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ABSTRACT

Rainfall is a key observable of the weather, of importanceotwedy. Rain gauges only
provide point measurements; for areal rainfall informattoradar may be used. Radars
measuring just reflectivityA) may suffer large errors in derived rainrates due to drog siz
distribution (DSD) variations. The introduction of duadarisation radars to operational
networks should lead to improvements in rainfall estimagtadthough these radars suffer

high noise levels in polarisation parameters(.7 dB in differential reflectivity f'pr]).

This thesis examines rainfall characteristics, considetine effect of DSD changes
on radar parameters. The difficulties causedy noise are examined, showing prob-
lems for rainfall estimation. Rainfall statistics are sedlifinding that relative rainrate
changes are the same at all rainrates. Decorrelation ahtaitn0.5 in the southern UK
Is shown to takel.5 minutes, which mean sampling rainfall in “snapshots” onlgrg 5
minutes generates24% error in hourly accumulations as shown in the thesis. Thasith
concentrates on estimating moderate rainfall rate$0(mm hr-1), which generat&6%
of rain accumulation in southern UK, with dual-polarisati@dar. At moderate rates,
specific differential phase shiftg({;p) are too small for accurate rainfall estimation, so
Zpr Must be used. The noise #fHr means that using andZpy at each gate generates
rainrates with error as much as a facto 0f This thesis introduces a technique utilising
the spread off andZpr data over an area, estimating drop concentratioy) (ver the
area and hence:*in Z = aR'®. This generates an appropriagfe— R relationship for
the selected region, which can be utilised with each pixglt® give rainrates accurate
to 25% while maintaining the high resolution of the data despitgdanoise inZpg. The
thesis examines the use of the technique with operatiodatraspecially the Thurnham

radar in the UK.
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“Dual-Polarisation radar speaks with a forked tongue”
- Prof. lan Cluckie - 2006

All science is either physics or stamp collecting.
- Ernest Rutherford (1871 - 1937), in J. B. Birks ‘Rutherford at
Manchester’ (1962)

Creativity is the sudden cessation of stupidity.
- Edwin Land
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Chapter 1: Introduction

CHAPTER 1.
INTRODUCTION

1.1 THE USE OF PRECIPITATION RADAR

Rainfall is probably the most important weather observabké public: will it rain? If
so, how much? Rain is possibly the most important part of argthes forecast. Rainfall
information also affects many industries, notably agtia, where rainfall predictions
can influence sowing and harvesting times. Unfortunatelypfall remains one of the
most difficult features of the weather to forecast. Untilywercently operational numeri-
cal weather prediction models operated with grid scalewfalarge to resolve rainfall so
cloud and rain must be parameterised within the models. Mervaew high resolution
models are being developed and introduced that reduce sb&iten to1-4 km, scales
at which the rainfall is being much more accurately represgfor example, Golding
et al, 2005, demonstrate use of such a model in discussing the &testiaod of 2004).
These parameterisations limit the accuracy of the rairéaficasts. Possibly a larger
problem however is that of the nature of rainfall. The spatmal temporal distribution of
rainfall is variable and intermittent on small scales, angrobably the most chaotic of
all atmospheric variables (Frits@t al., 1998). This will be discussed in more detail in
chapter 4. This means that accurate predictions are diffigth lead times greater than

just a few hours.

Rainfall is also a major hazard in the modern world, with flasloding a regular
feature of the news. Flooding is the result of a combinatigoroblems. River floods are
the result of prolonged, yet not necessarily intense, aflia¥erloading the river drainage
system. An example of river flooding is the the flooding of mudhcentral Europe
in 2002. The other type of flooding, flash flooding, is more dangs, and happens

when very intense rainfall occurs, which quickly overcortiesdrainage systems. Flash
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Chapter 1: Introduction

floods tend to be very strongly localised events, occuriagdently in urban (and hence
inhabited) areas as the surface cannot absorb large anawrdsger in a short time, flash
flooding also often occurs in steep rural catchments. An @kamof flash-flooding is
the event of 16th August 2004 in Boscastle. A flood swept thnahg Cornish village,
destroying oveff0 properties, damaging bridges and causing approximagglypeople
to need airlifting to safety (Burt, 2005). Fortunately, neeb were lost due to the rapid

response of the emergency services.

Although knowledge of the amount of rain falling will not @l for prevention of
these floods, the warning that could be given from rainfak tenowledge could save

lives and damage to property.

One of the impacts of climate change according to the repdrtke Intergovern-
mental Panel on Climate Change (IPCC) (Follatél., 2001) is an increase in extreme
events, which would include flooding. It is a challenge to imise the loss in both
humanitarian and financial terms. Accurate rainfall meaxsiegnt and surveillance will

assist in prediction, warning and reaction to these higpaich events.

Rain gauges provide the traditional measure of the raird@lipugh they are sparsely
distributed and are just a point measurement. Rain gaugks §wm a number of sam-
pling problems, including position, wind effects, smallleoting areas and human error.
But the chaotic behaviour of rainfall patterns mean that ehenperfect rain gauge’s
ability to measure the rainfall distribution is very limit@and depends on the rainfall in
guestion. Convective cells can be very small {0 km), so gauges with spacing of as
small as10 km may record no rainfall despite very heavy rainfall betwd#eem. Strati-
form rainfall shows similar variations but occurs over mlgitger scales. Precipitation
radar can also be used to measure rainfall, and gives areatage over a large area
(over100, 000 km? for operational radars) with resolution tckm? at close ranges. Tra-
ditionally these radars measure just the reflectivityf{Section 2.2.1), of the target. The
reflectivity is the empirically related to rainfall rat&, by a simpleZ — R equation of

the form
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Chapter 1: Introduction

Z = aR’. (1.1)

However, these relations suffer from high errors (oftentgdas a factor ot error in
rainfall rate, but can be much larger in some cases) whichriesd current radar is more
of a qualitative tool than quantitative instrument. Theamaduffers from a number of
problems such as ground clutter (where the radar beam litgrdund, or similar static
targets), the presence of hail and the bright band (causedeltyng snow), these errors
will be discussed later in this chapter. There also remasbtin the values of botlhand
b with large numbers of these relations formulated over tres/ef radar meteorology,
many of which appear in the book by Battan (1973). The likelyseaof much of this
variation is the variations in the drop size distributioB§D, which naturally occur. It
can be seen from many of the suggested forms of equationdt.th#” — R relations in
stratiform (highb) and convective (low) rainfall are considerably different. This could
explain the differentZ — R relationships used by the UK and US operational networks.
The UK, where stratiform rain is prevalent, usés- 200R*-¢, while in the US convective

rainfall is more common, so a different relationship= 300k, is used.

Modern technology allows the use of polarised radar beaivisggus more informa-
tion on the scattering targets. Installation of these neal dalarisation radars has begun
in the United Kingdom and France. With the extra informatoavided, more knowl-
edge of the DSD can be obtained from the radar, improvindatestimation. Another
benefit is that polarisation can be used to identify grountiel, the bright band and halil.
However the principal point of this thesis is for times whbka tadar beam is in rain (so
short ranges - especially in the winter months). Dual psédion techniques have been
suggested as the way to better rainfall estimation, butrémsins to be demonstrated in

an operational environment.

It should be noted that weather radar cannot predict whenéalawill occur, but
useful information can be obtained once the detection optkeipitation has occurred,
and assists in nowcasting and weather forecasting suck &8MROD system (Golding,

1998) operated by the Met Office, which forecasts up to a rahgeours.
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Chapter 1: Introduction

1.2 RADAR METEOROLOGY

Radat is a system that uses electromagnetic radiation for detedti targets and their
positions. Although initially developed for aircraft, tpetential of radar for meteorology
was rapidly realised (Fletcher, 1990). This section wittaduce the basics of dual-

polarisation radar.

1.2.1 THE HISTORY OF WEATHER RADAR

Radar has its history in radio communications. Radar devdlgpeckly after its inven-

tion by Watson-Watt in 1936 (although whether this was the tnvention is debated).
By the end of World War Il radar had been well developed and veag successful, es-
pecially for the Allied forces. During the war, weather meisiwere generally considered
a nuisance, but, before the end of the war, the Meteorolb@iffece had al0 cm radar.

Since, radar has evolved, with improvements in all the teldgies used in radar. Prob-
ably the greatest advances in radar were the invention dfahsistor and the computer.
The computer was especially important for radar meteosokgthat the large quantities

of data generated can be utilised and archived.

The first work in the UK done on the accuracy of precipitationf radar was in the
late 1940s. Meanwhile in Canada, Marsletlial. (1947) derived an early - R relation
of the form of equation 1.1. However, it was not until 1967ttttee use of radar to
provide quantitative rainfall measurement in the UK wasl&d. This experiment used
a 10 cm radar but suffered from a number of problems includingrgeldeamwidth.
Hence the radar was convertedi® cm in 1973, reducing the beam 1o0°. In the
early 70s the Dee Weather Radar Project based in north Walasqried research into
the use of radar for rainfall rates, much of the work remaml&dy though perhaps too
confident, this project lead us to have the operational nétwe now have in the UK.
This is now the operational radar band in the UK. This wavgilechange means that the

radar suffers more from attenuation of the radar beam in keayy rain, but means that

'Radar is an acronym for RAdio Detection And Ranging
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Chapter 1: Introduction

smaller radar antennas are required for the same beam widtie UK and Europe, the
very heavy, attenuating rains are less frequent than in & Which is a major reason

for the difference in radar wavelengths in these respeotigmns.

The advent of polarisation radar occurred in the early 19964ially polarisation
was exploited with circular polarisation, where promisesvi@und for suppressing clut-
ter. Drop shapes were found to depolarise the returns tcatter,rleading to the devel-
opment of the linear depolarisation ratio (see section S2hga and Bringi (1976) used
the shapes, sizes and orientation of rain drops to showreliffeal reflectivity (see section
2.4.1) gave a measure of drop size, and when used in comdmnatih 7 has the poten-
tial to derive more accurate rainfall rate estimates. Tosueadifferential reflectivity
Seliga and Bringi (1976) suggested a radar design whictsedilhorizontally and ver-
tically polarised pulses, measuring the returns at bothnsations. The CAMRa radar
(see section 1.4) in Chilbolton was the first to implement tachnique with alternate
horizontally and vertically polarised beams, then as naw thdar operated at S-band
(note the operational radar network in Britain uses C-bandchBlananda and Ziai
(1987) suggested the use of differential phase shift to awvgrainfall estimation. The
1990s saw efforts into improved algorithms for rainfalliesttion, both with traditional
and dual-polarisation radars. Meanwhile, operationaaracktworks grew throughout
the world at various frequencies, mostly operating at SdbarAmerica, but at C-band
in Europe and Japan. Recent years have seen the developrdemsiatiation of the first

polarisation radars in the operational environment.

1.2.2 THE MATHEMATICS OF RADAR: THE RADAR EQUATION

The power received from a distribution of meteorologicaféds is given by equation 3

of Probert-Jones (1962), often called the meteorologadér equation:

P2 0¢hY |K|? D

P
" 10241n2 N2 r2 ’

(1.2)

where
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Chapter 1: Introduction

P. = received power

P, = transmitted power

g = antenna gain

0 = beamwidth (horizontal)

10) = beamwidth (vertical)

h = pulse length

K> = the dielectric factor (for rain.93)

D; = scatterer diameters

A = radar wavelength

r = distance between sample and radar antenna
with summation over a unit of volume. Equation 1.2 may betemias

C|K|*z

P, = 5

(1.3)

r

where we have the radar constatif,and the radar reflectivity factax,.

These equations make a number of assumptions:

e The targets are equally spread through the sample volumenadelled as homo-
geneous dielectric spheres and have diameter smallertibaadar wavelength to

ensure Rayleigh scattering.

e The reflectivity factor remains constant throughout theticbuating region (gradi-

ents generate errors).
e The main beam power is described by a Gaussian function.
e Attenuation and multiple scattering are negligible.
e Polarisation of incident and backscattered waves are the.sa

The radar reflectivity factor/, is usually referred to as simply “reflectivity” by radar
meteorologists (which will be used in this thesis). Reflagtiis the summation of sixth
power of diameter of all targets within a unit volume:

TR

Z [mmﬁmg} 003

N(D)D® dD (1.4)

0
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Chapter 1: Introduction

in linear units. The range of magnitudesiead to its expression in logarithmic units,
dBZ:

Z[dBZ] = 101log,, (Z[mm°m?]) . (1.5)
The radar observes,., which is then interpreted as the return from small spheligpaid
water drops.

Radar system errors are given in Joss and Waldvogel (199D)nelde beam block-
ing, attenuation (when atmospheric gases and particlesedtie power within the radar

beam) and ground clutter. These errors can be minimised by:

favourable radar site location to minimise beam blockind ground clutter;

appropriate choice of wavelength for the intended use;

beam width and sensitivity for the intended purpose;

good calibration;

correction of attenuation and anomalous propagation.

1.2.3 DIFFICULTIES TRANSLATING Z TO R

ConvertingZ into R is not trivial. Although a relation of the form of equationllis

accepted as representing the truth well, there remaing@ tarmber of problems.

When the radar beam hits the ground, or ground based objects &s trees, build-
ings or masts) the reflectivity will be high, even without hguheteors present. This will
then mean that &-R translation will show a non-zero rainfall despite the lad¢khg-
drometeors. When both clutter and hydrometeors are presémbuhe radar beam the
reflectivity is higher than for the hydrometeors alone, leeimcreasing the rainfall rate

apparent from the/- R translation.

When the radar beam encounters hail the reflectivity will bectéd. Hail tends to
have much larger diameters than rain drops. This means tiext fail is present within

the radar beam it dominates the reflectivity due to its depeoe on thes power of
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Chapter 1: Introduction

particle size (equation 1.2). This results in hail-infelcteturns having higher reflectivity

than the rainfall would suggest once the hail melts (eithehe fall or after impact with

the surface).

SNOWI/ICE

height

BRIGHT BAND
MELTING SNOW

RAIN

dBZ

Figurel.l Schematic plot of the vertical

profile of reflectivity.

Another problem occurs when the beam is sam-
pling snow and ice. Reflectivity is reduced be-
cause the dielectric constant is different, but is in-
creased by the larger size typical of the snow and
ice particles. These snow and ice particles tend
to also grow as they fall so the reflectivity can
change as the same particles fall. An even more
serious problem occurs once the snow flakes be-
gin to melt. When this occurs the drop builds up
water while maintaining an ice structure, so gains
the dielectric constant of water, but with size of
snow. This means that reflectivity is large, in-
creasing by as much a8 dB. A schematic of all

of these effects can be seen in figure 1.1.

Even if all of these problems can be removed we still havecdliltiies calibrating the

reflectivity recorded by the radar. This can be done usingration radar as will be

seen in chapter 2. Finally the conversion fréhto R relies on a consistent raindrop size

distribution, which is not present. This is why many differe — R relations have been

suggested. These spectra will be discussed in the nexbseEiven if the rainfall rate is

known perfectly from within the beam, low level growth or peaation will change the

rate by time the drop reach the surface, this cannot be d¢edersing dual polarisation

radar.
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1.3 THE RAINDROP SIZE SPECTRA

The drop size distribution is of vital importance to radaitadictates the numbers and

sizes of the drops in the sampled volume, affecting the mstuia equation 1.4.

In the early years of meteorological radar research Marshal Palmer (1948) sug-

gested a simple exponential form of the raindrop size tistion:

N(D) = Nyexp —AD, (1.6)

where N, = 8000 m~2 mm~! and

A =41R7%2 (1.7)

This drop spectrum only changes with rainfall rate, whicluldomake converting
reflectivity to rainfall a trivial task (which leads t& = 200R!%). Unfortunately the
Marshall-Palmer drop spectrum does not represent the wadation in drop spectra
found in nature, which lead to the introduction variatiomodp concentration. A gamma
function for raindrops was suggested by Ulbrich (1983). iesv, variation in the shape
parameter caused changes to the drop concentration rédoiitie same rain properties,

S0 a normalisation was added.
Natural raindrop size spectra are well-defined (Kozu andaNaka, 1991) by a nor-
malised gamma function:

3.67 + u)D) 1.8)

N(D) = Nuf (1) (Dﬂ)p (-251

6 (3.67 + )t
(3.67)4 T'(u+4)

f(p) = (1.9)

In this equation there are three variables:
Shape parameter . High values ofu imply a more truncated spectrum. See figure 1.2.

Drop Concentration N, normalised so that, despite changeg,itiquid water content

remains constant. See figure 1.3.
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Figure 1.2  Normalised gamma distribution, with variations. For this ploD, is 1 mm andN,, is

8000 m—3mnr 1.
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Figure1.3 Normalised gamma distribution, with,, variations. For this ploD,, is1 mm andu is 5.

Median drop diameter D,, the diameter of the drop of which there is an equal volume

of water in drops of greater and lesser sizes. See figure 1.4.
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Figure 1.4 Normalised gamma distribution, with,, variations. For this ploN,, is 8000 m~3mnr!

andu is’5.

This normalised spectrum is preferable (lllingworth anddBlaan, 2002) to the non-
normalised gamma function of Ulbrich (1983) as it giv€s a more reliable meaning.

With 1 = 0 the normalised gamma function reduces to a simple expaidéotm.

Ulbrich (1983) used the man¥ — R relations of Battan (1973) to find a range of
variables in the gamma function (not-normalised) knownres“Ulbrich” range. He
deduced a: range from—1 to 5. Illingworth and Blackman (2002) questioned the va-
lidity of the mathematics of the derivation of the “Ulbrickéinge (and showed evidence
of data outside realistic bounds, as an example a rainfdl 840000 mm/hr results
from a spectrum within the “Ulbrich” range), but it is now coran practice to derive
polarimetric rainfall techniques using the “Ulbrich” rasaqg Comparison with observa-
tions of disdrometer (Kozu and Nakamura, 1991) found anamesvalue of: would be
about4 — 6. Using disdrometer observations in Chilbolton, UK, Illingsth and Johnson
(1999) found a mean value df, = 8511 m~3 mm~!, with a standard deviation of a
factor of 3.6, with 96% within a factor of13. Bringi and Chandrasekar (2001) found a

similar value ofN,, = 10,000 m~— mm~! from a disdrometer in Darwin, Australia and
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D, = 1.25mm.

These techniques have a problem with sampling the less conarge drops due to
the sampling area. A larger volume with a better sample oflaiger drops is found
using radar. Wilsoret al. (1997) used differential Doppler velocity, DDV (differesm
Doppler velocities at horizontal and vertical polarisaih They show that DDV as a
function of Zpg is dependent on the value pf They find a range of = 2 — 10 with a

mean ofb.

1.4 THECHILBOLTON ADVANCED METEOROLOGICAL

RADAR

The Chilbolton Advanced Meteorological Radar (CAMRa), (Goddatral, 1994a), is
an S-band radan\(~ 10 cm, 3 GHz) with a very largeZ5 m diameter) fully steerable
dish to give very high resolution radar data and sensitiftlig world’s largest steerable
pointable meteorological radar). The radar (pictured iarigl.5) is located at Chilbolton
Observatory, in Hampshire (near Winchester), UK and runhigyRutherford Appleton
Laboratory (RAL). The radar operates with an alternate psys¢em (described in sec-
tion 2.4.3) for polarimetric measurements and also has [Rogppability. For informa-
tion on the hardware of the radar see the paper of Godeteatl (1994a). A key feature
of the CAMRa radar is the very large antenna, which gives a vamow(0.28° beam (°

is more normal). This means that the radar data has muchrtsghgéal resolution than

other radars. The use of data from this radar will be extertsikoughout this thesis.

The maximum range resolution is limited by the pulse lengitid the range is limited
to the product of the speed of light and pulse length dividgd for the return trip. The
radar data acquisition system avera@gépulse pairs at each gate. Additionally, for most
operationst gates in range are averaged to make a range resolutiid of. The effects

of this averaging will be discussed in more detail in chapter

The wavelength ot0 cm is larger than operational radars in the UK, which tend to
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Figure15 Photograph of the CAMRa radar in Chilbolton.

operate in C-bandX( ~ 5.6 cm), but the same as used in the USA. This means that
attenuation of the radar signal, by both hydrometeors amsbsptheric gases, will be
less significant. Attenuation is a result of absorption acattsring of the radar beam
as a result of passing through the extinction cross secfidinectarget particles. In the
Rayleigh regime, where drops are much smaller than the raaalength, the extinction
cross section is proportional to the drop volume. The atgaon of the radar beam will be
larger as wavelength decreases. For example rainfall ofm/hr attenuates the beam by

approximately).5 dB km~! at C-band, whereas at S-band this is less thaaB km!.

1.5 THESISOUTLINE

This thesis focuses on the use of an area-integrated mathattrately estimate mod-
erate rainfall rates. This chapter has shown the need foe mocurate rainfall rates,

described the basics of radar meteorology, introduceddhealised gamma distribution
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Frequency 3.0765 GHz
Wavelength 10 cm
Antenna diameter 25m
Beam width 0.28 °
Pulse width 0.5 um
PRF 610 Hz

Max. range resolution 7Hm

Max. digitised range 160 km

Peak power 560 kKW
System noise figure 1.3dB
Elevation slew rate 1°s!
Azimuth slew rate 2°s1
Cross-polar isolation —34dB
Noise at 1 km —36.7dBZ

Unambiguous velocity 15m st

Table1.1 Properties of the CAMRa system.

of raindrop size and gave details of CAMRa, the radar used fahnofithe work in this

thesis.

Chapter 2 examines the current state of rainfall estimatiom fradar, initially with
conventional radar, moving into dual-polarisation raddne new radar variables avail-
able from the dual-polarisation will be described as theyaarcountered in this chapter.
This chapter will demonstrate the need for integrated tiegtas when using polarisation

parameters, especially in the operational environment.

The natural variability of rainfall is considered in chapse Using polarisation radar
parameters we look into the changes in parameters we rendrdrew the variabilities
are the effect of true changes in the rainfall, not simplysfiect of the sampling.

The statistics of rainfall are considered in chapter 4, eranrg the occurrence of

rainfall events, the decorrelation of the rain and the eslatgffects of non-continuous
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sampling of rain when estimating accumulations as perfdrbyea radar network.

In chapter 5 the integrated/ Zpr technique is described along with precautions nec-
essary to avoid problems with output. This chapter is foldwy a number of examples
showing the results of the technique and explanations oplysical processes giving

rise to the results, in chapter 6.

Chapter 6 also demonstrates the evaluation of the integrat&gr technique and

comparisons to other methods of rainfall estimation.

The use of the integrated/Zpr technique in the operational environment is consid-
ered in chapter 7. Here we detail the differences that ogtting operational environ-
ment compared with use on research radars. This poses cagrifproblems to most
polarisation methods due to the increased noise of the tipeahsystems. This chapter

introduces the Thurnham operational dual-polarisatidiara

Chapter 8 gives a conclusion and comments on possible fututeinto the described
method. Finally the potential for this technique to becorag pf the UK’s operational

system is discussed.
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CHAPTER 2:
RAINFALL ESTIMATION WITH RADAR

2.1 INTRODUCTION

This chapter will investigate the various methods of edtiingarainfall rate using radar,
from the simple reflectivity relationship used on the UK @igmal network to the mod-

ern combined and integrated polarisation radar techniques

2.2 Z-R,WITHOUT POLARISATION

2.2.1 'TRADITIONAL REFLECTIVITY RAINFALL RATE METHODS

A traditional non-polarised radar will measure only theeefivity at each gate (often
these radars actually use a polarised beam, but lack théitigpto receive or transmit
in the orthogonal polarisation. Currently these radars araidant in the operational

networks of the world.

Empirical relations of the form
Z = aR?, (2.1)

using only the reflectivity to estimate rainfall, may suffesm errors of a factor of two

in rainfall rate. This is caused by variability of rain drgpestra, as

Z =Y NI (2.2)

but
R=> ND*%, (2.3)

where N is the number of drops anB is the drop diameter, in mm. Oft-quoted is the
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Marshall and Palmer (1948) relatich= 200 k"¢ derived from the Marshall and Palmer
(1948) drop size spectra of equation 1.6.

The variation in drop spectra explains the wide variety’of R relations reported,
and this will be analysed in more detail in chapter 3. Manyehlbagen proposed, such
as those in Battan (1973). Battan went on to suggest that it madse appropriate to
assign aZ — R based on the type of rain event considered, suggestingiensatf the

form of table 2.1.

Rainfall Type| Z — R Author
Stratiform | 200R'% | Marshall and Palmer (1948)
Orographic | 31R™ Blanchard (1953)
Thunderstorm 486R!'3" Jones (1956)

Table2.1 Z — R relation for different rain types suggested by Battan (1973

Use of an adjustablg — R would, however, require a reliable method of defining the
event “type” operationally, though radar-gauge adjustnh@s be implemented in some
work (e.g. Wilson and Brandes, 1979), this does not trulyedéhtiate rain type, and may
partly correct miscalibration. Although these simple t@ges have been used for over

50 years, modern technology can improve our precipitatsimation.

2.3 RAINDROP SHAPES

Why is polarisation important for weather radars? The anssteat raindrops (and other
hydrometeors) are not perfect spheres. If all targets weregtly spherical, the returns
from all polarisations would be the same, even if sizes dafaindrop shapes are related
to their size. Drops smaller thanmm are spherical, but become increasingly oblate as
the size increases, as shown in figure 2.1. These shapeseseltaof the high surface
tension forces of water in the drop, and the aerodynamictsfteaused by the drop falling
under gravity. Also, turbulence in the air causes raindtopsve a distribution of angles,

where the major axis deviates from the horizontal, knowrcasting angles” (Beard and
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Jameson, 1983). The radar will see drops with a variety dimgangles, but an average
value of close t®°. Raindrops larger thahmm in diameter oscillate about a mean shape
(Beard and Tokay, 1991). The effects of these oscillatiotissmérage to zero for a large
number of drops. The combination of canting and oscillatiteans that a radar does
not view the maximal horizontal and minimal vertical extefthe drops. To interpret

polarisation returns the raindrop shapes must be known well

Figure 2.1  Horizontal view of equilibrium shape of raindrops b6 mm diameter, with shape for
spherical drops of the equivalent volume. The dashed linew she size of the equivalent volume sphere.
From Beard and Chuang (1987).

Pruppacher and Pitter (1971) suggested a simple linearargaip between drop

axial ratio,r, and drop diameter) (mm):

D<05bmm = r=1

D>05mm = 7r=1.03-0.062D, (2.4)
which was commonly used until recently. Goddat@l.(1982) formulated a new model:

D<llmm = r=1

D>1lmm = r=1075—0.065D — 0.0036D? + 0.0004D*,  (2.5)
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which was calculated from comparison of radar and disdrem&his answered a prob-
lem that observations (dfpr and comparison with disdromet&s0 m below the radar
beam) suggested the linear shapes were too oblate for drgdesthan2.5 mm. This
implied the drops should be more spherical than the lineateioredicts.

More recently, use of strobe photography in long wind tusihels led to the proposal,

by Andsageet al. (1999), of the polynomial:

D=11—-44mm = r=1.102—0.01445D — 0.001028D>. (2.6)

These models predict distributions as shown in figure 2.2.

1

0.95

0.9

Axial ratio, r

0.8

0.75 1 1 1 1 1 1 1
0 05 15 . 2 25 3
Drop Diameter (mm)

Figure2.2 Plots of different raindrop shape models: linear Pruppaehd Pitter (1971) model (blue),
Goddarcet al. (1995) model (red) and Andsagetral. (1999) model (green).

2.4 THEADDITION OF DIFFERENTIAL REFLECTIVITY

2.4.1 WHAT ISDIFFERENTIAL REFLECTIVITY?

Seliga and Bringi (1976) suggested that rainfall rate estona could be improved using

differential reflectivity ¢pr). This is defined as the ratio of reflectivity at horizontatlan
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vertical polarisations:

Z
Zpr = 101og (Z—ji) (2.7)

This parameter is independent of drop concentration andehgies information on the
mean shape (reflectivity weighted) and hence size of thesdrajsing this parameter
provides information on the variation in the drop size dttion, hence allowing more

accurate rainfall rate estimation.

2.4.2 WHY USE DIFFERENTIAL REFLECTIVITY FOR ESTIMATING

RAINFALL RATES?

The use ofZpy gives the ability to reduce the effect of variability in theod size spectra
by adding extra information about drop size. In what folloivss assumed that the
natural variability of DSDs is captured by the normalisedhga function (section 1.3)

and assumes that= 5.

By knowing the relationship between drop shape and sizg, gives theD, of the
target drops (assuming constant For a givenD,, Z and R both scale withVV,,, so
Z/R can be calculated as a function Zfg. This results (at S-band) in the formula of
lllingworth and Blackman (2002):

Z
dBZ—dBR = & = f(Zpr) = 21.48+8.14 Zpr —1.385 (Zpr)*+0.1039 (Zpr)®. (2.8)

A plot of this equation can be seen in figure 2.3. In the thefsiee (2003), however, it

IS suggested that it is better to use:

% = f(lOg ZDR); (29)

where f is an empirical polynomial, which will give bettéf/R at low values ofZpg.
Using this formula, the rainfall rate at each point can bewalted, using the andZpr
values. It is known that at constafhr, Z and R both scale withV,,. So givenZpg, a
value of reflectivity can be found using 2.9 for the case whairfall rate isl mm hr!.

Rainfall rateR, in dBR, is given by

dBR = dBZps — dBZymmm /i, (2.10)
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Figure2.3 Plot of the reflectivity required at a givefyg for a rainfall rate ofi mm/hr as formulated in
Illingworth and Blackman (2002).

where dBZ,;, is the observed reflectivity and,. /. is reflectivity in the case described
above. Recall that
R = 100", (2.11)

When considering this in linear terms, this becomes
R = ¢Z g(Zpg). (2.12)
This is similar in form to the equation of Bringi and Chandras&R001):
R = cZ%Z{y. (2.13)

Figure 2.3 shows that if the drops present are generallylsntain an average spectrum,
thenZpg is smaller, and would suggest the rainfall is higher thamrgpk 7 — R would
predict (Z for 1 mm/hr drops a¥/pr — 0). When only very large drops are present (in
the early stages of a convective shower for instance) therdigce ofZ on the sixth
power of drop size means that the reflectivity is high, butifedi not especially heavy.
This can be seen at highyr (large drops) where a much high&ris required to achieve

1 mm/hr of rainfall.
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While in theory equation 2.13 yields a good estimatdiplarge errors result espe-
cially whenZpg is small. Bringi and Chandrasekar (2001) suggest a more rebtistate

is found if consideringZpgr in linear terms:
R = ¢; Z* 102101 7o (2.14)

The coefficients are chosen by regression using the “Ulbrexiige of parameters in the
normalised gamma distribution of drop sizes (Ulbrich, 198&&ingi and Chandrasekar
(2001) propose:; = 0.0067, a; = 0.93 and3; = —3.43 at S-band. Estimators of
the form of (2.14) are now becoming more widely used (Brareded.,, 2002; Ryzhkov

et al, 2005b). However, it is difficult to explain physically anglue of «; not equal

to 1. Equations 2.10 and 2.11 show thatand R scale together sa; must bel or
this would not be the case. The only possible cause of a niy-un is a result of
systematic changes im with rainfall rate. Use of linear drop shapes and the Ulbrich
range (Gorguccet al,, 1994; Chandrasekar and Bringi, 1988; Chandrasekal, 1990)

lead to an overestimate of rainfall rate by as much as a factovo.

It should be noted that f&5% accuracy at rainfall rates 8f- 10 mm hr-!, Zpr must
be measured to withid.1 dB. The reason for requiring this level of accuracyigr can
be seen in figure 2.3. The slope of the curve at reflectivitiearad 30 dBZ mean that a
0.1 dB error inZpg will result in al dB error inZ for 1 mm/hr, equivalent t@5%. This
accuracy of rainfall rate will also requité to be calibrated td dB. This constraint will

be discussed in section 2.6.1.

2.4.3 SAMPLING NOISE IN DIFFERENTIAL REFLECTIVITY

The radar measurementBfy is subject to a number of errors. Errors caused by antenna
imperfections are believed to be small for the Chilbolfo&Hz radar and as it has no
radome, radome errors are not introduced. However, fundtherrors caused by the
sampling statistics cannot be avoided. This statisticdenwill be unavoidable as it

iImposes a fundamental limit on the accuracy of the measureofie/py.

The statistical noise for the Chilbolton radar is a resulthef tombination of non-
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simultaneous sampling dfyy and Zyv (the Chilbolton radar uses alternate pulse mode
where a horizontally polarised wave is transmitted andaese in both polarisations
received, then the next is transmitted with vertical psktion, and both channels receive;
this sequence is a pulse pair) and the number of indeperai@piss. Assuming a perfect
alternate pulse radar (no errors introduced by the antetimayecorded values dfpr

will have mean equal to the true value, with a standard deviafiven by:

9 N-1 ’l| 1/2
SD(Zpr) = 10logig {1+ [+ D (1—N) (o120 = 1p[2L + 1] pnn.[0]]) ,
I=—(N-1)
(2.15)

according to Bringi and Chandrasekar (2004,). ..,[0] is the correlation between power
of horizontal polarisation reflectivity and vertical pakation reflectivity when not time

lagged (i.e. interpolation is needed if an alternate pufsées is used). In equation 2.15
8mioin?T?
lp[n]| = exp (_T) = exp (—8°n’c},) (2.16)
whereo,,, is the normalised spectrum width (normalised to the maxinnmambiguous

velocity measured by the radar), given by:

20,

NPRE) (2.17)

Oyn =

In these equationg;[n| the signal correlation with a time lag, N is the number of
samples of H and V pairg{ for the Chilbolton3 GHz radar), T} is the time spacing
between samples,, is the spectral width of the targets ahds the radar wavelength @
cm).

These equations are best explained physically. Figuredh@dwsa schematic of a time
series taken from observations of high spectral width (asmesof the rate of reshuffling
of the target scatterers) and high correlation between ¢hiedntally and vertically po-
larised beams. Each red cross indicates the time a measuremmeade (note they are
alternate). The plot shows that the targets reshuffle quikt that the H and V beams
correlate with each other very well. However, this case avilly have a good estimate of

Zpr if the spectral width is not too high. If spectral width is toigh, the estimate will be
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HH
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Time Time Time

Figure 24  Schematic show- Figure 2.5 Schematic show- Figure2.6 Schematic show-
ing the time series of/y and ing the time series of/y and ing the time series of/y and
Zy; for data of high correlation  Zv; for data of low correlation  Zv for data of high correlation

and high spectral width and high spectral width and low spectral width

poorer as the reshuffling will be so rapid that alternategangill sample reshuffled (and
hence unrelated) targets within the beam. Figure 2.5 shagb@matic of a time series
with high spectral width but low correlation. It can be seleattthe measured reflectivity
Is fluctuating rapidly but that the horizontal and verti¢aleé series do not correlate well,
meaning that the/pr estimate will be poor. Figure 2.6 shows a schematic of a tenes
with low spectral width but high correlation. In this cadeg high correlation would im-
prove theZpr estimate, although the low spectral width means that tieeredte samples
are in fact not independent. This means the number of sangaleeffect lower, making

the estimate worse.

These effects are quantified in figure 2.7. It shows that, acthpolar correlation
approaches unity, the error iipr is reduced. It can be seen that an ideal situation
would have normalised spectral width of aboui8. For Chilbolton, this corresponds
to o, = 2.4 m s~!, with values either side of this leading to an increaseddstah
deviation in measuredpi. Higher spectral width will lead to increased error as the
drops reshuffle more rapidly, making H and V less relatedelospectral width increases
the error because the number of independent samples isieffgceduced. It has been
found by lllingworth and Caylor (1991) that for rain witfr of aroundl dB, ppp v ~
0.99, using CAMRa. In heavy rain in the UK, the spectral width is nfteund to be of

order~ 1 ms! (o,, = 0.03), too small for optimal/pg measurement. This leads to a
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Figure2.7 A graph showing the effect of spectral width on the erraryy, for various values of co—polar

correlation, forN = 64. Note that this is for a single gate.

seemingly counter-intuitive problem: the spectral widthao low for good estimation of
ZDR-

Spectral width is caused by a number of effects (Nastrom7)99

atmospheric turbulence at scales smaller than the radar belame;

wind shear across the sample volume;

finite beam-width;

radar configuration and geometry.

These mean that a larger beam volume will lead to higher sgieadths. As the spectral
width of Chilbolton is too low for optimal/prg measurement, this implies that the reso-
lution of Chilbolton is too high for goodpr estimates. A larger volume would lead to
more turbulence in the beam and higher wind shear, showatgthoperational® beam
may, from statistics alone, give a bettész measurement, the wider beam nearing the

optimal o, = 0.08. However, current operational radars utilise “hybrid modéere
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each beam is transmitted withy° polarisation, hence interpolation of the horizontal and
vertical signals is not required, so the spectral width @aiffgcts the accuracy dfpy in
terms of the number of pulses that are independent. Use oithylode will be discussed

in more detail in chapter 7.

2.4.4 PROBLEMSWITH DIFFERENTIAL REFLECTIVITY FOR RAIN-

FALL RATES

So a statistical noise limit idpr has been shown, that is a result of sampling that cannot
be overcome. For CAMRa this limits us taZgr accuracyx~ 0.15 dB on a300 m gate,
larger than the limit foR5% rainfall rate accuracy. Using the noigfyr at each gate to
calculate rainfall rates will give noisy, and biased resulhlso at lowZpr values, the
curvature of theZ/R line is high. This means that the rainfall rate increase edusy
reducingZpgr by a small amount is larger than the reduction caused by aal eguease
in Zpr.

To demonstrate this, examples from figure 2.8 will be usedniple 1 is for an ob-
servation of32 dBZ andZpr = 0.65 dB. This Zpy leads toZ/R = 26.5 dBZ mm™* hr,
and hence a rainfall rate 6f5 dBR (3.5 mm hr ). Now add an error to th&pr mea-
surement oft- 0.2 dB. For the lowerZpg limit of 0.45 dB; Z/R = 25 dBZ mm~! hr
and hence rainfall rate iI5dBR (5 mm hr!); for the upperZpy limit of 0.8 dB, Z/R =
27.5 dBZ mm~! hr and rainfall rate ist.5 dBR (2.8 mm hr ). This is showing that
lowering Zpg increased rainfall rate by.5 mm hr!, while raisingZpyr decreased by

only 1.2 mm hr !, demonstrating aR.6% bias.

Example 2 is fort3 dBZ and1.5 dB Zpg. Following the blue line to the blue cross,
Z/R = 31.6 dBZ mm~! hr, hence dBR 11.4 (13.8 mm hr'). The samet 0.2 dB
error is applied (green), in this case leading toRIBf 12.3 dB and10.6 dB (17 to
11.5 mm hr!), showing &.5% bias.

But there remains perhaps a bigger problem, that of negative The statistical

noise means that areas of naturally 1&wi will occasionally be observed with negative
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Figure 2.8 Diagram showing the cause of the bias from gate-by-ate f(Z, Zpr). Also shown is
the problem caused by negatier .

Zpr (for atrueZpg = 0.3 dB with a0.2 dB standard deviation measurement ervés,
of points will recordZpr < 0). For rainfall, negative”/pr is unphysical, as it would
be a result of drops having their major axis vertically. Téiplains the asymptote at
Zpr = 0dB of theZ/R line. As can be seen in figure 2.8, example 3 hasipy. If the
estimate gives a lower value it may suggest a negatjte Here we have a conundrum:
should these data points be simply thrown away or estimated)a standard’-R? The

combination of this problem, and the bias, are shown in figu@e

2.5 DIFFERENTIAL PHASE SHIFT

2.5.1 WHAT ISDIFFERENTIAL PHASE SHIFT?

The velocity of a polarised radar wave is slowed when travglthrough raindrops as
a result of the index of refraction difference between ai amter. This means that if

the beam passes through a volume containing oblate raisdimohorizontally polarised
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Figure2.9 A plot demonstrating the bias in rainfall rates causedby, noise. This plot use3) dBZ

with meanZpgr of 0.4 dB. The colours show the cumulative distribution for thréfeecent values ot/pr
estimator noise. The lines show that as the; noise increases, more points have extremely high rainfall
rates (due to near-zerdpr). More points also do not appear on this graph, whésg has become

negative, hence no rainfall rate can be calculated.

wave takes slightly longer to travel than vertically pated equivalent. The phase of the

H Q H
oblate rain drops _

‘ O AW,

Figure2.10 Diagram showing the cause of differential phase shift,; a result of the slower propaga-

tion of the H wave than the V wave in a volume containing obfeteje) raindrops. Figure from lllingworth
(2004).
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horizontal returned signal lags behind the vertical, hehedifferential phase,

¢pp = Ov — du, (2.18)

usually will increase with distance from the radar.

The “specific differential phase’{pp, is defined as the rate of changesipr along
the beam (units of km™!). As ¢pp increases with rangéspp should be positive, and

increase with rainfall rate.

2.5.2 WHY USE SPECIFIC DIFFERENTIAL PHASE FOR RAINFALL

RATES?

Sachidananda and Zmn{1986) and Sachidananda and Zr(i987) suggested that rain-

fall rates could be derived frofRpp using an equation
R = AKpp"B (2.19)

with B = 0.866.

Use of differential phase shifts gives a number of advarstager using reflectivity,
because the value @& is near unity, so the conversion froRyp to R is more linear than
the conversion of to R (equation 2.1). This near-linearity is important as siftand
Kpp scale withN,,, if the relationship is linear they do not depend 8. One of the
set backs forZ-R relations is that it is difficult to calibrat& (as it is difficult to dwell
the radar at a target with known reflectivity), and this letsrrors in calibration of/
and hencer. SinceKpp uses phase change it does not require the calibration soat is
a significant problem foipp to R translation.Z — R translation methods suffer from
reduction of beam power due to attenuation in high rainfadir Kpp this becomes the
strength, the attenuation goes hand in hand with phase Bhi#tse shifts do not become
large until attenuation is significant, $0,p is favourable, ovef, for rainfall estimation
in very heavy rain, when th&'pp becomes large. This also leads to why differential
phase shifts cannot be used for moderate rainfalls thabdre tietermined in this thesis.

For moderate rainfall rates the phase shifts will be verylsnmreasked by the noise in
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measuring them. The estimations used in the thesis assuratamuation, although
once the attenuation is present the phase shift signal lestarge enough to be useful

in heavy rains.

The Kpp to R translation also shows improvement in the presence of Tiaé.large
hydrometeor sizes in hail lead to large reflectivities bemgasured, while ifpp the
tumbling of the hail removes the effect of the large hydraoes. Finally, where the
radar beam is partially obscured, the radar beam has a mdoebae power, so estimates
of Z in regions with blocked radar beams are reduced and likelgainle. However, the
phase shifts are unaffected by the obscuration so estimati@infall usingKpp will be

possible.

The difficulty with R(Kpp) relations is that the phase shifts in all but the heaviest
rainfall are small at S-band. Even at C-band, phase shift bagomes significant at
heavy rainfall rates. However, to achieve good accurach@iethodppp is required
to 1° accuracy, although the measurement is more noisy thanithé similar way to
that of Zpg, especially in the operational environment. This problesmmampounded by
the need forKpp, the differential of the noisypp signal, resulting in very large noise
levels in Kpp. This restricts use okpp for rainfall estimation operationally to only the

heaviest of rains in the UK.

2.5.3 SAMPLING NOISE IN DIFFERENTIAL PHASE

Similarly to the noise inZpg (section 2.4.3), the measurement accuracy of phase shift
will be affected by the continual rearrangement of hydraoeg, leaving a fundamental
limit on the accuracy obpp. With the alternate sampling of the CAMRa radar, inter-
polation between pulses is needed for estimatipg, as withZpg, the accuracy of the
interpolation being limited by the Doppler width of the tatg This follows a similar
pattern to section 2.4.3, meaning that for the CAMRa radagradstrd deviation oppp

of ~ 2° is expected.

In practice, this theoretical limit in accuracy @fp is not achieved because of various
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problems. If one side of the radar beam experiences mores #haf$ than the rest, this
can cause negativEpp. If the gradients occur along the beakipp becomes biased.
Gradients in the rainfall nature within the beam are obvipusore common and more
extreme when the beam width is large, hence gradients wik terger problem for
operational radars than for a radar with resolution as hgytvith the Chilbolton radar.
The effect of the radar sidelobes @ét,p are very large, so even slight mis-matching
of the horizontally and vertically polarised waves will adthdom noise tadkpp. A
sidelobe with reflectivity ofl% of the main-lobe return introduces5a noise in¢pp,
which will become a major problem operationally where miatched sidelobes may be
a more significant problem and will add to the already highmse expected. Ground
clutter returns randomly in phase, so leads to a similarlprolo sidelobe mis-matching,
with small amounts of clutter causing large levels of noisehr. When the target
hydrometeors are very large they leave the Rayleigh saagteegime and enter into the
Mie scattering regime, adjusting the backscattering,iteatb a local maximum in the
¢pp profile, which in turn can lead to negativépp, because the scattering regime is
a result of the particle size relative to wavelength. The-Btiattering will be a bigger
problem at C-band than S-band where Testtidl, 2000 suggest the problem is small
enough to be negligible.

These various problems combine to give a typical noisgnof about3 ° (Ryzhkov
and Zrnt, 1995) at S-band; easily enough to cause negdtive. Ryzhkov and Zrri
(1996) suggest that use of the modulug@fp in equation 2.19 would avoid the negative
value problems, but there is no physical justification fas.tiOverall, this means that

Kpp can not be used for accurate rainfall rates on a gate-bybgais.

2.5.4 PROBLEMSWITH SPECIFIC DIFFERENTIAL PHASE FOR RAIN-

FALL RATES

The R = f(Kpp) estimator is very sensitive to the chosen drop shape modeluse of

linear drop shapes may account for the underestimationifitbrate (e.g. Mayet al,
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1999, Peterseat al, 1999 and Brandest al, 2001) found from equation 2.19. Bringi
and Chandrasekar (2001) calculafetipp) = 40.5(Kpp)®8® with linear drop shapes,

but suggest use of more realistic drop shapes, yiel@&iigpp) = 50.7( Kpp )%,

The near-linearity of equation 2.19 is considered a majonathge of theR(Kpp)
method. Assuming a more typical = 5 (the shape parameter in the normalised drop
spectrum, see section 1.3) at S-band, the relationship is 50.1(Kpp)°" (Kpp =
0.00417R'*). This index is almost as large as thé for Z(R), mitigating many of the
advantages of th&( Kpp) technique. Changes on the drop concentration will also have
a major effect on the accuracy of the technique, an underasgiof a factor of two iR

being caused by a factor of ten increaséVin (not unreasonable; see section 1.3).

The final problem to be considered is the error in rain ratenagés as a result of
the error in measuringpp. The error means that, at low to moderate rainfall rates, the
errors are several hundred percent, whilgtatm hr-!, the error is40%. This could be
improved by increasing dwell time. However, this will leadsican rates too slow for an
operational radar. This means that an operational raddd oot reliably usekpp alone

for rain rate estimation.

2.5.5 USING SPECIFIC DIFFERENTIAL PHASE AND OTHER PA-

RAMETERS

Next this chapter will examine the potential use of différ@phase shift with other radar

parameters to estimate rainfall rates.

2.5.5.1 RAINFROM DIFFERENTIAL REFLECTIVITY AND SPECIFIC

DIFFERENTIAL PHASE

This method uses a similar argument to thatidfZ, Zpr) (section 2.4.2). WithZpg

providing information on drop size, it leads to an equatibthe form:

R = Co KDP @2 ZDR52' (220)
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Gorgucci and Scarchilli (1997) suggest= 51.0, as = 0.968 and 3, = —0.462, al-
though this is unstable &,r approaches dB, with a return to the problem of negative
Zpr from section 2.4.4. A more desirable form uses linggr where the unphysical

Zpr values remain numerically stable:
R = c3 (Kpp)™® 100195 Zor (2.21)

(Gorgucci and Scarchilli, 1997). They use = 67.1, a3 = 0.954 and (33 = —1.230.
Bringi and Chandrasekar (2001) suggest using 90.8, az = 0.93 andf; = —1.69.

This method suffers hugely from the large amount of error.baAth Kpp and Zpr
have significant errors as discussed in sections 2.4.3 &n8l, 2he produced rain rates
will have very large error, above that of the stand&rd R. Also, use ofZpg means that
the hail independence éfpp is lost as hail reducespi. The increased error particularly
means that gate-by-gate combinatiorZgf; and Kpp parameter methods are unsuitable

for operational radar algorithms.

2.5.5.2 RAIN FROM REFLECTIVITY, DIFFERENTIAL REFLECTIV-

ITY AND SPECIFIC DIFFERENTIAL PHASE

Given that the normalised gamma distribution containsettvagriables §V,,, D, and ),
it would appear that using the three radar paramefer&€pr and Kpp, @a more accurate
estimate of the rainfall rate could be obtained. Howeves ttitee radar parameters are

not independent: witly andZpr known, Kpp can be calculated.

2.6 POLARISATION METHODS: INTEGRAL TECHNIQUES

This chapter has shown that the three useful parameterr s of rainfall estimation as
this thesis concerns) available from dual polarisatioy/pr andKpp, are too inaccurate
to improve operational rainfall rate resolution while ntaining good spatial resolution.

However, integrated parameters may provide a valuabletreonisfor improvement on
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the traditionalZ — R relations. These integrated techniques will be espedialbortant
in the operational polarisation radar environment, whheedate-by-gate noise will be

high but the underlying signal will still be useful.

2.6.1 CALIBRATION OF REFLECTIVITY

Calibration of 7 is of crucial importance if rainfall rate is to be derivedrrat. Tra-
ditionally the calibration is performed by comparison tinrgauges (or use of a signal
generator and gauge adjustment), but this suffers fronesepitivity problems compar-
ing the large radar beam volume to the small area of the raigggas well as changes
in the fall from beam to gauge. This means that calibratiotr a§ only as good as a
factor of two. Many operational systems have a built in raange comparison which is
used to ensure good calibration. Goddat@l. (1994b) showed thak'hp/Zy is nearly
independent of: and can be calculated frof,r. The technique uses individudl and
Zpr along the ray to estimat&pp. This allows prediction of the phase shif;p, along
the ray. This is compared with the observed phase shift. &hbration of Z is then

performed by adjusting until the predicted and observed phase shifts agree.

The technique does not have the high noisédgf, and if the technique is used on
a ray, the phase shift before and after the heavy rain candzbfas accurate estimation
of the phase shift as data can be averaged (see figure 2.1&)tedinique can obtain
0.5 dB accuracy if al0° phase shift can be recordedita Rays with particularly noisy
polarisation parameters can be removed and not considésade are considering high
phase shifts of heavy raipy is atl to 2 dB and the accuracy iipg required i5).4 dB,
for a calibration ofZ good to0.5 dB, which can be achieved. This calibration method
would be ideal for operational radar. The accurate caiitmatf Z will be essential for
all methods likely to be implementable with the noise of aerational radar.

Concern has been expressed (Le Baetaal., 2001) that attenuation of and Zpr

will pose a problem. At X-band this would be a major problemt &t C-band, if the

phase shift is not too high(°), the attenuation of is under0.5 dB, which is not large
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Figure 211 Example of the calibration of Goddaged al. (1994b). The red lines show the predicted
phase shift fron, and Zpgr. Different Z gives different phase trace predictions and comparisoh wit

observation fixe& .

enough to pose problems (lllingworth, 2004). Phase shiftsa that level would suffer

attenuation, so care must be taken at C-band to avoid thesmiated regions.

2.6.2 THE ‘ZPHI’ TECHNIQUE

The ‘ZPHI’ technique was described by Testitdal. (2000) and has shown good results
(for example, Le Bouaet al, 2001) at C-band in the heavy tropical rainfall of Darwin,
Australia. The method uses the total phase shift;, along a ray of observed as a
constraint to fix the drop concentration, hen¢€?2.1). The full technique uses phase shift
to correct for attenuation, which can be significant at C-bahdre current operational

dual polarisation radars in Europe operate, and shorteeleagths (such as X-band).

This thesis will describe the ZPHI method only at non-ategimg wavelengths. It
can be shown that, given naturally occuring raindrop sizrip are represented well
by a normalised gamma function, the valuehahould bel.5 assuming thatv,, is not

a function ofD,,. A log-log plot of Kpp /N, againstZ/N,, (with changingD,) is close
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to a straight line with little dependence on the shape pai@moé the drop spectrun.

Hence suitably weighted integration of the drop spectragthe expression
Kpp = [Ny 929, (2.22)
wheref andg are constants. Integration along the beam gives:

Gpp = [NL? / Z9dr. (2.23)

As the constantsf andg, are known, the phase shift,p and the reflectivity along the
ray can be used to calculafé,, which fixesa in equation 2.1. The combination of
this appropriateV,, and attenuation correction leads to the rainfall rate im@noents

reported by Le Bouaet al. (2001).

The method has the advantage of not using the nBigy profile, therefore reducing
the noise by integration, making it especially appropriatethe operational environ-
ment. The line ofKpp /N, againstZ/N;, is not linear whereZ/N,, is less than 1 (for a
Marshall-PalmerV,, = 8000 m~3 mm~! this would beZ = 39 dBZ), although this is
not a problem as it does not correspond to the heavy rain aitelenough phase shifts

for the technique.

The technique is particularly sensitive to the calibratiérZ as an error inZ will
translate to an error ifV,, and hence:.. Le Bouaret al. (2001) suggested that the clima-

tological NV,, could be used to calibraté.

Although the method shows great promise, it is only appederat very high rain
rates. To estimate rainfall rates 20% at C-Band, a phase shift abo$g° is required.
This is achieved by0 km of 50 mm hr~! or 75 km of 10 mm hr~! rainfall, both unlikely
to occur in the UK often. Fa32% accuracy these can be divided by five as the phase shift
required reduces %, so requiring2 km of 50 mm hr~! or 15 km of 10 mm hr! rainfall;
more common, but rain abov® mm/hr constitutes just.01% of the time andl9% of
the accumulation. This means that the improvements frontHiZBre only realised in
areas of very heavy rainfall or very widespread moderatdgati neither of which are

frequently observed in the UK environment. The consfaptalong the ray is also quite
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restrictive and is likely to be unrealistic due to the largals compared to the scale of
variations in rainfall. The beam can be divided into ‘se$io but each segment must
have a phase change of at leéstso the sections can only be small enough to alleviate
this problem if the rain is widespread. The technique is aksesitive to hail, so hail

recognition is needed or else it will lead to errors in theinéd/V,, and hence..

The ‘ZPHTI technique is especially applicable to tropicagiions, where heavy rain-
fall unaffected by hail is most common. Matrosetal. (1999) shows scope to extend the
technique to moderate rainfall rates at short wavelengbiad radar. The technique is
excellent for use operationally for estimating heavy ralinfThis thesis will concentrate
on the estimation of the moderate rainfall rates3dd 10 mm/hr which occur for just
0.67% of the time, but accounts f&6% of the accumulated rainfall at Chilbolton. The
techniques are aimed to be appropriate for liquid rain wipbaese shifts are low (hence

the attenuation of the radar beam is negligible).
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CHAPTER 3:
THE NATURAL VARIABILITY IN

REFLECTIVITY AND DIFFERENTIAL

REFLECTIVITY

3.1 INTRODUCTION

This chapter will examine the variability that is seen in tieservations of reflectivity,
7, and differential reflectivityZpr. In section 2.4.3/pr was shown to have an inherent
noise from its sampling, which is quite large, especially dperational radars. This
sampling noise is reduced by increasing the number of intigoe samples, dictated by
the spectral width (normalised by the folding velocity).eldptimal normalised spectral
width for accurateZpr measurement isz 0.09. This chapter initially examines the

effects on radar measurements of the three drop size distmibparameters.

One of the advantages of dual polarisation radar, whichdeats tintroduction to the
operational environment, is the potential improved rdirgstimation offered. However,
if this advantage is to be obtained, one must allow for theaa the observed data. If
the radar parameters are to be utilised for moderate raratak, theZpi data available
must be accurate to withi.1 dB. This would require careful calibration, which may
not be a trivial task. This will be considered within this pker. The “true” nature
of the rainfall is found within the sampling noise. This ctexpwill show how it may be
possible for moderate rainfall rates to find the signal fromiw the noise and to estimate
the drop size distribution and therefore reduce the inawies in rainfall rate estimation.
This chapter examines the patternsoénd Zpr expected, and discusses how one may

reduce the noise in the data and examines the informatidristzavailable despite the

Page 38




Chapter 3: The Natural Variability in Reflectivity and Differential Refleityiv

noisy measurement.

3.2 DROP SIZE SPECTRUM EFFECTS ON Z AND Zpgr

In this section the effect of adjusting the three paramedérhe normalised gamma
distribution of rain drops described in section 1.3 will esdribed. Recall that the three
variables are the drop concentratiow,,, the median drop diameteR), and the shape

parametey.. Each of these parameters will affect the position of a poitd/ Zpr space.

3.2.1 EFFECT OF DROP CONCENTRATION

The drop concentration term is the most straightforwardesrdbe and explain the effect
on Z andZpg. IncreasingV,, merely means that there are more drops present, but their
relative sizes remain the same. This means that reflectivgsured at both horizontal
and vertical polarisations is increased with the drop cotreéon. SinceZ; andZy are

both scaled withV,, the ratio of them remains constant, henceZhg remains constant.
Section 1.3 stated thaf,, varies over a large range;% of recorded values lying within

a factor of13, and this variation will transfer to reflectivity resulting a variation of

11.1 dBZ.

In summary, an increase iN,, raises”, but has no effect o@pg.

3.2.2 EFFECT OF MEDIAN DROP DIAMETER

As the target drops increase in size, the reflectivity ineessbyD®. The same factor
applies to the reflectivity at both polarisations, althougim drop shapes mean that as
the drop grows, it becomes more oblate, increasing therdiife between the horizontal
and vertical drop sizes that are used/ii. This difference means that, increases

with the median drop diameter, approximately weighted leysventh moment.

In summary, an increase i, increases botly andZpg.
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3.2.3 EFFECT OF THE SHAPE PARAMETER

The effect ofu is more difficult to examine. Higher values pfmean a less diverse
spectrum of drop sizes. The effect is plotted in figure 3.tatt be seen that the change
appears to be solely vertical. However this is because ddltdpe of the plot; in fact the

move is diagonal. Given th&,, of 8000 mm~! m—3 and D, remaining the same, the
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Figure3.1 dBZ andZpyr expected for rain of constaiN,, of 8000 mnT ' m~3, and constant. The
solid line shows the plot ifi = 0, the dashed line is fqu = 5. The red arrows show the true movement

that is occuring if there is no change other than

effect is as follows: the reflectivity ifii = 0" is slightly higher than if x = 5’ because
of the effect of the higher weighted tail of large drops (thege drops have a large effect
from the D° relation for reflectivity). TheZpy is also larger from lowey: as the large
drop tail is more influential on differential reflectivity @shas an approximate seventh
moment dependence on drop size. Consider the example Wheies000 mm~! m=3;
with ;. = 0, whenZ is40 dBZ, Zpg is 0.8 dB. Whenu = 5 with the same other spectrum

parameters, these values becot?eBZ and1.5 dB.

This will be relevant when estimating drop size distribotarameters using and
Zpr. When estimatingV,, from Z andZpg, a value ofu must be assumed, but changes
in the assumegd will have an effect very similar to changing,. This problem is demon-
strated in figure 3.2. However, to estimate rainfall, thiesideration ofu is less serious
than it would appear. The effect pfupon rainfall rate is reversed, almost cancelling out

the error induced. From the example above, the rainfalsriatan the DSDs differ by
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Figure 3.2  Plot demonstrating the problem in distinguishing betweahange inu and a change in
N,,. The black line shows the case whal, is 8000 mnT! m~3 with 1 = 5. If one now alters this

so thaty, = 0, the red line is obtained (highefpg is found as a result of the greater presence of large
drops). However, this line is very similar to the blue lineih is the line wheréV,, is 1600 mnr* m—3

with n = 5. Given the noise levels in even the very accurate CAMRa diag¢ared and blue lines will be

indistinguishable.

just6%. This means that although one will suffer fronvariation if estimatingV,,, but
not if one simply wishes to derive rainfall, usiig, as a route to that end. This will be

seen again later in the thesis.

3.3 Zpr OFFSET AND CALIBRATION

Any methods to derive rainfall properties from differehtiflectivity measurements will
requireZpg to be accurately calibrated. Erroneous calibratiowef will be evident as

an offset in values of recordedpi. For the purposes of this thesis, where moderate
rainfall rates are being examinedpy, is required to an accuracy 6f1 dB (see section
2.4.2).

To calculate the offset in th&pg data (to enable correction) comparison must be
made between the observédr in a portion of data where the expected value is known
and well defined; generally this means where the valug&gf is expected to bé dB.
This will mean viewing particles that will have a invariamb @ good approximation)

circular shape when viewed from the radar. Three optionsheitonsidered.
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Viewing thesun This option happens with operational radars “accidenitadlfter sun-
rise and before sunset. The radar will view the sun at lowagiens and should
see the sun’s radiation as unpolarised returns; being anpet!, theZpr should
be( dB. The problem is that viewing the sun considers only theivedechannel
of the radar, but does not consider transmission, wherbragitbn may also be a
problem if the transmitted power at each polarisation isagptal. Viewing the sun

Is sometimes used for calibrating the positioning of radaddlier (2001).

Vertical Dwells When viewing vertically the radar sees only the undersidab@hy-
drometeors, which will show no preferential alignment sslen the presence of a
strong electrostatic field. An example of data from a veltiweell is shown in fig-
ure 3.3. This means that, on the average of a large numbegetsathey will have
an apparent circular shape. When viewing vertically, sioesodbecome a problem,
as the ground clutter returns from the sidelobes may be figteand need careful
removal. The ideal conditions for a vertical dwell are a tagyfehick high level cir-
rus cloud. Here the signal id will be strong enough to allow use éfr (Lpr IS
the linear depolarisation ratio, it is defined as the rativesfically polarised return
and horizontally polarised return from a horizontally pidad transmitted beam,
this is useful as when the ground is the target the returnkd iscdepolarised so
Lpris high) for distinguishing clutter. The background noisaireturned factor
in both horizontal and vertical channels, sifis small, the background noise in
the opposite channel will be a significant percentage, héngewill be high. The
return will be a reasonable distance from the radarl() km), limiting potential
near field problems. (When in the near field radar the illunamabf the radar
dish is not complete. In the near field, tilerecorded is lower than “true” val-
ues. Near field correction can be applied, as discussed ard-énd Ka-band by
Sekelsky, 2001. Although differential reflectivity sholle unaffected, any illumi-
nation pattern differences between the horizontally amtiozdly polarised beams

may introduce an error idpg.)

Light rain In light rain or drizzle the hydrometeors are small. Smatipdrare spherical
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Figure3.3 dBZ andZpy data from a30s) dwell with the CAMRa radar pointing vertically. This data

was taken on 04 March 2004, in the presence of a cirrus cloud.

(section 2.3) so appear circular at all angles when viewethéyadar. However,
for calibration, the rain to be examined must be clearly éefias being all small
drops. Low reflectivities but high differential reflectids are possible when a
very low concentration of large drops are present. This i&iuthe early stages

convective rain.

Each of these options have both advantages and disadvantage

Viewing the sun does not require special time in the scan routine as it witiuoc
twice a day operationally. This would seem an excellentipdig but confirming only
the receive (not transmit power) will not be a thorough caliton, so will not have the

prerequisite accuracy. Calibrating the receive channel haag other uses, although
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viewing the sun is not suitable féfpr calibration.

Vertical dwellswill give a good calibration. The conditions where the hydeteors
align are quite unusual and easily recognised so the ctbhbrasing the vertical dwells
will be good in terms of reliability. However, performing anical dwell requires time in
a scan strategy and in an operational system, time withisttlaéegy is at a premium. A
vertical dwell requires not just the time to perform the dwalit also the time to move the
dish to point vertically and then return to its near horiabosition. A further possible
problem occurs where the radar antenna may warp under #esstaused by the weight,
as the metal of the antenna is very heavy (the Chilbatom dish weighst00 tonnes).
The warping may change the shape of the antenna slightlyde@# not have the correct
curvature in all pointing directions. The stresses will &ther different in vertically and
horizontally pointing positions so these are where thedstrgffect of warping would
be expected. The effect of the dish warping is likely to belkrbat the largest change
would likely be vertical to horizontal so calibrating at tieal for horizontal use may

have small error, but with a well designed antenna this esfiould be negligible.

Usinglight rain for Zpg calibration will be considered next. Light rain will be seen
by the radar regularly, and will be easy to detect. Usingtligin for Zpi calibration
will not require additional scans in a scan strategy, a phistgn an operational sys-
tem. However, to use light rain for calibration one must beeghe rain is formed by
small drizzle drops, not just low concentrations of largeaps. Differentiating between
few large drops and a large number of small drops before radilim of Zpr may be
non-trivial. Even at low reflectivities af-10 dBZ the Zpr will be non-zero, predicted
for Marshall-Palmer rainfpr = 0.005 dB). With a gamma distribution with shape pa-
rametery = 5 this value is0.001 dB (note that these are well below the accuracy we
require).

Once one has found data known to have averggge of 0 dB, examination of the
data will show a spread i@pr as expected from the sampling, as described in section
2.4.3. However, the average of the data will be zero. To talleuhe offset one simply

must find the averagg&pr. However, saying “simply” find the averad®,y is ignoring
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Figure3.4 Histograms ot/pr data. [Left] Data from figure 3.3. Overlayed is a Gaussialridistion
with same total, mean) (70 dB) and standard deviatiof.85 dB). [Right] Data taken from a similar case
(with larger bin widths). Overlaid is a Gaussian distribativith same total, mean-(.04 dB) and standard

deviation (.38 dB).

a possible problem. Figure 3.4 shows histogram&gf data from vertical dwells. To
be entered into these histograms the point must have atledtreflectivity, Lpr less
than—10 dB and appropriate altitude (for the left panel this is betwekm and7 km).
These criteria remove clutter and data where signal to naise will make the data
unreliable. The histogram shows that there is more dataandits of the distribution,
which shows the data is not quite normally distributed. Tis-normality is shown
by the difference between mean ([le€t]70 dB, [right] —0.04 dB) and median ([left]
0.66 dB, [right] —0.00 dB). The difference between these is small howeuer(dB in
both examples), so not a problem for calibration when usergcally pointing dwells
is (recall that0.1 dB accuracy is required). So despite the slight non-notynafi the
distribution, calibration is well within thé.1 dB tolerance and is the best option for

calibratingZpg.

When considering the option of examining thgr values of light rainfall, the his-
togram is more likely to be skewed than for the vertical dwdlecause of drop size
spectrum changes, larger oblate drops may become abuadastlt of extreme spectra,
but there is no spectrum option to give a reverse of this datgrdrops are unphysical.
Figure 3.5 shows an example Bfr from light rain (defined as having< dBZ < 10).

In this case the distribution is near normal, with verydittkew. However, this example
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Figure3.5 Histogram ofZpg data from light rain@ < dBZ < 10). Overlaid is a Gaussian distribution

with same total, mear) (2021 dB) and standard deviatiof.g307 dB).

has a small number of points that are a long way from the p&akd@), which have a
large effect on the mean and standard deviation despitertal sumbers because of the
large variations they represent. To remove the effect afdlpmints all data not within 3
standard deviations of the mean are removed before caloyliie mean for calibration.
The cause of the extreme points is likely to be small amourgsaund clutter, which can
have a large effect oApy yet little effect onLpr. This example shows that the data is

offset by0.20 dB, which should be corrected before use in rainfall estiomagilgorithms.

In conclusion, theZpy calibration is vitally important when usingpr for estimating
rainfall rates. Its calibration is performed by checking value where it is known it
should be zero. The recommended method for this is to useakedwells with the
radar, with checks for consistency in light rain when scagriorizontally. Although
vertical dwells are a problem in terms of time involved in arsstrategy the calibration
will not drift rapidly so the scans will not be required to egp frequently and given the

importance of calibration time should be allowed.
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3.4 / VARIATION

The accuracy of reflectivity is dependent on the number oépethdent pulses avail-
able. Each pulse measures the reflectivity, but the rand@migang of individual drops
means that the scattered waves interfere (both constelctnd destructively). However
the random movements of rain drops and other scattereranggr the interference pat-
tern, so if a number of pulses are averaged, the reflectigtiynate is improved. So the
more individual pulses are used for measurement, the lia#eneasurement, although
this comes at the expense of scanning speed. The time spsimgpper ray is known
as the dwell time. From dwell time and pulse repetition fesey (PRF) the number
of pulse pairs can be easily found. The Chilbolton CAMRa radas s pulse pairs (a
pulse pair is a single horizontally polarised transmittetse, followed by a vertically
polarised pulse), but as the standard, four range gatesidheif averaged to improve
the estimate. An operational radar will be able to measutecterity to an accuracy of
1 dB, with random normally distributed sampling noise aroumel ‘true” value, using
the calibration technique of Goddagtlal. (1994b) described in section 2.6.1. This level

of accuracy is acceptable for attempting to estimate rhirefees to within25%.

3.5 Zpr VARIATION AND THE EFFECTSIT CREATES

MeasuredZpr data shows a spread of values. This spread is a result of thieigation
of two spreading effects: random errors from the samplirgg¢dbed in section 2.4.3)
and the natural variability of the rainfall adjusting drggestra. An increase in mean drop
size, generally, will increasg&pr (generally is used here because if it happens ihat
increases a little while also increases, the lack of larger drops from/itedfect actually
decreas&/pr). These two effects will be constantly present. Howeves paossible to
limit the effect of the spread caused by natural variabligyexamining data from very
small areas (where natural rain changes will be small) osicening low reflectivity
where drops are all small so the natural variations have &ffect onZpr despite large

drop spectrum changes. Using low reflectivity areas to ensaitural variations are small
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may not be perfect: in convective rain it is possible to haverg small number of large
drops, which individually have high reflectivity, but witb ew, the integrated result over

the radar is a rather small average.

dBZ=25
45001

4000r

0 0.5 1
Z,, (dB)

Figure 3.6  Histogram showing the distribution dfpr data from 18/08/2000. This data is for all data
points passing anfipy threshold of-20 dB with ranges betweet’; and60 km and24 — 26 dBZ. Also

shown is a normal distribution with the same mean, standevition and total as the data for comparison.

Figure 3.6 shows a histogram &f,z data from a large area of data (so DSD varia-
tions will be large), but only where 2dB band of reflectivity is considered. The small
band so that/pr variations as expected from rain of constanf are small. The data
Is also chosen to be within light rain so that nearly all drapsspherical, hence natural
drop spectrum changes have little effect on the drop shdjesplot has a normal distri-
bution of the same meaf.(0 dB), standard deviatior)(19 dB) and integral total points
overlaid for comparison. The distribution can be seen tofoh normal distribution well
within two standard deviations, but with a higher weightedipve tail compensated by
less well represented negative tail. Since this data is stgppredominantly the distribu-
tion caused by a sampling problem, with little natural vidoia, averaging over four data

points would be assumed to halve this spreéfj £ %). However, averaging does not
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have the expected effect on standard deviation of the loigion. By averaging points
from alternate gates and rays and then repeating the hastogf figure 3.6, this leads
to a distribution with mean of.11 dB and standard deviation 0f16 dB (reduced by
just 16%). The reason for this is that the averaging mixes in data fotimer reflectivity
bands (wher&/pr would be expected to be different) rebroadening the digiiob of

Zpr, disguising the effect of the averaging.

Now this will be considered for a very small arealof points of data. The sixteen
points are considered dsboxes, each containing four data pointsfand Zpr data
(see figure 3.7). For each box the méan (Zpr) and standard deviation &fyr (07,,,,)
are calculated. With only four points, the variations inghealues will be quite large,

although from these one can calculate the standard daviafidpr at grid scale level

by

ABEF CDGH IJMN KLOP
(UZ + 9Zor + 9Zpr + 9Zor )

Ogrid = DR 1 (3.1)
The noise of the data when 4 points are averaged is given by
Oipns = st (ZEEPT + ZGROT + ZHN + ZEEOT ). (3.2)

In these equations superscripts are used to define the gras ifivom the left of figure
3.7) used to calculate that average or standard deviatairpawers. This procedure is

range

A B C D
A > Z a
DR @ DR ©
o m o 0]
E F G H Z M Z T
° DR DR
£
| J K L
z gl Z._ =
DR =2 LN
z
M N le] P O-Z o o
DR DR

Figure3.7 Schematic to demonstrate how the effect of averagipg points can be examined.

repeated over a large number of positions for a dwell. Wherralbar is pointed and

measurement is performed with the radar static in this posithis results in a time
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series of data. This gives the resulthfr dropping by48%, near thes0% the statistics

would expect (the value af’% is derived from207 sets of sixteen points).

For averaging 4 points there are three sensible posskiliaveraging two points in
range and two in time as in figure 3.7, averaging four pointsaimge to have 4 boxes
(ABCD, EFGH, IJKL and MNOP) or four boxes in time (AEIM, BFIN, CGK&nhd
DHLP). These yield 3% drop and al0% drop in Zpgr spread respectively.

The reason for the halving occurring with this method of cangon is thatZpy, is
averaged and spread considered only from the local poimsv@lues ofZ are never
seen). Mixing ofZ changes are part of the 16 point method, but sorting/lmoes not

occur, and theZ has no impact on the spread calculation.

The natural variability of rainfall means that the variasdn recorded’p increase
as the reflectivity increases because the large (and herger land therefore oblate)
drops become increasingly important. This can be seen inefigu8. This plot shows
that theZpr generally increases (witd) as expected for rain of constaivt,, shown by
the red lines. The spread shows variatiom is larger at lower reflectivities. However
this is a result of smaller changes iy, at a fixed reflectivity, from variations iV,,.
Generally the number of points in each histogram decreagbhsmnereasing reflectivity

for this rain event.

3.5.1 EFFECT OF Zpr SPREAD ON DERIVED RAINFALL RATES

The spread iZpr will obviously have an impact on the rainfall rates derivesthg point
measurements dfpr. This effect can be easily seen in figure 3.9: changes hda#ign

on this plot adjust the rainfall rate.

The previous chapter demonstrated that Chilbolton data Hagkaspread with stan-
dard deviation o~ 0.2 dB. This shows again the problem of negat®gr (discussed
in section 2.4.4) wher¥ (and henceZpg) are low. NegativeZpg is less common at
increased reflectivities as can be seen in figure 3.8, socuiedle rainfall rates become

less common in heavier rain. Along with negatiigy are very low values ofpr where

Page 50




Chapter 3: The Natural Variability in Reflectivity and Differential Refleityiv

Figure 3.8 Plot showing the distribu-

/ ~ tion of Zpr data from six PPl scans over
795
51 / . 2.5 hours on 18/08/2000. This data is for

— 49 :: / all data points passing abpy threshold

§ jé e ‘ ~ of —20 dB with ranges betweeh5 and

% 43l /~ 60 km. The data is selected by reflectivity;
-(_95 450 /\ a histogram is made for each division. The
g 392240 /~ histograms are then normalised to have the
g 37 [is7es /~ same peak values. These normalised his-
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—\:T 315 ﬂ ~ Zpr histogram at theZ-band shown on
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very small changes iWpg imply large changes in rainfall rates, which can be seen by

the colour gradient horizontally in the lower-left cornéifigure 3.9.

Now consider the data that one would expect to be recordeduréi3.10 shows
typical data expected for an area whéfg = 1700 m~ mm~!. The blue crosses show
simulated data with &@pr error of0.2 dB, with red crosses where that noisé)is dB.

This plot really shows the problem that the error causes vadadsulating rainfall rates.
First consider the smaller error. The dB error is similar to the data from the Chilbolton
radar, which is a very accurate research radar. Also plattethe figure are the lines
where the drop concentration is different by a factor of fadif, = 6770 m=2 mm™!
andN,, = 425 m~3 mm~!). These lines are similarly spread to the blue crosses of the
simulated observations, so thgr variations adjust the rainfall rates calculated gate-by-

gate by a factor o2.5. This is a very large error, showing that even with an extigme
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Figure 3.9  Theoretical plot ofZpRr againstZ. Colours show rainfall rate (on a logarithmic scale)
calculated by the method of Illingworth and Blackman (2009dte that the colour scale has been set to
saturate av.3 mm/hr andl000 mm/hr; these are not limits. Also plotted are black linesafstant rainfall

rate, labelled in mm/hr and a magenta lineNgf = 8000. This plot does not cover negative unphysical

values ofZpg.

accurate research radar gate-to-gatend Zpr will actually worsen the errors in rainfall
rates at these reflectivities/rain rates. However, it iarcteom the figure that the crosses
do show a common line: they average to the solid black linehasvs, so if this line
can be estimated, much more accurate rates can be achielied.5TdB noise points
(in red) show data that would be typical for the same regiomfdr a good operational
radar. Here, data shows large variations, and negati/eoccurs even abovés dBZ.
This spread would result in as much as a factor@érror in rainfall rate, although even
to the eye the average of the data is clearly near to the slalak ine. If this could be

estimated, much improved rain rates would be available.

Previously it was shown that by averaging the data the emarsr can be markedly
reduced. However, averaging reduces the resolution, &s losich of the power of
using radar. Another minor point to consider is that averggif 7 and Zpr does not

average théeV,, (due to the curvature of lines when remaining constant). |&ige errors
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Figure 3.10 A plot showing the expectedpr spread. The solid line shows the positionfand
Zpr givenN,, = 1700 m—3 mnr'. The blue crosses show typical data give this distributieith a
standard deviation df.2 dB in Zpg from theN,, = 1700 m~—3 mnt ! line. Red crosses show the same
except with highep.5 dB noise. The two dashed lines show the positiolNgf= 6770 m—3 mnm~* and

Ny, =425 m3 mnT L.

in rainfall rates acutely show the need for integrated tephes for rainfall calculation if
simpleZ— R relation techniques are to be improved upon, especiallggerational radar
systems, so as to maintain the high resolution availablewiib the extra information

made available by the new polarisation parameters.

3.6 SUMMARY

This chapter has examined the variability of radar data flectvity and differential
reflectivity. The data of both shows variations from two sepasources, sampling noise

and natural variability of rainfall (in the drop size disiion).

The response of and Zpgr to changing each of the three parameters of the nor-
malised gamma distribution of rain drops was examingégwas shown to scale witH,
but becausé/py is a ratio of reflectivities, it has no alteration fralj,. Changes in the

median drop diameter increase bdétland Zpg, from the sixth and seventh moments of
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size. The effect of: is based on the amount of large drops present within thellaistr
tion. Loweringy slightly increases reflectivity, but has a larger effectfyx, in which
the large drops have a greater effect. Thehange has a similar effect when viewing
lines in Z/Zpr space to that of changiny,,, so any detected change Wy, may in fact
be the result of.. Fortunately, the rainfall rate is similarly affected se trroneously

estimatedV,, would still yield a good rain rate estimate.

If one is to useZpr data for rainfall estimation it needs to be precisely calibd.
Three options for calibration afpr have been discussed, and conclude that vertical
dwells are the best method, checked with light rain in neaizbotal scans to ensure

warping of the antenna is small.

When removing the noise in data one must be cautious. Sejedtdita by reflectivity
and performing statistics on thé,r does not yield the expected results of averaging.
The changes i¥pr that occur hand in hand with changes4nincrease the spread in
values, apparently reducing the effect of averaging. It sfasvn with use of boxes of
sixteen pixels that the averaging of data does improve theracy of Zpr as expected
(critically this is at the expense of resolution which may he desirable). Averaging

four points reduces the standard deviatiojy, by 48%; close to the expected)%.

The effect of the noise i¥pr when measuring rainfall rates is examined, showing
that an operational radar would be so prone to the noigginthat point by point meth-
ods utilising it will suffer greater noise (possibly as masha factor of ten) than a simple

7 — Rrelation.
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CHAPTER 4:
RAIN STATISTICS

4.1 INTRODUCTION

To demonstrate the effectiveness of any rainfall measugognique, it must have its
outputs compared with a ground truth. Traditionally onesusgn-gauge measurement
to compare against our radar derived rainfall accumulat{erny. Brandest al., 2001),
especially using hourly accumulations (e.g. Collier, 1988 Ryzhkovet al,, 2005b).
In this chapter, the effect of the frequency of measuremetitde examined using a
drop counting rain-gauge. A harsher test would be to comipareainfall rates measured
by both gauge and radar, as accumulations have the effegerd@@ng out variations in
rate. The longer the accumulation considered, the greageaveraging (an example of

assessment from averaging is Harretdl,, 1974).

Variations in rainfall rates at a location (which goes hamdtand with spatial rainfall
distribution) have far wider use than simply for radar congmn. Rainfall statistics are
important for a wide range of engineering applications, Hgdrological applications,
predictions of river flow, erosion and design of urban drge&Statistics of rain are also
important to the telecommunications industry, who haveceoms about the fade statistics

of microwave communication links.

Rainfall has a chaotic nature, with large fluctuations on bsyadtial and temporal
scales. This means that if one only measures the rainfal aasparse intervals the
accumulation may not match the “truth”. See figure 4.1, wisicbws the rainfall accu-
mulations at &0 s time resolution, and the accumulations measured when easures
for 30 s only once eveny5, 5 and2.5 minutes. The total accumulations which result

from these four time series are also seen to be different.

The effect of frequency of measurement is especially ingmbfor radar meteorology.
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Figure 4.1 A plot showing the rainfall accumulations over an hour. Theck line shows the “Truth”
from the drop counting gaug@( s time resolution); the coloured lines indicate the accuatioh from
taking a30 s snapshot only everys, 5 or 2.5 minutes. The snapshots are taken from the middle time

between crosses.

It is common to compare radar rainfall estimates with raamge measurements using
accumulations, but the return period for the radar measemewill significantly affect
the accumulation calculated. The very nature of rainfalansethat rain-rates are rarely
consistent for more than a few minutes, often with large peadd troughs. This means
that if one measures the instantaneous rainfall rate duhiagpeak, the accumulated
rainfall will be much larger than the truth. However, if theeasurement occurs during
a trough in the rainfall rate the accumulation will appeaaBen than the truth. Figure
4.1 shows examples of both cases. Fortheninute repeats an above average rate is
measured and therefore the accumulation is overestimakexh minute repeats initially
underestimate, but “catch up” much of the difference by estmating the end of the
main shower. To demonstrate the effect numerically see tdldl. Here the effect of
sampling at only half the times are seen, and then just agudbth cases result in an

underestimation.
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Rates Accumulation
0/1/1|2(2/3/ 5|96 (4,4 /3|3(2|2|/2/4|7|3]|1 64
0 2 4 10 12 8 6 4 8 2 56
4 20 16 8 4 52

Table4.1 A numerical demonstration of the effect of different samglfrequencies. In this case the less

sampled sets show smaller accumulations.

4.2 |INSTRUMENT: DROP COUNTING RAIN-GAUGE

For this work a rapid response drop counting rain-gaugel{tdgrand White, 1971) will

be used, located at Chilbolton. This instrument collectsfadliand counts water droplets

of known volume falling from the reservoir. The gauge has@cn? collecting area and

a time resolution 080 s, giving a quantisation af.48 mm/hr as each drop corresponds
t00.004+0.0004 mm of rainfall. The quantisation of the data will affect tlesults when
considering very low rainfall rates. The data used was fignMay 1999 to31%* March
2005, with a total of61 months of data availablg§, 936 hours), covering all seasons.
This data set includeg 990 rain events (defining separate events to have five minutes of
zero accumulation between them) with a mean duratiagii@hinutes and accumulation

per storm averaging.47 mm.

4.3 PDFSOF RAINFALL RATES

Of the 4,792, 320 rain rates in the data s€35% have no rain. The data is plotted in
figure 4.2 to show the rainfall occurrence. This figure shawheé lower right the noise
resulting from the low number of events of very high rainfalles causing Poisson noise.
Rainfall rates of above: 5 mm/hr show an exponential distribution, although there is a

more curved pattern below this rate.

Alternatively this can be shown as the probability of a raihfate above a value,
shown in figure 4.3. This demonstrates that moderate or heanfall (> 3 mm/hr) is

measured % of the time. Also shown on this plot are curves supplied by d&od (per-
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Figure 4.2 Plot showing the frequency of rainfall rates. The noise og¢a the lower right as a result
of the very few events with the highest rainfall rates. Thevature (suggesting less low rates than a linear
model would suggest) initially may be a result of a gauge sageffect, although it will shortly be seen

that this is is not instrumental.

sonal contact, 2006). These show similar statistics foiragauge located in Sparsholt
(located7.5 km South-East of Chilbolton), rates derived from Chilboltadar and sug-

gested from the ITU-R (International Telecommunicationdgn Radiocommunication

Sector) model. It happens that Chilbolton lies on the boréléevo zones (climate E and

climate F, which describe climate types) of the ITU-moddbeth are shown on this plot.
These plots also show the curvature for low rates (implyivad tow rates are less likely
than they would be if a linear model were used). This inddat the curvature is a
physical effect and not the result of gauge error. This pfajgffect of curvature is also
shown by Jones and Sims (1978) for all of the defined climations. They also show
that in the climatic region of Chilbolton (maritime tempexgthis curvature is especially

pronounced.
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Figure 4.3 Plot showing the regularity of occurrence of rain rates. eHée plot shows the probability
of rainfall above a chosen rate. Also shown are curves fromidaa (2006), personal communication, for
a rain gauge at Sparshoftt (7.5 km from Chilbolton), rain derived from the Chilbolton racand ITU-R
recommended model statistics for the two zones (climatedscdmate F) of which Chilbolton is on the

boundary.

The hourly rainfall accumulations have been calculatethftbis data. From these,
82% of hours have no rainfall. Next the rainfall rates occurringeach accumulation
will be examined. Even in the hours with the largest accutraria, many30 s samples

contain no rain.

From the data set, the possibility of a universal relatigmbletween rain rates falling
within hours of any accumulation will be examined. The firgpsis to calculate the
proportion of30 s samples for each rain rate. At this point it should be ndted the

instrument dropper imposes a measurement quantisation of

120(number of samples in hour) x 0.004(size of onedrop) = 0.48mm/hr.  (4.1)
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The results of plotting the proportions is shown in figure, &vlere a similar pattern
for all accumulations is seen, suggesting a universalioglstiip may be applicable. The
events within the accumulation categories decrease dicatptas the accumulation in-
creases, with 187 cases ofl mm within an hour, but jus§ cases ofl0 mm within an

hour. The reason for this discrepancy is clear from figure U@vever, this plot has too

10°

Hourly Totals
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® 2mm
® 3mm
®* 4mm
®* 5mm

7mm
* 10 mm 7
* 30mm

Probability (0.48mm/hr bin)
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30s Rate (mm/hr)

Figure4.4 Plots showing the proportions 86 s rain rates recorded during different hourly accumula-

tions. Horizontal axis: linear.

little emphasis on the lower rainfall rates, so to improvetus the horizontal will also

be given a logarithmic scale, resulting in figure 4.5.

In this plot it is easier to see the differences between tloairaalation levels. In
general the probability of any given large rainfall ratel() mm/hr) increases as the
hourly accumulation increases as would be expected. Alse@rirates are more common
in hours of small accumulation. Most importantly thesedia# show similar pattern, but
are offset in both dimensions. Next the rainfall rates wdlrescaled. A similar plot to
figure 4.5 will be created, replacing the horizontal axiswadinfall rate as a proportion

of hourly average:

PHA = ) (42)

Rpa
where H A stands for “hourly average”. This yields figure 4.6. In thletghe turn-
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Figure 4.5 Plots showing the proportions 86 s rain rates recorded during different hourly accumula-

tions. Horizontal axis: logarithmic.
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Figure4.6 Plots showing the proportions 86 s rain rates (vertical), as proportion of hourly average

recorded (horizontal) during different hourly accumwas (shown by colour).

ing point of all colours (accumulations) occurs at the samiatp However the lines
maintain the vertical displacement, showing that a propoal rate 0f0.48 (0.48 mm/hr
for a 1 mm accumulating hour2.4 mm/hr for a5 mm accumulating hour) is more

likely for lower rainfall rates. This effect is however cadgsby the quantisation of
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rates from the counter. For tHemm hourly accumulation, the quantisation occurs at
0.48 mm hr-Y/mm hr-!, although, for &30 mm accumulation the minimum recordable
P4 is 0.016 mm hr-'/mm hr!. To examine the probability of any rainfall rate a cor-
rection for this effect must be applied. To do this the vaitexis is changed to be the

proportion of30 s rates pet mm hr-{/mm hr!.

probability of 30s rate per bin width

= proportion of hourly average x quantisation proportion (4.3)

The result is shown in figure 47

Figure 4.7 shows that different hourly accumulations h&weesame distribution; for
rain-rates much above the hourly average, a power law falsafeen. This power law
has slope of-3. A constant probability is observed for occurrences leaa the hourly
average. If the function is defined to be continuous, haveneptaw relationship with
slope —3 and be constant for lighter rainfall than average rainfdlé constant value
can be found via integration. This model must satisfy the itwportant integrals. First
consider the probabilities: the total probability must lmee 0and the problem must be

considered in linear space:

1 o)
/ Cdr + / Cr=3dr = 1, (4.4)
0 1

wherer is the normalised rainfall rate. Integration yields that- %C =1,s0C = %

Next check the average; meamust again be one.

o) 1 1 0 1
/ Prdr =1 :/ —rdr +/ —r3rdr (4.5)
0 0 3 1 3

Integration reveals that this is satisfied. So the constevfor rainfall rates below the

average i%, which, in the log space of figures 4.7 $).18.

This procedure was then repeated, changing the accumulagiood to15 minutes
(figure 4.) and3 hours (figure 4.7). Similar distributions of rainfall rates are found, all

showing the turning point occurring at the hourly averagefal rate.
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Figure 4.7 Rainfall rates occurring as a proportion of the accumufativer a period shown. The data
has been normalised to allow for the probability of occuceeand quantisation of rainfall rates. Also

plotted is the fitted model in black.

This tells us significant information on the nature of ralihfén absolute terms, an
hour of3 mm of rain shows little variation in rainfall rate, whereageay heavy event of
20 mm shows large variations. However, in relative terms,ghesiations in rate are the
same. One would expect this behaviour to occur for any higblugon rainfall data set,

including high resolution numerical model grid boxes.
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4.3.1 DATA REQUIRED TO DEMONSTRATE THIS BEHAVIOUR

The amount of data needed to see the behaviour described alibbe important for
confirmation of models. Figure 4.8 shows examples of data ffoee of the wettest days
of the dataset ([&42 mm, [b] 24 mm and [c]34 mm falling during the days). The plots
show similar behaviour to that expected by the model preskaibove, but there is some
variation. Figure (a) shows a curve over the turning poinfshows a large peak at the
mean rate for the mm/hr category and (c) shows less lower rainfall rates thvanage

for all categories.
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Figure 4.8 Rainfall rates occurring as a proportion of the accumutativer an hour. These examples

each show data from one very wet day [each a separate dayhfaéation of> 20 mm).

Although the expected behaviour can be seen from a singlefdasavy rain the best

test would involve a longer record for statistics.

4.3.2 RAIN RATE BEHAVIOUR FROM RADAR DATA

The distribution of rainfall can be examined using radandet well as rain gauge data.
We will calculate rainfall rate at each radar pixel usingrage Z — R relationship, then
instead of considering the rainfall rates as a proporticntohe average rate, they will be
considered as the proportion of the average rate over an gigare 4.9 shows that the
radar data shows similar characteristics to the gaugehkeubtver rainfall rates appear
to be rather reduced, with the increase in rates near the.nfdas may be an effect of

the radar having poor measurement at low rainfall rates.
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Figure4.9 Rainfall rates occurring as a proportion of the average auearea. The area for averaging is
(a)5.6° azimuth byd.5 km range, (b)1.2° azimuth by km range and (c)2.4° azimuth byl8 km range.
The radar data was chosen to be free of non-rain targets<€ —20 dB) with ranges betweerb km and

60 km. The data was taken during the passing of a front over Gltdb on 18/08/2000.

Similar analysis has been performed for another radar $gand 4.10). In (a) and
(b) the low rates are less frequent than expected, but irh{g)effect is not seen. This

indicates that this behaviour is only seen if the averagreg ér time) are large enough.

(b)

normahsed(R)

N
ncrmahsed(R)
normahsed(R)

0
N

log P
I
w
log P,
log P,

)
[l
4]

|
o

-4

-15 -1 0.5 1 -1 -05 05 1 15 -1 -0.5 0

05 R Rey) % ogR/RD) ® ogfRr )
Figure4.10 Rainfall rates occurring as a proportion of the average avearea. The area for averaging
is (a)5.6° azimuth by4.5 km range, (b)L1.2° azimuth by9 km range and (c)2.4° azimuth byl8 km
range. The radar data was chosen to be free of non-rain $aflget, < —20 dB) with ranges between

15 km and60 km. The data was taken during the passing of a front over Gltdb on 09/10/2000.

The behaviour of rainfall rates from the radar have shown ti@vmodel of rainfall
rate distributions can be applied to uses beyond simplegauges. It is important for

numerical models to also obey these statistics, to ensunfaltas correctly simulated.
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4.4 ERRORSDUETOFINITENUMBER OF RADAR SCANS

To examine the effect of the regularity of “snapshots”, tfieat of measuring the rainfall
every2.5, 5 and 15 minutes will be studied, this is briefly discussed by Harretdl.
(1974). This involves selecting one measurement in theimedjuime period and cal-
culating the apparent hourly accumulation with the “truti¥or this, the errors in the
measurement must be calculated. The errors are controll€bisson statistics so that

the error is given by
AR VN
R N’
whereN is the number of tips during in the time period concerned.ethice the errors,

(4.6)

“snapshots” are taken from one minute accumulations (fraotessive samples). To
compare the different accumulations from the timing pabsés the two will be com-
pared using these errors. To compaié-aminute repeating cycle of “snapshots” first see
figure 4.11. This plot shows some extreme outliers, withaingdst errors occurring from
overestimated rainfall accumulations. The size of thersrape also seen: the errors for
the 15 minute repeats are larger as the total sampling time i2jusinutes of the hour

(hence lowN), where the whole hour is used for the “truth” (so high.

A similar plot for examination ab minute intervals is shown in figure 4.12. This is

quite a significant improvement, with much fewer points Wétge discrepancies.

The errors caused by the sampling effect will now be examindte data will be
divided up into a number of rain-rate categories. For eatégeay the bias, the mean
modulus of the error, the root mean square error and stardiuvidtion of error are
calculated. The sampling of the counter means that a snrall @ill occur as a result
of measurement and this error cannot be improved upon. Tios as a result of the
“counter” sampling increases with rainfall rate in an abs®lsense, but decreases in a
fractional sense, which can be seen visually as the blaek limfigures 4.13 (absolute)

and 4.14 (percentage).
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Figure 4.11 A comparison of hourly accumulations between the “truthdr{tontally) and apparent
accumulation from sampling once every minutes (vertical). The blue line plots where the two are the
same, red crosses show the positions of all hours ofthaonths which contain rain and the size of the

cross indicates the errors on this value.

4.4.1 BIAS

bias = recorded vaulue — true value 4.7)

The bias will show any systematic errors occurring as atestihe reduced snapshot
distribution. The bias is calculated and plotted in figurE34for rainfall categorised by
true hourly rainfall. The black curves show the error expédets a result of sampling the
entire hour of rainfall. There will be significant bias if thalculated bias for a sampling
return period lies outside of this. The figure shows that ldive no significant bias

allowing for errors except for the case Iof minute sampling of rainfall betweeh5 and
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Figure 4.12 A comparison of hourly accumulations between the “truthdr{tontally) and apparent
accumulation from sampling once everyminutes (vertical). The blue line plots where the two are the
same, red crosses show the positions of all hours ofthaonths which contain rain and the size of the

cross indicates the errors on this value.

11.5 mm within the hour. However, this comprises jgstases in the record. So the

sampling period does not bias the total derived rainfalhimian hour.

4.4.2 RoOOT MEAN SQUARE ERROR

RMS = \/[(recorded — truth)ﬂ (4.8)

The root mean square is a measure of the average error intdne\Wla examine the
mean square error to determine the error in rainfall ratsedby longer sampling return

period. Figure 4.14 shows the root mean square error in tefmsrcentage error. Again
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Figure4.13 Plot showing the bias caused by sampling return period.

the expected error caused by the sampling of the droppeotiegdlin black; if the RMS
errors lie above this line, the error is significant. It carsben that as the sampling return
period is decreased the error in calculated hourly totatedsiced, and that the largest
percentage errors occur at low rainfall rates. It shoulddigeead that the errors occurring

are all significant.

These errors found however comprised the combination oétnar distributions: the
sampling error of calculating the “truth” from the countedahe error which is the result
of the increased sampling return period. Assuming bothremee normally distributed

this can be expressed as:

(O-t(ﬁfal)2 - (Ucounter>2 + (Uretuv'n pem’od)2 . (49)

This means that to calculate the error that is caused by thplsgy return period the
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Figure4.14 Plot showing the effect of sampling return period in perageterror of “true” rainfall rate.

formula

O return period — \/(Utotal)2 - (Ucounter)2 (410)

IS used.
This will give an indication of the error that would be expetfrom a radar measuring
hourly rainfall accumulations (figure 4.15), showing liatibns from the variability of the

rain and requirements for a scan strategy to measure faacfaimulations accurately.

Figure 4.15 shows that for rainfall rates of ordemm/hr an accumulation of5%
accuracy can be achieved by a return period ofinutes, although if the return period
is 15 minutes, this error has increased4t®s. This means that a radar measuring the
accumulation from four scans per hour will show % error given a PERFECT radar-
rainfall algorithm. In actuality the radar-rainfall algibrm will generally be significantly

in error in measuring rainfall rates, which will add to theogrcaused by scan strategy.

However, the effect of how regularly one samples rainfalireeasured accumulations
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Figure4.15 Plot showing the effect of sampling distribution of “snapiti in percentage error of hourly

rainfall rate, having removed the effect of sampling usimgdrop counting gauge.

can be examined in another way: autocorrelations.

4.5 DECORRELATION TIME OF RAINFALL RATES

The “memory” in the system will be examined by calculating torrelation of the rain-
fall rate with the rainfall rate a time before (the autoctatien function). For this the
Pearson’s correlation is calculated for the rainfall rdtérae ¢ and the rain-rate sec-

onds laterf + 7:

S (R~ R) (R, — R)
> (R~ R)’

Calculation of the autocorrelation demonstrates that thieelagion decreases with

(4.11)

Pr =

time lag as shown in figure 4.16. The decorrelation is exptisleass expected from pre-
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vious work (Zawadzki, 1973, 1987; Drufuca and Zawadzki,3)®howing decorrelation
time top, = 0.5 of 4.5 minutes or decorrelation to. = ¢~! of 9.3 minutes. Burguio,
A. and Vilar, E. and Puigcerver, M. (1990) derived decotretatimes of3.5 and5.4 min-
utes for a rain gauge in Barcelona. The data from Chilboltorenasger decorrelation
time, related to the relative prevalence of convectivefadliin Barcelona (this will be
examined shortly). The decorrelation time is much lowenttiet reported by Zawadzki
(1987) (~ 20 minutes) for Montreal. This is likely to be a result of the @mesolution
of the available data: he used data smoothed dweinutes of tipping bucket rain gauge

data.

These decorrelations can be converted into a spatial ddation scale from the speed
of rain storm progression using a “synthetic storm” (Dru#wnd Zawadzki, 1975), as-
suming that the time series from a fixed point rain gauge isd¢helt of advection of spa-
tial variations. Using an assumed mean storm progressiegdspf10 m s—! (36 km/hr)

the decorrelation distance ¢0' is 5.5 km.

Itis seen that after justminutes the correlation has droppedtd, and byl5 minutes
it has fallen to just).3. This shows the amount the rainfall is related to the ratereef
so only30% of the rain-rate now is related to the rain-rafeminutes ago. This clearly
shows the need for regular repeats when calculating acation$ from rainfall rate

“snapshots”.

4.5.1 SEASONAL AUTOCORRELATION

By dividing the data into seasons (winter: DJF, spring: MAMmsner: JJA, autumn:

SON) the effect of the time of year on rainfall correlatiom® de shown. The autocor-
relations for all four seasons are shown in the left panelgiré 4.17. The summer
season is seen to have higher correlation than the winteshiant lag periods, although
after4 minutes the correlation is lower, continuing to decreasthasag increases. This
pattern can be easily explained by the predominant pratipit during these seasons.

Convective rainfall is more common during the summer, whilat§orm rain dominates
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Figure4.16 Plot showing the autocorrelation function of rainfall atélarked on are the correlations

at2.5, 5 and15 minute lags to correspond to the tested return periods farljaccumulations.

during the winter months (see figure 4.17 right panel). Boram rain’s large scale na-
ture mean that the variations over even long periods areratnall, indicated by the
high correlations ¥ 0.5) at time lags as far a& minutes (decorrelation t0.5 occurs

in 26.8 minutes, to decorrelate to ! is 51.9 minutes), whereas convective rain occurs
in short sharp “bursts”, so is poorly correlated for long feegiods (decorrelation time to
0.5 of 5.1 minutes and falling rapidly so as the decorrelatiortd takes8.9 minutes).
These times are longer than the times for the full data sehlystioe heavy rain is con-
sidered (so comparison should only be made between covwwexrtd stratiform, not with

the overall data set). As expected spring and autumn liedmtgummer and winter.

With operational radar scan strategies having low levaiseds minute intervals the

seasonal effect on accumulation accuracy is small as iasthe crossing point.

Page 73




Chapter 4: Rain Statistics

— JJA 1

— DJF — convective
0.8l — MAM . - - - stratiform
' — SON 0.8\
c ~
£ 06/ -
3 § 0.6 N TR
= - A N T R e
g o

I
'S

o
o
:
o
o

0 5 10 15 20 25 0 5 10 15 20 25
time lag (mins) time lag (mins)

Figure 417  [LEFT] Plot showing the autocorrelation of rainfall ratex & seasons. [RIGHT] Plot
showing the autocorrelation of rainfall rates for conveetnd stratiform rainfalls. These have been defined
as rain from days where more théh mm of rain fell. Stratiform rain has a daily maximum rain régss
than22 mm/hr, if the daily maximum was greater thzgtymm/hr the rain was considered convective. This

givess8 days of data of each type.

4.6 RAINFALL POWER SPECTRUM

This section will examine the power spectrum of the rairdatia from the rain gauge. To-
gether with the auto-correlation function the power speutdensity provides a Fourier
transform pair. Physically, we know that rain varies on a hamof scales. The rain
varies from mesoscalé(@ km) processes, such as weather systems, to microscale vari-
ations ( cm), such as drop interactions. This means a model of thedexhgpectrum

of the rainfall (in actuality this will be of log of rainfallsawill be seen shortly) can be
formulated. Venezianet al. (1996) combine the segmented spectra of previous authors
to gain a spectrum as shown in figure 4.18. They suggestithatcurs at the scale of
convective cell clustersr{15 km, Crane, 1990+ 20 minutes]), with lower frequencies
showing a—5/3 slope, converting te-3 at this point, this is the energy input scale. The
next conversion, to the 1 slope segmenty,, occurs as the microscale is represented at
the rain input scale 03-7 km (Crane, 1990)10 minutes]. Finallyws; occurs at the very
small scales, where the slope returns-tg/3 (Veneziancet al., 1996 suggest this occurs
at30-90 s). Horizontal turbulence invalidates the theory used tivdehese plots at high

frequency when considering time rather than space vanisitithe effect is an increased
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Figure 4.18 Idealised spectrum of log rainfall rate, based on figure 1e@feziancet al. (1996). The
solid line shows the spectrum by wave number, with dasheddirowing the frequency scale plot. The

difference is qualitative, being a result of horizontabtulence.

power at the high frequencies.

Figure 4.19 shows the rainfall rates of one event lastingguer2 hours. The upper

o
o

N
@)

N
@)
1

Rainfall rate (mm/hr)
@)

30 60 90 120 150
Time (Mins)

o

IN

@)
I

Log Rainfall rate (mm/hr)
N

30 60 90 120 150
Time (Mins)

O

Figure4.19 An example of a rain event demonstrating why the log of rdlinéde is considered instead

of the linear rainfall rate.
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plot shows the rainfall rates, the lower showing the natiogerithm of the rain rate. The
amplitudes of the high frequency changes in rainfall raeedapendent on the average
rainfall rate at the time. This is shown similarly in the ldgty where the high frequency
variation has the same size at all levels, implying that #rgations are multiplicative, so
the log scale should be used for creating a power spectrumu3é of the logarithm of

rainfall rate was also made by Crane (1990) and Venezhab (1996).

To estimate the power spectrum density (PSD), first a disd¥etrier transform is
computed from the log rainfall rates. Taking the logarithinthe rainfall means that zero
values must be removed before computation of the Fouriesfiobam. PSD is calculated
by squaring the result of the Fourier transform and scalefldmuency. The PSD that is
derived has very large noise, so this is smoothed to seeueignal. This smoothing is

performed with a moving average, shown in figure 4.20. Gdlydtas average is from

30

-60— 2 -
10 10 10
Frequency (Hz)

Figure 4.20 Periodogram of the natural log of rainfall rate (after reingvzero rainfall rates). Green

dots show all data points; blue and red lines show movingages as described in the body text.

the 101 nearest points (from a total aB81073), shown by the blue line. However, the

very low frequency has few data points but retains some imédion, so for the lowest
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frequencies, the moving average is calculated from jugpoints of the derived PSD.
This is the red section of the line (this is why the noise lerethis segment of the line
is larger). Note that these are running means from the adiPSD, not of the rainfall

data used for calculation.
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Figure 4.21  Periodogram of the natural log of rainfall rate (after reingvzero rainfall rates). The
dashed lines show slopes-ef, 3 and—3 for comparison. Overlaid in green, is a segmented spectoum t
fit the data.

Figure 4.21 shows that moving average again, but this tiraglbt also shows the
slopes expected from Veneziaet al. (1996) (dashed black lines), and a segmented
model fitted to the data (in green). This green model shoveetbf the segments from
the model of Venezianet al. (1996), the missing segment being aftgr This is miss-
ing as the frequency this is expected to occur at is too ss@lhot detectable with the
30 s resolution of the rain gauge data used in this stugyig also missing in Crane
(1990) presumably for the same reason). The first spectmaihty point,w; occurs at
12.4 minutes,w, occurring atl.6 minutes. Both turning points are found to occur at

higher frequencies with the Chilbolton data set than suggdefsom the storms used in
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the Venezianet al. (1996) study (6.1 min and4.8 min respectively). However, the
value found lies within one standard deviation (factorldgf) of the mean, the second
corner () is within two standard deviations (factor ©f8). Venezianoet al. (1996)
found the final corner point;, to have an average valueif s, with standard deviation
of a factor of1.2. Assuming the trend of finding the turning points for Chillooltdata
occurring at higher frequencies than Veneziahal. (1996) foundyvs is likely too small

to be measured by the drop counter withs resolution.

The other comparison with the model is of the slopes of eagimeat. Each segment
has slope shallower than the model predicts, where the nsadegkests it should be5/3
(—1.67) the Chilbolton data shows(0.85. The middle segment where the model suggests
the slope should be 3, the data in this study has slope-ef.53. The final section shown
by the drop counter record has slope-ai.2, which is again shallower than the model
predicts, although this was expected as this study is wgriith temporal spectrum
rather than spatial. The effect of the difference betweesicering spatial and temporal
spectrum was shown by a dashed line in figure 4.18, causecaiior hypothesis not

holding at higher frequencies due to horizontal turbulence

4.7 SUMMARY

Statistics of rainfall were calculated showing a generainfof rainfall rates within a
longer term mean. These statistics should be obeyed at amy po has implications for
high resolution numerical modelling. Any equivalent higtsolution numerical model
grid box (especially cloud resolving or large eddy modetg)idd obey the same rainfall
statistics as shown by the rain gauge. It has been shownhbadecorrelation time

to a correlation of~! is 9.3 minutes, indicating rain has a spatial decorrelation scale
of ~ 5 km. The power spectral density forms the Fourier transfoain pf the auto-
covariance function. The power spectral density is showmaiee a similar segmented
pattern to the model of Veneziarat al. (1996), but with shallower slopes and higher

turning point frequencies.
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This section on the timing of sampling when examining acdatens has an im-
portant significance when considering comparisons betwagar and rain gauges. A
rain gauge measures the rainfall integrated over the cereddoeriod whereas the radar
measures instantaneous rate at a single time, imposingitaoimthe comparisons. It
has been shown that the decorrelation of rainfall is theeafishe errors, and that this
decorrelation is dependent on the type of rainfall beingsuesd (and therefore season

it is measured during).
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CHAPTER 5:
THE INTEGRATED

REFLECTIVITY/DIFFERENTIAL
REFLECTIVITY TECHNIQUE:

METHOD

5.1 INTRODUCTION

As was shown in chapter Zpr andZ can be used for rainfall rates on a gate-by-gate
basis (2.4.2), although this requir@gr be accurate t0.1 dB for rainfall rates,R, of

3 — 10 mm/hr. Unfortunately large errors ifpr are observed, caused by the statistics of
the returned echoes (Bringi and Chandrasekar, 2001) reguitibout).2 dB noise for
the CAMRa. Radar antenna problems are small for CAMRa, althoutjfeioperational
environment are likely to be significant (because in the ajp@mal environment financial
and reliability constraints lead to smaller, less perfedteanas and radar setups, with
radomes, which can affect results, especially when wete NEXRAD-KOUN radar
(Ryzhkovet al, 2005a) ha$.4 dB noise inZpgr, while at C-band, for a UK operational
radar the noise may be still larger. This means that gatgabg+ainfall estimation using

Z and Zpg is noisy and may be biased. This noise averages out over tches@ace,
but this remains a great drawback for instantaneous poimnfatarates. This gate-by-
gate method does not allow for the possibility of unphysibait statistically feasible,
negativeZpr observations (see section 2.4.4). This chapter will shovetinad of using

Z andZpr over a domain to estimate the rainfall rate at each pixels Wi benefit from

the increased information on the drop size distributioregiby Zpr, but will not suffer
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as a result of the random noise Bfyr, by averaging this noise to zero. A number of
problems with the method will be examined, also considehiog these problems can be
overcome. The following chapter will then show a number @fraples of the technique

in action.

5.1.1 USEOFREFLECTIVITY AND DIFFERENTIAL REFLECTIVITY
FOR ESTIMATING Z — R RELATIONS
If the observed values df andZpr over a small region are used to characterise the rain

drop spectra over that region, better rainfall rate eseatill be a reality. Recall the

normalised gamma distribution of raindrops of section 1.3:

N(D) = Nuf (1) (Dﬂ)xp (-2 (5.1)
) = 6 (3.67 + p)rtt

(3.67)* T(u+4) ’
which represents natural rainfall well (Ulbrich, 1983). Byléwing the work of Bringi
and Chandrasekar (2001), this lead%’te- R relationships of the form:

Z = aR", (5.2)

with a« dependent oV, andy. Integration of the suitably weighted normalised gamma

function produces the expression:
Z = Fy(p)NyD?. (5.3)
Making the assumption that the terminal velocity is projool to D67,
R = Fp(p) Ny DT, (5.4)
and by removing), this becomes:
= 1.5
whereH (1) = f(1) fr(11)"7. Hence

7 = H(M)NV}OBRlé — (56)
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SO using equation 5.2 this leads to,

a= M (5.7)

VINw
So over the chosen region of data, if the drop spectrum cahdm@cterised to estimate

N, it will be possible to derive the values aof ‘in equation 5.2 (assuming a value .

Next consider the physical drop spectrum cause of varigtion. Initially consider
the case wheré/;, remains constant. Increased rainfall rate is caused sitmphn in-
crease drop sizd),. The assumption that this behaviour is standard withirfallievents
Is used elsewhere, for example in the work of Testual. (2000) for the ZPHI technique.
Equation 5.3 showg varies asD! and 5.4 demonstratds varies asD%7. So, substi-
tuting into equation 5.2 givels= 7/4.67 = 1.5.

However, it is possible thaV,, is a function ofD,, and this possibility will result in
different values ob. Consider the case whehg, rises asD?, so as rainfall rates increase
there are both more and larger raindrops. This implies, guagons 5.3 and 5.4, that
and R vary asD? and D597, leading to a of 1.35. Now consider the case whepg,
varies asl/D,, a case where as the drops get larger, their numbers decseggesting

Z andR vary asD¢ and D357 sob = 1.63.

Now consider a more extreme example. If, rather tNarbeing constant), remains
constant and as rainfall rate increases it is a result of mares of the same siz&, and
R scale together withV,,, sob = 1, this value was suggested for tropical convection by
List (1988). Now consider the case with high aggregationnoinglakes leading tav,,
scaling with1/D?2. Now Z and R vary asD3 and D" resulting in a of 1.87.

It was shown in chapter 2 thafpr can give the additional information required for
more accurate rainfall rates frol alone, although it was shown in section 2.4.4 that
the signal is too noisy for use at each point. In chapter 3 #teral spread i¥pr was
examined. The suggestion is a method that uses’theR derived from the region to
calculate the rainfall rate of the individual pixels, witliguffering as a result of the noisy
(and possibly negative) observed gate-by-gatg. The noisyZpr remains utilised,

however, by alteringd’ (and potentially b’) from detected changes in the drop spectra,
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which a simple defauly — R cannot be expected to detect (chapter 2).

5.2 DATA REJECTION DUE TO NON-RAIN TARGETS

The technique described above relies on solely rain taagdtse equations for calculation
of R. Z andZpg given N,, (for example equations 2.13, 5.8, 5.10) all use drop shapes
that are only appropriate for liquid water hydrometeorserEifiore any data points which

are not the returns from liquid water must be carefully reetbv

(a) dBZ (¢) Zpr (dB)

altitude (km)
altitude (km)

RS,
SR

2 i

LR R

: ,.,z-;;xkxﬁ...x:,gli’!'.’. a*i;i# :dl%‘ﬂi&&,h!llli“
25 30 35 40 45 50

5 100 15 20 25 30 35 40 45 5 0 15 20

range (km) range (km)
(b) Lpr (dB) (@dvms!
v (m/s)
6 0
5 -5
1S IS
= S2
§ §3* -15
= <
2r -20
-25

95 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
range (km) range (km)

Figure5.1 A Range Height Indicator (RHI) showing the “bright band” agrdund clutter. We can see
at a height of ned km the clear bright band signature. Ground clutter is alseoked at ranges @2 km

and19 km, with its clear signature ibpr (high values).
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5.2.1 GROUND CLUTTER AND ANAPROP

First consider the problem of “ground clutter” and “anomelgropagation”. “Clutter”
is a result of reflection of the radar beam from non-hydrowretargets; for example
the ground surface, tall buildings or trees. This can be seégure 5.1 (atl2 km and
19 km ranges). “Anaprop” (anomalous propagation) is a redidtrong temperature and
humidity gradients causing the radar beam to be refracteld tmathe surface, where
non-meteorological targets reflect the beam. Anaprop casspecially difficult to dis-
tinguish with conventional radar (for example Pamment andvizy, 1998). However,
both clutter and anaprop give rise to non-Rayleigh scatiesonthe amplitude and phase
of horizontally and vertically polarised returns are umetated. This means that these
non-meteorological targets can be detected by ude,gf They have highef.pi than
occurs in natural precipitation Hagen (1997), as the oppgmlarisation’s reflectivity
has similar size to that at the transmitted polarisatiorhdés from non-meteorological
targets also havg,, ., of near zero, where it is 0.95 in rain, and this change is a result
of the random nature of the returns from clutter targets. @ioblems of ground clutter
are that these targets have an increasdtbading to overestimates of the rainfall rate)
and increased noise iipg, fluctuating4+3 dB from one gate to the next (effectively
negating all information available about the target shageh simplelpr threshold (for
accepted datd,pr < —10dB; this “catches’ 90% of clutter) is used to remove ground

clutter points (see figure 5.2).

5.2.2 MELTING LEVEL

The next problem is that of the “bright band”. This is the andeere the snow flakes
falling from a stratiform cloud melt (this explains an aitative name, the “melting
layer”) and occurs just below th&C isotherm. The bright band has an increased re-
flectivity relative to the rain below and ice above as the sflates have large diameters
which, when melting, are covered in a “film” of water makingh reflect like rain (wa-

ter gives larger reflections than ice as thé&| (dielectric factor) of ice is up to five times
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Figureb5.2 Z-Zpg plot from an area of rainfall data which is infected by cluttehe combined red and
green pixels show the recorded data. The red pixels are tejgeed by thd.pr thresholding, the green
are those which are accepted. Also plotted for referencéharblue line ofN,= 8000 mnr! m—3 and

the Z 1y nr line is shown in black.

lower than that of water (1.4). Thepr can be used to identify the melting snow flakes
associated with the bright band (Frestal, 1991 and Strakat al., 2000). This region

Is unsuitable for theZ/Zpr technique as the melting flakes result in higlfas much as
13 dB higher than the rain it melts into) and also an increas&gp. Again the Lpg
threshold (for accepted datapr < —20dB) is used to remove these points and points
above the detected bright band are removed to avoid measat@mthe ice, as shown in

figure 5.3.

5.2.3 HAIL

Particularly during the summer time, hail can occur in cative events resulting in ice
particles below the freezing level. Hail cannot be unambigly identified using’, Zpr
and Lpg, although, its presence will raise (due to larger particles). There will also be

a reduction in theZpy recorded in the location of the hail (due to tumbling paetscso
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Figureb.3 Z-Zpg plot from an area of rainfall data which is infected by mejtsnow from the “bright
band”. The combined red and green pixels show the recorded dae red pixels are those rejected by
the Lpg thresholding, the green are those which are accepted. Adsteg for reference is the blue line of

Ny= 8000 mm~* m~* and theZ,m . line is shown in black.

no mean alignment), but larger positive values are obsdrvédte area surrounding the
hail (Bringi et al,, 1984). Smyth and Blackman (1999) suggested the best taehfoq
identification of hail is the loss of consistency of the thvaeiables,Z, Zpr and ¢pp

along a ray. Hail should be removed before an integratéf}r technique is used.

Options to determine the appropriatg or a will now be considered.

5.3 AVERAGE POINT-BY-POINT RAINFALL RATES

This method would involve calculating the rainfall rate atle point from its individuall
andZpg, as per section 2.4.2. The data points are then plottég;ds againstZ (figure
5.4). From this the best fit line to this data is calculated, this poses a significant
problem of how to determine this best fit. The very noisy nratfrthe data (especially in

Zpr) Mmeans that the data is not very highly correlated, meatagthe fit of Z against
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R is rather different to a fit of? against”Z. The solution is an “SD-fit”, with slope given
by the ratio of the standard deviation gfand standard deviation d?, which passes
through the mean of both data sets. See figure 5.4 for an egawhpthis problem; the

three lines show the two possibilities from correlation #mel“SD-fit”.

dBR

Figure5.4 An example of use of the average point-by-point rainfal naethod. This data is quite well
correlated, although the lines showing the results fronBtpessible fits, (blue) for the fit afBZ given
log R [result: a=853, b=0.65], (red) the SD-line [result: a=5G20.98] and (green) the fit dbg R given
dBZ [result: 313, b=1.47], are quite different. When the coftiefais lower (usually from small dynamic

range) the differences in the three lines will be larger.

Apart from issues with calculating that will plague later possibilities, this method
has a serious problem: for a givéiyr both R andZ scale with/V,,. This means that the

result is biased, towards= 1. This bias must be removed.

5.3.1 USING THE REFLECTIVITY FOR1 MM HR™!

The bias can be removed #r is converted to a variable that is not dependentZon
but can easily give the result afandb. The answer to this problem is to U&g,, /1,

which is defined as the reflectivity that would have a rainfaie of1 mm hr!. This is
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dependent o¥pr and is calculated by the formula given by lllingworth and Biaan
(2002):

A4
Zimm e = 7= 21.48 + 8.14 Zpr — 1.385 (Zpgr)? + 0.1039 (Zpr)*. (5.8)
From Z,,,m /1, it is trivial to calculate the rainfall rate,
dBR = dBZ — dBZmm/m (5.9)

noting thatR = 10%2%/19 |t was noted in section 2.4.2 that the calculation could be

improved by use oF1m/ne = f(log,y Zpr). This is formulated as

Z e = % = 1.3910 (log Zpgr)® 4 6.3556 (log Zpgr)* + 12.6032 (log Zpgr ) + 28.6576.
(5.10)

OnceZimm/n: is calculated this is plotted against @Rfigure 5.5), and this data fitted.

This plot does not have the scaling dependencth& against d& plot has, as?;ym/nr

is effectively a rescaling of th&pr data. The fit obtained has the form
dBZ = mZimm/me + C. (5.11)
From this thex andb must be derived. Starting from
Z = aR’;

convert into decibels,
dBZ = 10loga + bdBR. (5.12)

From combination with equation 5.9 this leads to

dBZ = 10loga+bdBR + bdB Zimm e,

therefore;
dBZ(1 —b) = 10log a + b dB Z1mm/nr
hence;
—b 10loga
dB7 = (m) AB Z i + - (5.13)
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Compare this with equation 5.11, resulting in:

—b
= 5.14
m=1— (5.14)
and
10log a
= . A1
c - (5.15)
Equation 5.14 leads to
=" (5.16)
m—1
and equation 5.15 gives
10loga = ¢(1 —b).
Using equation 5.16 this leads to
lobe1— m _m—l_ m ~m-1-m -1 1
N m—1 m—-1 m-1  m—-1  m—-1 1-m
SO
10loga = 1% (5.17)

So from the fit inZ/Z;,,m/ne SPace, equations 5.17 and 5.16 can be used to calculate the

Z-R relationship parametersandb.

This method is an improvement in that the bias caused bymgral Z and R has
been removed, and the two axes being fitted are now genuimdgdypendent. There does
however remain a rather serious problem, and one that wildbenore serious in the
operational environment, negativgy. This was discussed in section 2.4.4, and would
mean any points of negativé,r must be “left out” as &, /1 Would not be calculable
for negative values o¥/pr. Leaving out the points will non-uniformly remove some
data points, removing one side of the distribution of date,not removing the opposite
(positive) extreme. This will bias derived results, whicttl e serious especially in low

rain.

5.4 BANDING THE DATA

An option to counter negativEpy is to “band” the data to create averaged points with

far reduced errors, hence considerably less likely to ginegativeZpg. It is important
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Figure5.5 Anexample of use of point-by-poiat, ..., ., rainfall rate method. The lines show the results
from the 3 possible fits, (blue) for the fit df3Z given Z, . [result: a=24, b=2.1], (red) the SD-line
[result: a=80, b=1.8] and (green) the fit Bf ., . givendBZ [result: 181, b=1.6].

to remember that most of the error is #fiyg and notZ. To maintain information on
the distribution of the data it is best to band by number ohisorather thar¥ value; to
demonstrate this see figure 5.6. The banding is performediing the data by, and
the first20 points are selected, averageddrand Zpy to create the new data point which
Is saved. Then the process is repeated for each groRp afnsecutive points to create
banded data to be used for calculation. The chosen val2e @dints is variable, chosen
to maximise the number of data points remaining, but makeggtiveZpg in the newly

created data uncommon.

The banded data is then used to calculate., 1. and calculate th&- R relationship
to be used as in the previous section (5.3.1). The rare bgmalats with negative’/pr
will no longer cause the bias problem; these points incafgoan average and hence
both extremes of the data are ignored. There does still reenproblem: by averaging
both Z and ZpR the variation in the two is not being fully implemented whére data

density is low. Where there is a large spreadZoWithin a band, theZpr spread will
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Figure5.6 An example ofZpgr againstZ, demonstrating the banding technique. Ev#rydata points
(black x) are averaged to create the smaller, less erroepdata (pink o). It can be seen that banding has

removed the points of negativ,r. This reduced data is then used for calculation ahdb.

inevitably be increased and biased due to the curvaturerstantV,, lines. Where the
changing curvature of th&/Zpg line is high, this will have the largest effect of biasing

the averaged point.

5.4.1 CONSISTENCY

The methods described thus far all calculate values ahd b, and often the derived
values vary in an unphysical way. This is caused by there eioigbsufficient dynamic
range in the data to determine both variabled, iasssentially a slope andessentially
an intercept parameter, and changinghanges:, but the effect of the change in the
derived rainfall rate is small. The highly varyiagwill give us no physical interpretation
of the underlying processes, being masked by the variatioihegesulting from the small
dynamic range in available data. Section 5.1.1 demondtthttb changes represent the

relationship between drop size distribution paramedérandD,,.

The noise in theZpr data and common lack of dynamic range of data mean there
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is little signal to detect the second mode of variatibn The difficulty of detecting the
signal of the variations ih mean that an assumption bfmust be made. Hence it will
be assumed tha¥,, remains constant over small areas, and the technique evedidill
calculate what theév,, is over the small region. This is a very similar to the assuompt
of Testudet al. (2000), although in that paper the assumption is made owegr fadial
sectors (see figure 4 of Le Bouat al, 2001), and physically it is less likely thaf,

remains constant over these large radial regions than maeee regions of similar area.

Using the normalised gamma distribution of raindrop sizes@op shape functions
(section 2.3), expected valuesbfand Zpr can be derived for any combination of drop
spectrum parameters. This means that the expected posftjpmints in Z/Zpr space
for rainfall of constantV,, can be calculated, figure 5.7. The figure shows clearly that
scales with/V,, and that/V,, changes do not effedfpg. To estimatelV,, over a region
(and hencex) the most appropriate curve similar to the red curves of &du? must be

found.

1 15 25
Z, (dB)

Figure5.7 An example of an area of dataZ#g points (x) with lines of constan¥,, (red line) these
are fors00, 2 500, 8 000, 25000, 80000 mnT! m—3, Jowest values to the lower right, higher to the upper

left. A method to determine which of these lines is most appate for this data is needed.
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All the suggested methods to this point could work to onlycukite the value o.
However these would be functioning simply as a large scadeame of theZpr over the
region, losing some of the possible benefits of #ig; data. A method to utilise the
individual data points to find the most appropriafg value is used, henceto use over

the region.

5.5 OPTIMISED Z/Zpp FIT

All of the previous methods could have the restriction in adéue ofb incorporated,
although the assumption thaf, remains constant over the small regions considered
means that the calculation afcan be made directly from thg and Zpi data. Given

the relationship betweeh, and N, (b) the position of “true” (having no sampling error)
points inZ/Zprspace can be calculated for any chosen valugofusing assumed drop
shapes and fall velocities) ar. This means the measured data (which has the large
sampling noise) can be compared to lines of constdgnfsee figure 5.7) to find the line
which is most appropriate to the data of the selected regitve. chosen line will have
the smallest residuals assuming the error is alljj, so Z error is negligible. This
technique will give equal weight to data with negati¥gr, yet remain stable. It will be

described in far more detail in the remainder of this chapter

5.5.1 REFLECTIVITY/DIFFERENTIAL REFLECTIVITY SPACE

The values of dat@ andZpr observed within the chosen regioni &ndZpr data shown
in figure 5.8 show an example of such data; in this case itisceb km box containing

vigorous cold frontal rain) can be plotted i Zpr space (this is shown in figure 5.9).

In figure 5.9 the line plotted for a drop spectrum of constiipt= 8000 mm~—'m=3
andyu = 5 is shown, allowing only the median drop diametéx,) to increase for higher
rainfall rates. This line is calculated from the raindropesi of Andsageet al. (1999)

and the normalised gamma spectrum to calculate theoredidafl returns.
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Figure5.8 A5 x5 km box of (a) reflectivity (dB') and (b) differential reflectivity{pr) data. This box
is located in an area of vigorous frontal rain approximadélkm from the antenna. Axis numbering is in

km from the radar.
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Figure5.9 dBZ plotted against/pr for the data in figure 5.8. The blue line shows the line of camist
N, 0f8000 mmtm~3 and constant. of 5. This data shows that,,=8000 mnT'm~3 is a good fit to this

particular data. The red line shows the line fanm hr-* rainfall rate, assuming = 5.

Points moving vertically inZ-Zpr space are altering the drop concentratioq,.
Movement upwards implies higher concentrations (henagefarainfall rates); down-

wards is for reducing concentration (lower rainfall raté$prizontal motion is for changes
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in the median drop size: highéfpr implies larger drops; smallefpg, smaller drops.

The figure also shows the spread of data as a result dfthesampling errors.

5.5.2 OPTIMISING TO FIT DATA

Chapter 2 discussed the problems that occur as a result of #gis in section 2.4.3.
Our method of overcoming the high noise levels is to assumietitie natural drop spec-
tra properties do not change over the small areas which arg bensidered. This clearly
leads to a compromise, as the area must be large enough terdgunoisyZpr signal
sufficiently for an accurate estimate of the drop conceiomabut keep the area consid-
ered to a minimum to reduce the magnitude of natural vanatidhe size of the boxes

to be used will be discussed later in this chapter in secti6r23l.

To describe the method of estimating the drop concentraifathe rainfall in the
selected region, a graphical approach will be used, as shofigure 5.10, on page 97.
After selecting the data from the chosen region, the scafter and Zpg is examined;
see plot (a). The estimate of, required is gained from the position of this data relative
to lines of constantV,,. A line of constantV,, has the form of the red line in plot (b);
the optimum line of this form to fit the data is to be found. Ae #rror inZpg is
high relative to the signalfpr error will almost exclusively be dominant overerror,
therefore the errors i@ will be neglected. The horizontal residuals from the attesdp
fit (red line) are calculated as shown (in blue) in plot (c).eThean square residual is
used to measure how well the curve matches the data. Henadlolyng only N,, to
vary, to calculate the best fit to the data the minimum meamrggresidual is found.
Increasing the drop concentration does not aligg, although reflectivity scales with
the change. This means that doubling the drop concentratawes the curve itX/Zpgr
space only by doubling in th& direction (a gain o8 dB). Plot (d) shows some examples
of lines of different drop concentrations. An iterative eggch is used to find the best
N, (with lowest mean square residual;, for the data (plot [e]). This assumes that the
raindrop size spectrum shape parametgis constant. Changes inhave a similar effect

in ZIZpr space to changes in concentrationseariation may be mistaken as a drop
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concentration change, this was seen in section 3.2.3. Tésathat the true spectrum

concentration is equal t&; only wheny = 5. The derivedN} is then passed to the

equation
8000
=1 — 5.18
a 38,/ Ny (5.18)
for = 5. Or

8000
=218 | — A1
a 84/ Ny (5.19)

whenp = 0 to calculaten of the chosen area. The rainfall rates of individual pixeés a

then calculated using = aR5°.

5,6 THEINTEGRATED REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY TECHNIQUE: ALGORITHM

Before passing to the integrat&dZpr technique the area of data to be analysed must be
selected. The selected data has thresholds applied to eegad® from non-rain targets.
At this point it must be decided if enough data from rain issere, assuming enough rain
pixels N,, anda are estimated, else the region is defined as unsuitable asdgéo the
categorisation for the reason for rejection. These basfssare shown in the form of a

flowchart in figure 5.11.

This section will consider the implementation of each ofthsteps in more detail.

5.6.1 APPLYING THRESHOLDS

The fits toZ/Zpr data rely on the use of data only from rain, as was examinegatios
5.2. Data passed to this point of the algorithm will contaoings with non-rain origin
which must be removed. For data from the Chilbolton radar riaisoval is done by
clearing all data withZ.pr greater than-20 dB, hence removing clutter, anaprop and
melting snow. Data beyond the detected bright band is alsoved as ice (which will

not have the same drop shapes as liquid water). At low rairgs Zpr will have no
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Figure5.10 Flowchart of the steps to estimaltg, anda.
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Figure5.11  Flowchart of the basic steps of the integratedpr technique .

signal and begin to suffer from problems related to the sigmaoise ratio. Rain too
light for this technique is removed by accepting only datgrefater thar20 dBZ (this is
too low, soZpg will be 0 dB or very close to it for all but the most extreme DSDs). The

data that was accepted as moderate to heavy rain is therdpasse

5.6.2 CALCULATING ‘a’

5.6.2.1 How MucH DATA ISNEEDED?

For accurate25%) rainfall rates a8— 10 mm/hr Zpr must be accurate to1 dB. Assume
an error inZpg of 0,4, and thatV points are to be considered. This means that these

points have total error:

[
O =~ (5.20)

total N
V samp

Hence the number of points required fot dB accuracy is

o . 2
N = <_> _ 5.21
req 01 ( )
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So when considering the CAMRa radar (whetgg,,., ~ 0.2 dB), to achieve the required
accuracy, the average points is required (for an operational radar this numbernisim
larger,~ 25, depending on accuracy). The plot showing the requiredtpdan different
values of the error is shown in figure 5.12. Unless this reguimumber of points is met,
accurate estimates of,, anda are not possible and the chosen region must be rejected

for the technique.

140

— linear error
- - - logarithmic error

= =

TN o} o'y o N

o =] o S o
T T T T T

Points required for 0.1dB accuracy

N
o
T

0-point

Figure5.12 The required number of points for different errorsipg .

To demonstrate this, real radar data is used. For this absaaitidata points of extent
with 64 pixels in range and azimuth is selected. This sector of dathén used to
calculatea and V,, with grid resolutions fromt096 pixels to just4 pixels. The resultant
values ofNV,, are shown in figure 5.13. The figure shows that at lower reisolsitthe
reduced resolution simply averages out any underlyingasigresent with averaging.
The highest resolution plotted is on the limit of accuracggasted numerically, and it
can be seen that this data predominantly shows signal,lppsgith small amounts of
noise present. This shows that very small grid resoluti@msle used with Chilbolton
data as expected since thgy is very accurate. However, it would be interesting to see

the result when noise is added to the data to simulate antopehbradar. To do this
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grid 4096 points grid 1024 points grid 256 points

3 3.5 4 4.5 5 55 6

grid 64 points grid 4 points

64

48 48 ..::==

32 320 &

16 16

16 32 48 64 16 32 48 64 16 32 48 64

Figure5.13 Colour plots showing thé&/,, calculated from grid of various sizes. The data used wasitake
with the accurate CAMRa radar, where each pixel has rangeéOof and ha$).28 ° in azimuth at a range
of 50 km (so pixels are near square). The grid scales are [tople®) km, [top centre~ 10 km, [top
right] ~ 5km, [lower left]~ 2.5 km, [lower centref~ 1.2 km, [lower right]~ 0.6 km.

Gaussian noise df.5 dB is added to the&/pr data of figure 5.13. The procedure is then
repeated to yield figure 5.14. This figure shows similar vatog¢hat without noise for the
top plots and lower left. However as would be expected, theeno Zpr has generated
large noise levels in estimated, when4 points are used and is still noisy Bt points.
This shows that to achieve good accuracy, but to avoid urssacg smearing of the data,
with a0.5 dB Zpg error one must estimat€,, over a grid size of 64 points. It is worth

noting that the area this many points covers would be depemateradar resolution.
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grid 4096 points grid 1024 points grid 256 points

3 35 4 4.5 5 55 6

grid 64 points
64 ‘

48

32

16

16 32 48 64 16 32 48 64

Figure5.14 Colour plots showing thé&/,, calculated from grid of various sizes. The data used wasitake
with the accurate CAMRa radar but width dB Gaussian noise addedig g, where each pixel has range
0f 300 m and ha$).28 ° in azimuth at a range &6 km (so pixels are near square). The grid scales are [top
left] ~ 20 km, [top centrel~ 10 km, [top right]~ 5km, [lower left] ~ 2.5 km, [lower centref 1.2 km,
[lower right] ~ 0.6 km.

5.6.2.2 |ITERATING TO FIND DROP CONCENTRATION

Section 5.5.2 and figure 5.10 described the theory behimda&tsg /V,, but not how this

is achieved algorithmicallylV,, is estimated iteratively, starting with wide bounds on the
possible values olV,,. These are reduced until the bé&t is achieved. At each stage of
the iteration the bounds are evenly divided intoralues ofl’, whereT is a value related

to IV, via the equation:

Ny = 8000 (10(T’113'67>) : (5.22)

the first and lasi” corresponding to the maximum and minimuvy (7" is used for speed

of the algorithm, but is essentially a scaling/gf,). For each value the theoretical curve
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of constantV,, is calculated, using the polynomial:

dBZ = —0.472 (log Zpr)" 4 4.65 (log Zpr)* — 17.79 (log Zpgr)” +39.81 (log Zpg ) + T,
(5.23)
applicable at S-band (the effect @fis a displacement only in th& direction), so as
to calculate the root mean square error in g, direction. The minimum root mean
square is found and maximum and minimum points are set todlues of/V,, either side

of that with lowest least square; see figure 5.15. The sanmmepsads repeated untN,,

1.8

RMS error (dB)
o
S

o
o
T

0.4

5

100000 1e+06  le+07
W

o'fOO 1000 10000 N

Figure5.15 The curve showing the method of estimating the optitdal This case is the first iteration
showing the9 trial points. The best of the nine & so the algorithm is reset with minimum &tand

maximum ab.

is found to a suitable accuracy. The whole method is destiibehe flowchart of figure
5.16. For optimal speetivalues ofl’ are chosen per iteration (this number performs the

least calculations of RMS error to achieve required accura@y, V,, or a).

5.6.3 REJECTION

It is important to know whether the output from the integdat® Zpr technique was

reliable for each point and the causes of any unreliabiktynumber of problems will
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Figure5.16 Flowchart of the integrated/Zpr technique.
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lead to an unreliable result; most importantly will be a latldata points confirmed as
from rain. However a rejected result may be able to indidaecause of the failure and
hence suggest other methods for rainfall calculation (fistance areas of attenuation
would be suitable for the ZPHI technique of Testidal, 2000). The rejections and

possible responses are shown in table 5.1.

No rain areas with no signal No rainfall calculation is needed
Clutter > 50% clutter/anaprop | A correction scheme should be applied
Bright band | Area in the melting snow VPR correction
Light rain Z < 25dBZ Use defaultZ- R method.
Attenuated | Whereg¢pp is significant Apply the ZPHI technique
Not enough data < 25 good pixels Use a standard method.

Table5.1 The options for rejection of the result of the ZPHI technigtie causes of the rejections and

possible responses.

It is important to recognise what options can be taken fromjected result. Areas
without rain need to be examined to determine whether this egaised by no precipi-
tation, or data rejected as clutter or above the bright-bandxample. In areas of light
rain the Zpr signal will be too small for reliable use, so a more basitormulation is
needed. Where the technique identifies that the signal héereaiffrom attenuation, a

phase shift should have occurred. In this case the altgenaethods are used.

5.6.4 UseE OVER SCANS

When run, the technique returns valuesi@nd also returns a rejection number, indicat-
ing whether the data was rejected and the reason if it was. Whrerepeatedly over a
PPI scan, a plot as in figure 5.17 can be made showing the cltangsalculated rainfall

rates and rejections.
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Figure5.17 The final output from running the Integrat&dZnr/ Technique witth km resolution from
a PPI. The top-left shows, top-right R calculated from the technique, with areas rejected blamked

The bottom panels show rejection and the reasoning in twis.plo

5.7 RETURNING b VARIATION

As was explained in section 5.4.4 has been set as constant for the calculation,of
but naturallyb may vary. However there is often too small a dynamic rangeatd tb
adequately measuberesulting in undesirable unphysicadlespite the calculated rainfall
rates being reasonable. It is possible to allovariation into the optimised technique, as
changingb changes thév,, to D, relationship and hence th&/Zpr curve, although the
effect ofa remains only a change i (no Zpr change), so the bestcan be calculated
for any b. To determineb, the best: is calculated for several reasonable value$,of

noting the RMS residual of each optimal The optimal relation is then the andb
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combination with lowest RMS residual, selecting the optimdilsignificantly different
from 1.5. Some examples of this are shown in figure 5.18.

@b=15 (b)b=19

=
~
N

xx % x

RRRRXRRRXRR

RRERRKRR XX
XX % XX XXX

=
HER K RRARRXRR AR

X RAARHRRXNRXKRRR

%X X X X
XORARARKKK
® o

15

Figure 5.18 Examples of the optimised selectiontof The black crosses show the data, pink circles
show banded for ease of comparison to the lines (note these are not ustérkla@lgorithm and are purely
a visual aid). The coloured lines show the best fit for the eespe value ob, blueb = 1.5, redb = 1.7

and greerb = 1.9.

5.8 SUMMARY

This chapter has examined the potential of usihgnd Zpr over an area to estimate

the rainfall rates, hence utilising the signal availablnfrZpr, but not greatly suffer-

Page 106




Chapter 5: The Integrated Reflectivity/Differential Reflectivity TecheigMethod

ing from the high noise levels in its measurement. The chagéeted with a return to
the normalised gamma distribution of raindrops, where & alaown that, assuminy,
remains constant the rainfall is calculated usifig= aR'°, wherea is inversely pro-
portional to the square root of drop concentration. Thismsehat if the data within the
chosen area can be used to estimgigassuming: remains constant), the valueo€tan
be estimated for use in calculating rainfall rates. When #ie does not have constant
N, but N, is related taD,, the exponent of equation 5.2 deviates frofh When con-
centration increases with median drop diameter the valuei®fowered (as suggested
for convective rain), and when concentration decreasesogssizes increase,is raised

(as often used for stratiform rain).

It is important to remove data points that come from non-taigets as the data will
have unexpected and potentially extreme values of either Zpr (depending on what
the scattering targets are). The problems of various niontaagets were discussed in
terms of the effect or¥ and Zpr. The removal of these non-rain points is considered,
most being removed by a stri€fr threshold of—20 dB. Hail can be removed by iden-

tification of regions whereZ, Zpr and¢pp lose their consistency.

Given that the aim is to find (or N,, which is related ta) from the data of the chosen
area, a number of possibilities are considered. The firdiodetxamined was that where
the rainfall rate is estimated from each point individuaihen the fit oflog R againstZ
is used to estimate andb. Unfortunately, there are several problems, such as the poo
correlation of the plot making the fit difficult to justify arnlde result is biased towatd=
1. Toremove the bias, a fit betwegrandZ ., /. (the reflectivity that would correspond
to 1 mm/hr rainfall given the observedpzr) is considered. Fits it¥ and Z;,,,,, /1. Space
are shown to be related toandb and do not have the bias, but retain problems from
the low correlation. Both of these methods had issues whgpis negative, as the
unphysicalZpr cannot be used a8, /n Cannot be calculated. However the negative

values form part of the distribution ¢fpg, so their removal will introduce a bias.

To remove the bias caused by negatively obse¥gg, the data may be “banded”,

creating averaged data from the true underlying data, \eitliced noise itZpr, which
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is hence less likely to be negative and, if it is, will remowetbends of theZpi spread.

This data that results from banding is used as true data ifZthe . method. This

method suffers when the variation inis large: any band will contain a spread of

values; the larger the spread the larger the variation itrtteeZpr (the value before the
sampling noise).

All of these methods generate unphysical variations gndb when the dynamic
range of data is small (although retain good estimates ofaif). It would be preferable
for the values to be more meaningful before rainfall caltata The large noise i&¥pr
means the signal corresponding to the second mode of \ari@jiis often too small to
detect. It is therefore assumed tlhakmains constant dt5, the same assumption as in
the ZPHI technique of Testuet al. (2000) but the assumption in this work is less strict
as the distances with no variation are smaller. This assomf#ads to the method of
an optimisedZ/ Zpy, fit. Given a constandv,, (and assuming remains constant), values
of Z and corresponding/pr can be calculated. The optimisedZpy fit will be a line
of constantV,,, which has the minimal deviation from the data. The methdehduced
the effective drop concentratiotN,,*, which is derived (it is effective ag changes are
disguised within). N * is then utilised to estimat&. The algorithm was described
and amount of data required for suitable accuracy is coraiddRejection of unreliable
results is important, so a rejection method is considerddgchwnot only indicates an

unreliable result, but indicates possible other methodsdtrulating rainfall.

The chapter concludes with a brief discussion of the possdtlurn to allowing to
vary, but within the optimised/Zpr method, adjusting when the evidence for the change
is available. The following chapter will discuss use of thyimisedZ/Zpr method and

the results it yields.
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CHAPTER 6:
THE INTEGRATED

REFLECTIVITY/DIFFERENTIAL
REFLECTIVITY TECHNIQUE:

RESULTS

6.1 EXAMPLESAND DEMONSTRATIONS

In this chapter the use of the integratéZpr technique will be studied via a number of

examples of its use.

6.1.1 EXAMPLE 1: FULL RUN-THROUGH

First a region of data of siz&5 km? is selected; for this example tieand Zpr data is
shown in figure 6.1. The first step will be to check for non-r@rgets in this area with

an Lpg threshold of—20 dB. For this example all points pass and are accepted as rain.

Now this data will be used to find the optimal drop concentratiia iteration. For
each value ofV,, to be tested th&Z and Zpr values expected are calculated. Each point
Is then considered to be measured correctly jtnence the residuals from our calculated
line and each point are calculated by the difference in thetsaZpr and the expected
Zpr forthatZ. The mean square residual is calculated for comparisonodliter chosen

N, values.

The steps of the iteration are shown in table 6.1 closing oa t@lue of N, =

10000 mm~! m=3. The Z/Zpg line for this drop concentration is plotted over the data
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(a) dBZ (b) Zpr (dB)

Distance North (km)
Distance North (km)

-9 -8 -7 -6 -5 -9 -8 -7 -6
Distance West (km) Distance West (km)

Figure6.1 A 5x5 km box of (a) reflectivity (dB) and (b) differential reflectivity4pr) data . This box

is located in an area of vigorous frontal rain approxima3glkm from the antenna.

points in figure 6.2. ThisV,, is converted ta: with equation 5.19 to give a value of
a = 123.5 when assuming. = 5 (or 195 if © = 0). This value is then used on eagh

value used within the chosen region for rainfall rates.
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Figure6.2 The plot of Zpr and dBZ of the data and the line of best fit.
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step 1
T 0 5 10 15 20 2 30 35 40
Ny, (M3 mm™t) | 172 545 1722 5446 17222 54462 172220 544620 172220
a 941 528 297 167 94 53 30 17 9.4
RMS 18026 11541  0.6595 03046 02822 04993 07030  0.8778  1.0845
step 2
T 1500 1625 1750 1875  20.00 2125 2250 2375 2500
Ny, (M3 mm™t) | sa46 7263 9685 12015 17222 22966 30626 ~ 40840 54463
a 167 145 125 109 94 81 71 61 53
RMS 03046 02551 02349 02465 02822 03314 03864 04431  0.4993
step 3
T 16.2500 165625 16.8750 171875 17.5000 17.8125 18.1250 18.4375  18.750(
Ny, (M3 mm~) | 7263 7804 8387 9012 9685 10407 11184 12018 12915
a 145 140 135 130 125 121 117 113 109
RMS 02551 02471 02410 02369 02349 02350 02370 02409  0.2465
step 4
T 17.1875 17.2656 17.3438 17.4219 17.500075781 17.6562 17.7344 17.8125
Ny (M3 mm~) | 9012 9176 9342 9512 9685 9861 10039 10222 10407
a 130 129 128 127 125 124 123 122 121
RMS 02369 02362 02357 02352 02349 0234802347 02348  0.2350
step 5
T 17.5781 17.5977 17.6172 17.6367 17.6562 17.6758 17.6953 17.7148 17.7344
N (m~3 mm1) 9861 9905 9950 9995 10040 10086 10131 10177 10222
a 1243 1240 1237 1235 1232 1229 1226 1224 1221
RMS 02348 02347 02347 02347 02347 02347 02347 02348  0.2348
Table 6.1 The iteration steps of example 1. Red colours indicate theémuim RMS at this iteration,

leading to the blue colours showing the bounds of the nedtiten.
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6.1.2 EXAMPLE 2: VARIATIONSWITHIN EVENTS

For this example a single scan will be examined. The chosemisdrom14:20 GMT on
the 9" Oct. 2000, taken from the Chilbolton radar. A selection of areas of saian will
be examined to show the differences that result. The reflgctf this scan is shown
in figure 6.3, also showing some important phenomenon effadhe data. The general
weather conditions seen are a cold front approaching Chilbd&om the west, preceded

by widespread moderate rainfall. Behind the front are somekwenvective showers.

75

501

25

100 _75 50 25 O 256 50 75 100

Figure 6.3  False colour plot showing reflectivity of a single PPI pemfed on9'" Oct. 2000. The
scale on x and y axes are in kilometres. The image is annoégddllows: B shows the location of
the bright band on this scan; O shows a sector which contaimsneer of partially obscured beams,
spotted by reduced reflectivity (for calculating, these rays have the data removed); F shows a cold front

approaching Chilbolton.

Firstly, data from the front will be examined. Data fronba< 5 km area centred
about an area of the front is used and plotted in figure 6.4s dhta has = 75 and
N, = 28000 mm—3 mm*.

The next region to consider is the rain preceding the frogtiré 6.5 shows an exam-

ple of this data. This example shows= 133 and N,, = 8600 mm~2 mm~!. This means
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Figure 6.4 Plot of Z andZpg for an area of rainfall based within the front. Also plotteé ¢he fitted

line of constant 4"s (henceN,,s) and ofa = 300.

that there are more drops in the frontal rain than the raingrecedes it.
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Figure6.5 Plotof Z andZpg for an area of rainfall to the east of Chilbolton. Also plottare the fitted

line of constant 4"s (henceN,,s) and ofa = 300.
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Figures 6.6 and 6.7 show the valuesaofnd effective drop concentration over the

scan.

60|

- v 63000
|
40 e ] 40000
.

2 . 25000
» ‘ 16000

0 ]
" < q ™ 10000
o0 i '. ] 6300
’ 4000

_40 4 4
- > 2500
60 ‘ ‘ u .‘ ‘ B 1600

-60 -40 -20 0 20 40 60

Figure6.6 A false colour plot showing the valuesigure 6.7 A false colour plot showing the values

of a over the scan shown in figure 6.3. of Ny, over the scan shown in figure 6.3.

6.1.3 EXAMPLE 3: TIME VARIATIONS

In this example the time variations that are detected byritegrated”?/Zpr technique

are examined. The data for this example was taken duringgttie &ternoon of th&1°*

of April, 2004. During the time to be examined in this examible radar performed a
scanning procedure wheref sector was scanned back and forth, with RHIs performed
occasionally to confirm the location of the bright band. Timeans that9 scans are
performed within ther2 minutes that are examined. The weather during the scanning
procedure was dominated by widespread moderate rairdatl & passing frontal system.
During the time this example considers the rain shows vétig Wariation. This can be
seen in figure 6.8. This lack of variation in reflectivity segts that there is little variation

within character of the rainfall.

To examine the use of the integratétl/i technique over this period the data chosen
to examine for each scan will be from a square of $ize 5 km centred on the point
selected for figure 6.8. This yields the variations ithroughout the period, as plotted in

figure 6.9.
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Figure 6.8 A plot showing how the reflectivity changes over an hour. Tétféectivity is recorded at a

single point.
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Figure 6.9 A plot of the variation ofu over an hour while scanning4° sector repeatedly. The plot

shows crosses for thecalculated from each scan.

Given the value ofi and the reflectivity of the point, the rainfall rate variatiover
the period can be calculated, as shown in figure 6.10. Thiwshioat the rain rate is

under-estimated throughout the period by both of the detretiesl standard algorithms.

6.1.4 FURTHER EXAMPLES

A number of other examples are shown in table 6.2. This tdievs the date and rain
type that the data was taken from, a plota@#»r space showing the region’s data and the
best fit line (note these plots have identical axis sizirtgg,resultant drop concentration

anda for each region.
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Figure 6.10 A plot of the variation of rainfall rate over an hour while sacéng a45° sector repeatedly.
The plot shows in black, crosses for tRecalculated using the integratédZpr technique on each scan.
The crosses in red shows the rainfall rate calculated fromaditional Z — R, Z = 300R'°; the blue

shows the rainfall rate calculated form the UK Met Office stamdlZ — R, Z = 200R 'S.

6.2 THE PHYSICAL BASISOF RESULTS

This section will examine how results from the integrat8dpr technique are explained

from the physical processes that underlie the observations

6.2.1 VARIATIONS OF DROP CONCENTRATION WITH Z

It has been shown previously that, assumimgmains constant, changes in drop concen-
tration (V,,) correspond to changes in reflectivity, but if$r. In Marshall and Palmer

(1948) rain,N,, is effectively constant.

It is quite possible that the integratedZpr technique will give results which show
a relationship betwee#f and N,,. Figure 6.11 shows two examples of the comparison.
The line plotted showing the average, which in plot (a) destiates a shallow positive
gradient, suggesting that,, increases with reflectivity. This pattern is analogous with
lower value of b" (high NV,, suggests low, which in turn implies high rainfall rates, the
same applies in reverse). This is likely to change from eteertent. It has been shown
previously that thig alteration is caused by, changing withD,. Plot (b) shows the

gradient at low reflectivity to be negative, becoming pwesitit 35 dBZ.
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Case Plot Ny (M2 mm1t) | «a

Frontal rain i
¥ 6700 151

18/08/2000 N

s

Heavy Storm |
¥ 23000 81

15/09/2000 N

s

Stratiformrain | ~
%4: 4060 194

09/10/2000 N

s

Cold Front
13900 105

09/10/2000 N

s

Showers N
N 4910 176

19/03/2004 N

85

Showers N
O 13400 107

19/03/2004

Table6.2 A table of examples of the integratédZpr technique on different rains.
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(b)

35 40 45 50 55 60 35 40 45 50
dBz dBz

Figure 6.11 A plot of the drop concentration\j,,) against mean reflectivity frort6 point Chilbolton
boxes. Also plotted is a line showing how the mean varies foamds ofZ. This data was derived from
data taken by CAMRa radar, for (a) @8 August2000, for (b) the data is fromd October2000.

6.2.2 THE DIFFERENCES BETWEEN CONVECTIVE AND STRATI-

FORM RAIN

The physical processes involved when forming the drop sigeiltlitions of rain are
dependent on the method of formation of the rain and the tiondithat lead to them. In
section 1.1 it was mentioned that the principal rain “typetates theZ — R relationship
used when polarisation diversity information is not avalga This is seen in the use of
Z = 300R** in the USA, while in BritainZ = 200R'° is used. This is because in the
UK stratiform rain is dominant, whereas in the USA convestigin is more important,
this change has been known for many years, e.g. Battan (19T®) differentZ — R
relations show the pattern of changeaf with D, in the differentb, but also different
drop concentrations are shown in tte Stratiform rain tends to leave the cloud in the
form of snow, which falls and melts once it passesth€ isotherm. This melting snow
may explain theZ — R relation in stratiform conditions: as the snow flakes gejdar
(and hence become larger raindrops upon melting) colksi@tome more frequent, so
accretion and aggregation occur at faster rates. This widmthat the drop concentration
becomes lower as the drops grow. This type of situation wasidered in section 5.1.1,

where the effect ofV,, falling as1/D, was shown to result ih close to thel.6 widely
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used in Europe. In convective precipitation the snow phas®t present, so the large
flakes are not a factor in the development of the rain benéationvection the is lower.
This would be explained by a relation such/és rising asD,?, which in section 5.1.1
was shown to give rise tolaof 1.34. This would mean that the drops are bigger as they

become more numerous.

To examine how different types of rain are picked up by thegrated”/Zpr tech-
nique first a scan will be considered. This will be the samé&astan of example 6.1.2.
For ease of understanding thecalculated for this scan will be shown, zoomed into the
front, with contours of reflectivity (figure 6.12). The noisereflectivity means that con-
tours of Z without any additional averaging are noisy, so for the cordpreflectivity is
averaged with its neighbouring points (note this averagranly used for the contours).
Calculation using the integrateédf Zpr technique used unaveraged data. The solid con-
tours show the location of the heavier rain falling from thant. It can be seen that the
a calculated in the heavy rain is generally lower than theaurding areas. During the
approach of the front, the value afis higher than average. To demonstrate this more
clearly a plot showing how andZ change along a ray is shown in figure 6.13. This ray
is chosen to cross the front. The maximum rain from the fracues at a range of ap-
proximately45 km, which coincides with the low. This suggests in the frontal rain, as
the rainfall rate increases, the drop concentration rsgslar to the convective example
above whereV,,  D2. The more consistent stratiform rain to the east of Chilbolto
shows less variation im as well asZ. The heavier rain in this region-(35 dBZ) shows
a possible increase i, which suggests higher rainfall rates have lower drop conce
trations, and therefore larger drop sizes. This followsdtggestion of a relationship
similar to Ny, o< 1/D.,.

To examine the relationships of hanchanges witt¥ they are plotted in figure 6.14.
The previous paragraph suggested the two rain “types” hifereint characteristics so
these are differentiated in the plot. First consider thatibrain (the red circles). This is
positively correlated, with coefficiefit41. This is from a total 03 points, and using a

student-t test this is significant at th&% level, confirming the suggested relationship that
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Figure 6.12 Plot of thea from a scan. Overlaid are contours of reflectivity (this isrmaged to make
contours less noisy and hence more meaningful). The caqsmer for: solid linel0 dBZ, dashed line

35 dBZ and dotted lin€0 dBZ. This shows where the rain and heavy rain is occurring.
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Figure6.13 Plot ofa and reflectivity along a ray through the front from figure 6.R2flectivity is shown
in red (axis to the left), with the black showiagaxis to the right).

effective drop concentration increases with rainfall r&t#hen considering the stratiform
rain (blue crosses) the expected correlation is not seeom Bb4 points available a

correlation of—0.042 is obtained, this is not significant even at % level.

Finally this will be examined in terms of drop size distriloumt parameters)V,, and

D,, which will give the physical backing to the results obtaindhe results are shown
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Figure6.14 Plot of N}, against the mea# of the box for the data in figure 6.13. For this figure the data
has been separated by azimuth into rain from the front (r&) &nd rain from the preceding stratiform

rain (blue *x’s).

in figure 6.15. N has been calculated via the integrate/pr technique, remember
that this isN}, not N, as changes ip occur are not detected and appear through the
method simply as a change ;. The calculation ofD, is from the equation of Bringi
and Chandrasekar (2001),

Dy = 1.52973:%7, (6.1)

appropriate for S-band. Th&pr used was the averadér of box, to limit the effect
of noise inZpgr. Here it is clear that for this rain the drop concentrationrdases with

increasing drop size.
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Figure6.15 Plot of N}, againstD,, (calculated fron¥pr) of the box for the data in figure 6.13. For this
figure the data has been separated by azimuth into rain frerfndht (red ‘o’s) and rain from the preceding

stratiform rain (blue ‘x’s).

6.3 COMPARISON WITH RAIN GAUGES

6.3.1 GAUGE COMPARISON PROBLEMS

Rain gauges suffer from a number of problems that cause enrtine measured rainfall
rates. These work alongside problems with the comparisoadafr derived rainfall rates

with the measurement of a rain gauge.

Possibly the biggest problem comes from rain-gauges miegsain falling through
a small area~{ 0.01 m?), whereas the radar measures the integrated rain overe larg
volume ( 4000000 m?). The very small scales of variation (both temporal andiafat

in rain mean that this comparison is not perfect.

Another problem comes from the positions of the measuresndrite rain-gauge is

at ground level, whereas the radar sampling volume is alb@/eain-gauge by 250 m.
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This means that the rain measured by the radar still haslttoftie rain-gauge leading

to several possibilities and inevitabilities.

A raindrop that falls into the rain-gauge must have passeditih the radar sampling

volume previously, meaning that the rain-gauge lags betheadadar.

If a horizontal wind is blowing the raindrops will drift, wblh means that the drops
falling into the rain-gauge will not necessarily have pasge radar sampling volume

directly over the gauge, but have been blown into the gauare dther radar pixels.

The raindrops may undergo a change during the fall from radame to the rain-
gauge. Mostly this will be evaporation of the drops, redgchre rain intensity. However
the radar beam may “over-shoot” the rain, and measure réamébthe rain falls through
saturated air, hence condensing to the drops and increttniginfall intensity (this
effect is common in mountainous areas where “seeder-féedier is commonplace).
Figure 6.16 shows this effect, on the left the rain falls tiyio a region of saturated air,
so the drops grow, to the right no such saturated region isweriered, hence the drops

evaporate.

Falling through saturated air ~ Falling through dry air

Figure6.16 Schematic diagram of rainfall spectra changing as the dapsThe grey shaded area is a

cloud where the air is saturated.

These various effects all act to make radar rain-gauge cosops especially diffi-

cult.
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6.3.2 CASE STuUDY - 21 APRIL, 2004

To compare the use of the integratéd/r technique with the data recorded by rain-
gauges a single case will first be examined. The case exaisitiet of the day described

in section 6.1.3, which involved moderate rainfall for sedvéours. During this time the
CAMRa radar was performing a scan routine which involved PBhs®ver a sector to
the west of Chilbolton. In this regiohrain gauges operated by the Environment Agency
are located. These raingauges are of tipping bucket typé, wicket size of).2 mm,
recording the time of each tip to an accuracylo$econd orl minute, depending on

which gauge is being considered. These gauges are desuritadide 6.3.

Location Name Range from Chilboltor} Time Resolution
Easterton 40 km 1 minute
Harestock 26 km 1 second
Tidworth 18 km 1 second
Tisbury 44 km 1 second
Winterbourne Stoke 32 km 1 second

Table6.3 Environment Agency raingauges to the west of Chilbolton.

Having rain gauge tip times is powerful and allows for gredttail of rainfall rates
than is available from accumulations that are frequentlysaered. However there re-
mains a lack of sampling even at light rainfall rates: a rdté2omm/hr corresponds to
60 bucket tips per hour, which is a tip once per minute.3&hm/hr the bucket tips at a
rate of justl5 per hour, or a tip every minutes. This demonstrates an important factor in
measurement of rain via raingauges: higher rainfall rateslgetter temporal resolution.
The time resolution available for the moderate rainfaksatonsidered in this thesis are
samples once every-4 minutes. It should also be noted that the raingauge recbsds t
time only when &.2 mm bucket is filled with rain. The rain distribution to fill thhbucket
is not in any way recorded, so a tip simply only supplies theetat which &.2 mm ac-
cumulation has built up. This may take one hour to happereamy to record a rate of

0.2 mm/hr, although this may occur from a periods6fminutes with no rain followed by
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one minute ofl2 mm/hr rainfall. Hence it is important to remember the tigpucket

raingauge measures the rainfall accumulations, not thantemneous rainfall rates.

Initially longer accumulations will be considered. To adate the accumulations
from the radar data the derived rate from each scan is caeside fall for the time
centred on the scan. In practice the rain will change fronf'sheapshot” being viewed
from the radar. However the scans repeat frequentlys(with 5 minute breaks) for
this case study so the variation between scans will be ss@krror incorporated will
be small (this effect is examined in detail in chapter 4). P4 scans are taken at an
elevation of0.7°, which is the lowest possible available elevation to avadrh blocking

within the scanned sector.

Figure 6.17 shows the accumulation at the Tisbury gauges géwuge is at a range
of 44 km west-south-west of the radar, and given the scan elevafi0.7° this implies
the radar beam is centréd5 m above the raingauge. This means that from falling from
the centre of the beam to landing in the gauge takes a drdp0 s. This lag will be

corrected for, but will retain a small error.

This plot shows accumulations calculated by several diffemethods suggested in
chapters 2 and 5. The plots have been shown for two optionstfie data. Plot (a) shows
the accumulations with unaltered data from the CAMRa radat;(p)) is calculated after
adding extra noise to th&pr data to simulate data that would be available from an
operational radar. In both cases the integratédpr technique is operated onsakm
grid. The most important observations from plots (a) andafe)that the point-by-point
7/ and Zpr method suffers from the podfpr data, shown by the accumulation being
much lower than the other methods and raingauge predicttrabe from point by point
Z andZpg is also noisier; the use of accumulations has the effectsgfuiling this. It is
clear from the figures that the integratéZr technique shows very little difference in
the results (hence) with or without addedZpr error, demonstrating that the technique

can handle the noise well.

When considering the total accumulations predicted by thewamethods the gauge

shows a total 0§.4 mm, the simpleZ — R estimates this @66 mm, and theZ andZpr
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Figure 6.17  Rainfall accumulation at the Tisbury raingauge. Plot (®gsudata as available from the
CAMRa radar, so has very godthyr. Plot (b) gives the same result, but calculated having agzd the
noise onZpg to 0.5 dB, so at an operational level. The lines are as follows:€dldmack circles show the
rain gauge tips (note that these are connected by a dottekl lte this will however not be how the rain
proceeds between tips). The blue line shows the accumnlatéxlicted by a simplé—R of Z = 200R*5.
The green line shows the accumulation predicted via the pgipointZ andZpy using the equation 2.14
described in section 2.4.2. Finally the integratet¥nr technique is shown in red. This is shown with
two lines, for differentu possibilities. The upper line is accumulation assuming 5, the lower for the

assumption that = 0.

method estimates just4 mm. The integrated technique assumjng- 0 suggests that

the accumulation i.6 mm; wheng = 5 this is9.7 mm.

Figure 6.18 shows a similar plot to figure 6.17, only for thesliion of the Easterton
rain gauge. This gauge lig® km to the west-north-west of Chilbolton, which3g km
north of Tisbury. For this gauge the radar beam is centt®dm above the gauge. A
similar pattern is shown with this gauge, the addition of Ziag noise creating an under-
estimate in the Bringi and Chandrasekar (2001) method of #engine. Also the noise
addition has very little effect on the results of the inteégdaZ/ Zpr technique , although

this gauge shows a rain trace similar to the- 0 line.

Comparing accumulations has the effect of averaging out engyse the longer the
period of accumulation the greater the averaging effecis means that shorter accu-
mulations (averaging periods) are a more strict test of amfall estimation algorithm.

To that end the accumulations over smaller times will be id@med. The problem here
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Figure 6.18 Rainfall accumulation at the Easterton raingauge. Plotiggs data as available from the
CAMRa radar, so has very godthg. Plot (b) give the same result, but calculated having irszdahe
noise onZpg to 0.5 dB, so at an operational level. The lines are as follows:dldmack circles show the
raingauge tips (note that these are connected by a dottekl lbie this will however not be how the rain
proceeds between tips). The blue line shows the accumnlatéxlicted by a simplé—R of Z = 200R*5.
The green line shows the accumulation predicted via the pgipointZ andZpy using the equation 2.14
described in section 2.4.2. Finally the integratet¥nr technique is shown in red. This is shown with
two lines, for differentu possibilities. The upper line is accumulation assuming 5, the lower for the

assumption that = 0.

is that the raingauge measures accumulation, so this lmoits small a period can be
used for accumulation. Another problem that is brought irmbonsidering short accu-
mulation period is the uncertainty of time lag between tldarand gauge. Some short
accumulations are shown in figure 6.19. The first plot (a) shaweriod ot minutes
when the gauge detediss mm (three tips); a rate af mm/hr. During this period nine
scans were performed. There is a small discrepancy betvireestdrt points of radar
(from first scan) and the gauge (first [starting] tip), the g@auleing slightly after the
radar. The time to reacth6 mm accumulation is shown in table 6.4. In this example
the integrated?/Zpr technique shows excellent performance. The second plogurfefi
6.19, (b), shows a similar plot, this time with just two tigs4( mm) occurring within
6.5 minutes. This time the initial tip is slightly before the fisscan. On this occasion the
traditional Z — R overestimates the rainfall occurring. However the poiseni/Zpr

method performs well, but it must be remembered that theenoigpr will limit the
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Figure 6.19 Examination of small accumulations, (a) over the Tisburugga(b) over the Tidworth

gauge. The colours are as in figure 6.17. This plot shows ddstes of3 and10 mm/hr rainfall rates.

Method | Time t00.6 mm (mins)
Gauge 6.1
Int. Z/Zpr 6.0 — 6.6
PointwiseZ/Zpr 7.5
Z = 200R" 6.9

Table6.4 Time to accumulaté.6 mm for the lines of figure 6.19.

usefulness of this method.

6.4 MODELLED RAINFALL

False radar data can be modelled, given the valuesarfdb. To do this the expected
“true” values of Z and Zpg are calculated.”Z values can then be defined and random
Gaussian noise aofpg with standard deviation as defined, depending on the data typ
being modelled. This allows the technique to be tested fosistency, and can be used
to examine the accuracy of the method.

By settinga to be300, b to 1.5 (with u = 5), the integrated’/Zpr technique will be
examined. To model data from an operational radar, noidebeibdded: & noise of

0.7 dB, with Zpg having0.5 dB noise. The values df to be used are calculated based
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on a random mean (with variations fro30 dBZ to 45 dBZ) with similarly randomly
generated standard deviation ¢odiBZ to 10 dBZ). With this setup the integratet! Zpr
technique will be tested, compared to the “truth” which i®kmn from the setup. The
integrated?/Zpr technique estimates rain, the mean bdit@ 16% of true rainfall. This
shows there is no significant bias in the results, with a stehdleviation 0f3.97%,

from 10000 runs. The histogram is shown in figure 6.20. The accuracypemgent on

1200
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Figure 6.20  Histogram of results of integrated/Zpr technique from synthetic data to emulate an

operational radar.

the mean reflectivity: higher reflectivity areas providetéetainfall rate estimates than
lower reflectivities. This is clear from the standard deweiavariations across reflectivity:
where only a reflectivity oB0-32 dBZ is used the standard deviation in rainfall error is
5.0% (from 1313 runs); for reflectivity of43-45 dBZ that standard deviation3s0% (from
1325 runs). The cause of this is the shape of lines of constantAt lower reflectivities,
where the drops are more spherical, a line of constgnbas higher gradient than when
the reflectivity increases. The higher gradient means tichaage inV,, has less effect

in the Zpr position of the line.

The accuracy of the technique is of course limited by the rmyuof the data. Since
the principal noise (in relation to techniques to estimatefall) in radar data is likely to
be in Zpr the noise in its measurement is likely the determining factdahe accuracy
of derivedN,,, a andR. It has been shown that the technique described can estiheate

nature of the underlying rainfall despite large errors mividual data points. To examine
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the accuracy of the technique, Gaussian noise will be adufsdse data generated from

known Z — R relationship (see figure 6.21). Note that as would be exgettte error

14

12

10t

std(a)

OO 0.2 0.4 0.6 0.8 1

Zr hoise (dB)

Figure6.21 Plot showing the error in derived(from standard deviation) whefby is given a Gaussian
noise with standard deviation as shown on the horizontd. aXhe “true” values are far = 300 and
b = 1.5. The reflectivities used in the estimation are from an areaddr data o5 x 5 km of Chilbolton

data, totallingb00 points. The statistics are generated frodn0 runs.

Is larger where the noise iipyr is high. These errors in are translated into error in
derived rainfall rates, but the errors remain small. Evethatlevel ofl dB noise with
the 500 points used for characterisation, rainfall rates have redstal deviation error of
just 3%.

The 500 points used is a larger number than is needed fo2H#i€ accuracy desired
(this was seen in section 5.6.2.1). To investigate the el@pendence on the number of
points being used for characterising the data, one thoussathples of calculation are
considered from number of points ranging from one (effetyha gate-by-gate method)
to 512 points. The errors are expected to follow equation 5.20hsoetror is halved
when the number of points is squared. This is demonstratédjune 6.22, showing
the expected linear shape, passing through the origin &reoo when infinite points are

used). It can be seen that the error does halve when compmgdatgulation from four
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Figure6.22 Plot showing the error in derivell (from standard deviation when calculated using reflec-
tivity of 39.8 dB [true R = 10 mm/hr]). The scale is dbg R (hence factor errors), whefipr is given

a Gaussian noise with standard deviatiof) 6fdB. The “true” values are far = 300 andb = 1.5. The
reflectivities used in the estimation are from an area ofrrddta ofs x 5 km of Chilbolton data; the accu-
racy is shown compared to the number of points used for alonl Equation 5.20 describes the expected
relationship between error and number of points, which gme:éﬁ (lower horizontal axis). The number
of points this corresponds to is shown on the upper horitaia. The statistics are generated froad0

runs.

points with one ofi6.

This method does not allow for change in drop size distrdsutithin the considered
area. Although this will likely be small over the areas betogsidered, its effect may be

problematic.

6.5 SUMMARY

This chapter has shown a number of examples of the use of tiraisgd integrated
Z1Zpr technique described in chapter 5 with real radar data. Amel@showing the
use of the algorithm in full detail was shown in example 1Juding a table showing

the iterative approach. Example 2 demonstrated use of tti@ispd integrated’/Zpr
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technique over a complete scan, showing variations in tzkedi drop concentrations.
This example scan was considered further in terms of thestgeainfall occurring

within the scanned rain.

Example 3 showed the temporal variations detected by theniged integrated/Zpr
technique during a period of over one hour of rainfall. Tharaple showed the varia-
tions ina detected, showing the rainfall rates from the optimigédpy fit and simple

Z — R relationships.

The chapter continued to examine the results from the iated”/Zpr technique,
while attempting to explain the results physically. Di#aces between convective and
stratiform rain were examined: increased large drop gr@awthe expense of the smaller
drops in melting snow may cause the higlften found in studies of stratiform rain,
whereas drops become larger, as less of them are presenkackhef melting level for
convective rain means that lotvhas been reported widely, caused by more drops as
they get larger. A scan was examined in terms of the charsiitsrof the rainfall being
measured. A plot ofi andZ showed that the higher reflectivities tend to have lower
for the frontal rain, hence highéY,,. The reverse occurs in the stratiform rain. The scan

is considered to show the relationship betwégrand V,,.

The chapter continues into comparison with rain gauges. @angprainfall derived
from radar with gauge values is fraught with difficulty. Bsa@rise from a number of
possibilities, including differences in the scale of samglregion and changes in the
rain between radar beam and gauge. However, despite th@derms it is shown that the
optimised integrated’/Zpr technique gives good results with the Chilbolton radar data,
even when it is degraded to have the measurement accuratyzofThe comparison is

shown to give good rates even down to very small accumuléitioes.

Finally the chapter examines the integratét/pg technique with modelled data,
where the rainfall rate is “known”. The use of modelled rdlowas large amounts of data
to be simulated, making error statistics possible. Modellata show that the integrated
Z1Zpr technique has no significant bias, with standard deviatioor ef ~ 4% and

the expected lower error at higher rainfall rates causecdbyctrvature of the lines of
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constantV,,.
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CHAPTER 7:
OPERATIONAL INTEGRATED

REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY

/7.1 INTRODUCTION

Previous chapters have shown the potential of dual potastseadar to improve rainfall
estimation over the traditional non-polarisation diversadars (chapter 2). However the
noise that is inherent to the measurement of the polarisgaameters is very large,
especially in the operational environment. This noisethntine use of the phase shift
radar parameter for improved rainfall estimation to be Mainly in very heavy rain.
However, as discussed in chapter 3, the changes in dropeeéra are available in the
7/ and Zpg data, and if this can be exploited, improved rain rates caa taality, even
with the noisy operational radars. Chapter 5 described anigeb that uses thg and
Zpr data within a small area, finding the optimal valuexdind henceV,,), to then be
used inZ = aR'* for rainfall calculation. Chapter 6 showed examples of treafshe
integratedZ/ Zpr technique with the accurate Chilbolton radar. In this chaghie use of
the integrated//ZpR technique in the operational environment (especially @) is
considered. This will include the amendments to the tecleifat are needed because

of the different radar wavelength, higher noise levels aatiliced resolution.

7.1.1 WHATISDIFFERENT IN THE OPERATIONAL ENVIRONMENT?

One of the principal differences between research and tpeah radars is the wave-

length of the radar beam. CAMRa operates at S-bansg (10 cm), which is the wave-
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length of operational radars in the United States, whenedlse UK (as well as Japan
and much of Europe) operational network radars operate a&nd-p ~ 5.6 cm). This

results in changes in the measured variables, affectieg ki constant drop concentra-
tion or rainfall; see figure 7.1. The smaller wavelength atsgans that non-Rayleigh
scattering is more common due to particles of size with singrder of magnitude as the
wavelength. Entering the Mie regime greatly changes thdesoagy characteristics, so

ideally it should be avoided.
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Figure 7.1  Plot showing the lines of constamt,, and1 mm/hr for S-band (solid lines) and C-bands

(dashed lines). Hene = 5 andN,, = 8000 mnT'm~3 have been used.

Another major difference is in the implementation of dualgpisation techniques.
Until recently dual polarisation radars have been soletyrésearch purposes, using an
alternate pulse technique where a horizontally polarisadews transmitted and returns
measured in both polarisations, followed by a pulse of galtpolarisation (Goddard
et al, 1994a). All European operational weather radars to date hsed simultaneous
transmission (‘hybrid’ mode) where the transmitted pulas45° polarisation. Thist5°
transmission method, which was initially proposed in thpgrantroducing the concept

of Zpr (Seliga and Bringi, 1976), is known as the “hybrid basis moa@plained in
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Brunkow et al. (2000). The principal reason for this change is financial a ifetwork

of such dual polarisation radars is to be a financially vigistespect for the future, the
radars’ cost must be kept low. The use of “hybrid” mode med&as the fast rotating
chopping disk, acting as a polariser switch, as used on the RAMdar (Goddarelt al,,
1994a), is not needed (it may result in undue expense or swmeéle unreliability).
This difference means that the linear depolarisation ratig, is not available (although
it may be possible to perform ar.f)r” scan where vertically polarised transmission is
turned off, although the change to this mode would be slowdoamailable pulse to
pulse). Performing ahpr scan would provideZ and Lpg, but notZpi. This scan will
have improved sensitivity iZ, so may be desirable, but will require time within the scan
strategy. The simultaneous transmission also means tteapatation between pulses
for differential terms is not necessary, hence improvirggdbcuracy of the estimates in
Zpr, ¢pp and Kpp. The accuracy of an operational radar will however be wdrae &
research radar. Rapid scan rates are required operatitmalbhieve good coverage at a
good time resolution, which means that dwell times are lod/lance accuracy is limited
by the low number of independent samples taken. Operatiadats are also more likely
to suffer from antenna imperfections resulting in a misrnatidhe vertical and horizontal
polarisations and the added radome will potentially ini@e further error. Mismatched
beams is the effect where the illumination pattern from #dar is not identical for rays
of both polarisations, so if the beams see different volyrties hydrometeors viewed

will be different.

The different implementation of polarisation in the opena&l environment mean
that larger errors than the research counterpart are tofected. Figure 7.3, on page
139, shows the errors ifipr as a function of normalised (with respect to folding ve-
locity) spectral widthg,,,, with copolar correlation coefficienpy,, ., assumed at.97

(reasonable for an operational radar; see later sectioh.¥)3
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7.2 THE THURNHAM RADAR

The first operational dual-polarisation radar in the UK t=dteed in Thurnham, near Maid-

stone, Kent (the south-east of England). The radar (phaptgd in figure 7.2) is to be-

Figure7.2 Photograph of the Thurnham radar, taken from McKay (2006).

come part of the UK radar network and the project is the resfutbllaboration of the

Met Office and Environment Agency. The radar specificatiorggéven in table 7.1.

In section 2.4.3 alternate pulse dual-polarisation radame shown to have a fun-
damental noise it¥pr, caused by the number of independent samples, the copatar co
relation, spectral width of the targets and interpolatiesessary due to the alternating
pulses. In the ‘hybrid mode’ the interpolation is not needschorizontal and vertical
polarisations are sent and received simultaneously, sertloe in Zpr decreases with
spectral width for all spectral widths, hence there is nanogl value for accurate/pg.
When in alternating mode very high spectral widths increbhseetrors again as the in-

terpolation between alternate scans became inaccurateybnd mode’ this is not a
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Frequency 5.5 GHz

Wavelength 5.6 cm

Antenna diameter 8m

Beam width 1°

PRF 1180 Hz

range resolution 125 m

Max. digitised range 255 km

Peak power 250 kW

Noise atl km —33 dB (in hybrid mode)
—36 dB (in single polarisation mode)

Unambiguous velocity 16.6 mst

Table7.1 Properties of the Thurnham operational radar system.

problem. So the fundamental limit for a radar with the chtmastics of the Thurnham
radar as a function of spectral width is given in figure 7.3e plot shows the decrease in
error as the spectral width increases, a result of incrgasimber of independent obser-
vations. At0.5 m/s the lowest possible error would b& dB; by 1 m/s that error limit

has reduced t0.45 dB and by2 m/s that limit is just).3 dB.

To examine the spectral width of rainfall in the UK, Chilbaitwill be used. Figure
7.4 shows spectral widths of data from a PPI, after grounttiezltemoval. The plot shows
contours of the density of points plotted with spectral Wwidgainst reflectivity. The plot
shows that spectral widths generally increase as the rgitg¢hence rainfall) increases.
High spectral widths are also seen to be more frequent thvaspectral widths (shown
by the vertical extension of density contours above theregnThe increase in spectral
width with reflectivity is explained by turbulence being gter in heavy rain High shear
across the beam is also more likely in heavier rain, as bobulence and shear increase
spectral width. It must be remembered that the Chilboltomar&aas a radar beam éf
where thel® beam of the Thurnham radar is much larger. The larger beaomefor

the operational radar means that shear across the beanewalider, increasing spectral
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Figure7.3 Plot showing the theoretical standard Figure 7.4  Spectral width as a function of re-
deviation of recordedpy as a function of spec-  flectivity. This data is taken from a single scan on
tral width for the Thurnham radar setup caused 18/08/2000 with CAMRa, having used &mr <
solely by the sampling problem (this plot assumed —20 dB threshold to remove non-rain targets. This
a correlation 06.97). In the UK moderate rain- is the passing of a vigorous cold front. Contours
fall tends to have spectral width ef 0.75 m/s show the density of points. The plot also shows
which corresponds to a fundamental limit on the that spectral widths are 0.6 m/s.

accuracy ofZpg of ~ 0.5 dB. Stormy rain has

higher Doppler widthsy~ 2.2 m/s, which means

that in stormy rain the fundamental limit &g,

has dropped te: 0.3 dB.

width.

As spectral widths of- 0.75 m/s are expected in moderate rain (see figure 7.4 and
adding a small amount for increased shear across the beanfihtirnham radar cannot
be expected to havBpr more accurate thain’ dB. The addition of radar imperfections
increase this number further. Figure 7.5 shows a histogfarbservedZpy at low reflec-
tivity (23dBZ), demonstrating the spread iy from the instrument (at this reflectivity
the natural variability will have a very small effect). Thatd showsZpi has a standard

deviation of(0.7 dB, 0.2 dB above the estimate from the sampling expectation. This is
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a result of imperfections in the radar meaning the copolawetation, pyy, drops below

the0.97 assumed.
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Figure 7.5 Histogram ofZpr data £50m resolution) with22 < dBZ < 24 from a single scan of
Thurnham radar data. Overlaid is a normal distributionhwrieari).43dB and standard deviatidn69dB.
At these low values of reflectivity the natural variabilitftbe rainfall will be small as drop spectra changes

have little impact on drop shapes.

Given that the noise found 87 dB in Zpg, it is clear that rainfall rates derived
usingZpr on a point by point basis will have large errors (standardadens will be of
order of a factor of three) and frequently observe negdfive where rain calculation is
either impossible or unphysical (depending on methodgrgfeno improvement over a
simpleZ — R method. However, th&pg data remains useful, despite the signal being
swamped by the noise; clearly averaging or integrated tqaks will be needed to utilise
the information available fron¥py in the operational environment. To achieve/gg
accuracy good enough to gain improvement over a traditignal R simple averaging
would require so many points as to have an unacceptably patiatresolution. The
integrated”Z/Zpgr technique is well suited to the operational radar. It wggigshe high
resolution and accuraté data available point by point to calculate high resolutainfall

rates, using the noisypr for best fit, so considering eackipr pixel independently
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to find the average drop concentration. This method infezsstgnal from within the

underlying noise.

7.3 OPERATIONAL DIFFICULTIES

In this section three possible problems for operationadughtion radar will be consid-
ered and the potential for overcoming these problems wiltnelied. Those problems

are calibratingZpg, the greater attenuation, but first that of ground clutter.

7.3.1 GROUND CLUTTER/ANAPROP

Because the Thurnham radar operates in simultaneous ttamgde (‘hybrid mode’)
to collect Zpr data, simultaneougpr is not available (an Lpr scan” is performed
regularly as part of the scan strategy but this will be tinfeeiffrom availableZpr data,
so it may not be relevant). This means thgiz cannot be used for clutter rejection and

another option must be considered.

7.3.1.1 pyy FOR CLUTTER REMOVAL

Previous sections of this thesis (2.4.3 or 7.1.1) discuisedopolar cross-correlation,
puv- pav IS the correlation of the vertically and horizontally pad&d reflectivities. This
is a measurement of variety in shapes and fall modes of tigetsar The value 0pyy
depends on the target type: for instance in rain one woul@éexg@ value approaching
unity, (in truth imperfections in radars mean that unity mainbe recorded so values of
~ 0.97 — 0.99 are expected with operational radar) for an operation ragetn as Thurn-
ham, where mis-matched beams may be an issue, but high€r907) at Chilbolton

(llingworth and Caylor, 1991).

Ground clutter has lower correlation as the scattering b&llnon-Rayleigh, so a

threshold inpoyy could be used to remove ground clutter.

The problem with usingyy is that measurements may be rather noisy and hence
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“miss” some clutter infected points. So, althouygh, appears a natural replacement for

Lpr in removing ground targets the noise makes this very prodliem

7.3.1.2 Zpr SPREAD FOR CLUTTER REMOVAL

The next option to consider is the spreadZisg data. For this we calculate the standard
deviation of a3 x 3 pixel area (this is the same as the texture described by &ourl
et al, 2005). For rainfall the variations iipr between pixels will be small as rainfall
variations will be small on such small spatial scales. Inugibclutter or anomalous-
propagation theZpg returns a near random value so has a much higher spread geecau
of the scattering characteristics of the large target tloeirgel forms). This means that a
threshold on the value of the spread may be used for clagmficand removal of ground

echoes, and the value of this threshold should He5adB.

The problem that arises from this method of reduction is arneto a familiar prob-
lem: the sampling noise iApr. Assuming there is no natural variability in the rainfall
of the nine pixels being considered, they would have a spqadl to the sampling noise
(0.7dB). This noise is large enough to be nearing the spread ee¢p&roim ground targets

(see figure 7.6), so again some ground targets may be missad/liireshold.

7.3.1.3 ¢pp SPREAD FOR CLUTTER REMOVAL

The spread ofppp is similar to the spread ofpgr, only using the differential phase.
Again it is calculated as the standard deviation 8fa3 pixel box. Again hydrometeors
are expected to have a low yet finite value, with ground targéh much higher spread
due to the random returns from the surface (the phase of thenrigom the surface can
in fact be exploited to gain information of the refractivity the air [Illlingworth et al.,,
2005], but this is beyond the scope of this thesis). The nioisg,p is much smaller
relative to the range of expected values with the Thurnhatarrésee figure 7.7), so this
option may be the best suited to use for clutter removal ejeraly. A cut-off to remove

clutter of5° removes most clutter, although for use where clutter refnswatal, such as
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Figure7.6 False colour plot of spread dihr from a PPl scan with the Thurnham radar and histogram
of values found. The ground clutter can be clearly seen bytbgehydrometeors being blue with values
~ 0.7 dB, and clutter with higher values. It can be seen that thesgginificant variation of these values

within the rainfall.

for the integrated’/Zpr technique for rainfall estimation, this could be reduced.fs.
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Figure 7.7 False colour plot of spread ¢fp from a PPI scan with the Thurnham radar and histogram
of values found. The ground clutter can be clearly seen bytbgehydrometeors being blue with values
~ 1 °, and clutter with much higher values. It can be seen thaethsr only small variations within the

rainfall.
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7.3.1.4 USING A DYNAMIC CLUTTER MAP

Use of a “clutter map” is common (recently for example Mersetet al, 1997) for tradi-
tional single parameter radars but these do not allow foséasonal (vegetation growth)
and long term (addition/removal of objects) variationslutter returns. A clutter map is
also not able to detect temporary anaprop returns. A dynalutter map would involve
updating the clutter map used regularly with informatioonfra previous time period.
This dynamic clutter map would predominantly remain comistéth minor changes due
to changes in the ground targets. The clutter map can be fatetufrom consistency
of the appearance of echo in each pixel, but Wit} scans available the consistency of

high Lpr may give a better clutter map.

Currently the operational network radars of the Met Office sigaal variability to
detect clutter which rejectss — 95% of clutter, then the marginal signal variability points
are compared to a dynamic clutter map to remove those pibesdsed as usually cluttered

(Sugieret al,, 2002).

For polarisational operational radars a similar use of adyin clutter map could be
designed. The best parameter for determining clutter pigérationally is the spread in
¢pp Values. Very high values of spread can be removed withoubfemfalse alarm, with
the more marginal values determined using a combinatidm avsitynamic clutter map to
determine the likelihood of a given pixel being clutter. 8anfuzzy logic systems are

suggested by Gourlest al. (2005) and Gourlegt al. (2006).

7.3.2 CALIBRATION OF THE RADAR

Calibration of the radar will be of the utmost importance feing rainfall estimation
algorithms. For the integrated/Zpgr technique to retain the desir@d% accuracy in
moderate rainfall rates, reflectivity must be calibrated @B, andZpg to 0.1 dB. Al-
though not trivial to automate, reflectivity can be calilbehto the necessary accuracy
using the consistency of, Zpr and ¢pp along rays as suggested by Goddatdal.

(1994b). CalibratingZpr was discussed in section 3.3. Operationally a solution must
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be found and potentially incorporated into the chosen strategly. Again, viewing the
sun can be ruled out as, although it occurs every day, it tedysthe receiver, not trans-
mission. This leaves the possibilities as either consigelight rain or vertical dwells.
Distinguishing between lots of small drizzle drops or a $mamber of large raindrops
will be even tougher than with CAMRa due to the increased ndikes leads to the opti-
mal option for calibratingZpr to be vertical dwells, although these require some time in
the scan strategy to be assigned; not just during the dwelglbo adjusting elevation to
and from vertical. The Thurnham radar currently operatea o minute cycle, which
performs low level PPIs & minute intervals, with a vertically pointing scan once per
cycle as well as Lpr scans” and high level PPIs for Doppler winds. This meansdhat
new calibration can be calculated evafyminutes when a target is present, which will

allow for any drift in calibration to be quickly recognised.

7.3.3 ATTENUATION AND DIFFERENTIAL ATTENUATION

Attenuation is the reduction of power of the radar beam abyeabsorption and scat-
tering (not including the spreading caused by diffractio@nce the beam has reduced
power, there is less power to be scattered by the targetsghess returned power. The
returned power is then attenuated again on the return trithespower of the signal de-
tected by the radar is reduced during the trip in both dioesti The reduced power is then
converted to reflectivity, resulting in reduced reflecyiviFor a graphical demonstration

see figure 7.8.

Attenuation of radar beams by air is a very small effect,aldh hydrometeors may
have a significant attenuation. The attenuation of the beagraater at higher radar
frequencies, hence the Thurnham radar will suffer morenatteon than the Chilbolton
radar. At S-band (such as with the Chilbolton radar) atteandity meteorological targets
Is negligible in all but the very heaviest of rains. At C-basch as used operationally in
the UK, attenuation will be a more significant problem, ocitig with higher regularity.
Attenuation means that any rain behind very heavy rain agpeduced. An example of

attenuation observed with the Thurnham radar is shown imdigL9.
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m) Om—

Figure 7.8 Schematic of attenuation, with raindrops reducing the pawe radar beam. In the plot,
the radar beam is entering from the left (shown by the arrowd)raeeting raindrops, represented as blue
circles. The beam passing through the drop reduces the powfee beam behind as is indicated by the

darkening at the right of the figure. Note that in this figure éfffect is vastly exaggerated.

Figure7.9 Attenuation as observed by the Thurnham C-band radar.dtetids the region of heavy rain,

with the rain with reduced reflectivity behind. Lines to sh@#lials from the radar are shown for clarity.

Differential attenuation is the effect where thggr signal is reduced by the presence
of heavy rain nearer the radar. Thgg is affected by attenuation due to the horizontally
polarised beam being attenuated more strongly than theakytpolarised version, be-
cause the drop shapes imply the horizontal beam must ttaeelgh more water than the

vertical beam. Differential attenuation becomes significet lower rates than attenua-
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tion of Z, this is because of the scale of variatiorvpg, despite the specific differential
attenuation (in dB per km) being smaller than the specifieraiation (attenuation per
kilometre in dB per km) because of the signal size. Diffasdrdttenuation can have

a quite interesting effect on observations. When obsenigig kain beyond an area
of very heavy rain, negativepr can be recorded, where attenuation in the heavy rain
has reduced the already lo#hr. The lower attenuation for the vertically polarised
waves is the prime reason for the current UK operationalrradavork, of which all but
the Thurnham radar do not offer polarisation diversityngsa vertically polarised radar

beam.

Attenuation can be corrected with reflectivity alone. Hitfetd and Bordan (1954)

suggest that attenuation, in dB, is given by
A= /KR“dr, (7.2)

where A is attenuation in dB per mile; is range in miles and is mm/hr. At C-band
they suggestX = 0.0047 anda = 1.1 (note that these values are for Imperial units of
equation 7.1), calculating from a standard — R relationship. BecausR is calculated
just from aZ — R relation, this is as error-ridden as the rainfall calcudatas way for
the same drop size spectrum change reasons. However, ter leigor in the method
of Hitschfeld and Bordan (1954) is that caused by small changthe calibration of/.

As the correction is applied gate-by-gate, the correctiecomes unstable as shown by
Hildebrand (1978). Methods using justor Z andZpy for attenuation corrections suffer

from instability, and hail causes problems as it is reldyiveon-attenuating.

The introduction of dual polarisation to radar has meantrawpment in attenuation
correction. The cause of differential attenuation is theesas the creation of the differ-
ential phase shift observed with polarisation radar (settse2.5.1). Bringiet al. (1990)

show estimation of attenuation and differential atteraraéis a function of{pp. So

Ap = BuKpp (7.2)

and

Apr = BprKpp, (7.3)
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where, this timeA is in dB/km. Values of3y = 0.054 and(pr = 0.0157 are suggested
for use at C-band, allowing for improved correctionZfand Zpg, although retaining
problems with stability. Smyth and Illingworth (1998) paged a correction scheme for
S-band radar using the negatiZgr behind the heavy rain, anghp measured, which
remains stable, presenting results showing correctio god dB. At C-band Smyth
and lllingworth (1998) suggest the algorithm is simplertesdpp would not be needed
as Ay and Apr can be assumed linearly related at C-band, hence the negafivean

be used to estimate reflectivity attenuation.

The integratedZ/Zpr technique presented in this thesis is untested for use where
attenuation correction applies. This is because, oncerdiitial attenuation becomes
significant, phase shift is strong enough for rainfall eation via the ZPHI technique,

S0 once attenuation is occurring, ZPHI should be used. Tassshiown to have improved

rainfall rate by Le Bouaet al. (2001).

7.4 |INTEGRATED Z/Zpgr IN THE OPERATIONAL ENVI-

RONMENT

Operationally the integrated/Zpr technique will remain essentially the same as was
described in chapter 5, although a few minor alterationsregeired. The need for a
different criterion for clutter rejection to that used foriDlolton data was considered in
section 7.3.1. The lines of expect&dand Zpr must be corrected for the changed radar

frequency as discussed in section 7.1.1.

Use of any radar to rainfall algorithm in an operational sgstrequires an algorithm
that can be run quickly, so that all the data processing am@@e necessary can be
performed quicker than it is taken. Modern computing me&as ¢complex algorithms

are possible, but algorithm efficiency remains an importansideration.
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7.4.1 GRID SIZzE FOR USE IN THE OPERATIONAL INTEGRATED

Z1Zpr TECHNIQUE

The increased noise and reduced resolution of the opeshtiadar has implications on
the grid size usable with the integrat&d/pr technique. Assuming equation 5.21 from
section 5.6.2.1 and the error 6f7 dB, 49 points are required fo25% accuracy. To
examine the grid size the method used in section 5.6.2.1rtergee figure 5.13 will be
applied for Thurnham data. Here6d x 64 data points area is used ang, calculated
over various grid sizes ranging from096 to 4 points, with results plotted in figure 7.10.

This figure shows the expected behaviour, with large noigaersmallest grid, which

grid 4096 points grid 1024 points grid 256 points

i

2 2.5 3 3.5 4 4.5 5 55 6 6.5 7 7.5 8

grid 64 points grid 4 points

16 32 48 64
Figure 7.10  Colour plots showing théV,, calculated from grids of various sizes. The data used was
taken with the Thurnham radar, where each pixel has rangéOom and had ° in azimuth at a range of
90 km (chosen for a large region of moderate rain). The gridescate [top leftl 55 km, [top centre]
~ 30 km, [top right]~ 15km, [lower left]~ 7 km, [lower centre]~ 3.5 km, [lower right]~ 1.8 km. Some

extreme points are indicated in the lower middle plot, ardeaqplained further in the text.
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is reduced in the next grid ¢ points) and indistinguishable l$# points. Although the
16 point grid a shows generally good pattern there remains sameceptable noise;
example points showing particularly extreme values whretmaost probably unphysical
are indicated. This means that the algorithm requires a#rooéi50 points as predicted

above.

As the resolution of Thurnham data is lower than Chilboltotagthe grid used needs
to be larger. Choice of grid size becomes a greater comprofois€hurnham than
Chilbolton. Enough points for accurate calculation are &gl yet if the area selected is
too large natural variability will not be adequately chaegised. Withinb0 km a5 x 5 km
grid is usable, but beyond this the data volume fromithbeam is too small for enough
datato allow for theZpy error. To reach the ranges of the radar the grid must be isedea
to 10 x 10 km (it is worth considering at the largest range250 km the beam is well
above the surface 7 km with a0.5° elevation] and also well above the bright band so

use of the integrated/Zpr technique is unlikely to be feasible).

For operational use it is preferable to use a grid based oraat god. The natural
variations in rain do not occur on a polar grid based arouedréidar; a Cartesian ap-
proximation would give a better representation of the tlu@nges. This Cartesian grid
approximation is formulated to have correct range for thesen grid scale, with number
of azimuthal rays per box decreasing with range, to give éogos of an annulus closest
to a square of defined length. To view the grid that resultsiftiee grid resolution and
Cartesianised polar coordinates, see figure 7.11. Each gxithithe figure can be seen
to be near square. The grid boxes become more square as ¢eefram the radar in-
creases. The central ring contains just three grid boxdswab a sector, one third of a
circle. The figure also shows the resolution change, whereghtral grid is smaller than

the outer.
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Figure 7.11 Greyscale plot to show the near Cartesian polar grid for ugle thee integrated’/Zpr
technique. The plot shows colour from a random number gésrerahich shows the grid clearly, although

the darkness of the colour has no real meaning.

7.5 OPERATIONAL EXAMPLES

In this section some examples of the integrat8dpr technique being used with the
Thurnham operational radar will be investigated. The eXxamare limited due to a very

small amount of reliable data from the radar at the time ofingi

7.5.1 EXAMPLE 1

This first example is for data taken during April tii&¢ of 2005, when the radar was in
the early testing stages, during which time it was locatel@bama, USA. The weather
on the occasion shows very heavy showers embedded in wedsbprnoderate rainfall.
The data chosen (figure 7.12) i$ & 5 km box of data centred on one of the embedded
convective regions. The figure shows that this region hadfactiee (may be a: effect)
drop concentration a000 m—2 mm~!. This corresponds te = 275. This figure shows
the very large noise level in the data of the Thurnham radewig a spread of more
than3 dB in Zpr data with40 dBZ. The estimated'’, and hence suggest the maximum
rainfall rate within this embedded convectiorbis mm/hr, whereas ifV}, was assumed

to be8000 m—3 mm!, this would be81 mm/hr.
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Figure7.12 A plot of Z andZpg for ab x 5 km area of data taken by the Thurnham radar, during testing
in position in Alabama, USA. The red line shows the line cepnding toN,,of 8000. The blue line
shows the fit from the integratét/Zpr technique which yield$v,, = 2000 anda = 275.

7.5.2 EXAMPLE 2

Example 2 considers the variationswbver a scan. The scan occured@at: 09 GMT,
29" October, 2005, with the radar in its final position in ThumhaThis day rain was

falling related to a front trailing from a low pressure systever the Arctic Ocean.

The left panel of figure 7.13 shows the reflectivity from tharschosen, after removal
of ground clutter using the spread of phase shiff;. Note that this scan is the one used
for demonstrating clutter removal in section 7.3.1. Careldess taken to ensure the data
shown does not include the bright band. Thealculated from the data is shown in the
right panel of figure 7.13. It was calculated using a grid hetsan of 5 x 5 km within
50 km range,10 x 10 km outside that. The scan shows that generally this everd hasl
drop concentration, shown by high The heaviest rainfall to the north of the radar shows
a low value ofa, hence high drop concentration, although this pattern igeymeated to
the west. To the west-most side of this heavy rain regioenatition is found, so this
data is unused for the integratédZpr technique. However the ZPHI technique would

be applicable here.
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Figure 7.13 Plots from a PPI taken &b : 09 GMT, 29" October, 2005. [Left] Reflectivity in (dB),
[Right] a. Note that the colour is based on a log scale. Overlaid ar®uaos0f reflectivity (this is averaged
to make contours less noisy and hence more meaningful). ditewrs show the reflectivity (smoothed to
avoid noise) with values; solid ling) dBZ; dashed lin&5 dBZ and dotted lin5 dBZ. These contours

show where the rain, and especially heavy rain is occurring.
7.5.3 FURTHER EXAMPLES

To demonstrate some of the variation of derived- R relationships six further plots of
Z againstZpg, with lines showing best fit and = 200 line, are shown in figure 7.14.
The data used in these plots is after careful calibratio#A@f using vertical dwells and
removal of non-rain data points. The plots span differepegyof rain, including heavy
showers, widespread stratiform rain and frontal rain. T §jze used varies dependent
on range from the radar, but is appropriate to give an aceusdtieval as discussed in

section 7.4.1, with grid sizes 6fto 10 km.

7.6 SUMMARY

This chapter has examined the use of the integratéd,r technique, as described in

chapter 5, in the operational environment.

The principal difference between the CAMRa radar and radadt aperationally in
Europe is the wavelength that is used, affecting the ocooer&equency of non-Rayleigh

scattering by meteorological targets. To reduce the cospefational dual polarisation
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Figure7.14 A selection ofZ/Zpy plots from areas of Thurnham radar data. The data are frderelift

scans and days, during different conditions (all are howgween events during summer months). Individ-

ual data points are shown as black crosses, with the linegrsheing lines of constant (henceN,,): the

red line is ther = 200; blue is the best fit line, of value shown above the plot.

radars (to make networks of such radars a financially viatepgect) use the “hybrid”

mode of dual polarisation, where the horizontal and verpoéses are released together

(transmitting at15°), then receiving in both channels. This has both advantégster

measurement afpr, opp and Kpp) and disadvantages (no simultaneduss). The fast

scan rates required operationally were explained to meatritie accuracy of measure-

ment cannot be as good as a research radar can be. With themdéithe imperfections

inevitable from the cheaper antenna on an operational thtameans that the radar

parameters cannot be measured with great accuracy, analdeelyuto be better than
0.5 dB.

The Thurnham radar, the first polarisation radar to join tikedgerational radar net-

work, was introduced in section 7.2. The specifics of thisrale examined to estimate

the expected errors iipg using this radar, using spectral widths recorded by the CAMRa

radar. As spectral widths 075 m/s are expected during moderate rain events figure 7.3
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shows thatZpr in moderate rain cannot be measured more accuratelyothaaB (be-
fore radar imperfections are added). It was then shown Heatddar actually records
Zpr With an accuracy 00.7 dB with a near Gaussian distribution (figure 7.5). It was
explained that this noise iipr data from the Thurnham radar means that point by point
7 and Zpr will not be an improvement on a simple — R. However the data will be
ideally suited for integrated techniques such as the iated”/Zpr technique or ZPHI

technique of Testudt al. (2000).

Clutter removal with the operational radar was discussatteSsimultaneouspy, IS
unavailable, it was concluded that the spread (texturephpfgave the best results, but a

fuzzy logic system may be implemented for more robust reati

Section 7.3.3 describes the problems of attenuation, exptathat the lower wave-
length (than the Chilbolton radar) of the Thurnham radar redlat attenuation and
hence differential attenuation are increased. Attenoasishen described in detail, with

correction discussed.

Finally, the use of the integrated/ Zpr technique in the operational environment is
examined, explaining the need for a larger grid resolutidh e operational radar due
to the lower grid resolution. The use of a polar, near Canegial is examined and such
a grid shown. The chapter ends with some examples of the ube aitegrated’/Zpr

technique are examined, and discussing the observedsesult
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CHAPTER 8:
CONCLUSIONS AND FUTURE WORK

Rainfall is of critical importance to mankind, influencingdumstry, property and even
livelihoods. However, rain is remarkably difficult to measibecause of its small scales
of variation in time and space. Rain gauges provide a goodumeas$the rain at a point,
but for a good coverage radars are needed to provide renssebed rainfall. This thesis
has examined the potential of an integrated technique toratsdy estimate the moderate
rainfall rates that are common in north-western Europegugie new operational dual-

polarisation radars.

8.1 THE NATURE OF RAINFALL

The introductory chapter, 1, described the normalised gamtistribution of rain drops
that represents natural rainfall well. Chapter 2 then shatheddrop shapes that these

sizes have, explaining the polarisation parameters dlaifeom dual-polarisation radar.

In Chapter 461 months of high resolution rain-gauge data is analysed. fdwgiency
of occurrence of rainfall rates has been examined and shthaedoderate rainfall rates
that are considered in this thesis occur at less lfamf the time, yet this rain accounts

for ~ 40% of the accumulated rain throughout the period.

Rain was shown to have the curious property that whateverdtes the relative
changes in that rate are constant. This was shown in chapté€hié means that very
heavy rain has very large variations in intensity whereaslighter rains have small
changes, however the variations are proportional to theageerate, so in relative terms

both rains are equally variant.

The decorrelation of rainfall was also examined. It was ghivat as expected con-

vective rain has much shorter decorrelation time thani&irat rain as would be expected
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from the nature of the two types. The decorrelation time torastation of0.5 for high
accumulation convective rain 81 minutes, whereas for high accumulation stratiform
rain this decorrelation time is much highe6,.8 minutes. This effect is also shown from
the seasonal decorrelation, showing shorter decorralatiaghe summer months. The
overall decorrelation t6.5 takes justt.5 minutes, reaching=! in just 9.3 minutes. This

Is a slower decorrelation than is shown in Barcelona in thekwadrBurguéio, A. and
Vilar, E. and Puigcerver, M. (1990), as would be expectedhayihcreased stratiform
proportion of rain in the UK. This decorrelation affects #hecuracy of calculating ac-
cumulations when taking “snapshots” of the current raie est does a radar. The errors
created by using “snapshots” are found tolb& when sampling only everys minutes,
dropping t020% at 5 minutes, and just0% if one is to sample every.5 minutes. This

will be a concern when considering accumulations as cakdilay radar.

The power spectrum of rain was formulated in chapter 4. Tleetspm is compared
to the model formulated by Veneziagbal.(1996), showing the same characteristic seg-
mented model with turning points similar to those expectethfthe work of Veneziano
et al. (1996) (the turning points at slightly higher frequencieart they found, but within
two standard deviations). The third turning point of the elod not seen in the data
from the Chilbolton drop counter, because the temporal wéisol of the data is at a
similar level to the expected frequency of the final turnimgnp. The Chilbolton data
shows the first turning point: the energy input scale (théesaieconvective cell clusters),
at16.1 minutes & 10 km). The second turning point, from diffusion in turbuleravw
occurs att.8 minutes ¢ 3 km). Although the Chilbolton data shows the segmented spec-
trum the model predicts, the gradient of each segment igifldtan the model suggests,

having gradients of approximately half that of the modelaslesegment.

The nature of rainfall has inevitable effects on radar estiiom of rainfall. The
amounts and sizes of drops control the radar reflectivig/ctianges in these are a signif-
icant part of the large errors with traditiondl— R radar rainfall algorithms. The shapes
of the raindrops allow for polarisation of radar beams taegiwreased information on

the rainfall withZpr and¢pp. The raingauge data shows that the moderate rainfall rates
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that this thesis concerns constitdt® of the total accumulated rain in Chilbolton. The
decorrelation of rainfall has impacts on the accuracy ofygadar comparison, mean-
ing that by taking a snapshot of rainfall evéryinutes, even with perfect measurement,
a20% error in hourly accumulation is found. This situation wi# lvorse in convective
rain where decorrelation occurs more rapidly. The powectspkdensity of the rain
shows the time variations of the rainfall, showing that amtive cell clusters pass at a

scale ofl6 minutes.

8.2 THEUSE OF DUAL-POLARISATIONIN OPERATIONAL

RADAR

Chapter 2 examined various methods to estimate rainfalt faben radar. The chapter
began with a brief discussion of the problem associated wsthg reflectivity alone to

estimate rainfall rates. It is explained that the huge sratrserved with the traditional
methods are partially caused by drop spectrum variatiotiser@actors such as ground
clutter and calibration problems add to these problemsticrg the often quoted factor

of two error in radar rainfall estimation.

The use of differential reflectivity (defined as the ratio ofikontally and vertically
polarised reflectivity) is discussed in terms of rain rateestion, and its appearance due
to the oblate drop shapes. Section 2.4.3 explains the sagnpiethod of an alternate
pulse radar such as the CAMRa radar, resulting in the sampiingsen Zpr. A number
of options for calculating rainfall from individua? and Zpr points are introduced: the
physically based method of lllingworth and Blackman (200Reve 7/ R is a function
of Zpgr, and potential use dbg(~Zpr) to defineZ/R. Further suggestions using powers
of both Z and Zpg (in both logarithmic and linear terms) are considered,caitfh it
Is stated that these algorithms are unjustifiable if the pdaereflectivity is not one.
The errors in rainfall rate that result form the samplingesrof Zpi are explained and
guantified, with a discussion of the problems of negafiyg, which is unphysical, but

occurs as a result of the sampling noise.
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In section 2.5 the differential phasepp, is considered. Its appearance due to rain
drop oblateness is explained, followed by introducing thectic differential phase,
Kpp. We saw that use akpp for estimating rain rates is an improvement over standard
Z — R methods as the transformation is more linear, and unatfdznyehail. However,
Kpp does not become large enough to be accurate for improveméhtain rates be-
come heavy. The sampling errorship were explained, having similar source and form
to those ofZpr. For the moderate rainfall rates that this thesis focused ughe specific
differential phase gives no improvement over a standard R relation; only40% accu-
racy can be achieved at rain rates as hightasim hr'. We see another problem with
R from Kpp is the effect of the drop size distribution shape parameterhich adjusts
the exponent in th&pp to R relation. A typicaly = 5 value leaves the exponent bg,

hence almost as non-linear as the- R relations.

The combination of polarisation parameters to estimateredes is considered, start-
ing with the combination ofKpp and Zpg. This option can use linearpi to avoid
numerical instability from negatively observeéf}zr. However, the noise on bothpg
and Kpp is large, so when combining them the noise in estimatedatissfvery large,

and also the hail independence advantag&’ef is lost.

Given the normalised drop size spectrum that represenisataiin well has three
parameters, it would seem that excellent estimates wouldavhgable from using the
three radar parameterg, Zpr and Kpp. This power is however not available as the
radar parameters are not independent, a fact that is takemiadje of for calibration of

reflectivity by the technique of Goddaed al. (1994b).

Chapter 2 finishes by considering the possibility of integgldaechniques to overcome
the noise in the radar’s polarisation parameters. The ZBefrtique of Testuet al.
(2000), which estimates drop concentration, so as to deaiveall from Z = aR'?®,
wherea is a function of N, has been shown to give good rainfall estimation. It is
considered and shown to be especially appropriate for use aperational environment
as it uses thepp rather than its noisy derivativE pp. The ZPHI technique shows great

promise for operation rainfall estimation, but is only apgmiate at heavy rain rates, or

Page 159




Chapter 8: Conclusions and Future Work

in very widespread moderate rain. The technique estimhgegrop concentration along
a radar ray, so over a long yet narrow sector, longer thatylikatural changes imv,,.
The heavier rains that can be estimated with the ZPHI tecienagnount tal 9% of the
rainfall accumulated in the UK; a method for the moderategdhat accumulatexs%
of UK rainfall is needed to really gain the rainfall estinzatibenefits dual polarisation

offers to operational radar systems.

8.3 AN INTEGRATED TECHNIQUE FOR ESTIMATING

M ODERATE RAINFALL RATES

Chapter 5 describes the possibilities for a rainfall estiomaalgorithm suitable for ac-
curate rainfall rate calculations at moderate rates. Isdhains, the differential phase
has not become a significant effect, so for polarisationrpatars one must turn to dif-
ferential reflectivity. In chapters 2 and 3; we saw thak is noisy, with an operational
radar this noise is so large the benefit of its use is not seemwbked at each gate. Even
the very accurate Chilbolton radar has nois€ iz measurement which is large enough
to cause problems with gate-by-gate methods (such as ucphyegativeZpR). Inte-
gration of the normalised gamma distribution of rain dropsh constant concentration
(Ny,) yields aZ — R relationship ofZ = a R, with (assuming. is constant) inversely
proportional to the square root of,. Changes in the exponenty) relate to the func-
tional relationship between drop concentration and mediiap diameter. The aim of the
technique described is to estimatérom the Z and Zpr values over an area, which can

be then used asa — R over said area.

As the technique will use the rain drop shapes for calcutatamy gates where the
targets are not rain need to be carefully removed. The edfielstil, melting snow, ice
and measuring the ground all causandZpy to not give expected results when assumed
to be measuring rain, but can be removed with other polaisgarameters, especially
Lpr. WhereLpg is not available (as may be the case especially operatyriaé spread

of local Kpp values gives an excellent removal of ground clutter. Thefadlioccurring
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above the melting level (where the hydrometeors are icd)algb not have the same
shape characteristics, so the technique described is oiépke for rain detected within

the bright band.

Chapter 5 described a number of possible methods for caloyldie 7 — R relation-
ship to be used. Each subsequent method suggested solésnpsavith the previous;
such problems are with biases being induced by non-indeyreedof fitted variables and
negativeZpr being ignored. Also consistency and physical meaning afli®s a con-
sideration. Finally the optimised/Zpy, fit is arrived at, where the data is fitted in a least
squares fit to lines of constat, and hence. The method is described with a flow chart
in figure 5.10. The rest of chapter 5 examines how the optionige/ fit is operated
computationally, including the amount of data requiredgfstimating rainfall rate t85%
(just four points for Chilbolton data, but 50 for the Thurnham radar). Finishing the

chapter is the possibility of reintroducing variability of

Chapter 6 shows examples of the use of the optimigkdh; fit. The chapter ex-
amines the variations detected across a scan and with tkamieing the results from
various different rain conditions. The results are congdan terms of the physical

meanings of the derived drop concentrations. A case studyewtine rain derived by

the integratedZ/Zpr technique is compared to that of a tipping bucket rain gasge

examined. This shows the technique has excellent agreemtbrground “truth”.

8.4 USE OF POLARISATION RADARIN AN OPERATIONAL

ENVIRONMENT

Dual-polarisation radars are beginning to be introducéd aperational weather radar
networks of Europe (UK, France and Germany). Generally iroge radars operate at
smaller wavelengths than Chilbolton or the operational idathe USA. Operational

radars will inevitably not be as accurate as research ratlsr4o financial constraints.

This means that the polarisation parameters are espen@by. Chapter 7 introduced
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the Thurnham radar, a new dual-polarisation radar in the p&ational network. This
radar has high levels of noise in polarisation parametésg: has a noise level df.7 dB.
This level of noise is much to large for point by point raihfaing Zpr data to show

improvements over a standard— R method.

A significant difference between the Chilbolton CAMRa radar #émel Thurnham
radar is the mode of operation. CAMRa operates with alterggidses, whereas Thurn-
ham operates in “hybrid mode”, with simultaneous transioiss This means that the
linear depolarisation ratio parameter is not availablegrsalternative must be found for
effective removal of ground clutter and anaprop. Four oitor removal of ground
clutter are considered in section 7.3.1. The copolar ccoselation should have values
near unity in rain (imperfections in the radar reduce thae&dlom1), but when the target
is the surface the value would be much smaller. Unfortugiatgl, is noisy (like many
of the polarisation parameters), potentially causing edsdutter points (where clutter
Is not removed) or false alarms (where a genuine rain pixednsoved as clutter). This
means that althoughyy seems a good replacement fgsk, the noise loses its potential.
The spread ir¥pg is considered next. In rainfall the noiseAfiyr will be approximately
at the level of the sampling noise. With the Thurnham radawéver, the).7 dB noise
in Zpr from sampling is approaching the spreadZpr caused by ground targets. The
spread ofppp has more promise, as the value in rain should again be srhalldvel
of the sampling noise afpp), with clutter having a high value. The range covered by
rain in this case is small enough to distinguish the clut@mfrain more effectively than
with Zpgr. Finally a dynamic clutter map is considered. Here the ililaad of a point
being clutter is considered from the frequency of a signaliala chosen threshold being
measured. This way points that are often cluttered are rechand by changing the clut-
ter map using the data of previous periods, the clutter mapattaw for changes in the
surface being viewed (i.e. the growth/death of trees, enecif new buildings etc.). A
dynamic clutter map will be unable to detect anaprop pixese of opp Spread in con-
junction with a dynamic clutter map for marginal cases iomemended for operational

use to minimise missed clutter and false alarms.
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The shorter wavelength means that attenuation and difief@ttenuation are a more
significant factor. Fortunately, once attenuation becolarg® enough to cause problems
with data inZ and Zpgr, ¢pp becomes large enough for use in the ZPHI technique.
Attenuation must be recognised however, as incorporattegaated data into algorithms

usingZ andZpr will lead to incorrect results.

The noisy polarisation parameters from operational radaich as that at Thurnham,
mean that the benefit to rainfall estimation will be via ineggd methods (such as the
integrated”/Zpr technique described in chapter 5 or the ZPHI technique). rdtars
provide a good measurementf(which can be calibrated tbodB using the method of
Goddardet al,, 1994b), so the use of integrated polarisation parametetsralividual
reflectivity values will give good estimates of rainfall eat The wavelength difference
alters the values of andZpy, a little, as is seen in figure 7.1, but the changes are known.
The reduced resolution from the operational radar mearitibarea over which the drop
size distribution is characterised must be larger, inénga® 10 x 10 km boxes. Also for
operational use, a polar grid is preferred for operatiorhefadlgorithm, so a polar grid

with approximate Cartesian boxes is formulated.

The optimised fit integrated/ Zpr technique is to be tested with the Thurnham radar,
to evaluate its performance in estimating rainfall in anrapenal environment. However
one must be cautious with comparisons of radar and rain gaadfernate methods of
verification may be applied, (for instance use of profilingaiato estimateV,, from

Doppler spectra).

Operational radar has been shown to have very high noiséslgvpolarisation pa-
rameters (the Thurnham radar hdsr noise of(0.7 dB). This level of noise might be
expected to render the information provided Byr useless. However, the integrated
Z1Zpr technique works as the noisefyy is random, so is removed by the use of many

points, drawing the information embedded within the noiatad
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8.5 FUTURE WORK

The work of this thesis can be continued in a number of waysfufiiber the statistics
of rainfall, the drop distribution parameters such as ndised drop concentration or
median drop diameter, could be considered in a manner sitoilhe rainfall as in chapter
4, this would give insight into the scales one must averag®oalgorithms such as the

integratedZ/Zpg technique.

A key improvement to the integratéd Zpr technique would be the introduction of
a calculated error in the derived,,, a and R, giving an indication of the quality of the

estimate, this would be important for data assimilatioo mimerical models.

The technique could also be used to investigate the developaof rainfall events,
for instance tracking a convective shower and using thenigale could give an insight
into the micro-physical makeup of the rain in such a storm.

Finally, validation of the technique with operational radaust be performed to show

the benefit of the algorithm, this is likely to be performethgshe Thurnham radar.
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ANAPROP Anomalous Propagation, the result of atmospheric condstiend-

ing the radar beam back to the surface.

ANTENNA The device for focusing the transmitted and received sgj(ey
dish).

AREAL Of/over an area.
AREAL RAINFALL Average rainfall depth over an area.
AXIAL RATIO, r The ratio of the size of major and minor axis of drops.
BEAM  The volume of focused microwave energy transmitted for dukar.

CAMRa Chilbolton Advanced Meteorological Radar. The world’s latge
Steerable pointable meteorological radar, operatingtstr& §GHz

frequency]0cm wavelength).
CLUTTER See “Ground Clutter”.

DIFFERENTIAL REFLECTIVITY, Zpr  The ratio of power received in the hor-
izontal polarisation, given horizontal transmission, gaaver re-
ceived in the vertical polarisation, given vertical transsion. De-

fined asZpy = 10 log,, (2—5) Seliga and Bringi (1976).
DOPPLER VELOCITY,v The radial velocity of the targets.

DSD Drop Size Distribution.
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DWELL TIME Time spent sampling a single ray of data.
ECHO The returned radar transmission from the target(s).

EFFECTIVE DROP CONCENTRATION  The drop concentration of the normalised

gamma distribution, assuming that 5.
GATE Anindividual pixel in range (along the radar beam).

(GROUND) CLUTTER The result of the radar beam impacting the ground surface,

buildings or trees etc.
HYDROMETEOR A falling precipitation particle.

LINEAR DEPOLARISATION RATIO, Lpg  The ratio of power received in the ver-
tical polarisation and the horizontal polarisation, boiveg hori-

zontal transmission.

NORMALISED GAMMA DISTRIBUTION/FUNCTION A widely used raindrop

size distribution function; formula:

N(D) = Nuf o) exp(~ EEED,
6 (36T+p)rt
T = 5o Tt 1)

PPl  Plan Position Indicator scan. A scan in which elevation nesa

constant but azimuth changes.

RAINFALL RATE, R A measure of the amount of rain falling, usually given in

mm/hr.

REFLECTIVITY, Z Also known as the ‘reflectivity factor’; this is a measure loét
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RHI

SCAN RATE

SIDELOBES

reflectance of the target.
Z [mm®m~?] = / N ﬁN (D) D°dD
, 0.93
The magnitudes of this mean it is often expressed in the ilbwpaic
unit, dBZ = 101log,, (Z [mmSm~?]). This is what is detected by a

conventional radar.

Range Height Indicator scan. A scan in which azimuth remains

constant but elevation changes.
The speed to perform a scan (usually to perfors6@& PPI.

The further energy maxima located outside the main lobe ef th
radar beam. These have low power relative to the main beam, bu

may produce significant erroneous echoes in the right congit

SPECIFIC DIFFERENTIAL PHASE SHIFT, Kpp  The change of phase difference

between horizontally and vertically polarised returnswdistance.

TERMINAL VELOCITY The maximum speed at which a object can fall without

decelerating, where gravitational and viscous forces alensed.

This is the speed at which hydrometeors fall. Proportiom&lt°7.

Z — RRELATIONSHIP The function by which one can convert from reflectivity

(7) to rainfall rate R) or vice versa.
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SYMBOLS USED

CHAPTER 1
7  Radar reflectivity.
R Rainfall Rate.
a the coefficient ot/ — R relationshipsZ = aR".
b the exponent of — R relationshipsZ = aR®.
P. Received power.
P, Transmitted power.
g Antenna gain.
6  Beamwidth (horizontal).
¢ Beamwidth (vertical).
h  Pulse length.
|K|>  The dielectric factor (for raif.93).
D; Scatterer diameters.
A Radar wavelength.
r  Distance between sample and radar antenna.
C'  The radar constant.
N  The number of drops.
dB  Used to demonstrate something used in decildélsy = 10log,, X
Ny The drop concentration for drops of zero size.
A Marshall and Palmer (1948) rain parameter, a function ohlig.o
N,,  The drop concentration (normalised for constant liquidevabntent
[close toR)]).
D, Median drop diameter.
i Normalised gamma distribution; shape parameter.
f(p)  Normalising function in normalised gamma distributioriates to the
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shape parameter.
Zpr Differential Reflectivity.
CHAPTER 2
7  Radar reflectivity.
R Rainfall Rate.
a The coefficient ot/ — R relationshipsZ = aR".
b The exponent of — R relationshipsZ = aR®.
N  The number of something (either drops or samples dependirngio-
text).
D The drop size.
r  Drop axial ratio.
D, Median volume drop diameter.
i DSD shape parameter.
N,  Drop concentration.
dB  Used to demonstrate something used in decildélsy = 10log,, X
Zpr Differential Reflectivity.
Zimm/me  The reflectivity which would be a result of targetslomm/hr rainfall
rate. Zmmu: IS @ function ofZpg.
¢ The coefficient of rainrate relationships usiigg .
g(Zpr) A function of only Zpg.
o ZexponentoR = ¢ Z® Zpy.
3 Zpr exponentoR = ¢ Z*Z7..
c¢1  The coefficient of rainrate relationship using linegyy.
a1 Z exponent of rainrate relationships using lin2ax.
B1  Zpr exponent of rainrate relationships using linEax, .
SD(Z pr) Standard deviation of observeghy.
[ The of index of summation.
p Correlation.
prhaw  CO-polar correlation at zero lag time.
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o, Spectral width.
n  The number of pulses.
T, Time between pulses.
A The radar wavelength.
o.n  Normalised spectral width.
PRF The pulse repetition frequency.
épp Phase Shift.
¢y  Phase of vertically polarised return.
¢y Phase of horizontally polarised return.
Kpp The specific differential phase shift.
A The coefficient of alR-Kpp relationship.
B The exponent of alR-Kpp relationship.
co  The coefficient of rainrate relationship usiAgyyr andZpg.
as  The Kpp exponent of rainrate relationship usiAgyp andZpg.
B2 TheZpr exponent of rainrate relationship usihgyp andZpg.
cs  The coefficient of rainrate relationship usifAgyr and linearZpg.
as  The Kpp exponent of rainrate relationship usifg,p and linearZpy.
B3 TheZpr multiplier of rainrate relationship usingpp and linearZpy.
f  Constant used in the ZPHI technique.
g Constant used in the ZPHI technique.
CHAPTER 3
7  Radar reflectivity.
Zpr Differential Reflectivity.
dB  Used to demonstrate something used in decildélsy = 10log,, X
N,, Drop concentration.
D, Median volume drop diameter.
i DSD shape parameter.
Zy  Radar reflectivity from horizontal polarisation.
Zy  Radar reflectivity from vertical polarisation.
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D Thedrop size.
Lpr  The linear depolarization ratio.
Zpr MeanZpr measurement.
oz Standard deviation ofpr measurement.
CHAPTER 4
Zpr Differential Reflectivity.
7  Radar reflectivity.
dB  Used to demonstrate something used in decildéls{ = 10log,, X
v Doppler velocity.
R Rainfall Rate.
N  The number of something (either drops or samples dependirepio-
text).
D The drop size.
N,  Drop concentration.
D, Median drop diameter.
i Normalised gamma distribution; shape parameter.
f(p)  Normalising function in normalised gamma distributioriates to the
shape parameter.
a The coefficient ot/ — R relationshipsZ = aR".
Fz(n) A function of the shape parameter resulting from integratar reflec-
tivity.
Fr(n) A function of the shape parameter resulting from integrafiar rain
rate.
H(u) A function of the shape parametéf(y) = Fz(u) Fr(p)'®.
Zimm/ne  The reflectivity which would be a result of targetslomm/hr rainfall
rate. Zimmur IS @ function ofZpg.
|K|>  The dielectric factor.
Lpr  The linear depolarization ratio.
b The exponent of — R relationshipsZ = aR®.
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m  The gradient of a liney = mx + c.
¢ The constant of a ling; = mx + c.
N Effective drop concentration.
gwtar  Standard deviation error of combination$f,,,, points.
ogpeint  Standard deviation error of a single sample.
«wmp Number of samples.
N,., Number of samples required.
T A number used in iterating to finl,,*; it is a function ofN,*.
CHAPTER 5
7 Radar reflectivity.
Zpr Differential reflectivity.
dB  Used to demonstrate something used in decildélsy = 10log,, X
Lpr The linear depolarisation ratio.
N,  Drop concentration.
a The coefficient o — R relationshipsZ = aRR".
T  An algorithm value defined by equation 5.22.
RMS Root Mean Square distance of points to that
D, Median drop diameter.
b The exponent of — R relationshipsZ = aR®.
Ny  Effective drop concentration.
i Normalised gamma distribution, shape parameter.
CHAPTER 6
Pya  Near instantaneous (30s average) rainfall rate as a propaft the
hourly average rainfall rate.
Rs0s / R;  Near instantaneous (30s average) rainfall rate.
Rya  Hourly average rainfall rate.
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Symbols Used

r  Normalised rainfall rate.
C'  Used in finding a model of the rainfall PDF.
P Probability of occurrence.
AR  Error in rainfall rate.
R Rainfall rate.
N Number of points.
RMS Root Mean Square distance of points to that
goption  Standard deviation of points caused by error “option”.
t Time.
T Lagtime.
p. Correlation between rain rate now and rate lagged by
R, Rainfall rate at time:.
R Mean rainfall rate.
w1 First turning point of segmented spectrum, correspondiiieé con-
vective scale.
wy  Second turning point of segmented spectrum, corresponditige in-
troduction of microscale influence.
ws  Third turning point of segmented spectrum, correspondingty small
scales.
CHAPTER 7
7  Radar reflectivity.
Zpr Differential Reflectivity.
a The coefficient ot/ — R relationshipsZ = aR".
N,,  Drop concentration.
A Radar wavelength.
i DSD shape parameter.
Lpr The linear depolarisation ratio.
¢opp Differential Phase Shift.
Kpp  Specific Differential Phase Shift.
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Symbols Used

PRF  The pulse repetition frequency.

dB  Used to demonstrate something used in decildélsy = 10log,, X
Prhao/pry  CO-polar cross-correlation.
A Attenuation.
K  Coefficient in attenuation equation.
a  Exponent in attenuation equation.
Ay Attenuation of horizontal reflectivity.
Ou  Coefficient of horizontal reflectivity attenuation frop.
Apr  Differential attenuation; attenuation #hy.
Opr  Coefficient of differential attenuation frombpp.
N Effective drop concentration.
CHAPTER 8
Z  Radar reflectivity.
Zpr Differential Reflectivity.
R Rainfall rate.
¢épp  Differential Phase Shift.
Kpp  Specific Differential Phase Shift.
i DSD shape parameter.

The coefficient o/ — R RelationshipsZ = aR.
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