Climate Thermodynamics 2010

Wed 21 April

12:15 Arrival

12:30 Lunch

13:30 Workshop starts in 1L61

13:30 Maarten Ambaum: Welcome, introduction; global heat flows in the atmosphere.

14:00 Tim Palmer: Climate Model Bias and the Fluctuation-Dissipation Theorem.

14:30 TBA.

15:00 Break.

15:30 Jonathan Gregory: Energetic analysis of changes in the AMOC under increasing CO2.

16:00 Kevin Oliver: An approximation for the structure of global meridional overturning in the ocean,

as a function of the gravitational potential energy generation and surface density fields.

16:30 Valerio Lucarini: Efficiency and Entropy Production in the Climate System.

Drinks and dinner.

Thu 22 April

9:00 Workshop reconvenes in 1L43.

9:00 Peter Jan van Leeuwen: Information transfer and entropy in large-dimensional systems.9:30 Salvatore Pascale: Entropy production in HadCM3 model and MEP conjecture for objective tuning.

10:00 Richard Allan: Thermodynamic and Energy Constraints on Precipitation.

10:30 Break.

11:00 Bob Plant: Self-organized criticality in tropical convection.

11:30 Christopher Dancel: The sensitivity of an Ocean Model's Architecture to the latent heat transport in the Atmosphere.

12:00: Remi Tailleux: Dynamics/Thermodynamics coupling in the incompressible Boussinesq model. Close: short discussion on the way forward (future workshops, publications, consortium bids, etc.)

Global Heat Flows in the Atmosphere

Maarten Ambaum Department of Meteorology University of Reading The global energy budget
The global entropy budget
Glosing thoughts

The global energy budget

Earth system at equilibrium:

energy in = energy out $\approx 120 \text{ PW} (120 \times 10^{15} \text{ W})$

The global energy budget

Earth system at equilibrium:

energy in = energy out $\approx 120 \text{ PW}$

= 1500×Hiroshima each second

The energy in = $120 \text{ PW} = 240 \text{ W/m}^2$ on average

For Reading area (55 km²): Energy in = 10 GW = $3 \times \text{Didcot power station}$

The energy in = 120 PW = insolated – reflected

= 170 PW - 50 PW

Reflected fraction (albedo)

Absorbed short-wave

(units W/m²)

Of the energy in = 120 PW,

80 PW go to the tropics,40 PW go to the extratropics.

Of the energy in = 120 PW,

80 PW go to the tropics,40 PW go to the extratropics.

Of the energy out = 120 PW,

70 PW come from the tropics, 50 PW come from the extratropics, 10 PW is transported from tropics to extratropics.

(units PW)

The global entropy budget

The entropy budget for a body of fluid

The first law: $dU/dt = \dot{Q} + \dot{W}$

$$\dot{Q} = -\int_A F_q \cdot \hat{n} \, \mathrm{d}A \qquad \dot{W} = -\int_A p U \cdot \hat{n} \, \mathrm{d}A.$$

Now define:

$$F_{\text{in}} = \begin{cases} 0 & \text{if } F_q \cdot \hat{n} > 0 \\ -F_q \cdot \hat{n} & \text{if } F_q \cdot \hat{n} < 0 \end{cases} \quad F_{\text{out}} = \begin{cases} F_q \cdot \hat{n} & \text{if } F_q \cdot \hat{n} > 0 \\ 0 & \text{if } F_q \cdot \hat{n} < 0 \end{cases}$$

$$\Rightarrow \qquad \dot{Q} = \int_A F_{\rm in} \, \mathrm{d}A - \int_A F_{\rm out} \, \mathrm{d}A.$$

The entropy budget: $dS/dt = d_eS/dt + d_iS/dt$

$$\frac{\mathrm{d}_e S}{\mathrm{d}t} = -\int_A \frac{F_q \cdot \hat{\boldsymbol{n}}}{T} \,\mathrm{d}A \quad \text{and} \quad \frac{\mathrm{d}_i S}{\mathrm{d}t} \ge 0.$$

then:

$$\frac{\mathrm{d}_e S}{\mathrm{d}t} = \frac{1}{T_{\mathrm{in}}} \int_A F_{\mathrm{in}} \,\mathrm{d}A - \frac{1}{T_{\mathrm{out}}} \int_A F_{\mathrm{out}} \,\mathrm{d}A,$$

where

$$\frac{1}{T_{\rm in}} = \left(\int_A F_{\rm in} \,\mathrm{d}A\right)^{-1} \,\int_A \frac{F_{\rm in}}{T} \,\mathrm{d}A,$$

(analogous for T_{out})

We can now derive for the work output $\dot{L} = -\dot{W}$:

$$\dot{L} = \left(1 - \frac{T_{\text{out}}}{T_{\text{in}}}\right) \int_{A} F_{\text{in}} \, \mathrm{d}A - T_{\text{out}} \frac{\mathrm{d}_{i}S}{\mathrm{d}t}$$

(This general expression for the second law includes the Carnot theorem and the Guoy-Stodola theorem)

Back to the Earth system

First write:

$$\dot{R}_{\rm in} = \int_A F_{\rm in} \, \mathrm{d}A \quad \text{and} \quad \dot{R}_{\rm out} = \int_A F_{\rm out} \, \mathrm{d}A$$

Both are equal to 120 PW.

At equilibrium:

$$\frac{\mathrm{d}_i S}{\mathrm{d}t} = -\frac{\mathrm{d}_e S}{\mathrm{d}t} = \dot{R}_{\mathrm{in}} \left(\frac{1}{T_{\mathrm{out}}} - \frac{1}{T_{\mathrm{in}}}\right)$$

Make T_{in} and T_{out} a weighted average of surface and mean bolometric temperature

from Trenberth, Fasullo & Kiehl, Bull. Am. Met. Soc., 2009

Back to the Earth system

First write:

$$\dot{R}_{\rm in} = \int_A F_{\rm in} \, \mathrm{d}A \quad \text{and} \quad \dot{R}_{\rm out} = \int_A F_{\rm out} \, \mathrm{d}A$$

Both are equal to 120 PW.

At equilibrium:

$$\frac{\mathrm{d}_i S}{\mathrm{d}t} = -\frac{\mathrm{d}_e S}{\mathrm{d}t} = \dot{R}_{\mathrm{in}} \left(\frac{1}{T_{\mathrm{out}}} - \frac{1}{T_{\mathrm{in}}}\right)$$

Make T_{in} and T_{out} a weighted average of surface and mean bolometric temperature to find:

$$T_{\rm in} \approx 276 \, {\rm K}$$
 and $T_{\rm out} \approx 260 \, {\rm K}$.

... substitute to find the *material entropy production:*

 $d_i S/dt \approx 53 \,\mathrm{mW}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}$

(Beware confused discussions about entropy in the radiation field!)

 $T_{\rm in} \approx 276 \, {\rm K}$ and $T_{\rm out} \approx 260 \, {\rm K}$.

Let's assume these temperatures are the effective mean temperatures between which the atmosphere operates

max efficiency:
$$\eta_{\text{Carnot}} = 1 - \frac{T_{\text{out}}}{T_{\text{in}}} \approx 0.06$$
max power: $\eta_{\text{endoreversible}} = 1 - \sqrt{\frac{T_{\text{out}}}{T_{\text{in}}}} \approx 0.03$

This corresponds to 14 Wm⁻² and 7 Wm⁻²; compare to "observed" dissipation rate of 3.5 Wm⁻².

Closing thoughts

Back to our general formula:

$$\dot{L} = \left(1 - \frac{T_{\text{out}}}{T_{\text{in}}}\right) \int_{A} F_{\text{in}} \, \mathrm{d}A - T_{\text{out}} \frac{\mathrm{d}_{i}S}{\mathrm{d}t}$$

Back to our general formula:

$$\dot{L} = \left(1 - \frac{T_{\text{out}}}{T_{\text{in}}}\right) \int_{A} F_{\text{in}} \, \mathrm{d}A - T_{\text{out}} \frac{\mathrm{d}_{i}S}{\mathrm{d}t}$$

This equation defines a relevant efficiency.

Back to our general formula:

$$\dot{L} = \left(1 - \frac{T_{\text{out}}}{T_{\text{in}}}\right) \int_{A} F_{\text{in}} \, \mathrm{d}A - T_{\text{out}} \frac{\mathrm{d}_{i}S}{\mathrm{d}t}$$

This equation defines a relevant efficiency.

This equation implies the Sandström "theorem".

WILEY-BLACKWELL

Thermal Physics of the Atmosphere

Maarten H. P. Ambaum

Now for sale. See: http://www.met.rdg.ac.uk/ ~sws97mha/thermal