The Sensitivity of an Ocean Model's Architecture to the Latent Heat Transport in the Atmosphere

Christopher Dancel, 2nd Year PhD Supervisor: Arnaud Czaja (Imperial) Co-supervisor: Adrian New (NOC) Co-supervisor: Alex Megann (NOC)

PhD Case Studentship

- Joint with National Oceanography Centre (NOC), Southampton, UK.
- Spend at least 3 months doing on-site research
- Present results from November and April visits

Talk Outline

- Motivation
- Constant Depth Vs. Constant Density
- Comparison of Models
- Effects on Ocean and Atmospheric Heat Transport
- Effects on Latent Heat Transport
- Brief Summary
- A little side project

Motivation

Future predictions of AMOC strength from IPCC AR4

- Large uncertainties in model predictions
- Majority of models employ a z coordinate system in its ocean model
- Isopycnal ocean model may provide an alternative assessment

Comparing Depth Coordinates

• The interface between two layers produce spuriously high mixing when crossed

• In isopycnal (constant density) coordinates, water masses flow along layer boundaries thus eliminating this problem

The Hybrid Coordinate

• For a purely isopycnal model, constant density surfaces outcrop at high latitudes causing poleward moving surface waters to cross isopleths

• Hybrid coordinate model uses constant z coordinates near surface and isopycnal coordinates within ocean interior

• Hybrid coordinate model used in the Coupled Hadley-Isopycnic Model Experiment (CHIME)

$^{\circ}N$

Salinity at 30° W at initialisation of CHIME

CHIME represents fresh tongue of AAIW realistically, and preserves it better than HadCM3, where it mixes with surrounding water masses within the first few decades.

Representation of Antarctic Intermediate Water

Salinity at 30° W at year 80 of CHIME

Salinity at 30° W at year 80 of HadCM3

With permission from Alex Megann

Sea Surface Temperature (SST) Drifts

Mean SST years 80-120 minus NOCS SST climatology, Control Runs

• General impression that CHIME is too warm at surface, heat not being taken up by ocean as rapidly as in HadCM3, possibly less mixing.

With permission from Alex Megann

Question 1?

How does this new coordinate system affect the transport of heat?

Computing Heat Transport

- Total Heat Transport is calculated from the net radiation flux at the TOA
- Atmospheric Heat Transport calculated from the balance of flux from TOA and surface
- Ocean Heat Transport calculated as a residual

Comparison of Heat Transports for HadCM3 and CHIME

- Total Heat Transport similar across models
- Ocean heat Transport different
 in CHIME
- Atmosphere must compensate (Bjerknes Compensation)
- How?

Question 2?

If [heat transport] changes in the ocean are compensated by changes in the atmosphere, how will this affect the transport of latent heat?

Decomposition of Atmospheric Heat Transport

• Opposing directions of latent and Dry Static energy at low latitudes suppress atmospheric heat transport – Ocean is main conveyor of heat in this region

• Baroclinic instabilities within the atmosphere at mid-latitudes are the main conveyors of heat

$$H_a = l_v q + c_p T_a + gz$$

Latent Dry Static

Atmospheric Latent Heat Transport Comparison y80-119

Simple Maths Toolkit

$$\Psi_{CHI} = \Psi_{Had} + \Psi_{res}$$

• Ψ is any variable i.e. SST, q, wind velocity

$$\Psi_{res} = \Psi_{CHI} - \Psi_{Had}$$

E-P Spatial Patterns

• CHIME has weaker E-P spatial distribution for the Northern Hemisphere Tropics

What does this mean?

- Less Latent Heat transport for Tropical Northern Hemisphere
- Reduced E-P Spatial Pattern
- Must look at Northern Hemisphere Hadley Cell

- Analyse Meridional Wind Velocity to look at M
- Analyse specific humidity q

$$F = M \times q$$

Freshwater Transport

Atm. Mass Transport

Specific humidity

Meridional Velocity Comparison

• CHIME has weaker mass transport in Northern Hemisphere Hadley Cell

Specific Humidity Comparison

• CHIME has larger values of specific humidity due to a warmer surface temperature

CHIME specific humidity q g/kg x 10⁻³ 16 -100 14 -200 12 -300 -pressure/kPa -10 -400 -500 -8 -600 6 -700 -800 2 -900 -1000 -80 -60 -20 20 40 60 -40 0 80 Latitude

Brief Summary

• CHIME N. Hem. Hadley Cell transports less latent heat

$$F = M \times q$$

- Strength of Meridional Winds v CHIME:HadCM3 ~ 2:3
- Specific Humidity q

CHIME:HadCM3 ~ 11:10

• Reduction in latent heat transport is due to the decrease in mass transport of Hadley Cell

Main Summary

- Compared the latent heat transport between HadCM3 (constant depth) and CHIME (constant density)
- CHIME has weaker E-P spatial pattern in Northern Hemisphere Tropics
- Hadley Cell is weaker due to a reduction in Mass transport, even though humidity increases
- Reduction in winds are due to a reduced temperature gradient in zonal SSTs
- All predominantly due to the ocean coordinate system

A little side project

Net E-P vertical flux in Sv into each Ocean Basin

	Atlantic	Ind.Pac.	South.	Land
HadCM3	+1.11	+0.91	-0.75	-1.28
CHIME	+1.15	+0.86	-0.76	-1.25
CHI-Had	+0.04	-0.05	-0.01	+0.03
"CHIME	More	Less	More	More
has"	evap.	evap.	precip.	precip.

Possible Mechanism?

CHIME Sea Surface Temperature/°C

Thank you

Questions?