

Work done by the pressure-gradient force $-\mathbf{u}_h \cdot \nabla_h p$

Routes for energy conversion

Change in the kinetic energy balance of the Atlantic at $4 \times CO_2$

Change in $-\mathbf{u}_h \cdot \nabla_h p$ at $\mathbf{4} \times \mathbf{CO}_2$

Change in $-\mathbf{u}_h \cdot \boldsymbol{\nabla}_h p$ in the Atlantic at $\mathbf{4} \times \mathbf{CO}_2$

Model-mean correlation between AMOC and Atlantic *B* for different latitude bands

Spread of abscissa (ΔB) measures the buoyancy forcing, slope dAMOC/dB the ocean dynamical response.

Conclusions

AOGCMs predict a weakening of the AMOC, with a large model uncertainty in the magnitude. This is believed to be a dynamical response to high-latitude buoyancy forcing of the Atlantic.

Considering the KE balance shows that work is done *against* $-\nabla_h p$ on the global mean, but work is done $by - \nabla_h p$ in the Atlantic, especially at high latitude.

The volume integral *B* of $-\mathbf{u}_h \cdot \nabla_h p$ decreases in CO₂-increase experiments with several CMIP3 AOGCMs, and correlates well in time with the AMOC strength *V*.

The change ΔB in KE input during climate change is affected by buoyancy forcing, which changes the density field. ΔB is model-dependent and explains some of the spread in $\Delta AMOC$.

The slope dAMOC/dB indicates the sensitivity of the AMOC to KE input. The slope is also model-dependent. Slopes are similar under SRES A1B forcing.

The KE budget may be a useful tool for analysis of AOGCMs, but we need a dynamical understanding as well.