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Wed 21 April 
12:15 Arrival
12:30 Lunch 
13:30 Workshop starts in 1L61
13:30 Maarten Ambaum: Welcome, introduction; global heat flows in the atmosphere.
14:00 Tim Palmer: Climate Model Bias and the Fluctuation-Dissipation Theorem.
14:30 TBA.
15:00 Break. 
15:30 Jonathan Gregory: Energetic analysis of changes in the AMOC under increasing CO2.
16:00 Kevin Oliver: An approximation for the structure of global meridional overturning in the ocean, 
as a function of the gravitational potential energy generation and surface density fields.
16:30 Valerio Lucarini: Efficiency and Entropy Production in the Climate System.
Drinks and dinner.

Thu 22 April 
9:00 Workshop reconvenes in 1L43.
9:00 Peter Jan van Leeuwen: Information transfer and entropy in large-dimensional systems.
9:30 Salvatore Pascale: Entropy production in HadCM3 model and MEP conjecture for objective 
tuning.
10:00 Richard Allan: Thermodynamic and Energy Constraints on Precipitation.
10:30 Break. 
11:00 Bob Plant: Self-organized criticality in tropical convection.
11:30 Christopher Dancel: The sensitivity of an Ocean Model's Architecture to the latent heat 
transport in the Atmosphere.
12:00: Remi Tailleux: Dynamics/Thermodynamics coupling in the incompressible Boussinesq model.
Close: short discussion on the way forward (future workshops, publications, consortium bids, etc.)
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The global energy budget

Earth system at equilibrium:

energy in = energy out ≈ 120 PW (120×1015 W)



The global energy budget

Earth system at equilibrium:

energy in = energy out ≈ 120 PW (120×1015 W)

= 1500×Hiroshima each second



The energy in = 120 PW = 240 W/m2 on average

For Reading area (55 km2):
Energy in = 10 GW = 3 × Didcot power station 



The energy in = 120 PW

= insolated − reflected
= 170 PW − 50 PW
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Of the energy in = 120 PW,

80 PW go to the tropics,
40 PW go to the extratropics.



Of the energy in = 120 PW,

80 PW go to the tropics,
40 PW go to the extratropics.

Of the energy out = 120 PW,

70 PW come from the tropics,
50 PW come from the extratropics,

10 PW is transported from tropics to extratropics.



tropics extratropics

(units PW)
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northward heat flux (in PW)
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The global entropy budget



The entropy budget for a body of fluid

10.3 THERMODYNAMICS OF FORCED DISSIPATIVE SYSTEMS 213

applicable but that provide only weak constraints on the system. We will not
discuss those generalizations here.62

10.3 THERMODYNAMICS OF FORCED DISSIPATIVE SYSTEMS

The first law for a volume of fluid is

dU/dt = Q̇ + Ẇ (10.43)

with U the total internal energy, Q̇ the heating rate, and Ẇ the work rate (per-
formed on the volume). More specifically, for a volume that only exchanges
heat and pressure work with the environment,

Q̇ = −
∫

A
Fq · n̂ dA and Ẇ = −

∫

A
pU · n̂ dA. (10.44)

Here Fq is the heat flux, U is the local flow velocity, and n̂ the unit nor-
mal vector pointing outward from the area A surrounding the volume. Using
Gauss’ theorem, these surface integrals can be transformed into local energy
budgets as discussed in Section 10.1.

We now write the normal heat flux Fq · n̂ as the sum of an inward directed
and an outward directed flux, defined as follows:

Fin =
{

0 if Fq · n̂ > 0
−Fq · n̂ if Fq · n̂ < 0

Fout =
{

Fq · n̂ if Fq · n̂ > 0
0 if Fq · n̂ < 0

(10.45)

Both Fin and Fout are positive. We can write the heating rate now as

Q̇ =
∫

A
Fin dA −

∫

A
Fout dA. (10.46)

The entropy budget can be written in an analogous fashion. Recall from
the previous section that the change in total entropy S can be written as

dS/dt = deS/dt + diS/dt (10.47)

with

deS

dt
= −

∫

A

Fq · n̂

T
dA and

diS

dt
≥ 0. (10.48)

We need not specify the origins of the irreversible entropy production here;
we only use the second law result that it must be non-negative. Using the

62See Kondepudi, D. & Prigogine, I. (1998) Modern Thermodynamics J. Wiley & Sons,
Chichester.

The first law:
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The entropy budget:
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then:

214 CH 10 NON-EQUILIBRIUM PROCESSES

above definitions for Fin and Fout we can write for the reversible entropy
change

deS

dt
= 1

Tin

∫

A
Fin dA − 1

Tout

∫

A
Fout dA, (10.49)

where we have defined the temperatures Tin and Tout as

1
Tin

=
(∫

A
Fin dA

)−1 ∫

A

Fin

T
dA, (10.50)

with the analogous equation for Tout, replacing Fin by Fout. So Tin is the
weighted harmonic mean63 temperature where the system receives heat from
the environment, and Tout is the weighted harmonic mean temperature where
the system loses heat to the environment.

These formulations become particularly useful when considering a system
that, on average, is steady. Its energy will be constant and, because entropy is
a state variable, its entropy will be constant. In this case we have, on average,

L̇ = Q̇ and deS/dt = −diS/dt, (10.51)

where we have introduced the work output, L̇ = −Ẇ. Now substituting
Eq. 10.46 for Q̇, we can write Fout in terms of L̇ and Fin. Substituting the
ensuing expression for Fout and Eq. 10.49 in deS/dt, above, we find

I L̇ =
(

1 − Tout

Tin

) ∫

A
Fin dA − Tout

diS

dt
. (10.52)

Because dSi/dt ≥ 0, the theoretical maximum output of work L̇rev is achieved
when the system is reversible, and it equals

I L̇rev =
(

1 − Tout

Tin

) ∫

A
Fin dA. (10.53)

This is the continuous version of a classical result by Carnot that states that
the work output of a heat engine as a fraction of its heat input has an upper
bound and that this upper bound is achieved for reversible systems.

The factor relating the maximum work output to the heat input is called
the Carnot efficiency, !,

I ! = 1 − Tout/Tin. (10.54)

We encountered it in Chapter 2 in the problem about the Stirling engine.
For simple heat engines, which operate between two fixed temperatures, the
generalized version here reduces to the classical Carnot expression.

63The harmonic mean c of a set of N numbers ai is defined as c−1 = N−1
∑

i a−1
i .
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where

(analogous for      )
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L̇ =
(

1 − Tout

Tin

) ∫

A
Fin dA − Tout

diS

dt
.

We can now derive for the work output               :

214 CH 10 NON-EQUILIBRIUM PROCESSES

above definitions for Fin and Fout we can write for the reversible entropy
change

deS

dt
= 1

Tin

∫

A
Fin dA − 1

Tout

∫

A
Fout dA, (10.49)

where we have defined the temperatures Tin and Tout as

1
Tin

=
(∫

A
Fin dA

)−1 ∫

A

Fin

T
dA, (10.50)

with the analogous equation for Tout, replacing Fin by Fout. So Tin is the
weighted harmonic mean63 temperature where the system receives heat from
the environment, and Tout is the weighted harmonic mean temperature where
the system loses heat to the environment.

These formulations become particularly useful when considering a system
that, on average, is steady. Its energy will be constant and, because entropy is
a state variable, its entropy will be constant. In this case we have, on average,

L̇ = Q̇ and deS/dt = −diS/dt, (10.51)

where we have introduced the work output, L̇ = −Ẇ. Now substituting
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(This general expression for the second law includes the 
Carnot theorem and the Guoy-Stodola theorem)



Back to the Earth system ....
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The difference between the actual work output and the maximum theoret-
ical work output is sometimes called the lost useful work output, L̇lost. From
the above expressions we have

L̇lost = L̇rev − L̇ = Tout diS/dt ≥ 0. (10.55)

In other words, the system destroys useful work at a rate which is proportional
to its irreversible entropy production. This is the continuous version of the
Guoy–Stodola theorem, see Appendix B.

Because L̇rev represents an upper bound to the work output, we can see that
the system cannot perform work when Tout > Tin. When this is the case, the
system cannot maintain motion against dissipative, irreversible processes. We
conclude that for motion to be maintained in a fluid, such as the atmosphere or
the ocean, it must receive its energy at temperatures higher than those at
which it loses its energy. We have already encountered this property in
Section 10.1.

10.4 CLIMATE THERMODYNAMICS

Ignoring secular climate trends, the Earth system is on average in a steady
state. Because it can only interact with space through radiative heat fluxes,
the steady state condition, Eq. 10.51, reduces to

Ṙin = Ṙout and deS/dt = −diS/dt, (10.56)

where we have defined the total radiative heat input and output rates

Ṙin =
∫

A
Fin dA and Ṙout =

∫

A
Fout dA. (10.57)

The total short-wave radiative heat input rate Ṙin is set by the solar constant
S0, the mean albedo ˛, and the area of the Earth disk !R2

E (RE is the Earth’s
radius),

Ṙin = (1 − ˛) S0!R2
E = 122 PW, (10.58)

(1 PW = 1015 W). Per unit area on Earth, this corresponds to 239 W m−2. The
long-wave radiative heat output rate Ṙout has the same value, on average.

The irreversible entropy production in the Earth system can be estimated
from the expression for deS/dt, Eq. 10.49. In this case this expression reduces
to

diS

dt
= −deS

dt
= Ṙin

(
1

Tout
− 1

Tin

)
. (10.59)

First write:

Both are equal to 120 PW.

At equilibrium:
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The irreversible entropy production in the Earth system can be estimated
from the expression for deS/dt, Eq. 10.49. In this case this expression reduces
to

diS

dt
= −deS

dt
= Ṙin
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Make        and        a weighted average of surface and mean 
bolometric temperature 
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Ṙin = Ṙout and deS/dt = −diS/dt, (10.56)

where we have defined the total radiative heat input and output rates
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S0, the mean albedo ˛, and the area of the Earth disk !R2

E (RE is the Earth’s
radius),
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team view of the closure for the TOA radiation budget. 
The TOA imbalance in the original CERES products 
is reduced by making largest changes to account for 
the uncertainties in the CERES instrument absolute 
calibration. They also use a lower value for solar 
irradiance taken from the recent TIM observations 
(Kopp et al. 2005).

Several atlases exist of surface f lux data, but 
they are fraught with global biases of several tens 
of watts per meter squared in unconstrained VOS 
observation-based products (Grist and Josey 2003) 
that show up, especially when net surface flux fields 
are globally averaged. These include some based on 
bulk flux formulas and in situ measurements, such as 
the Southampton Oceanographic Centre (SOC) from 
Grist and Josey (2003), WHOI (Yu et al. 2004; Yu and 
Weller 2007), and satellite data, such as the HOAPS 
data, now available as HOAPS version 3 (Bentamy 
et al. 2003; Schlosser and Houser 2007). The latter 
find that space-based precipitation P and evapora-
tion E estimates are globally out of balance by about 
an unphysical 5%. There are also spurious variations 
over time as new satellites and instruments become 
part of the observing system.

Zhang et al. (2006) find uncertainties in ISCCP-FD 
surface radiative fluxes of 10–15 W m−2 that arise from 
uncertainties in both near-surface temperatures and 
tropospheric humidity. Zhang et al. (2007) computed 
surface ocean energy budgets in more detail by com-
bining radiative results from ISSCP-FD with three 

surface turbulent f lux estimates, from HOAPS-2, 
NCEP reanalyses, and WHOI (Yu et al. 2004). On 
average, the oceans surface energy flux was +21 W m−2 
(downward), indicating that major biases are present. 
They suggest that the net surface radiative heating 
may be slightly too large (Zhang et al. 2004), but also 
that latent heat flux variations are too large.

There are spurious trends in the ISCCP data (e.g., 
Dai et al. 2006) and evidence of discontinuities at 
times of satellite transitions. For instance, Zhang 
et al. (20007) report earlier excellent agreement of 
ISCCP-FD with the ERBS series of measurements 
in the tropics, including the decadal variability. 
However, the ERBS data have been reprocessed 
(Wong et al. 2006), and no significant trend now 
exists in the OLR, suggesting that the previous agree-
ment was fortuitous (Trenberth et al. 2007b).

Estimates of the implied ocean heat transport from 
the NRA, indirect residual techniques, and some 
coupled models are in reasonable agreement with 
hydrographic observations (Trenberth and Caron 
2001; Grist and Josey 2003; Trenberth and Fasullo 
2008). However, the hydrographic observations also 
contain significant uncertainties resulting from both 
large natural variability and assumptions associated 
with their indirect estimation of the heat transport, 
and these must be recognized when using them to 
evaluate the various flux products. Nevertheless, the 
ocean heat transport implied by the surface fluxes 
provides a useful metric and constraint for evaluating 

products.
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in Table 1 for the ERBE 
period, Table 2 for the 
CERES period, and Fig. 1 
also for the CERES period. 
The tables present results 
from several sources and 
for land, ocean, and global 
domains. Slight differences 
exist in the land and ocean 
masks, so that the global 
value may consist of slight-
ly different weights for each 
component.
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Back to the Earth system ....
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(1 PW = 1015 W). Per unit area on Earth, this corresponds to 239 W m−2. The
long-wave radiative heat output rate Ṙout has the same value, on average.

The irreversible entropy production in the Earth system can be estimated
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First write:

Both are equal to 120 PW.

At equilibrium:
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Make        and        a weighted average of surface and mean 
bolometric temperature to find: 
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Ṙin = Ṙout and deS/dt = −diS/dt, (10.56)

where we have defined the total radiative heat input and output rates
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∫

A
Fout dA. (10.57)

The total short-wave radiative heat input rate Ṙin is set by the solar constant
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216 CH 10 NON-EQUILIBRIUM PROCESSES

The precise determination of Tin and Tout is difficult but we can give estimates.
As a first approximation we can argue that the radiation is absorbed or emit-
ted at either the surface temperature of 288 K or the atmospheric radiation
temperature of 255 K. It turns out that about 1/3 of the incoming short-wave
radiation is absorbed by the atmosphere and 2/3 is absorbed by the surface.
About 1/6 of the outgoing long-wave radiation is emitted by the surface and
the rest is emitted by the atmosphere.64 These fractions can be used in the
definitions of Tin and Tout, Eq. 10.50, to find

Tin ≈ 276 K and Tout ≈ 260 K. (10.60)

The total irreversible entropy production in the Earth system (commonly
expressed per unit area on Earth) is now

diS/dt ≈ 53 mW m−2 K−1. (10.61)

This estimate is in line with much more complex analyses of general circula-
tion models.65

The irreversible entropy production, above, is also referred to as the ma-
terial entropy production because it refers to the actual energy and entropy
throughput of the material components of the Earth system. However, one
could argue that the short-wave radiation enters the Earth system at the Solar
radiation temperature of 5780 K and leaves it at the Earth’s radiation tem-
perature 255 K. If we use these values for Tin and Tout we find an irreversible
entropy production of 896 mW m−2 K−1. The vast majority of this entropy pro-
duction occurs at the point of short-wave absorption in the Earth system. It
has no influence on the material workings of the climate system; the entropy
production resides in the photon field. In fact, this number underestimates
the photon contribution to the entropy production by a factor 4/3, the factor
that relates the energy content and the entropy content of the radiation field,
see Eq. 9.91. Unfortunately, the literature contains much confusing discus-
sion regarding this matter and we will not pursue it further here. Suffice it to
say that the entropy production occurring in the photon field is immaterial
to the workings of the climate engine.

Next we will consider just one process contributing to the irreversible en-
tropy production in the Earth system: the meridional heat flux. As discussed
in Section 9.4, the absorbed radiation in the equatorial regions is substan-
tially larger than that in the polar regions. The region equatorward of 30
degrees north or south spans half the Earth’s surface yet it receives about 2/3
of the incoming absorbed radiation, that is, about 80 PW; the other half of
the Earth’s surface, poleward of 30 degrees latitude, receives about 40 PW.
The total heat input is therefore about 120 PW, as before. Most of this energy

64See Trenberth, K. E., Fasullo, J. T. and Kiehl, J. (2009) Bull. Amer. Meteor. Soc. 90,
311–324.

65See Pascale et al., (2010) Clim. Dyn., doi:10.1007/s00382-009-0781-1.
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... substitute to find the material entropy production:

(Beware confused discussions about entropy in the radiation 
field!)
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Let’s assume these temperatures are the effective mean 
temperatures between which the atmosphere operates

Try

ηCarnot = 1− Tout

Tin
≈ 0.06

ηendoreversible = 1−
�

Tout

Tin
≈ 0.03

1

This corresponds to 14 Wm-2 and 7 Wm -2; compare to 
“observed” dissipation rate of 3.5 Wm -2.

max efficiency:

max power:



Closing thoughts



tropics extratropics

80 70 40 50

10



tropics extratropics

80 60 40 60

20



10.4 CLIMATE THERMODYNAMICS 219

 230

 240

 250

 260

 270

 280

 0  5  10  15  20
 0

 1

 2

 3

 4

 5

 6

 7
T 

(K
)

d
i S/dt(m

W
m

−
2K

−
1)

J (PW)

T2

T1

d
i S/ dt

FIGURE 10.2 Results for the two-box model of the Earth system for varying poleward heat
flux J. Solid lines: radiation temperature of equatorial region, T1, and polar region, T2.
Dashed line: irreversible entropy production due to the poleward meridional heat flux.
The entropy production is expressed per unit area on Earth.

which is equivalent to the expression for the heat conduction example of
Section 2.3, Eq. 2.32. Using the above expressions for T1 and T2 we find

diS

dt
= J (Jmax − J)

Ṙin

Tb

T1T2
≈ J (Jmax − J)

ṘinTb

, (10.70)

where it should be noted that both T1 and T2 are also functions of J. The
approximation on the right-hand side is better than one part in a hundred for
the relevant range of values for J. It can be seen that the irreversible entropy
production vanishes when J = 0 or when J = Jmax. In the intermediate range,
the entropy production is positive, with a maximum production rate when
J ≈ Jmax/2, see Fig 10.2.

For Earth parameters, the maximum of entropy production of about
6.5 mW m−2 K−1 occurs for J ≈ 10 PW. This value of the poleward heat flux is
close to the sum of the observed values at 30◦ N and 30◦ S. This coincidence
may well be fortuitous. However, problem 10.3 shows how maximum entropy
production can be used to predict the sensible and latent heat flux between
the surface and the atmosphere. Also, much more complicated models have
been produced that appear to indicate that observed fluxes are close to those
that maximize the production of entropy.66 Maximum entropy production
is perhaps the principle of non-equilibrium thermodynamics that parallels

66Paltridge, G. W. (1975) Quart. J. Roy. Met. Soc. 101, 475–484; Ozawa, H. et al.
(2003) Rev. Geoph. 41(4), 1–24; Kleidon, A. & Lorenz, R., eds. (2005) Non-equilibrium
thermodynamics and the production of entropy. Springer, Berlin.
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above definitions for Fin and Fout we can write for the reversible entropy
change

deS

dt
= 1

Tin

∫

A
Fin dA − 1

Tout

∫

A
Fout dA, (10.49)

where we have defined the temperatures Tin and Tout as

1
Tin

=
(∫

A
Fin dA

)−1 ∫

A

Fin

T
dA, (10.50)

with the analogous equation for Tout, replacing Fin by Fout. So Tin is the
weighted harmonic mean63 temperature where the system receives heat from
the environment, and Tout is the weighted harmonic mean temperature where
the system loses heat to the environment.

These formulations become particularly useful when considering a system
that, on average, is steady. Its energy will be constant and, because entropy is
a state variable, its entropy will be constant. In this case we have, on average,

L̇ = Q̇ and deS/dt = −diS/dt, (10.51)

where we have introduced the work output, L̇ = −Ẇ. Now substituting
Eq. 10.46 for Q̇, we can write Fout in terms of L̇ and Fin. Substituting the
ensuing expression for Fout and Eq. 10.49 in deS/dt, above, we find

I L̇ =
(

1 − Tout

Tin

) ∫

A
Fin dA − Tout

diS

dt
. (10.52)

Because dSi/dt ≥ 0, the theoretical maximum output of work L̇rev is achieved
when the system is reversible, and it equals

I L̇rev =
(

1 − Tout

Tin

) ∫

A
Fin dA. (10.53)

This is the continuous version of a classical result by Carnot that states that
the work output of a heat engine as a fraction of its heat input has an upper
bound and that this upper bound is achieved for reversible systems.

The factor relating the maximum work output to the heat input is called
the Carnot efficiency, !,

I ! = 1 − Tout/Tin. (10.54)

We encountered it in Chapter 2 in the problem about the Stirling engine.
For simple heat engines, which operate between two fixed temperatures, the
generalized version here reduces to the classical Carnot expression.

63The harmonic mean c of a set of N numbers ai is defined as c−1 = N−1
∑

i a−1
i .

Back to our general formula:
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This equation defines a relevant efficiency.

Back to our general formula:
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This equation defines a relevant efficiency.

Back to our general formula:

This equation implies the Sandström “theorem”.
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