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ABSTRACT

Rainfall is a key observable of the weather, of importance to society. Rain gauges only

provide point measurements; for areal rainfall information a radar may be used. Radars

measuring just reflectivity (Z) may suffer large errors in derived rainrates due to drop size

distribution (DSD) variations. The introduction of dual-polarisation radars to operational

networks should lead to improvements in rainfall estimation, although these radars suffer

high noise levels in polarisation parameters (∼ 0.7 dB in differential reflectivity [ZDR]).

This thesis examines rainfall characteristics, considering the effect of DSD changes

on radar parameters. The difficulties caused byZDR noise are examined, showing prob-

lems for rainfall estimation. Rainfall statistics are studied, finding that relative rainrate

changes are the same at all rainrates. Decorrelation of rainrate to0.5 in the southern UK

is shown to take4.5 minutes, which mean sampling rainfall in “snapshots” only every 5

minutes generates a20% error in hourly accumulations as shown in the thesis. This thesis

concentrates on estimating moderate rainfall rates (3–10 mm hr−1), which generate36%

of rain accumulation in southern UK, with dual-polarisation radar. At moderate rates,

specific differential phase shifts (KDP) are too small for accurate rainfall estimation, so

ZDR must be used. The noise inZDR means that usingZ andZDR at each gate generates

rainrates with error as much as a factor of10. This thesis introduces a technique utilising

the spread ofZ andZDR data over an area, estimating drop concentration (Nw) over the

area and hence ‘a’ in Z = aR1.5. This generates an appropriateZ − R relationship for

the selected region, which can be utilised with each pixel’sZ to give rainrates accurate

to 25% while maintaining the high resolution of the data despite large noise inZDR. The

thesis examines the use of the technique with operational radar, especially the Thurnham

radar in the UK.
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Chapter 1: Introduction

CHAPTER 1:

INTRODUCTION

1.1 THE USE OF PRECIPITATION RADAR

Rainfall is probably the most important weather observable to the public: will it rain? If

so, how much? Rain is possibly the most important part of any weather forecast. Rainfall

information also affects many industries, notably agriculture, where rainfall predictions

can influence sowing and harvesting times. Unfortunately, rainfall remains one of the

most difficult features of the weather to forecast. Until very recently operational numeri-

cal weather prediction models operated with grid scales fartoo large to resolve rainfall so

cloud and rain must be parameterised within the models. However, new high resolution

models are being developed and introduced that reduce the resolution to1-4 km, scales

at which the rainfall is being much more accurately represented (for example, Golding

et al., 2005, demonstrate use of such a model in discussing the Boscastle flood of 2004).

These parameterisations limit the accuracy of the rainfallforecasts. Possibly a larger

problem however is that of the nature of rainfall. The spatial and temporal distribution of

rainfall is variable and intermittent on small scales, and is probably the most chaotic of

all atmospheric variables (Fritschet al., 1998). This will be discussed in more detail in

chapter 4. This means that accurate predictions are difficult with lead times greater than

just a few hours.

Rainfall is also a major hazard in the modern world, with flash flooding a regular

feature of the news. Flooding is the result of a combination of problems. River floods are

the result of prolonged, yet not necessarily intense, rainfall overloading the river drainage

system. An example of river flooding is the the flooding of muchof central Europe

in 2002. The other type of flooding, flash flooding, is more dangerous, and happens

when very intense rainfall occurs, which quickly overcomesthe drainage systems. Flash
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Chapter 1: Introduction

floods tend to be very strongly localised events, occuring frequently in urban (and hence

inhabited) areas as the surface cannot absorb large amountsof water in a short time, flash

flooding also often occurs in steep rural catchments. An example of flash-flooding is

the event of 16th August 2004 in Boscastle. A flood swept through the Cornish village,

destroying over70 properties, damaging bridges and causing approximately130 people

to need airlifting to safety (Burt, 2005). Fortunately, no lives were lost due to the rapid

response of the emergency services.

Although knowledge of the amount of rain falling will not allow for prevention of

these floods, the warning that could be given from rainfall rate knowledge could save

lives and damage to property.

One of the impacts of climate change according to the reportsof the Intergovern-

mental Panel on Climate Change (IPCC) (Follandet al., 2001) is an increase in extreme

events, which would include flooding. It is a challenge to minimise the loss in both

humanitarian and financial terms. Accurate rainfall measurement and surveillance will

assist in prediction, warning and reaction to these high-impact events.

Rain gauges provide the traditional measure of the rainfall,although they are sparsely

distributed and are just a point measurement. Rain gauges suffer from a number of sam-

pling problems, including position, wind effects, small collecting areas and human error.

But the chaotic behaviour of rainfall patterns mean that eventhe perfect rain gauge’s

ability to measure the rainfall distribution is very limited and depends on the rainfall in

question. Convective cells can be very small (< 10 km), so gauges with spacing of as

small as10 km may record no rainfall despite very heavy rainfall between them. Strati-

form rainfall shows similar variations but occurs over muchlarger scales. Precipitation

radar can also be used to measure rainfall, and gives areal coverage over a large area

(over100, 000 km2 for operational radars) with resolution to1 km2 at close ranges. Tra-

ditionally these radars measure just the reflectivity,Z (Section 2.2.1), of the target. The

reflectivity is the empirically related to rainfall rate,R, by a simpleZ − R equation of

the form
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Chapter 1: Introduction

Z = aRb. (1.1)

However, these relations suffer from high errors (often quoted as a factor of2 error in

rainfall rate, but can be much larger in some cases) which mean that current radar is more

of a qualitative tool than quantitative instrument. The radar suffers from a number of

problems such as ground clutter (where the radar beam hits the ground, or similar static

targets), the presence of hail and the bright band (caused bymelting snow), these errors

will be discussed later in this chapter. There also remains doubt in the values of botha and

b with large numbers of these relations formulated over the years of radar meteorology,

many of which appear in the book by Battan (1973). The likely cause of much of this

variation is the variations in the drop size distributions,DSD, which naturally occur. It

can be seen from many of the suggested forms of equation 1.1 that theZ −R relations in

stratiform (highb) and convective (lowb) rainfall are considerably different. This could

explain the differentZ − R relationships used by the UK and US operational networks.

The UK, where stratiform rain is prevalent, usesZ = 200R1.6, while in the US convective

rainfall is more common, so a different relationship,Z = 300R1.4, is used.

Modern technology allows the use of polarised radar beams, giving us more informa-

tion on the scattering targets. Installation of these new dual polarisation radars has begun

in the United Kingdom and France. With the extra informationprovided, more knowl-

edge of the DSD can be obtained from the radar, improving rainfall estimation. Another

benefit is that polarisation can be used to identify ground clutter, the bright band and hail.

However the principal point of this thesis is for times when the radar beam is in rain (so

short ranges - especially in the winter months). Dual polarisation techniques have been

suggested as the way to better rainfall estimation, but thisremains to be demonstrated in

an operational environment.

It should be noted that weather radar cannot predict where rainfall will occur, but

useful information can be obtained once the detection of theprecipitation has occurred,

and assists in nowcasting and weather forecasting such as the NIMROD system (Golding,

1998) operated by the Met Office, which forecasts up to a rangeof 6 hours.
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Chapter 1: Introduction

1.2 RADAR METEOROLOGY

Radar1 is a system that uses electromagnetic radiation for detection of targets and their

positions. Although initially developed for aircraft, thepotential of radar for meteorology

was rapidly realised (Fletcher, 1990). This section will introduce the basics of dual-

polarisation radar.

1.2.1 THE HISTORY OF WEATHER RADAR

Radar has its history in radio communications. Radar developed quickly after its inven-

tion by Watson-Watt in 1936 (although whether this was the true invention is debated).

By the end of World War II radar had been well developed and was very successful, es-

pecially for the Allied forces. During the war, weather returns were generally considered

a nuisance, but, before the end of the war, the Meteorological Office had a10 cm radar.

Since, radar has evolved, with improvements in all the technologies used in radar. Prob-

ably the greatest advances in radar were the invention of thetransistor and the computer.

The computer was especially important for radar meteorology, so that the large quantities

of data generated can be utilised and archived.

The first work in the UK done on the accuracy of precipitation from radar was in the

late 1940s. Meanwhile in Canada, Marshallet al. (1947) derived an earlyZ-R relation

of the form of equation 1.1. However, it was not until 1967 that the use of radar to

provide quantitative rainfall measurement in the UK was studied. This experiment used

a 10 cm radar but suffered from a number of problems including a large beamwidth.

Hence the radar was converted to5.6 cm in 1973, reducing the beam to1 ◦. In the

early 70s the Dee Weather Radar Project based in north Wales pioneered research into

the use of radar for rainfall rates, much of the work remains valid, though perhaps too

confident, this project lead us to have the operational network we now have in the UK.

This is now the operational radar band in the UK. This wavelength change means that the

radar suffers more from attenuation of the radar beam in veryheavy rain, but means that

1Radar is an acronym for RAdio Detection And Ranging
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Chapter 1: Introduction

smaller radar antennas are required for the same beam width.In the UK and Europe, the

very heavy, attenuating rains are less frequent than in the USA which is a major reason

for the difference in radar wavelengths in these respectiveregions.

The advent of polarisation radar occurred in the early 1950s. Initially polarisation

was exploited with circular polarisation, where promise was found for suppressing clut-

ter. Drop shapes were found to depolarise the returns to the radar, leading to the devel-

opment of the linear depolarisation ratio (see section 5.2). Seliga and Bringi (1976) used

the shapes, sizes and orientation of rain drops to show differential reflectivity (see section

2.4.1) gave a measure of drop size, and when used in combination withZ has the poten-

tial to derive more accurate rainfall rate estimates. To measure differential reflectivity

Seliga and Bringi (1976) suggested a radar design which utilised horizontally and ver-

tically polarised pulses, measuring the returns at both polarisations. The CAMRa radar

(see section 1.4) in Chilbolton was the first to implement thistechnique with alternate

horizontally and vertically polarised beams, then as now this radar operated at S-band

(note the operational radar network in Britain uses C-band). Sachidananda and Zrnić

(1987) suggested the use of differential phase shift to improve rainfall estimation. The

1990s saw efforts into improved algorithms for rainfall estimation, both with traditional

and dual-polarisation radars. Meanwhile, operational radar networks grew throughout

the world at various frequencies, mostly operating at S-band in America, but at C-band

in Europe and Japan. Recent years have seen the development and installation of the first

polarisation radars in the operational environment.

1.2.2 THE MATHEMATICS OF RADAR: THE RADAR EQUATION

The power received from a distribution of meteorological targets is given by equation 3

of Probert-Jones (1962), often called the meteorological radar equation:

Pr =
π3Pt g

2 θ φ h
∑ |K|2 D6

i

1024 ln 2λ2 r2
, (1.2)

where
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Chapter 1: Introduction

Pr = received power

Pt = transmitted power

g = antenna gain

θ = beamwidth (horizontal)

φ = beamwidth (vertical)

h = pulse length

|K|2 = the dielectric factor (for rain0.93)

Di = scatterer diameters

λ = radar wavelength

r = distance between sample and radar antenna

with summation over a unit of volume. Equation 1.2 may be written as

Pr =
C |K|2 Z

r2
(1.3)

where we have the radar constant,C, and the radar reflectivity factor,Z.

These equations make a number of assumptions:

• The targets are equally spread through the sample volume, are modelled as homo-

geneous dielectric spheres and have diameter smaller than the radar wavelength to

ensure Rayleigh scattering.

• The reflectivity factor remains constant throughout the contributing region (gradi-

ents generate errors).

• The main beam power is described by a Gaussian function.

• Attenuation and multiple scattering are negligible.

• Polarisation of incident and backscattered waves are the same.

The radar reflectivity factor,Z, is usually referred to as simply “reflectivity” by radar

meteorologists (which will be used in this thesis). Reflectivity is the summation of sixth

power of diameter of all targets within a unit volume:

Z
[

mm6m3
]

=

∞
∫

0

|K|2
0.93

N(D)D6 dD (1.4)
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in linear units. The range of magnitudes ofZ lead to its expression in logarithmic units,

dBZ:

Z[dBZ] = 10 log10

(

Z
[

mm6m3
])

. (1.5)

The radar observesPr, which is then interpreted as the return from small spherical liquid

water drops.

Radar system errors are given in Joss and Waldvogel (1990), and include beam block-

ing, attenuation (when atmospheric gases and particles reduce the power within the radar

beam) and ground clutter. These errors can be minimised by:

• favourable radar site location to minimise beam blocking and ground clutter;

• appropriate choice of wavelength for the intended use;

• beam width and sensitivity for the intended purpose;

• good calibration;

• correction of attenuation and anomalous propagation.

1.2.3 DIFFICULTIES TRANSLATING Z TO R

ConvertingZ into R is not trivial. Although a relation of the form of equation 1.1 is

accepted as representing the truth well, there remains a large number of problems.

When the radar beam hits the ground, or ground based objects (such as trees, build-

ings or masts) the reflectivity will be high, even without hydrometeors present. This will

then mean that aZ-R translation will show a non-zero rainfall despite the lack of hy-

drometeors. When both clutter and hydrometeors are present within the radar beam the

reflectivity is higher than for the hydrometeors alone, hence increasing the rainfall rate

apparent from theZ-R translation.

When the radar beam encounters hail the reflectivity will be affected. Hail tends to

have much larger diameters than rain drops. This means that when hail is present within

the radar beam it dominates the reflectivity due to its dependence on the6th power of
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particle size (equation 1.2). This results in hail-infected returns having higher reflectivity

than the rainfall would suggest once the hail melts (either in the fall or after impact with

the surface).
h

e
ig

h
t

dBZ

SNOW/ICE

MELTING SNOW
BRIGHT BAND

RAIN

Figure 1.1 Schematic plot of the vertical

profile of reflectivity.

Another problem occurs when the beam is sam-

pling snow and ice. Reflectivity is reduced be-

cause the dielectric constant is different, but is in-

creased by the larger size typical of the snow and

ice particles. These snow and ice particles tend

to also grow as they fall so the reflectivity can

change as the same particles fall. An even more

serious problem occurs once the snow flakes be-

gin to melt. When this occurs the drop builds up

water while maintaining an ice structure, so gains

the dielectric constant of water, but with size of

snow. This means that reflectivity is large, in-

creasing by as much as13 dB. A schematic of all

of these effects can be seen in figure 1.1.

Even if all of these problems can be removed we still have difficulties calibrating the

reflectivity recorded by the radar. This can be done using polarisation radar as will be

seen in chapter 2. Finally the conversion fromZ to R relies on a consistent raindrop size

distribution, which is not present. This is why many different Z − R relations have been

suggested. These spectra will be discussed in the next section. Even if the rainfall rate is

known perfectly from within the beam, low level growth or evaporation will change the

rate by time the drop reach the surface, this cannot be corrected using dual polarisation

radar.
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1.3 THE RAINDROP SIZE SPECTRA

The drop size distribution is of vital importance to radar asit dictates the numbers and

sizes of the drops in the sampled volume, affecting the returns via equation 1.4.

In the early years of meteorological radar research Marshall and Palmer (1948) sug-

gested a simple exponential form of the raindrop size distribution:

N(D) = N0 exp−ΛD, (1.6)

whereN0 = 8000 m−3 mm−1 and

Λ = 41R−0.21. (1.7)

This drop spectrum only changes with rainfall rate, which would make converting

reflectivity to rainfall a trivial task (which leads toZ = 200R1.6). Unfortunately the

Marshall-Palmer drop spectrum does not represent the wide variation in drop spectra

found in nature, which lead to the introduction variation ofdrop concentration. A gamma

function for raindrops was suggested by Ulbrich (1983). However, variation in the shape

parameter caused changes to the drop concentration required for the same rain properties,

so a normalisation was added.

Natural raindrop size spectra are well-defined (Kozu and Nakamura, 1991) by a nor-

malised gamma function:

N(D) = Nwf(µ)

(

D

Do

)µ

exp

(

−(3.67 + µ)D

Do

)

(1.8)

f(µ) =
6

(3.67)4

(3.67 + µ)µ+4

Γ(µ + 4)
. (1.9)

In this equation there are three variables:

Shape parameter µ. High values ofµ imply a more truncated spectrum. See figure 1.2.

Drop Concentration Nw, normalised so that, despite changes inµ, liquid water content

remains constant. See figure 1.3.
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Figure 1.2 Normalised gamma distribution, withµ variations. For this plotDo is 1 mm andNw is

8000 m−3mm−1.
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Figure 1.3 Normalised gamma distribution, withNw variations. For this plotDo is 1 mm andµ is 5.

Median drop diameter Do, the diameter of the drop of which there is an equal volume

of water in drops of greater and lesser sizes. See figure 1.4.
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Figure 1.4 Normalised gamma distribution, withDo variations. For this plotNw is 8000 m−3mm−1

andµ is 5.

This normalised spectrum is preferable (Illingworth and Blackman, 2002) to the non-

normalised gamma function of Ulbrich (1983) as it givesNw a more reliable meaning.

With µ = 0 the normalised gamma function reduces to a simple exponential form.

Ulbrich (1983) used the manyZ − R relations of Battan (1973) to find a range of

variables in the gamma function (not-normalised) known as the “Ulbrich” range. He

deduced aµ range from−1 to 5. Illingworth and Blackman (2002) questioned the va-

lidity of the mathematics of the derivation of the “Ulbrich”range (and showed evidence

of data outside realistic bounds, as an example a rainfall rate of 40000 mm/hr results

from a spectrum within the “Ulbrich” range), but it is now common practice to derive

polarimetric rainfall techniques using the “Ulbrich” range. Comparison with observa-

tions of disdrometer (Kozu and Nakamura, 1991) found an average value ofµ would be

about4− 6. Using disdrometer observations in Chilbolton, UK, Illingworth and Johnson

(1999) found a mean value ofNw = 8511 m−3 mm−1, with a standard deviation of a

factor of3.6, with 96% within a factor of13. Bringi and Chandrasekar (2001) found a

similar value ofNw = 10, 000 m−3 mm−1 from a disdrometer in Darwin, Australia and

Page 11



Chapter 1: Introduction

Do = 1.25mm.

These techniques have a problem with sampling the less common large drops due to

the sampling area. A larger volume with a better sample of thelarger drops is found

using radar. Wilsonet al. (1997) used differential Doppler velocity, DDV (difference in

Doppler velocities at horizontal and vertical polarisations). They show that DDV as a

function ofZDR is dependent on the value ofµ. They find a range ofµ = 2 − 10 with a

mean of5.

1.4 THE CHILBOLTON ADVANCED METEOROLOGICAL

RADAR

The Chilbolton Advanced Meteorological Radar (CAMRa), (Goddard et al., 1994a), is

an S-band radar (λ ≈ 10 cm, 3 GHz) with a very large (25 m diameter) fully steerable

dish to give very high resolution radar data and sensitivity(the world’s largest steerable

pointable meteorological radar). The radar (pictured in figure 1.5) is located at Chilbolton

Observatory, in Hampshire (near Winchester), UK and run by the Rutherford Appleton

Laboratory (RAL). The radar operates with an alternate pulsesystem (described in sec-

tion 2.4.3) for polarimetric measurements and also has Doppler capability. For informa-

tion on the hardware of the radar see the paper of Goddardet al. (1994a). A key feature

of the CAMRa radar is the very large antenna, which gives a very narrow0.28◦ beam (1◦

is more normal). This means that the radar data has much higher spatial resolution than

other radars. The use of data from this radar will be extensive throughout this thesis.

The maximum range resolution is limited by the pulse length,and the range is limited

to the product of the speed of light and pulse length divided by 2 for the return trip. The

radar data acquisition system averages64 pulse pairs at each gate. Additionally, for most

operations4 gates in range are averaged to make a range resolution of300 m. The effects

of this averaging will be discussed in more detail in chapter3.

The wavelength of10 cm is larger than operational radars in the UK, which tend to
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Figure 1.5 Photograph of the CAMRa radar in Chilbolton.

operate in C-band (λ ≈ 5.6 cm), but the same as used in the USA. This means that

attenuation of the radar signal, by both hydrometeors and atmospheric gases, will be

less significant. Attenuation is a result of absorption and scattering of the radar beam

as a result of passing through the extinction cross section of the target particles. In the

Rayleigh regime, where drops are much smaller than the radar wavelength, the extinction

cross section is proportional to the drop volume. The attenuation of the radar beam will be

larger as wavelength decreases. For example rainfall of40 mm/hr attenuates the beam by

approximately0.5 dB km−1 at C-band, whereas at S-band this is less than0.1 dB km−1.

1.5 THESIS OUTLINE

This thesis focuses on the use of an area-integrated method to accurately estimate mod-

erate rainfall rates. This chapter has shown the need for more accurate rainfall rates,

described the basics of radar meteorology, introduced the normalised gamma distribution
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Frequency 3.0765 GHz

Wavelength 10 cm

Antenna diameter 25 m

Beam width 0.28 ◦

Pulse width 0.5 µm

PRF 610 Hz

Max. range resolution 75 m

Max. digitised range 160 km

Peak power 560 kW

System noise figure 1.3 dB

Elevation slew rate 1 ◦ s−1

Azimuth slew rate 2 ◦ s−1

Cross-polar isolation −34 dB

Noise at 1 km −36.7 dBZ

Unambiguous velocity 15 m s−1

Table 1.1 Properties of the CAMRa system.

of raindrop size and gave details of CAMRa, the radar used for much of the work in this

thesis.

Chapter 2 examines the current state of rainfall estimation from radar, initially with

conventional radar, moving into dual-polarisation radar.The new radar variables avail-

able from the dual-polarisation will be described as they are encountered in this chapter.

This chapter will demonstrate the need for integrated techniques when using polarisation

parameters, especially in the operational environment.

The natural variability of rainfall is considered in chapter 3. Using polarisation radar

parameters we look into the changes in parameters we record and show the variabilities

are the effect of true changes in the rainfall, not simply theeffect of the sampling.

The statistics of rainfall are considered in chapter 4, examining the occurrence of

rainfall events, the decorrelation of the rain and the related effects of non-continuous
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sampling of rain when estimating accumulations as performed by a radar network.

In chapter 5 the integratedZ/ZDR technique is described along with precautions nec-

essary to avoid problems with output. This chapter is followed by a number of examples

showing the results of the technique and explanations of thephysical processes giving

rise to the results, in chapter 6.

Chapter 6 also demonstrates the evaluation of the integratedZ/ZDR technique and

comparisons to other methods of rainfall estimation.

The use of the integratedZ/ZDR technique in the operational environment is consid-

ered in chapter 7. Here we detail the differences that occur in the operational environ-

ment compared with use on research radars. This poses significant problems to most

polarisation methods due to the increased noise of the operational systems. This chapter

introduces the Thurnham operational dual-polarisation radar.

Chapter 8 gives a conclusion and comments on possible future work into the described

method. Finally the potential for this technique to become part of the UK’s operational

system is discussed.
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Chapter 2: Rainfall Estimation With Radar

CHAPTER 2:

RAINFALL ESTIMATION WITH RADAR

2.1 INTRODUCTION

This chapter will investigate the various methods of estimating rainfall rate using radar,

from the simple reflectivity relationship used on the UK operational network to the mod-

ern combined and integrated polarisation radar techniques.

2.2 Z-R, WITHOUT POLARISATION

2.2.1 ‘TRADITIONAL’ REFLECTIVITY RAINFALL RATE METHODS

A traditional non-polarised radar will measure only the reflectivity at each gate (often

these radars actually use a polarised beam, but lack the capability to receive or transmit

in the orthogonal polarisation. Currently these radars are dominant in the operational

networks of the world.

Empirical relations of the form

Z = aRb, (2.1)

using only the reflectivity to estimate rainfall, may sufferfrom errors of a factor of two

in rainfall rate. This is caused by variability of rain drop spectra, as

Z =
∑

ND6, (2.2)

but

R =
∑

ND3.67, (2.3)

whereN is the number of drops andD is the drop diameter, in mm. Oft-quoted is the
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Marshall and Palmer (1948) relationZ = 200R1.6 derived from the Marshall and Palmer

(1948) drop size spectra of equation 1.6.

The variation in drop spectra explains the wide variety ofZ − R relations reported,

and this will be analysed in more detail in chapter 3. Many have been proposed, such

as those in Battan (1973). Battan went on to suggest that it may be more appropriate to

assign aZ − R based on the type of rain event considered, suggesting equations of the

form of table 2.1.

Rainfall Type Z − R Author

Stratiform 200R1.6 Marshall and Palmer (1948)

Orographic 31R1.71 Blanchard (1953)

Thunderstorm 486R1.37 Jones (1956)

Table 2.1 Z − R relation for different rain types suggested by Battan (1973).

Use of an adjustableZ −R would, however, require a reliable method of defining the

event “type” operationally, though radar-gauge adjustment has be implemented in some

work (e.g. Wilson and Brandes, 1979), this does not truly differentiate rain type, and may

partly correct miscalibration. Although these simple techniques have been used for over

50 years, modern technology can improve our precipitation estimation.

2.3 RAINDROP SHAPES

Why is polarisation important for weather radars? The answeris that raindrops (and other

hydrometeors) are not perfect spheres. If all targets were perfectly spherical, the returns

from all polarisations would be the same, even if sizes varied. Raindrop shapes are related

to their size. Drops smaller than1 mm are spherical, but become increasingly oblate as

the size increases, as shown in figure 2.1. These shapes are a result of the high surface

tension forces of water in the drop, and the aerodynamic effects caused by the drop falling

under gravity. Also, turbulence in the air causes raindropsto have a distribution of angles,

where the major axis deviates from the horizontal, known as “canting angles” (Beard and
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Jameson, 1983). The radar will see drops with a variety of canting angles, but an average

value of close to0◦. Raindrops larger than1 mm in diameter oscillate about a mean shape

(Beard and Tokay, 1991). The effects of these oscillations will average to zero for a large

number of drops. The combination of canting and oscillationmeans that a radar does

not view the maximal horizontal and minimal vertical extentof the drops. To interpret

polarisation returns the raindrop shapes must be known well.

Figure 2.1 Horizontal view of equilibrium shape of raindrops of1-6 mm diameter, with shape for

spherical drops of the equivalent volume. The dashed lines show the size of the equivalent volume sphere.

From Beard and Chuang (1987).

Pruppacher and Pitter (1971) suggested a simple linear relationship between drop

axial ratio,r, and drop diameter,D (mm):

D < 0.5 mm ⇒ r = 1

D > 0.5 mm ⇒ r = 1.03 − 0.062D, (2.4)

which was commonly used until recently. Goddardet al.(1982) formulated a new model:

D < 1.1 mm ⇒ r = 1

D > 1.1 mm ⇒ r = 1.075 − 0.065D − 0.0036D2 + 0.0004D3, (2.5)
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which was calculated from comparison of radar and disdrometer. This answered a prob-

lem that observations (ofZDR and comparison with disdrometer150 m below the radar

beam) suggested the linear shapes were too oblate for drops smaller than2.5 mm. This

implied the drops should be more spherical than the linear model predicts.

More recently, use of strobe photography in long wind tunnels has led to the proposal,

by Andsageret al. (1999), of the polynomial:

D = 1.1 − 4.4 mm ⇒ r = 1.102 − 0.01445D − 0.001028D2. (2.6)

These models predict distributions as shown in figure 2.2.
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Figure 2.2 Plots of different raindrop shape models: linear Pruppacher and Pitter (1971) model (blue),

Goddardet al.(1995) model (red) and Andsageret al.(1999) model (green).

2.4 THE ADDITION OF DIFFERENTIAL REFLECTIVITY

2.4.1 WHAT IS DIFFERENTIAL REFLECTIVITY?

Seliga and Bringi (1976) suggested that rainfall rate estimations could be improved using

differential reflectivity (ZDR). This is defined as the ratio of reflectivity at horizontal and
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vertical polarisations:

ZDR = 10 log

(

ZHH

ZVV

)

. (2.7)

This parameter is independent of drop concentration and hence gives information on the

mean shape (reflectivity weighted) and hence size of the drops. Using this parameter

provides information on the variation in the drop size distribution, hence allowing more

accurate rainfall rate estimation.

2.4.2 WHY USE DIFFERENTIAL REFLECTIVITY FOR ESTIMATING

RAINFALL RATES?

The use ofZDR gives the ability to reduce the effect of variability in the drop size spectra

by adding extra information about drop size. In what followsit is assumed that the

natural variability of DSDs is captured by the normalised gamma function (section 1.3)

and assumes thatµ = 5.

By knowing the relationship between drop shape and size,ZDR gives theDo of the

target drops (assuming constantµ). For a givenDo, Z andR both scale withNw, so

Z/R can be calculated as a function ofZDR. This results (at S-band) in the formula of

Illingworth and Blackman (2002):

dBZ−dBR =
Z

R
= f(ZDR) = 21.48+8.14 ZDR−1.385 (ZDR)2+0.1039 (ZDR)3. (2.8)

A plot of this equation can be seen in figure 2.3. In the thesis of Lee (2003), however, it

is suggested that it is better to use:

Z

R
= f(log ZDR), (2.9)

wheref is an empirical polynomial, which will give betterZ/R at low values ofZDR.

Using this formula, the rainfall rate at each point can be calculated, using theZ andZDR

values. It is known that at constantZDR, Z andR both scale withNw. So givenZDR, a

value of reflectivity can be found using 2.9 for the case whererainfall rate is1 mm hr−1.

Rainfall rateR, in dBR, is given by

dBR = dBZobs − dBZ1mm/hr, (2.10)
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Figure 2.3 Plot of the reflectivity required at a givenZDR for a rainfall rate of1 mm/hr as formulated in

Illingworth and Blackman (2002).

where dBZobs is the observed reflectivity andZ1mm/hr is reflectivity in the case described

above. Recall that

R = 10(
dBR
10 ). (2.11)

When considering this in linear terms, this becomes

R = c Z g(ZDR). (2.12)

This is similar in form to the equation of Bringi and Chandrasekar (2001):

R = c Zα Zβ
DR. (2.13)

Figure 2.3 shows that if the drops present are generally smaller than an average spectrum,

thenZDR is smaller, and would suggest the rainfall is higher than a simpleZ − R would

predict (Z for 1 mm/hr drops asZDR → 0). When only very large drops are present (in

the early stages of a convective shower for instance) the dependence ofZ on the sixth

power of drop size means that the reflectivity is high, but rainfall not especially heavy.

This can be seen at highZDR (large drops) where a much higherZ is required to achieve

1 mm/hr of rainfall.
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While in theory equation 2.13 yields a good estimate ofR, large errors result espe-

cially whenZDR is small. Bringi and Chandrasekar (2001) suggest a more robustestimate

is found if consideringZDR in linear terms:

R = c1 Zα1 10 0.1β1 ZDR . (2.14)

The coefficients are chosen by regression using the “Ulbrich” range of parameters in the

normalised gamma distribution of drop sizes (Ulbrich, 1983). Bringi and Chandrasekar

(2001) proposec1 = 0.0067, α1 = 0.93 and β1 = −3.43 at S-band. Estimators of

the form of (2.14) are now becoming more widely used (Brandeset al., 2002; Ryzhkov

et al., 2005b). However, it is difficult to explain physically any value ofα1 not equal

to 1. Equations 2.10 and 2.11 show thatZ andR scale together soα1 must be1 or

this would not be the case. The only possible cause of a non-unity α1 is a result of

systematic changes inµ with rainfall rate. Use of linear drop shapes and the Ulbrich

range (Gorgucciet al., 1994; Chandrasekar and Bringi, 1988; Chandrasekaret al., 1990)

lead to an overestimate of rainfall rate by as much as a factorof two.

It should be noted that for25% accuracy at rainfall rates of3−10 mm hr−1, ZDR must

be measured to within0.1 dB. The reason for requiring this level of accuracy inZDR can

be seen in figure 2.3. The slope of the curve at reflectivities around30 dBZ mean that a

0.1 dB error inZDR will result in a1 dB error inZ for 1 mm/hr, equivalent to25%. This

accuracy of rainfall rate will also requireZ to be calibrated to1 dB. This constraint will

be discussed in section 2.6.1.

2.4.3 SAMPLING NOISE IN DIFFERENTIAL REFLECTIVITY

The radar measurement ofZDR is subject to a number of errors. Errors caused by antenna

imperfections are believed to be small for the Chilbolton3 GHz radar and as it has no

radome, radome errors are not introduced. However, fundamental errors caused by the

sampling statistics cannot be avoided. This statistical noise will be unavoidable as it

imposes a fundamental limit on the accuracy of the measurement of ZDR.

The statistical noise for the Chilbolton radar is a result of the combination of non-
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simultaneous sampling ofZHH andZVV (the Chilbolton radar uses alternate pulse mode

where a horizontally polarised wave is transmitted and response in both polarisations

received, then the next is transmitted with vertical polarisation, and both channels receive;

this sequence is a pulse pair) and the number of independent samples. Assuming a perfect

alternate pulse radar (no errors introduced by the antenna), the recorded values ofZDR

will have mean equal to the true value, with a standard deviation given by:

SD(ẐDR) = 10 log10











1 +





2

N

N−1
∑

l=−(N−1)

(

1 − |l|
N

)

(

|ρ[2l]|2 − |ρ[2l + 1]ρhh,vv[0]|2
)





1/2










,

(2.15)

according to Bringi and Chandrasekar (2001).ρhh,vv[0] is the correlation between power

of horizontal polarisation reflectivity and vertical polarisation reflectivity when not time

lagged (i.e. interpolation is needed if an alternate pulse system is used). In equation 2.15

|ρ[n]| = exp

(

−8π2σ2
vn

2T 2
s

λ2

)

= exp
(

−8π2n2σ2
vn

)

(2.16)

whereσvn is the normalised spectrum width (normalised to the maximumunambiguous

velocity measured by the radar), given by:

σvn =
2σv

λ(PRF )
. (2.17)

In these equations,ρ[n] the signal correlation with a time lagn, N is the number of

samples of H and V pairs (64 for the Chilbolton3 GHz radar),Ts is the time spacing

between samples,σv is the spectral width of the targets andλ is the radar wavelength (10

cm).

These equations are best explained physically. Figure 2.4 shows a schematic of a time

series taken from observations of high spectral width (a measure of the rate of reshuffling

of the target scatterers) and high correlation between the horizontally and vertically po-

larised beams. Each red cross indicates the time a measurement is made (note they are

alternate). The plot shows that the targets reshuffle quickly and that the H and V beams

correlate with each other very well. However, this case willonly have a good estimate of

ZDR if the spectral width is not too high. If spectral width is toohigh, the estimate will be

Page 23



Chapter 2: Rainfall Estimation With Radar

Z

Time

x

x

x

x
x

x

x

x

x
x x x

x
x

x

x

x
x x

x

x

x
x x x x

x
x

x
x x x

x

x

x

x
x

x x x
x

x

x

x
x x x

x

x

x

x
x x

x

x

xx

x
x

x

x

x

x
x x x

x
x

x
x x x x

x

x

x

x

x

x

VV

HH

Figure 2.4 Schematic show-

ing the time series ofZH and
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ZV for data of low correlation
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Figure 2.6 Schematic show-

ing the time series ofZH and

ZV for data of high correlation

and low spectral width

poorer as the reshuffling will be so rapid that alternate pulses will sample reshuffled (and

hence unrelated) targets within the beam. Figure 2.5 shows aschematic of a time series

with high spectral width but low correlation. It can be seen that the measured reflectivity

is fluctuating rapidly but that the horizontal and vertical time series do not correlate well,

meaning that theZDR estimate will be poor. Figure 2.6 shows a schematic of a time series

with low spectral width but high correlation. In this case, the high correlation would im-

prove theZDR estimate, although the low spectral width means that the alternate samples

are in fact not independent. This means the number of samplesis in effect lower, making

the estimate worse.

These effects are quantified in figure 2.7. It shows that, as the co-polar correlation

approaches unity, the error inZDR is reduced. It can be seen that an ideal situation

would have normalised spectral width of about0.08. For Chilbolton, this corresponds

to σv = 2.4 m s−1, with values either side of this leading to an increased standard

deviation in measuredZDR. Higher spectral width will lead to increased error as the

drops reshuffle more rapidly, making H and V less related; lower spectral width increases

the error because the number of independent samples is effectively reduced. It has been

found by Illingworth and Caylor (1991) that for rain withZDR of around1 dB, ρhh,vv ≈
0.99, using CAMRa. In heavy rain in the UK, the spectral width is often found to be of

order≈ 1 m s−1 (σvn = 0.03), too small for optimalZDR measurement. This leads to a
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Figure 2.7 A graph showing the effect of spectral width on the error inZDR for various values of co–polar

correlation, forN = 64. Note that this is for a single gate.

seemingly counter-intuitive problem: the spectral width is too low for good estimation of

ZDR.

Spectral width is caused by a number of effects (Nastrom, 1997):

• atmospheric turbulence at scales smaller than the radar beam volume;

• wind shear across the sample volume;

• finite beam-width;

• radar configuration and geometry.

These mean that a larger beam volume will lead to higher spectral widths. As the spectral

width of Chilbolton is too low for optimalZDR measurement, this implies that the reso-

lution of Chilbolton is too high for goodZDR estimates. A larger volume would lead to

more turbulence in the beam and higher wind shear, showing that an operational1◦ beam

may, from statistics alone, give a betterZDR measurement, the wider beam nearing the

optimal σvn = 0.08. However, current operational radars utilise “hybrid mode” where
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each beam is transmitted with45◦ polarisation, hence interpolation of the horizontal and

vertical signals is not required, so the spectral width onlyaffects the accuracy ofZDR in

terms of the number of pulses that are independent. Use of hybrid mode will be discussed

in more detail in chapter 7.

2.4.4 PROBLEMS WITH DIFFERENTIAL REFLECTIVITY FOR RAIN-

FALL RATES

So a statistical noise limit inZDR has been shown, that is a result of sampling that cannot

be overcome. For CAMRa this limits us to aZDR accuracy≈ 0.15 dB on a300 m gate,

larger than the limit for25% rainfall rate accuracy. Using the noisyZDR at each gate to

calculate rainfall rates will give noisy, and biased results. Also at lowZDR values, the

curvature of theZ/R line is high. This means that the rainfall rate increase caused by

reducingZDR by a small amount is larger than the reduction caused by an equal increase

in ZDR.

To demonstrate this, examples from figure 2.8 will be used. Example 1 is for an ob-

servation of32 dBZ andZDR = 0.65 dB. ThisZDR leads toZ/R = 26.5 dBZ mm−1 hr,

and hence a rainfall rate of5.5 dBR (3.5 mm hr−1). Now add an error to theZDR mea-

surement of± 0.2 dB. For the lowerZDR limit of 0.45 dB; Z/R = 25 dBZ mm−1 hr

and hence rainfall rate is7 dBR (5 mm hr−1); for the upperZDR limit of 0.8 dB, Z/R =

27.5 dBZ mm−1 hr and rainfall rate is4.5 dBR (2.8 mm hr −1). This is showing that

loweringZDR increased rainfall rate by1.5 mm hr−1, while raisingZDR decreasedR by

only 1.2 mm hr−1, demonstrating an8.6% bias.

Example 2 is for43 dBZ and1.5 dB ZDR. Following the blue line to the blue cross,

Z/R = 31.6 dBZ mm−1 hr, hence dBR= 11.4 (13.8 mm hr−1). The same± 0.2 dB

error is applied (green), in this case leading to dBR, of 12.3 dB and10.6 dB (17 to

11.5 mm hr−1), showing a6.5% bias.

But there remains perhaps a bigger problem, that of negativeZDR. The statistical

noise means that areas of naturally lowZDR will occasionally be observed with negative
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Figure 2.8 Diagram showing the cause of the bias from gate-by-gateR = f(Z,ZDR). Also shown is

the problem caused by negativeZDR.

ZDR (for a trueZDR = 0.3 dB with a0.2 dB standard deviation measurement error,7%

of points will recordZDR < 0). For rainfall, negativeZDR is unphysical, as it would

be a result of drops having their major axis vertically. Thisexplains the asymptote at

ZDR = 0 dB of theZ/R line. As can be seen in figure 2.8, example 3 has lowZDR. If the

estimate gives a lower value it may suggest a negativeZDR. Here we have a conundrum:

should these data points be simply thrown away or estimated using a standardZ-R? The

combination of this problem, and the bias, are shown in figure2.9.

2.5 DIFFERENTIAL PHASE SHIFT

2.5.1 WHAT IS DIFFERENTIAL PHASE SHIFT?

The velocity of a polarised radar wave is slowed when travelling through raindrops as

a result of the index of refraction difference between air and water. This means that if

the beam passes through a volume containing oblate raindrops, the horizontally polarised
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Figure 2.9 A plot demonstrating the bias in rainfall rates caused byZDR noise. This plot uses30 dBZ

with meanZDR of 0.4 dB. The colours show the cumulative distribution for three different values ofZDR

estimator noise. The lines show that as theZDR noise increases, more points have extremely high rainfall

rates (due to near-zeroZDR). More points also do not appear on this graph, whereZDR has become

negative, hence no rainfall rate can be calculated.

wave takes slightly longer to travel than vertically polarised equivalent. The phase of the

H

VV

H

oblate rain drops

Figure 2.10 Diagram showing the cause of differential phase shift,φDP; a result of the slower propaga-

tion of the H wave than the V wave in a volume containing oblate(large) raindrops. Figure from Illingworth

(2004).
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horizontal returned signal lags behind the vertical, hencethe differential phase,

φDP = φV − φH , (2.18)

usually will increase with distance from the radar.

The “specific differential phase”,KDP, is defined as the rate of change inφDP along

the beam (units of◦ km−1). As φDP increases with range,KDP should be positive, and

increase with rainfall rate.

2.5.2 WHY USE SPECIFIC DIFFERENTIAL PHASE FOR RAINFALL

RATES?

Sachidananda and Zrnić (1986) and Sachidananda and Zrnić (1987) suggested that rain-

fall rates could be derived fromKDP using an equation

R = AKDP
B (2.19)

with B = 0.866.

Use of differential phase shifts gives a number of advantages over using reflectivity,

because the value ofB is near unity, so the conversion fromKDP to R is more linear than

the conversion ofZ to R (equation 2.1). This near-linearity is important as sinceR and

KDP scale withNw, if the relationship is linear they do not depend onNw. One of the

set backs forZ-R relations is that it is difficult to calibrateZ (as it is difficult to dwell

the radar at a target with known reflectivity), and this leadsto errors in calibration ofZ

and henceR. SinceKDP uses phase change it does not require the calibration so it isnot

a significant problem forKDP to R translation.Z − R translation methods suffer from

reduction of beam power due to attenuation in high rainfall.For KDP this becomes the

strength, the attenuation goes hand in hand with phase shift. Phase shifts do not become

large until attenuation is significant, soKDP is favourable, overZ, for rainfall estimation

in very heavy rain, when theKDP becomes large. This also leads to why differential

phase shifts cannot be used for moderate rainfalls that are to be determined in this thesis.

For moderate rainfall rates the phase shifts will be very small, masked by the noise in
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measuring them. The estimations used in the thesis assume noattenuation, although

once the attenuation is present the phase shift signal becomes large enough to be useful

in heavy rains.

TheKDP to R translation also shows improvement in the presence of hail.The large

hydrometeor sizes in hail lead to large reflectivities beingmeasured, while inKDP the

tumbling of the hail removes the effect of the large hydrometeors. Finally, where the

radar beam is partially obscured, the radar beam has a much reduced power, so estimates

of Z in regions with blocked radar beams are reduced and likely unusable. However, the

phase shifts are unaffected by the obscuration so estimation of rainfall usingKDP will be

possible.

The difficulty with R(KDP) relations is that the phase shifts in all but the heaviest

rainfall are small at S-band. Even at C-band, phase shift onlybecomes significant at

heavy rainfall rates. However, to achieve good accuracy of the method,φDP is required

to 1◦ accuracy, although the measurement is more noisy than this,in a similar way to

that ofZDR, especially in the operational environment. This problem is compounded by

the need forKDP, the differential of the noisyφDP signal, resulting in very large noise

levels inKDP. This restricts use ofKDP for rainfall estimation operationally to only the

heaviest of rains in the UK.

2.5.3 SAMPLING NOISE IN DIFFERENTIAL PHASE

Similarly to the noise inZDR (section 2.4.3), the measurement accuracy of phase shift

will be affected by the continual rearrangement of hydrometeors, leaving a fundamental

limit on the accuracy ofφDP. With the alternate sampling of the CAMRa radar, inter-

polation between pulses is needed for estimatingφDP, as withZDR, the accuracy of the

interpolation being limited by the Doppler width of the target. This follows a similar

pattern to section 2.4.3, meaning that for the CAMRa radar, a standard deviation ofφDP

of ≈ 2◦ is expected.

In practice, this theoretical limit in accuracy ofφDP is not achieved because of various
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problems. If one side of the radar beam experiences more phase shift than the rest, this

can cause negativeKDP. If the gradients occur along the beam,KDP becomes biased.

Gradients in the rainfall nature within the beam are obviously more common and more

extreme when the beam width is large, hence gradients will bea larger problem for

operational radars than for a radar with resolution as high as with the Chilbolton radar.

The effect of the radar sidelobes onKDP are very large, so even slight mis-matching

of the horizontally and vertically polarised waves will addrandom noise toKDP. A

sidelobe with reflectivity of1% of the main-lobe return introduces a5◦ noise inφDP,

which will become a major problem operationally where mis-matched sidelobes may be

a more significant problem and will add to the already higher noise expected. Ground

clutter returns randomly in phase, so leads to a similar problem to sidelobe mis-matching,

with small amounts of clutter causing large levels of noise in φDP. When the target

hydrometeors are very large they leave the Rayleigh scattering regime and enter into the

Mie scattering regime, adjusting the backscattering, leading to a local maximum in the

φDP profile, which in turn can lead to negativeKDP, because the scattering regime is

a result of the particle size relative to wavelength. The Mie-scattering will be a bigger

problem at C-band than S-band where Testudet al., 2000 suggest the problem is small

enough to be negligible.

These various problems combine to give a typical noise inφDP of about3 ◦ (Ryzhkov

and Zrníc, 1995) at S-band; easily enough to cause negativeKDP. Ryzhkov and Zrníc

(1996) suggest that use of the modulus ofKDP in equation 2.19 would avoid the negative

value problems, but there is no physical justification for this. Overall, this means that

KDP can not be used for accurate rainfall rates on a gate-by-gatebasis.

2.5.4 PROBLEMS WITH SPECIFIC DIFFERENTIAL PHASE FOR RAIN-

FALL RATES

TheR = f(KDP) estimator is very sensitive to the chosen drop shape model. The use of

linear drop shapes may account for the underestimation of rainfall rate (e.g. Mayet al.,
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1999, Petersenet al., 1999 and Brandeset al., 2001) found from equation 2.19. Bringi

and Chandrasekar (2001) calculatedR(KDP) = 40.5(KDP)0.85 with linear drop shapes,

but suggest use of more realistic drop shapes, yieldingR(KDP) = 50.7(KDP)0.85.

The near-linearity of equation 2.19 is considered a major advantage of theR(KDP)

method. Assuming a more typicalµ = 5 (the shape parameter in the normalised drop

spectrum, see section 1.3) at S-band, the relationship isR = 50.1(KDP)0.7 (KDP =

0.00417R1.4). This index is almost as large as the1.5 for Z(R), mitigating many of the

advantages of theR(KDP) technique. Changes on the drop concentration will also have

a major effect on the accuracy of the technique, an underestimate of a factor of two inR

being caused by a factor of ten increase inNw (not unreasonable; see section 1.3).

The final problem to be considered is the error in rain rate estimates as a result of

the error in measuringKDP. The error means that, at low to moderate rainfall rates, the

errors are several hundred percent, while at50 mm hr−1, the error is40%. This could be

improved by increasing dwell time. However, this will lead to scan rates too slow for an

operational radar. This means that an operational radar could not reliably useKDP alone

for rain rate estimation.

2.5.5 USING SPECIFIC DIFFERENTIAL PHASE AND OTHER PA-

RAMETERS

Next this chapter will examine the potential use of differential phase shift with other radar

parameters to estimate rainfall rates.

2.5.5.1 RAIN FROM DIFFERENTIAL REFLECTIVITY AND SPECIFIC

DIFFERENTIAL PHASE

This method uses a similar argument to that ofR(Z,ZDR) (section 2.4.2). WithZDR

providing information on drop size, it leads to an equation of the form:

R = c2 KDP
α2 ZDR

β2 . (2.20)
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Gorgucci and Scarchilli (1997) suggestc2 = 51.0, α2 = 0.968 andβ2 = −0.462, al-

though this is unstable asZDR approaches0 dB, with a return to the problem of negative

ZDR from section 2.4.4. A more desirable form uses linearZDR where the unphysical

ZDR values remain numerically stable:

R = c3 (KDP)α3 10 0.1β3 ZDR (2.21)

(Gorgucci and Scarchilli, 1997). They usec3 = 67.1, α3 = 0.954 andβ3 = −1.230.

Bringi and Chandrasekar (2001) suggest usingc3 = 90.8, α3 = 0.93 andβ3 = −1.69.

This method suffers hugely from the large amount of error. AsbothKDP andZDR

have significant errors as discussed in sections 2.4.3 and 2.5.3, the produced rain rates

will have very large error, above that of the standardZ −R. Also, use ofZDR means that

the hail independence ofKDP is lost as hail reducesZDR. The increased error particularly

means that gate-by-gate combination ofZDR andKDP parameter methods are unsuitable

for operational radar algorithms.

2.5.5.2 RAIN FROM REFLECTIVITY, DIFFERENTIAL REFLECTIV-

ITY AND SPECIFIC DIFFERENTIAL PHASE

Given that the normalised gamma distribution contains three variables (Nw, Do andµ),

it would appear that using the three radar parameters,Z, ZDR andKDP, a more accurate

estimate of the rainfall rate could be obtained. However, the three radar parameters are

not independent: withZ andZDR known,KDP can be calculated.

2.6 POLARISATION METHODS: INTEGRAL TECHNIQUES

This chapter has shown that the three useful parameters (in terms of rainfall estimation as

this thesis concerns) available from dual polarisation,Z, ZDR andKDP, are too inaccurate

to improve operational rainfall rate resolution while maintaining good spatial resolution.

However, integrated parameters may provide a valuable constraint for improvement on
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the traditionalZ − R relations. These integrated techniques will be especiallyimportant

in the operational polarisation radar environment, where the gate-by-gate noise will be

high but the underlying signal will still be useful.

2.6.1 CALIBRATION OF REFLECTIVITY

Calibration ofZ is of crucial importance if rainfall rate is to be derived from it. Tra-

ditionally the calibration is performed by comparison to rain gauges (or use of a signal

generator and gauge adjustment), but this suffers from representivity problems compar-

ing the large radar beam volume to the small area of the rain gauge as well as changes

in the fall from beam to gauge. This means that calibration ofZ is only as good as a

factor of two. Many operational systems have a built in rain gauge comparison which is

used to ensure good calibration. Goddardet al. (1994b) showed thatKDP/ZH is nearly

independent ofµ and can be calculated fromZDR. The technique uses individualZ and

ZDR along the ray to estimateKDP. This allows prediction of the phase shift,φDP, along

the ray. This is compared with the observed phase shift. The calibration ofZ is then

performed by adjustingZ until the predicted and observed phase shifts agree.

The technique does not have the high noise ofKDP, and if the technique is used on

a ray, the phase shift before and after the heavy rain can be used for accurate estimation

of the phase shift as data can be averaged (see figure 2.11). The technique can obtain

0.5 dB accuracy if a10◦ phase shift can be recorded to1◦. Rays with particularly noisy

polarisation parameters can be removed and not considered.As we are considering high

phase shifts of heavy rain,ZDR is at1 to 2 dB and the accuracy inZDR required is0.4 dB,

for a calibration ofZ good to0.5 dB, which can be achieved. This calibration method

would be ideal for operational radar. The accurate calibration of Z will be essential for

all methods likely to be implementable with the noise of an operational radar.

Concern has been expressed (Le Bouaret al., 2001) that attenuation ofZ andZDR

will pose a problem. At X-band this would be a major problem, but at C-band, if the

phase shift is not too high (10◦), the attenuation ofZ is under0.5 dB, which is not large
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Figure 2.11 Example of the calibration of Goddardet al. (1994b). The red lines show the predicted

phase shift fromZ andZDR. Different Z gives different phase trace predictions and comparison with

observation fixesZ.

enough to pose problems (Illingworth, 2004). Phase shifts above that level would suffer

attenuation, so care must be taken at C-band to avoid these attenuated regions.

2.6.2 THE ‘ZPHI’ TECHNIQUE

The ‘ZPHI’ technique was described by Testudet al. (2000) and has shown good results

(for example, Le Bouaret al., 2001) at C-band in the heavy tropical rainfall of Darwin,

Australia. The method uses the total phase shift,φDP, along a ray of observedZ as a

constraint to fix the drop concentration, hencea, (2.1). The full technique uses phase shift

to correct for attenuation, which can be significant at C-bandwhere current operational

dual polarisation radars in Europe operate, and shorter wavelengths (such as X-band).

This thesis will describe the ZPHI method only at non-attenuating wavelengths. It

can be shown that, given naturally occuring raindrop size spectra are represented well

by a normalised gamma function, the value ofb should be1.5 assuming thatNw is not

a function ofDo. A log-log plot ofKDP/Nw againstZ/Nw (with changingDo) is close
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to a straight line with little dependence on the shape parameter of the drop spectrum,µ.

Hence suitably weighted integration of the drop spectra gives the expression

KDP = fN1−g
w Zg, (2.22)

wheref andg are constants. Integration along the beam gives:

φ
DP

= fN1−g
w

∫

Zgdr. (2.23)

As the constants,f andg, are known, the phase shiftφDP and the reflectivity along the

ray can be used to calculateNw, which fixesa in equation 2.1. The combination of

this appropriateNw and attenuation correction leads to the rainfall rate improvements

reported by Le Bouaret al. (2001).

The method has the advantage of not using the noisyKDP profile, therefore reducing

the noise by integration, making it especially appropriatefor the operational environ-

ment. The line ofKDP/Nw againstZ/Nw is not linear whereZ/Nw is less than 1 (for a

Marshall-PalmerNw = 8000 m−3 mm−1 this would beZ = 39 dBZ), although this is

not a problem as it does not correspond to the heavy rain with large enough phase shifts

for the technique.

The technique is particularly sensitive to the calibrationof Z as an error inZ will

translate to an error inNw and hencea. Le Bouaret al. (2001) suggested that the clima-

tologicalNw could be used to calibrateZ.

Although the method shows great promise, it is only appropriate at very high rain

rates. To estimate rainfall rates to21% at C-Band, a phase shift above32◦ is required.

This is achieved by10 km of 50 mm hr−1 or 75 km of 10 mm hr−1 rainfall, both unlikely

to occur in the UK often. For32% accuracy these can be divided by five as the phase shift

required reduces to6◦, so requiring2 km of 50 mm hr−1 or 15 km of 10 mm hr−1 rainfall;

more common, but rain above10 mm/hr constitutes just0.01% of the time and19% of

the accumulation. This means that the improvements from ‘ZPHI’ are only realised in

areas of very heavy rainfall or very widespread moderate rainfall, neither of which are

frequently observed in the UK environment. The constantNw along the ray is also quite
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restrictive and is likely to be unrealistic due to the large scale compared to the scale of

variations in rainfall. The beam can be divided into ‘sections’, but each segment must

have a phase change of at least6◦, so the sections can only be small enough to alleviate

this problem if the rain is widespread. The technique is alsosensitive to hail, so hail

recognition is needed or else it will lead to errors in the inferredNw and hencea.

The ‘ZPHI’ technique is especially applicable to tropical regions, where heavy rain-

fall unaffected by hail is most common. Matrosovet al.(1999) shows scope to extend the

technique to moderate rainfall rates at short wavelength X-band radar. The technique is

excellent for use operationally for estimating heavy rainfall. This thesis will concentrate

on the estimation of the moderate rainfall rates of3 to 10 mm/hr which occur for just

0.67% of the time, but accounts for36% of the accumulated rainfall at Chilbolton. The

techniques are aimed to be appropriate for liquid rain wherephase shifts are low (hence

the attenuation of the radar beam is negligible).
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CHAPTER 3:

THE NATURAL VARIABILITY IN

REFLECTIVITY AND DIFFERENTIAL

REFLECTIVITY

3.1 INTRODUCTION

This chapter will examine the variability that is seen in theobservations of reflectivity,

Z, and differential reflectivity,ZDR. In section 2.4.3ZDR was shown to have an inherent

noise from its sampling, which is quite large, especially for operational radars. This

sampling noise is reduced by increasing the number of independent samples, dictated by

the spectral width (normalised by the folding velocity). The optimal normalised spectral

width for accurateZDR measurement is≈ 0.09. This chapter initially examines the

effects on radar measurements of the three drop size distribution parameters.

One of the advantages of dual polarisation radar, which led to its introduction to the

operational environment, is the potential improved rainfall estimation offered. However,

if this advantage is to be obtained, one must allow for the noise in the observed data. If

the radar parameters are to be utilised for moderate rainfall rates, theZDR data available

must be accurate to within0.1 dB. This would require careful calibration, which may

not be a trivial task. This will be considered within this chapter. The “true” nature

of the rainfall is found within the sampling noise. This chapter will show how it may be

possible for moderate rainfall rates to find the signal from within the noise and to estimate

the drop size distribution and therefore reduce the inaccuracies in rainfall rate estimation.

This chapter examines the patterns ofZ andZDR expected, and discusses how one may

reduce the noise in the data and examines the information that is available despite the
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noisy measurement.

3.2 DROP SIZE SPECTRUM EFFECTS ON Z AND ZDR

In this section the effect of adjusting the three parametersof the normalised gamma

distribution of rain drops described in section 1.3 will be described. Recall that the three

variables are the drop concentration,Nw, the median drop diameter,Do and the shape

parameterµ. Each of these parameters will affect the position of a pointin Z/ZDR space.

3.2.1 EFFECT OF DROP CONCENTRATION

The drop concentration term is the most straightforward to describe and explain the effect

onZ andZDR. IncreasingNw merely means that there are more drops present, but their

relative sizes remain the same. This means that reflectivitymeasured at both horizontal

and vertical polarisations is increased with the drop concentration. SinceZH andZV are

both scaled withNw the ratio of them remains constant, hence theZDR remains constant.

Section 1.3 stated thatNw varies over a large range,96% of recorded values lying within

a factor of13, and this variation will transfer to reflectivity resultingin a variation of

11.1 dBZ.

In summary, an increase inNw raisesZ, but has no effect onZDR.

3.2.2 EFFECT OF MEDIAN DROP DIAMETER

As the target drops increase in size, the reflectivity increases byD6. The same factor

applies to the reflectivity at both polarisations, althoughrain drop shapes mean that as

the drop grows, it becomes more oblate, increasing the difference between the horizontal

and vertical drop sizes that are used inD6. This difference means thatZDR increases

with the median drop diameter, approximately weighted by the seventh moment.

In summary, an increase inDo increases bothZ andZDR.
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3.2.3 EFFECT OF THE SHAPE PARAMETER

The effect ofµ is more difficult to examine. Higher values ofµ mean a less diverse

spectrum of drop sizes. The effect is plotted in figure 3.1. Itcan be seen that the change

appears to be solely vertical. However this is because of theslope of the plot; in fact the

move is diagonal. Given theNw of 8000 mm−1 m−3 andDo remaining the same, theµ

Figure 3.1 dBZ andZDR expected for rain of constantNw of 8000 mm−1 m−3, and constantµ. The

solid line shows the plot ifµ = 0, the dashed line is forµ = 5. The red arrows show the true movement

that is occuring if there is no change other thanµ.

effect is as follows: the reflectivity if ‘µ = 0’ is slightly higher than if ‘µ = 5’ because

of the effect of the higher weighted tail of large drops (the large drops have a large effect

from theD6 relation for reflectivity). TheZDR is also larger from lowerµ as the large

drop tail is more influential on differential reflectivity asit has an approximate seventh

moment dependence on drop size. Consider the example whereNw is 8000 mm−1 m−3:

with µ = 0, whenZ is 40 dBZ,ZDR is 0.8 dB. Whenµ = 5 with the same other spectrum

parameters, these values become42 dBZ and1.5 dB.

This will be relevant when estimating drop size distribution parameters usingZ and

ZDR. When estimatingNw from Z andZDR, a value ofµ must be assumed, but changes

in the assumedµ will have an effect very similar to changingNw. This problem is demon-

strated in figure 3.2. However, to estimate rainfall, this consideration ofµ is less serious

than it would appear. The effect ofµ upon rainfall rate is reversed, almost cancelling out

the error induced. From the example above, the rainfall rates from the DSDs differ by
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Figure 3.2 Plot demonstrating the problem in distinguishing between achange inµ and a change in

Nw. The black line shows the case whenNw is 8000 mm−1 m−3 with µ = 5. If one now alters this

so thatµ = 0, the red line is obtained (higherZDR is found as a result of the greater presence of large

drops). However, this line is very similar to the blue line, which is the line whereNw is 1600 mm−1 m−3

with µ = 5. Given the noise levels in even the very accurate CAMRa data,the red and blue lines will be

indistinguishable.

just 6%. This means that although one will suffer fromµ variation if estimatingNw, but

not if one simply wishes to derive rainfall, usingNw as a route to that end. This will be

seen again later in the thesis.

3.3 ZDR OFFSET AND CALIBRATION

Any methods to derive rainfall properties from differential reflectivity measurements will

requireZDR to be accurately calibrated. Erroneous calibration ofZDR will be evident as

an offset in values of recordedZDR. For the purposes of this thesis, where moderate

rainfall rates are being examined,ZDR is required to an accuracy of0.1 dB (see section

2.4.2).

To calculate the offset in theZDR data (to enable correction) comparison must be

made between the observedZDR in a portion of data where the expected value is known

and well defined; generally this means where the value ofZDR is expected to be0 dB.

This will mean viewing particles that will have a invariant (to a good approximation)

circular shape when viewed from the radar. Three options will be considered.
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Viewing the sun This option happens with operational radars “accidentally”, after sun-

rise and before sunset. The radar will view the sun at low elevations and should

see the sun’s radiation as unpolarised returns; being unpolarised, theZDR should

be0 dB. The problem is that viewing the sun considers only the received channel

of the radar, but does not consider transmission, where calibration may also be a

problem if the transmitted power at each polarisation is notequal. Viewing the sun

is sometimes used for calibrating the positioning of radars, Collier (2001).

Vertical Dwells When viewing vertically the radar sees only the undersides ofthe hy-

drometeors, which will show no preferential alignment unless in the presence of a

strong electrostatic field. An example of data from a vertical dwell is shown in fig-

ure 3.3. This means that, on the average of a large number of targets, they will have

an apparent circular shape. When viewing vertically, sidelobes become a problem,

as the ground clutter returns from the sidelobes may be quitehigh and need careful

removal. The ideal conditions for a vertical dwell are a layer of thick high level cir-

rus cloud. Here the signal inZ will be strong enough to allow use ofLDR (LDR is

the linear depolarisation ratio, it is defined as the ratio ofvertically polarised return

and horizontally polarised return from a horizontally polarised transmitted beam,

this is useful as when the ground is the target the returned echo is depolarised so

LDRis high) for distinguishing clutter. The background noise is a returned factor

in both horizontal and vertical channels, so ifZ is small, the background noise in

the opposite channel will be a significant percentage, henceLDR will be high. The

return will be a reasonable distance from the radar (∼ 10 km), limiting potential

near field problems. (When in the near field radar the illumination of the radar

dish is not complete. In the near field, theZ recorded is lower than “true” val-

ues. Near field correction can be applied, as discussed at W-band and Ka-band by

Sekelsky, 2001. Although differential reflectivity shouldbe unaffected, any illumi-

nation pattern differences between the horizontally and vertically polarised beams

may introduce an error inZDR.)

Light rain In light rain or drizzle the hydrometeors are small. Small drops are spherical
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Figure 3.3 dBZ andZDR data from a (30s) dwell with the CAMRa radar pointing vertically. This data

was taken on 04 March 2004, in the presence of a cirrus cloud.

(section 2.3) so appear circular at all angles when viewed bythe radar. However,

for calibration, the rain to be examined must be clearly defined as being all small

drops. Low reflectivities but high differential reflectivities are possible when a

very low concentration of large drops are present. This occurs in the early stages

convective rain.

Each of these options have both advantages and disadvantages.

Viewing the sun does not require special time in the scan routine as it will occur

twice a day operationally. This would seem an excellent possibility but confirming only

the receive (not transmit power) will not be a thorough calibration, so will not have the

prerequisite accuracy. Calibrating the receive channel mayhave other uses, although
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viewing the sun is not suitable forZDR calibration.

Vertical dwells will give a good calibration. The conditions where the hydrometeors

align are quite unusual and easily recognised so the calibration using the vertical dwells

will be good in terms of reliability. However, performing a vertical dwell requires time in

a scan strategy and in an operational system, time within thestrategy is at a premium. A

vertical dwell requires not just the time to perform the dwell, but also the time to move the

dish to point vertically and then return to its near horizontal position. A further possible

problem occurs where the radar antenna may warp under the stress caused by the weight,

as the metal of the antenna is very heavy (the Chilbolton25 m dish weighs400 tonnes).

The warping may change the shape of the antenna slightly so itdoes not have the correct

curvature in all pointing directions. The stresses will be rather different in vertically and

horizontally pointing positions so these are where the largest effect of warping would

be expected. The effect of the dish warping is likely to be small, but the largest change

would likely be vertical to horizontal so calibrating at vertical for horizontal use may

have small error, but with a well designed antenna this errorshould be negligible.

Using light rain for ZDR calibration will be considered next. Light rain will be seen

by the radar regularly, and will be easy to detect. Using light rain for ZDR calibration

will not require additional scans in a scan strategy, a plus point in an operational sys-

tem. However, to use light rain for calibration one must be sure the rain is formed by

small drizzle drops, not just low concentrations of larger drops. Differentiating between

few large drops and a large number of small drops before calibration of ZDR may be

non-trivial. Even at low reflectivities of0-10 dBZ theZDR will be non-zero, predicted

for Marshall-Palmer rain (ZDR = 0.005 dB). With a gamma distribution with shape pa-

rameterµ = 5 this value is0.001 dB (note that these are well below the accuracy we

require).

Once one has found data known to have averageZDR of 0 dB, examination of the

data will show a spread inZDR as expected from the sampling, as described in section

2.4.3. However, the average of the data will be zero. To calculate the offset one simply

must find the averageZDR. However, saying “simply” find the averageZDR is ignoring

Page 44



Chapter 3: The Natural Variability in Reflectivity and Differential Reflectivity

−0.5 0 0.5 1 1.5 2

20

40

60

80

100

120

140

Z
DR

 (dB)

N
um

be
r 

of
 P

ix
el

s

Figure 3.4 Histograms ofZDR data. [Left] Data from figure 3.3. Overlayed is a Gaussian distribution

with same total, mean (0.70 dB) and standard deviation (0.35 dB). [Right] Data taken from a similar case

(with larger bin widths). Overlaid is a Gaussian distribution with same total, mean (−0.04 dB) and standard

deviation (0.38 dB).

a possible problem. Figure 3.4 shows histograms ofZDR data from vertical dwells. To

be entered into these histograms the point must have at least0 dB reflectivity,LDR less

than−10 dB and appropriate altitude (for the left panel this is between4 km and7 km).

These criteria remove clutter and data where signal to noiseratio will make the data

unreliable. The histogram shows that there is more data in the tails of the distribution,

which shows the data is not quite normally distributed. Thisnon-normality is shown

by the difference between mean ([left]0.70 dB, [right] −0.04 dB) and median ([left]

0.66 dB, [right] −0.00 dB). The difference between these is small however (0.04 dB in

both examples), so not a problem for calibration when using vertically pointing dwells

is (recall that0.1 dB accuracy is required). So despite the slight non-normality of the

distribution, calibration is well within the0.1 dB tolerance and is the best option for

calibratingZDR.

When considering the option of examining theZDR values of light rainfall, the his-

togram is more likely to be skewed than for the vertical dwell. Because of drop size

spectrum changes, larger oblate drops may become abundant,a result of extreme spectra,

but there is no spectrum option to give a reverse of this as prolate drops are unphysical.

Figure 3.5 shows an example ofZDR from light rain (defined as having0 < dBZ < 10).

In this case the distribution is near normal, with very little skew. However, this example
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Figure 3.5 Histogram ofZDR data from light rain (0 < dBZ < 10). Overlaid is a Gaussian distribution

with same total, mean (0.2021 dB) and standard deviation (0.2307 dB).

has a small number of points that are a long way from the peak (±5 dB), which have a

large effect on the mean and standard deviation despite the small numbers because of the

large variations they represent. To remove the effect of these points all data not within 3

standard deviations of the mean are removed before calculating the mean for calibration.

The cause of the extreme points is likely to be small amounts of ground clutter, which can

have a large effect onZDR yet little effect onLDR. This example shows that the data is

offset by0.20 dB, which should be corrected before use in rainfall estimation algorithms.

In conclusion, theZDR calibration is vitally important when usingZDR for estimating

rainfall rates. Its calibration is performed by checking its value where it is known it

should be zero. The recommended method for this is to use vertical dwells with the

radar, with checks for consistency in light rain when scanning horizontally. Although

vertical dwells are a problem in terms of time involved in a scan strategy the calibration

will not drift rapidly so the scans will not be required to repeat frequently and given the

importance of calibration time should be allowed.
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3.4 Z VARIATION

The accuracy of reflectivity is dependent on the number of independent pulses avail-

able. Each pulse measures the reflectivity, but the random positioning of individual drops

means that the scattered waves interfere (both constructively and destructively). However

the random movements of rain drops and other scatterers rearrange the interference pat-

tern, so if a number of pulses are averaged, the reflectivity estimate is improved. So the

more individual pulses are used for measurement, the betterthe measurement, although

this comes at the expense of scanning speed. The time spent pulsing per ray is known

as the dwell time. From dwell time and pulse repetition frequency (PRF) the number

of pulse pairs can be easily found. The Chilbolton CAMRa radar uses64 pulse pairs (a

pulse pair is a single horizontally polarised transmitted pulse, followed by a vertically

polarised pulse), but as the standard, four range gates are further averaged to improve

the estimate. An operational radar will be able to measure reflectivity to an accuracy of

1 dB, with random normally distributed sampling noise around the “true” value, using

the calibration technique of Goddardet al. (1994b) described in section 2.6.1. This level

of accuracy is acceptable for attempting to estimate rainfall rates to within25%.

3.5 ZDR VARIATION AND THE EFFECTS IT CREATES

MeasuredZDR data shows a spread of values. This spread is a result of the combination

of two spreading effects: random errors from the sampling (described in section 2.4.3)

and the natural variability of the rainfall adjusting drop spectra. An increase in mean drop

size, generally, will increaseZDR (generally is used here because if it happens thatDo

increases a little whileµ also increases, the lack of larger drops from theµ effect actually

decreaseZDR). These two effects will be constantly present. However it is possible to

limit the effect of the spread caused by natural variabilityby examining data from very

small areas (where natural rain changes will be small) or considering low reflectivity

where drops are all small so the natural variations have little effect onZDR despite large

drop spectrum changes. Using low reflectivity areas to ensure natural variations are small
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may not be perfect: in convective rain it is possible to have avery small number of large

drops, which individually have high reflectivity, but with so few, the integrated result over

the radar is a rather small average.
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Figure 3.6 Histogram showing the distribution ofZDR data from 18/08/2000. This data is for all data

points passing andLDR threshold of−20 dB with ranges between15 and60 km and24 − 26 dBZ. Also

shown is a normal distribution with the same mean, standard deviation and total as the data for comparison.

Figure 3.6 shows a histogram ofZDR data from a large area of data (so DSD varia-

tions will be large), but only where a2 dB band of reflectivity is considered. The small

band so thatZDR variations as expected from rain of constantNw are small. The data

is also chosen to be within light rain so that nearly all dropsare spherical, hence natural

drop spectrum changes have little effect on the drop shapes.The plot has a normal distri-

bution of the same mean (0.10 dB), standard deviation (0.19 dB) and integral total points

overlaid for comparison. The distribution can be seen to follow a normal distribution well

within two standard deviations, but with a higher weighted positive tail compensated by

less well represented negative tail. Since this data is showing predominantly the distribu-

tion caused by a sampling problem, with little natural variation, averaging over four data

points would be assumed to halve this spread (1√
4

= 1
2
). However, averaging does not
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have the expected effect on standard deviation of the distribution. By averaging points

from alternate gates and rays and then repeating the histogram of figure 3.6, this leads

to a distribution with mean of0.11 dB and standard deviation of0.16 dB (reduced by

just 16%). The reason for this is that the averaging mixes in data fromother reflectivity

bands (whereZDR would be expected to be different) rebroadening the distribution of

ZDR, disguising the effect of the averaging.

Now this will be considered for a very small area of16 points of data. The sixteen

points are considered as4 boxes, each containing four data points ofZ andZDR data

(see figure 3.7). For each box the meanZDR (ZDR) and standard deviation ofZDR (σZDR
)

are calculated. With only four points, the variations in these values will be quite large,

although from these one can calculate the standard deviation of ZDR at grid scale level

by

σgrid =

(

σABEF
ZDR

+ σCDGH
ZDR

+ σIJMN
ZDR

+ σKLOP
ZDR

)

4
. (3.1)

The noise of the data when 4 points are averaged is given by

σ4pts = std
(

ZABEF
DR + ZCDGH

DR + ZIJMN
DR + ZKLOP

DR

)

. (3.2)

In these equations superscripts are used to define the grid boxes (from the left of figure

3.7) used to calculate that average or standard deviation, not powers. This procedure is
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Figure 3.7 Schematic to demonstrate how the effect of averagingZDR points can be examined.

repeated over a large number of positions for a dwell. When theradar is pointed and

measurement is performed with the radar static in this position, this results in a time
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series of data. This gives the result ofZDR dropping by48%, near the50% the statistics

would expect (the value of48% is derived from207 sets of sixteen points).

For averaging 4 points there are three sensible possibilities: averaging two points in

range and two in time as in figure 3.7, averaging four points inrange to have 4 boxes

(ABCD, EFGH, IJKL and MNOP) or four boxes in time (AEIM, BFJN, CGKOand

DHLP). These yield a53% drop and a40% drop inZDR spread respectively.

The reason for the halving occurring with this method of comparison is thatZDR is

averaged and spread considered only from the local points (the values ofZ are never

seen). Mixing ofZ changes are part of the 16 point method, but sorting byZ does not

occur, and theZ has no impact on the spread calculation.

The natural variability of rainfall means that the variations in recordedZDR increase

as the reflectivity increases because the large (and hence larger and therefore oblate)

drops become increasingly important. This can be seen in figure 3.8. This plot shows

that theZDR generally increases (withZ) as expected for rain of constantNw, shown by

the red lines. The spread shows variation inNw is larger at lower reflectivities. However

this is a result of smaller changes inZDR, at a fixed reflectivity, from variations inNw.

Generally the number of points in each histogram decreases with increasing reflectivity

for this rain event.

3.5.1 EFFECT OF ZDR SPREAD ON DERIVED RAINFALL RATES

The spread inZDR will obviously have an impact on the rainfall rates derived using point

measurements ofZDR. This effect can be easily seen in figure 3.9: changes horizontally

on this plot adjust the rainfall rate.

The previous chapter demonstrated that Chilbolton data had aZDR spread with stan-

dard deviation of∼ 0.2 dB. This shows again the problem of negativeZDR (discussed

in section 2.4.4) whenZ (and henceZDR) are low. NegativeZDR is less common at

increased reflectivities as can be seen in figure 3.8, so incalculable rainfall rates become

less common in heavier rain. Along with negativeZDR are very low values ofZDR where
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Figure 3.8 Plot showing the distribu-

tion of ZDR data from six PPI scans over

2.5 hours on 18/08/2000. This data is for

all data points passing anLDR threshold

of −20 dB with ranges between15 and

60 km. The data is selected by reflectivity;

a histogram is made for each division. The

histograms are then normalised to have the

same peak values. These normalised his-

tograms are then plotted together in or-

der, so each black curve is the normalised

ZDR histogram at theZ-band shown on

the Y-axis. The number to the left, above

each line is the number of pixels which

were used to make that histogram. Over-

laid are three red curves which show the

curves predicted by rain of constantNw of

80 000, 8 000 and800.

very small changes inZDR imply large changes in rainfall rates, which can be seen by

the colour gradient horizontally in the lower-left corner of figure 3.9.

Now consider the data that one would expect to be recorded. Figure 3.10 shows

typical data expected for an area whereNw = 1700 m−3 mm−1. The blue crosses show

simulated data with aZDR error of0.2 dB, with red crosses where that noise is0.5 dB.

This plot really shows the problem that the error causes whencalculating rainfall rates.

First consider the smaller error. The0.2 dB error is similar to the data from the Chilbolton

radar, which is a very accurate research radar. Also plottedon the figure are the lines

where the drop concentration is different by a factor of four(Nw = 6770 m−3 mm−1

andNw = 425 m−3 mm−1). These lines are similarly spread to the blue crosses of the

simulated observations, so theZDR variations adjust the rainfall rates calculated gate-by-

gate by a factor of2.5. This is a very large error, showing that even with an extremely
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Figure 3.9 Theoretical plot ofZDR againstZ. Colours show rainfall rate (on a logarithmic scale)

calculated by the method of Illingworth and Blackman (2002). Note that the colour scale has been set to

saturate at0.3 mm/hr and1000 mm/hr; these are not limits. Also plotted are black lines of constant rainfall

rate, labelled in mm/hr and a magenta line ofNw = 8000. This plot does not cover negative unphysical

values ofZDR.

accurate research radar gate-to-gateZ andZDR will actually worsen the errors in rainfall

rates at these reflectivities/rain rates. However, it is clear from the figure that the crosses

do show a common line: they average to the solid black line as shown, so if this line

can be estimated, much more accurate rates can be achieved. The 0.5 dB noise points

(in red) show data that would be typical for the same region, but for a good operational

radar. Here, data shows large variations, and negativeZDR occurs even above35 dBZ.

This spread would result in as much as a factor of10 error in rainfall rate, although even

to the eye the average of the data is clearly near to the solid black line. If this could be

estimated, much improved rain rates would be available.

Previously it was shown that by averaging the data the errorsin ZDR can be markedly

reduced. However, averaging reduces the resolution, so loses much of the power of

using radar. Another minor point to consider is that averaging of Z andZDR does not

average theNw (due to the curvature of lines when remaining constant). Thelarge errors
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Figure 3.10 A plot showing the expectedZDR spread. The solid line shows the position ofZ and

ZDR given Nw = 1700 m−3 mm−1. The blue crosses show typical data give this distribution,with a

standard deviation of0.2 dB in ZDR from theNw = 1700 m−3 mm−1 line. Red crosses show the same

except with higher0.5 dB noise. The two dashed lines show the position ofNw = 6770 m−3 mm−1 and

Nw = 425 m−3 mm−1.

in rainfall rates acutely show the need for integrated techniques for rainfall calculation if

simpleZ−R relation techniques are to be improved upon, especially foroperational radar

systems, so as to maintain the high resolution available, but with the extra information

made available by the new polarisation parameters.

3.6 SUMMARY

This chapter has examined the variability of radar data in reflectivity and differential

reflectivity. The data of both shows variations from two separate sources, sampling noise

and natural variability of rainfall (in the drop size distribution).

The response ofZ andZDR to changing each of the three parameters of the nor-

malised gamma distribution of rain drops was examined.Nw was shown to scale withZ,

but becauseZDR is a ratio of reflectivities, it has no alteration fromNw. Changes in the

median drop diameter increase bothZ andZDR, from the sixth and seventh moments of
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size. The effect ofµ is based on the amount of large drops present within the distribu-

tion. Loweringµ slightly increases reflectivity, but has a larger effect onZDR, in which

the large drops have a greater effect. Theµ change has a similar effect when viewing

lines inZ/ZDR space to that of changingNw, so any detected change inNw may in fact

be the result ofµ. Fortunately, the rainfall rate is similarly affected so the erroneously

estimatedNw would still yield a good rain rate estimate.

If one is to useZDR data for rainfall estimation it needs to be precisely calibrated.

Three options for calibration ofZDR have been discussed, and conclude that vertical

dwells are the best method, checked with light rain in near horizontal scans to ensure

warping of the antenna is small.

When removing the noise in data one must be cautious. Selecting data by reflectivity

and performing statistics on theZDR does not yield the expected results of averaging.

The changes inZDR that occur hand in hand with changes inZ increase the spread in

values, apparently reducing the effect of averaging. It wasshown with use of boxes of

sixteen pixels that the averaging of data does improve the accuracy ofZDR as expected

(critically this is at the expense of resolution which may not be desirable). Averaging

four points reduces the standard deviation inZDR by 48%; close to the expected50%.

The effect of the noise inZDR when measuring rainfall rates is examined, showing

that an operational radar would be so prone to the noise inZDR that point by point meth-

ods utilising it will suffer greater noise (possibly as muchas a factor of ten) than a simple

Z − R relation.
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CHAPTER 4:

RAIN STATISTICS

4.1 INTRODUCTION

To demonstrate the effectiveness of any rainfall measuringtechnique, it must have its

outputs compared with a ground truth. Traditionally one uses rain-gauge measurement

to compare against our radar derived rainfall accumulations (e.g. Brandeset al., 2001),

especially using hourly accumulations (e.g. Collier, 1986 and Ryzhkovet al., 2005b).

In this chapter, the effect of the frequency of measurementswill be examined using a

drop counting rain-gauge. A harsher test would be to comparethe rainfall rates measured

by both gauge and radar, as accumulations have the effect of averaging out variations in

rate. The longer the accumulation considered, the greater the averaging (an example of

assessment from averaging is Harroldet al., 1974).

Variations in rainfall rates at a location (which goes hand-in-hand with spatial rainfall

distribution) have far wider use than simply for radar comparison. Rainfall statistics are

important for a wide range of engineering applications, forhydrological applications,

predictions of river flow, erosion and design of urban drainage. Statistics of rain are also

important to the telecommunications industry, who have concerns about the fade statistics

of microwave communication links.

Rainfall has a chaotic nature, with large fluctuations on small spatial and temporal

scales. This means that if one only measures the rainfall rate at sparse intervals the

accumulation may not match the “truth”. See figure 4.1, whichshows the rainfall accu-

mulations at a30 s time resolution, and the accumulations measured when one measures

for 30 s only once every15, 5 and2.5 minutes. The total accumulations which result

from these four time series are also seen to be different.

The effect of frequency of measurement is especially important for radar meteorology.
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Figure 4.1 A plot showing the rainfall accumulations over an hour. The black line shows the “Truth”

from the drop counting gauge (30 s time resolution); the coloured lines indicate the accumulation from

taking a30 s snapshot only every15, 5 or 2.5 minutes. The snapshots are taken from the middle time

between crosses.

It is common to compare radar rainfall estimates with rain-gauge measurements using

accumulations, but the return period for the radar measurements will significantly affect

the accumulation calculated. The very nature of rainfall means that rain-rates are rarely

consistent for more than a few minutes, often with large peaks and troughs. This means

that if one measures the instantaneous rainfall rate duringthe peak, the accumulated

rainfall will be much larger than the truth. However, if the measurement occurs during

a trough in the rainfall rate the accumulation will appear smaller than the truth. Figure

4.1 shows examples of both cases. For the15 minute repeats an above average rate is

measured and therefore the accumulation is overestimated.The5 minute repeats initially

underestimate, but “catch up” much of the difference by overestimating the end of the

main shower. To demonstrate the effect numerically see table 4.1. Here the effect of

sampling at only half the times are seen, and then just a quarter. Both cases result in an

underestimation.
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Rates Accumulation

0 1 1 2 2 3 5 9 6 4 4 3 3 2 2 2 4 7 3 1 64

0 2 4 10 12 8 6 4 8 2 56

4 20 16 8 4 52

Table 4.1 A numerical demonstration of the effect of different sampling frequencies. In this case the less

sampled sets show smaller accumulations.

4.2 INSTRUMENT: DROP COUNTING RAIN-GAUGE

For this work a rapid response drop counting rain-gauge (Norbury and White, 1971) will

be used, located at Chilbolton. This instrument collects rainfall and counts water droplets

of known volume falling from the reservoir. The gauge has a150 cm2 collecting area and

a time resolution of30 s, giving a quantisation of0.48 mm/hr as each drop corresponds

to 0.004±0.0004 mm of rainfall. The quantisation of the data will affect the results when

considering very low rainfall rates. The data used was from1st May 1999 to31st March

2005, with a total of61 months of data available (39, 936 hours), covering all seasons.

This data set includes7, 990 rain events (defining separate events to have five minutes of

zero accumulation between them) with a mean duration of24 minutes and accumulation

per storm averaging0.47 mm.

4.3 PDFS OF RAINFALL RATES

Of the 4, 792, 320 rain rates in the data set,95% have no rain. The data is plotted in

figure 4.2 to show the rainfall occurrence. This figure shows to the lower right the noise

resulting from the low number of events of very high rainfallrates causing Poisson noise.

Rainfall rates of above≈ 5 mm/hr show an exponential distribution, although there is a

more curved pattern below this rate.

Alternatively this can be shown as the probability of a rainfall rate above a value,

shown in figure 4.3. This demonstrates that moderate or heavyrainfall (> 3 mm/hr) is

measured1% of the time. Also shown on this plot are curves supplied by Goddard (per-
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Figure 4.2 Plot showing the frequency of rainfall rates. The noise occurs to the lower right as a result

of the very few events with the highest rainfall rates. The curvature (suggesting less low rates than a linear

model would suggest) initially may be a result of a gauge sampling effect, although it will shortly be seen

that this is is not instrumental.

sonal contact, 2006). These show similar statistics for a rain gauge located in Sparsholt

(located7.5 km South-East of Chilbolton), rates derived from Chilbolton radar and sug-

gested from the ITU-R (International Telecommunication Union - Radiocommunication

Sector) model. It happens that Chilbolton lies on the border of two zones (climate E and

climate F, which describe climate types) of the ITU-model soboth are shown on this plot.

These plots also show the curvature for low rates (implying that low rates are less likely

than they would be if a linear model were used). This indicates that the curvature is a

physical effect and not the result of gauge error. This physical effect of curvature is also

shown by Jones and Sims (1978) for all of the defined climatic regions. They also show

that in the climatic region of Chilbolton (maritime temperate) this curvature is especially

pronounced.
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Figure 4.3 Plot showing the regularity of occurrence of rain rates. Here the plot shows the probability

of rainfall above a chosen rate. Also shown are curves from Goddard (2006), personal communication, for

a rain gauge at Sparsholt (∼ 7.5 km from Chilbolton), rain derived from the Chilbolton radarand ITU-R

recommended model statistics for the two zones (climate E and climate F) of which Chilbolton is on the

boundary.

The hourly rainfall accumulations have been calculated from this data. From these,

82% of hours have no rainfall. Next the rainfall rates occurringin each accumulation

will be examined. Even in the hours with the largest accumulations, many30 s samples

contain no rain.

From the data set, the possibility of a universal relationship between rain rates falling

within hours of any accumulation will be examined. The first step is to calculate the

proportion of30 s samples for each rain rate. At this point it should be noted that the

instrument dropper imposes a measurement quantisation of

120(number of samples in hour) × 0.004(size of one drop) = 0.48mm/hr. (4.1)
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The results of plotting the proportions is shown in figure 4.4, where a similar pattern

for all accumulations is seen, suggesting a universal relationship may be applicable. The

events within the accumulation categories decrease dramatically as the accumulation in-

creases, with1187 cases of1 mm within an hour, but just8 cases of10 mm within an

hour. The reason for this discrepancy is clear from figure 4.3. However, this plot has too
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Figure 4.4 Plots showing the proportions of30 s rain rates recorded during different hourly accumula-

tions. Horizontal axis: linear.

little emphasis on the lower rainfall rates, so to improve onthis the horizontal will also

be given a logarithmic scale, resulting in figure 4.5.

In this plot it is easier to see the differences between the accumulation levels. In

general the probability of any given large rainfall rate (>10 mm/hr) increases as the

hourly accumulation increases as would be expected. Also, lower rates are more common

in hours of small accumulation. Most importantly these lines all show similar pattern, but

are offset in both dimensions. Next the rainfall rates will be rescaled. A similar plot to

figure 4.5 will be created, replacing the horizontal axis with rainfall rate as a proportion

of hourly average:

PHA =
R30s

RHA

, (4.2)

whereHA stands for “hourly average”. This yields figure 4.6. In this plot the turn-
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Figure 4.5 Plots showing the proportions of30 s rain rates recorded during different hourly accumula-

tions. Horizontal axis: logarithmic.

10
0

10
2

10
−4

10
−2

Rain rate/mean rate for 1hr

P
ro

ba
bi

lit
y 

(0
.4

8m
m

/h
r 

bi
n) 1 mm

2 mm
3 mm
4 mm
5 mm
7 mm
10 mm
30 mm

Hourly Totals

Figure 4.6 Plots showing the proportions of30 s rain rates (vertical), as proportion of hourly average

recorded (horizontal) during different hourly accumulations (shown by colour).

ing point of all colours (accumulations) occurs at the same point. However the lines

maintain the vertical displacement, showing that a proportional rate of0.48 (0.48 mm/hr

for a 1 mm accumulating hour,2.4 mm/hr for a5 mm accumulating hour) is more

likely for lower rainfall rates. This effect is however caused by the quantisation of
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rates from the counter. For the1 mm hourly accumulation, the quantisation occurs at

0.48 mm hr−1/mm hr−1, although, for a30 mm accumulation the minimum recordable

PHA is 0.016 mm hr−1/mm hr−1. To examine the probability of any rainfall rate a cor-

rection for this effect must be applied. To do this the vertical axis is changed to be the

proportion of30 s rates per1 mm hr−1/mm hr−1.

probability of 30s rate per bin width

= proportion of hourly average × quantisation proportion (4.3)

The result is shown in figure 4.7a.

Figure 4.7 shows that different hourly accumulations have the same distribution; for

rain-rates much above the hourly average, a power law fall off is seen. This power law

has slope of−3. A constant probability is observed for occurrences less than the hourly

average. If the function is defined to be continuous, have a power law relationship with

slope−3 and be constant for lighter rainfall than average rainfall,the constant value

can be found via integration. This model must satisfy the twoimportant integrals. First

consider the probabilities: the total probability must be one, and the problem must be

considered in linear space:
∫ 1

0

Cdr +

∫ ∞

1

Cr−3dr = 1, (4.4)

wherer is the normalised rainfall rate. Integration yields thatC + 1
2
C = 1, soC = 2

3
.

Next check the average; meanr must again be one.
∫ ∞

0

Prdr = 1 =

∫ 1

0

1

3
rdr +

∫ ∞

1

1

3
r−3rdr. (4.5)

Integration reveals that this is satisfied. So the constant value for rainfall rates below the

average is2
3
, which, in the log space of figures 4.7, is−0.18.

This procedure was then repeated, changing the accumulation period to15 minutes

(figure 4.7b) and3 hours (figure 4.7c). Similar distributions of rainfall rates are found, all

showing the turning point occurring at the hourly average rainfall rate.
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(b) 15 minute accumulation
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Figure 4.7 Rainfall rates occurring as a proportion of the accumulation over a period shown. The data

has been normalised to allow for the probability of occurrence and quantisation of rainfall rates. Also

plotted is the fitted model in black.

This tells us significant information on the nature of rainfall. In absolute terms, an

hour of3 mm of rain shows little variation in rainfall rate, whereas avery heavy event of

20 mm shows large variations. However, in relative terms, these variations in rate are the

same. One would expect this behaviour to occur for any high resolution rainfall data set,

including high resolution numerical model grid boxes.
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4.3.1 DATA REQUIRED TO DEMONSTRATE THIS BEHAVIOUR

The amount of data needed to see the behaviour described above will be important for

confirmation of models. Figure 4.8 shows examples of data from three of the wettest days

of the dataset ([a]42 mm, [b] 24 mm and [c]34 mm falling during the days). The plots

show similar behaviour to that expected by the model presented above, but there is some

variation. Figure (a) shows a curve over the turning point, (b) shows a large peak at the

mean rate for the4 mm/hr category and (c) shows less lower rainfall rates than average

for all categories.
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Figure 4.8 Rainfall rates occurring as a proportion of the accumulation over an hour. These examples

each show data from one very wet day [each a separate day] (accumulation of> 20 mm).

Although the expected behaviour can be seen from a single dayof heavy rain the best

test would involve a longer record for statistics.

4.3.2 RAIN RATE BEHAVIOUR FROM RADAR DATA

The distribution of rainfall can be examined using radar data as well as rain gauge data.

We will calculate rainfall rate at each radar pixel using a simpleZ −R relationship, then

instead of considering the rainfall rates as a proportion ofa time average rate, they will be

considered as the proportion of the average rate over an area. Figure 4.9 shows that the

radar data shows similar characteristics to the gauge, but the lower rainfall rates appear

to be rather reduced, with the increase in rates near the mean. This may be an effect of

the radar having poor measurement at low rainfall rates.

Page 64



Chapter 4: Rain Statistics

−1.5 −1 −0.5 0 0.5 1 1.5

−4

−3

−2

−1

0

log (R
i
/R

HA
)

lo
g

 P
n

o
rm

a
lis

e
d
(R

)
1 mm 
2 mm 
3 mm 
4 mm 
5 mm 
7 mm 
10 mm
30 mm

(a)

−1.5 −1 −0.5 0 0.5 1

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log (R
i
/R

HA
)

lo
g

 P
n

o
rm

a
lis

e
d
(R

)

1 mm 
2 mm 
3 mm 
4 mm 
5 mm 
7 mm 
10 mm
30 mm

(b)

−1 −0.5 0 0.5 1 1.5

−4

−3

−2

−1

0

log (R
i
/R

HA
)

lo
g

 P
n

o
rm

a
lis

e
d
(R

)

1 mm 
2 mm 
3 mm 
4 mm 
5 mm 
10 mm

(c)

Figure 4.9 Rainfall rates occurring as a proportion of the average overan area. The area for averaging is

(a)5.6◦ azimuth by4.5 km range, (b)11.2◦ azimuth by9 km range and (c)22.4◦ azimuth by18 km range.

The radar data was chosen to be free of non-rain targets (LDR< −20 dB) with ranges between15 km and

60 km. The data was taken during the passing of a front over Chilbolton on 18/08/2000.

Similar analysis has been performed for another radar scan (figure 4.10). In (a) and

(b) the low rates are less frequent than expected, but in (c) this effect is not seen. This

indicates that this behaviour is only seen if the averaging area (or time) are large enough.
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Figure 4.10 Rainfall rates occurring as a proportion of the average overan area. The area for averaging

is (a) 5.6◦ azimuth by4.5 km range, (b)11.2◦ azimuth by9 km range and (c)22.4◦ azimuth by18 km

range. The radar data was chosen to be free of non-rain targets (LDR< −20 dB) with ranges between

15 km and60 km. The data was taken during the passing of a front over Chilbolton on 09/10/2000.

The behaviour of rainfall rates from the radar have shown howthe model of rainfall

rate distributions can be applied to uses beyond simple raingauges. It is important for

numerical models to also obey these statistics, to ensure rainfall is correctly simulated.
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4.4 ERRORS DUE TO FINITE NUMBER OF RADAR SCANS

To examine the effect of the regularity of “snapshots”, the effect of measuring the rainfall

every2.5, 5 and15 minutes will be studied, this is briefly discussed by Harroldet al.

(1974). This involves selecting one measurement in the required time period and cal-

culating the apparent hourly accumulation with the “truth”. For this, the errors in the

measurement must be calculated. The errors are controlled by Poisson statistics so that

the error is given by
∆R

R
=

√
N

N
, (4.6)

whereN is the number of tips during in the time period concerned. To reduce the errors,

“snapshots” are taken from one minute accumulations (from successive samples). To

compare the different accumulations from the timing possibilities the two will be com-

pared using these errors. To compare a15-minute repeating cycle of “snapshots” first see

figure 4.11. This plot shows some extreme outliers, with the largest errors occurring from

overestimated rainfall accumulations. The size of the errors are also seen: the errors for

the15 minute repeats are larger as the total sampling time is just2 minutes of the hour

(hence lowN ), where the whole hour is used for the “truth” (so highN ).

A similar plot for examination at5 minute intervals is shown in figure 4.12. This is

quite a significant improvement, with much fewer points withlarge discrepancies.

The errors caused by the sampling effect will now be examined. The data will be

divided up into a number of rain-rate categories. For each category the bias, the mean

modulus of the error, the root mean square error and standarddeviation of error are

calculated. The sampling of the counter means that a small error will occur as a result

of measurement and this error cannot be improved upon. This error as a result of the

“counter” sampling increases with rainfall rate in an absolute sense, but decreases in a

fractional sense, which can be seen visually as the black lines in figures 4.13 (absolute)

and 4.14 (percentage).
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Figure 4.11 A comparison of hourly accumulations between the “truth” (horizontally) and apparent

accumulation from sampling once every15 minutes (vertical). The blue line plots where the two are the

same, red crosses show the positions of all hours of the61 months which contain rain and the size of the

cross indicates the errors on this value.

4.4.1 BIAS

bias = recorded vaulue − true value (4.7)

The bias will show any systematic errors occurring as a result of the reduced snapshot

distribution. The bias is calculated and plotted in figure 4.13 for rainfall categorised by

true hourly rainfall. The black curves show the error expected as a result of sampling the

entire hour of rainfall. There will be significant bias if thecalculated bias for a sampling

return period lies outside of this. The figure shows that all show no significant bias

allowing for errors except for the case of15 minute sampling of rainfall between8.5 and
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Figure 4.12 A comparison of hourly accumulations between the “truth” (horizontally) and apparent

accumulation from sampling once every5 minutes (vertical). The blue line plots where the two are the

same, red crosses show the positions of all hours of the61 months which contain rain and the size of the

cross indicates the errors on this value.

11.5 mm within the hour. However, this comprises just8 cases in the record. So the

sampling period does not bias the total derived rainfall within an hour.

4.4.2 ROOT MEAN SQUARE ERROR

RMS =

√

[

(recorded − truth)2] (4.8)

The root mean square is a measure of the average error in the data. We examine the

mean square error to determine the error in rainfall rate caused by longer sampling return

period. Figure 4.14 shows the root mean square error in termsof percentage error. Again
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Figure 4.13 Plot showing the bias caused by sampling return period.

the expected error caused by the sampling of the dropper is plotted in black; if the RMS

errors lie above this line, the error is significant. It can beseen that as the sampling return

period is decreased the error in calculated hourly totals isreduced, and that the largest

percentage errors occur at low rainfall rates. It should be noticed that the errors occurring

are all significant.

These errors found however comprised the combination of twoerror distributions: the

sampling error of calculating the “truth” from the counter and the error which is the result

of the increased sampling return period. Assuming both errors are normally distributed

this can be expressed as:

(σtotal)
2 = (σcounter)

2 + (σreturn period)
2 . (4.9)

This means that to calculate the error that is caused by the sampling return period the
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Figure 4.14 Plot showing the effect of sampling return period in percentage error of “true” rainfall rate.

formula

σreturn period =

√

(σtotal)
2 − (σcounter)

2 (4.10)

is used.

This will give an indication of the error that would be expected from a radar measuring

hourly rainfall accumulations (figure 4.15), showing limitations from the variability of the

rain and requirements for a scan strategy to measure rainfall accumulations accurately.

Figure 4.15 shows that for rainfall rates of order5 mm/hr an accumulation of15%

accuracy can be achieved by a return period of5 minutes, although if the return period

is 15 minutes, this error has increased to45%. This means that a radar measuring the

accumulation from four scans per hour will show a45% error given a PERFECT radar-

rainfall algorithm. In actuality the radar-rainfall algorithm will generally be significantly

in error in measuring rainfall rates, which will add to the error caused by scan strategy.

However, the effect of how regularly one samples rainfall onmeasured accumulations

Page 70



Chapter 4: Rain Statistics

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

hourly rainfall (mm)

R
M

S
 p

e
rc

e
n

ta
g

e
 e

rr
o

r 
fr

o
m

 r
e

tu
rn

 p
e

ri
o

d

2.5 Minute
5 Minute
15 minute

Figure 4.15 Plot showing the effect of sampling distribution of “snapshots” in percentage error of hourly

rainfall rate, having removed the effect of sampling using the drop counting gauge.

can be examined in another way: autocorrelations.

4.5 DECORRELATION TIME OF RAINFALL RATES

The “memory” in the system will be examined by calculating the correlation of the rain-

fall rate with the rainfall rate a time before (the autocorrelation function). For this the

Pearson’s correlation is calculated for the rainfall rate at time t and the rain-rateτ sec-

onds later,t + τ :

ρτ =

∑
(

Rt − R
) (

Rt+τ − R
)

∑
(

Rt − R
)2 . (4.11)

Calculation of the autocorrelation demonstrates that the correlation decreases with

time lag as shown in figure 4.16. The decorrelation is exponential as expected from pre-
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vious work (Zawadzki, 1973, 1987; Drufuca and Zawadzki, 1975) showing decorrelation

time toρτ = 0.5 of 4.5 minutes or decorrelation toρτ = e−1 of 9.3 minutes. Burguẽno,

A. and Vilar, E. and Puigcerver, M. (1990) derived decorrelation times of3.5 and5.4 min-

utes for a rain gauge in Barcelona. The data from Chilbolton hasa longer decorrelation

time, related to the relative prevalence of convective rainfall in Barcelona (this will be

examined shortly). The decorrelation time is much lower than that reported by Zawadzki

(1987) (∼ 20 minutes) for Montreal. This is likely to be a result of the time resolution

of the available data: he used data smoothed over5 minutes of tipping bucket rain gauge

data.

These decorrelations can be converted into a spatial decorrelation scale from the speed

of rain storm progression using a “synthetic storm” (Drufuca and Zawadzki, 1975), as-

suming that the time series from a fixed point rain gauge is theresult of advection of spa-

tial variations. Using an assumed mean storm progression speed of10 m s−1 (36 km/hr)

the decorrelation distance toe−1 is 5.5 km.

It is seen that after just5 minutes the correlation has dropped to0.5, and by15 minutes

it has fallen to just0.3. This shows the amount the rainfall is related to the rate before,

so only30% of the rain-rate now is related to the rain-rate15 minutes ago. This clearly

shows the need for regular repeats when calculating accumulations from rainfall rate

“snapshots”.

4.5.1 SEASONAL AUTOCORRELATION

By dividing the data into seasons (winter: DJF, spring: MAM, summer: JJA, autumn:

SON) the effect of the time of year on rainfall correlations can be shown. The autocor-

relations for all four seasons are shown in the left panel of figure 4.17. The summer

season is seen to have higher correlation than the winter forshort lag periods, although

after4 minutes the correlation is lower, continuing to decrease asthe lag increases. This

pattern can be easily explained by the predominant precipitation during these seasons.

Convective rainfall is more common during the summer, while stratiform rain dominates
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Figure 4.16 Plot showing the autocorrelation function of rainfall rates. Marked on are the correlations

at2.5, 5 and15 minute lags to correspond to the tested return periods for hourly accumulations.

during the winter months (see figure 4.17 right panel). Stratiform rain’s large scale na-

ture mean that the variations over even long periods are rather small, indicated by the

high correlations (> 0.5) at time lags as far as25 minutes (decorrelation to0.5 occurs

in 26.8 minutes, to decorrelate toe−1 is 51.9 minutes), whereas convective rain occurs

in short sharp “bursts”, so is poorly correlated for long lagperiods (decorrelation time to

0.5 of 5.1 minutes and falling rapidly so as the decorrelation toe−1 takes8.9 minutes).

These times are longer than the times for the full data set as only the heavy rain is con-

sidered (so comparison should only be made between convective and stratiform, not with

the overall data set). As expected spring and autumn lie between summer and winter.

With operational radar scan strategies having low level scans at5 minute intervals the

seasonal effect on accumulation accuracy is small as it is near the crossing point.
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Figure 4.17 [LEFT] Plot showing the autocorrelation of rainfall rates for 4 seasons. [RIGHT] Plot

showing the autocorrelation of rainfall rates for convective and stratiform rainfalls. These have been defined

as rain from days where more than10 mm of rain fell. Stratiform rain has a daily maximum rain rateless

than22 mm/hr, if the daily maximum was greater than22 mm/hr the rain was considered convective. This

gives58 days of data of each type.

4.6 RAINFALL POWER SPECTRUM

This section will examine the power spectrum of the rainfalldata from the rain gauge. To-

gether with the auto-correlation function the power spectrum density provides a Fourier

transform pair. Physically, we know that rain varies on a number of scales. The rain

varies from mesoscale (103 km) processes, such as weather systems, to microscale vari-

ations (1 cm), such as drop interactions. This means a model of the temporal spectrum

of the rainfall (in actuality this will be of log of rainfall as will be seen shortly) can be

formulated. Venezianoet al. (1996) combine the segmented spectra of previous authors

to gain a spectrum as shown in figure 4.18. They suggest thatω1 occurs at the scale of

convective cell clusters (7-15 km, Crane, 1990 [∼ 20 minutes]), with lower frequencies

showing a−5/3 slope, converting to−3 at this point, this is the energy input scale. The

next conversion, to the−1 slope segment,ω2 occurs as the microscale is represented at

the rain input scale of3-7 km (Crane, 1990) [10 minutes]. Finallyω3 occurs at the very

small scales, where the slope returns to−5/3 (Venezianoet al., 1996 suggest this occurs

at30-90 s). Horizontal turbulence invalidates the theory used to derive these plots at high

frequency when considering time rather than space variations; the effect is an increased
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Figure 4.18 Idealised spectrum of log rainfall rate, based on figure 1 of Venezianoet al. (1996). The

solid line shows the spectrum by wave number, with dashed line showing the frequency scale plot. The

difference is qualitative, being a result of horizontal turbulence.

power at the high frequencies.

Figure 4.19 shows the rainfall rates of one event lasting just over2 hours. The upper
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Figure 4.19 An example of a rain event demonstrating why the log of rainfall rate is considered instead

of the linear rainfall rate.
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plot shows the rainfall rates, the lower showing the naturallogarithm of the rain rate. The

amplitudes of the high frequency changes in rainfall rate are dependent on the average

rainfall rate at the time. This is shown similarly in the log plot, where the high frequency

variation has the same size at all levels, implying that the variations are multiplicative, so

the log scale should be used for creating a power spectrum. The use of the logarithm of

rainfall rate was also made by Crane (1990) and Venezianoet al. (1996).

To estimate the power spectrum density (PSD), first a discrete Fourier transform is

computed from the log rainfall rates. Taking the logarithm of the rainfall means that zero

values must be removed before computation of the Fourier transform. PSD is calculated

by squaring the result of the Fourier transform and scaled byfrequency. The PSD that is

derived has very large noise, so this is smoothed to see the true signal. This smoothing is

performed with a moving average, shown in figure 4.20. Generally this average is from
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Figure 4.20 Periodogram of the natural log of rainfall rate (after removing zero rainfall rates). Green

dots show all data points; blue and red lines show moving averages as described in the body text.

the 101 nearest points (from a total of131073), shown by the blue line. However, the

very low frequency has few data points but retains some information, so for the lowest
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frequencies, the moving average is calculated from just11 points of the derived PSD.

This is the red section of the line (this is why the noise levelon this segment of the line

is larger). Note that these are running means from the calculated PSD, not of the rainfall

data used for calculation.
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Figure 4.21 Periodogram of the natural log of rainfall rate (after removing zero rainfall rates). The

dashed lines show slopes of−1, 5

3
and−3 for comparison. Overlaid in green, is a segmented spectrum to

fit the data.

Figure 4.21 shows that moving average again, but this time the plot also shows the

slopes expected from Venezianoet al. (1996) (dashed black lines), and a segmented

model fitted to the data (in green). This green model shows three of the segments from

the model of Venezianoet al. (1996), the missing segment being afterω3. This is miss-

ing as the frequency this is expected to occur at is too small,so not detectable with the

30 s resolution of the rain gauge data used in this study (ω3 is also missing in Crane

(1990) presumably for the same reason). The first spectral turning point,ω1 occurs at

12.4 minutes,ω2 occurring at1.6 minutes. Both turning points are found to occur at

higher frequencies with the Chilbolton data set than suggested from the storms used in
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the Venezianoet al. (1996) study (16.1 min and4.8 min respectively). However, theω1

value found lies within one standard deviation (factor of1.5) of the mean, the second

corner (ω2) is within two standard deviations (factor of1.8). Venezianoet al. (1996)

found the final corner point,ω3, to have an average value of35 s, with standard deviation

of a factor of1.2. Assuming the trend of finding the turning points for Chilbolton data

occurring at higher frequencies than Venezianoet al.(1996) found,ω3 is likely too small

to be measured by the drop counter with30 s resolution.

The other comparison with the model is of the slopes of each segment. Each segment

has slope shallower than the model predicts, where the modelsuggests it should be−5/3

(−1.67) the Chilbolton data shows−0.85. The middle segment where the model suggests

the slope should be−3, the data in this study has slope of−1.53. The final section shown

by the drop counter record has slope of−0.2, which is again shallower than the model

predicts, although this was expected as this study is working with temporal spectrum

rather than spatial. The effect of the difference between considering spatial and temporal

spectrum was shown by a dashed line in figure 4.18, caused by the Taylor hypothesis not

holding at higher frequencies due to horizontal turbulence.

4.7 SUMMARY

Statistics of rainfall were calculated showing a general form of rainfall rates within a

longer term mean. These statistics should be obeyed at any point, so has implications for

high resolution numerical modelling. Any equivalent high resolution numerical model

grid box (especially cloud resolving or large eddy models) should obey the same rainfall

statistics as shown by the rain gauge. It has been shown that the decorrelation time

to a correlation ofe−1 is 9.3 minutes, indicating rain has a spatial decorrelation scale

of ∼ 5 km. The power spectral density forms the Fourier transform pair of the auto-

covariance function. The power spectral density is shown tohave a similar segmented

pattern to the model of Venezianoet al. (1996), but with shallower slopes and higher

turning point frequencies.
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This section on the timing of sampling when examining accumulations has an im-

portant significance when considering comparisons betweenradar and rain gauges. A

rain gauge measures the rainfall integrated over the considered period whereas the radar

measures instantaneous rate at a single time, imposing a limit on the comparisons. It

has been shown that the decorrelation of rainfall is the cause of the errors, and that this

decorrelation is dependent on the type of rainfall being measured (and therefore season

it is measured during).
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CHAPTER 5:

THE INTEGRATED

REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY TECHNIQUE:

METHOD

5.1 INTRODUCTION

As was shown in chapter 2,ZDR andZ can be used for rainfall rates on a gate-by-gate

basis (2.4.2), although this requiresZDR be accurate to0.1 dB for rainfall rates,R, of

3− 10 mm/hr. Unfortunately large errors inZDR are observed, caused by the statistics of

the returned echoes (Bringi and Chandrasekar, 2001) resulting in about0.2 dB noise for

the CAMRa. Radar antenna problems are small for CAMRa, although inthe operational

environment are likely to be significant (because in the operational environment financial

and reliability constraints lead to smaller, less perfect antennas and radar setups, with

radomes, which can affect results, especially when wet). The NEXRAD-KOUN radar

(Ryzhkovet al., 2005a) has0.4 dB noise inZDR, while at C-band, for a UK operational

radar the noise may be still larger. This means that gate-by-gate rainfall estimation using

Z andZDR is noisy and may be biased. This noise averages out over time and space,

but this remains a great drawback for instantaneous point rainfall rates. This gate-by-

gate method does not allow for the possibility of unphysical, but statistically feasible,

negativeZDR observations (see section 2.4.4). This chapter will show a method of using

Z andZDR over a domain to estimate the rainfall rate at each pixel. This will benefit from

the increased information on the drop size distribution given byZDR, but will not suffer
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as a result of the random noise ofZDR, by averaging this noise to zero. A number of

problems with the method will be examined, also consideringhow these problems can be

overcome. The following chapter will then show a number of examples of the technique

in action.

5.1.1 USE OF REFLECTIVITY AND DIFFERENTIAL REFLECTIVITY

FOR ESTIMATING Z − R RELATIONS

If the observed values ofZ andZDR over a small region are used to characterise the rain

drop spectra over that region, better rainfall rate estimates will be a reality. Recall the

normalised gamma distribution of raindrops of section 1.3:

N(D) = Nwf(µ)

(

D

Do

)µ

exp

(

−(3.67 + µ)D

Do

)

(5.1)

f(µ) =
6

(3.67)4

(3.67 + µ)µ+4

Γ(µ + 4)
,

which represents natural rainfall well (Ulbrich, 1983). By following the work of Bringi

and Chandrasekar (2001), this leads toZ − R relationships of the form:

Z = aR1.5, (5.2)

with a dependent onNw andµ. Integration of the suitably weighted normalised gamma

function produces the expression:

Z = FZ(µ)NwD7
o. (5.3)

Making the assumption that the terminal velocity is proportional toD0.67,

R = FR(µ)NwD4.67
o ; (5.4)

and by removingDo this becomes:

Z

NW

= H(µ)

(

R

NW

)
7

4.67

= H(µ)

(

R

NW

)1.5

(5.5)

whereH(µ) = fZ(µ)fR(µ)1.5. Hence

Z = H(µ)N−0.5
W R1.5 =

H(µ)R1.5

√
NW

, (5.6)
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so using equation 5.2 this leads to,

a =
H(µ)√

NW

. (5.7)

So over the chosen region of data, if the drop spectrum can be characterised to estimate

Nw, it will be possible to derive the values of ‘a’ in equation 5.2 (assuming a value ofµ).

Next consider the physical drop spectrum cause of variations in b. Initially consider

the case whereNw remains constant. Increased rainfall rate is caused simplyby an in-

crease drop size,Do. The assumption that this behaviour is standard within rainfall events

is used elsewhere, for example in the work of Testudet al.(2000) for the ZPHI technique.

Equation 5.3 showsZ varies asD7
o and 5.4 demonstratesR varies asD4.67

o . So, substi-

tuting into equation 5.2 givesb = 7/4.67 = 1.5.

However, it is possible thatNw is a function ofDo, and this possibility will result in

different values ofb. Consider the case whereNw rises asD2
o, so as rainfall rates increase

there are both more and larger raindrops. This implies, via equations 5.3 and 5.4, thatZ

andR vary asD9
o andD6.67

o , leading to ab of 1.35. Now consider the case whereNw

varies as1/Do, a case where as the drops get larger, their numbers decrease, suggesting

Z andR vary asD6
o andD3.67

o sob = 1.63.

Now consider a more extreme example. If, rather thanNw being constant,Do remains

constant and as rainfall rate increases it is a result of moredrops of the same size,Z and

R scale together withNw, sob = 1, this value was suggested for tropical convection by

List (1988). Now consider the case with high aggregation of snowflakes leading toNw

scaling with1/D2
o. Now Z andR vary asD5

o andD2.67
o resulting in ab of 1.87.

It was shown in chapter 2 thatZDR can give the additional information required for

more accurate rainfall rates fromZ alone, although it was shown in section 2.4.4 that

the signal is too noisy for use at each point. In chapter 3 the natural spread inZDR was

examined. The suggestion is a method that uses theZ − R derived from the region to

calculate the rainfall rate of the individual pixels, without suffering as a result of the noisy

(and possibly negative) observed gate-by-gateZDR. The noisyZDR remains utilised,

however, by altering ‘a’ (and potentially ‘b’) from detected changes in the drop spectra,
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which a simple defaultZ − R cannot be expected to detect (chapter 2).

5.2 DATA REJECTION DUE TO NON-RAIN TARGETS

The technique described above relies on solely rain targetsas the equations for calculation

of R. Z andZDR givenNw (for example equations 2.13, 5.8, 5.10) all use drop shapes

that are only appropriate for liquid water hydrometeors. Therefore any data points which

are not the returns from liquid water must be carefully removed.
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Figure 5.1 A Range Height Indicator (RHI) showing the “bright band” andground clutter. We can see

at a height of near2 km the clear bright band signature. Ground clutter is also observed at ranges of12 km

and19 km, with its clear signature inLDR (high values).
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5.2.1 GROUND CLUTTER AND ANAPROP

First consider the problem of “ground clutter” and “anomalous propagation”. “Clutter”

is a result of reflection of the radar beam from non-hydrometeor targets; for example

the ground surface, tall buildings or trees. This can be seenin figure 5.1 (at12 km and

19 km ranges). “Anaprop” (anomalous propagation) is a result of strong temperature and

humidity gradients causing the radar beam to be refracted back to the surface, where

non-meteorological targets reflect the beam. Anaprop can beespecially difficult to dis-

tinguish with conventional radar (for example Pamment and Conway, 1998). However,

both clutter and anaprop give rise to non-Rayleigh scattering so the amplitude and phase

of horizontally and vertically polarised returns are uncorrelated. This means that these

non-meteorological targets can be detected by use ofLDR. They have higherLDR than

occurs in natural precipitation Hagen (1997), as the opposite polarisation’s reflectivity

has similar size to that at the transmitted polarisation. Echoes from non-meteorological

targets also haveρhh,vv of near zero, where it is> 0.95 in rain, and this change is a result

of the random nature of the returns from clutter targets. Theproblems of ground clutter

are that these targets have an increasedZ (leading to overestimates of the rainfall rate)

and increased noise inZDR, fluctuating±3 dB from one gate to the next (effectively

negating all information available about the target shape), so a simpleLDR threshold (for

accepted data,LDR< −10dB; this “catches”∼ 90% of clutter) is used to remove ground

clutter points (see figure 5.2).

5.2.2 MELTING LEVEL

The next problem is that of the “bright band”. This is the areawhere the snow flakes

falling from a stratiform cloud melt (this explains an alternative name, the “melting

layer”) and occurs just below the0oC isotherm. The bright band has an increased re-

flectivity relative to the rain below and ice above as the snowflakes have large diameters

which, when melting, are covered in a “film” of water making them reflect like rain (wa-

ter gives larger reflections than ice as the|K2| (dielectric factor) of ice is up to five times
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Figure 5.2 Z-ZDR plot from an area of rainfall data which is infected by clutter. The combined red and

green pixels show the recorded data. The red pixels are thoserejected by theLDR thresholding, the green

are those which are accepted. Also plotted for reference arethe blue line ofNw= 8000 mm−1 m−3 and

theZ1mm/hr line is shown in black.

lower than that of water (1.4). TheLDR can be used to identify the melting snow flakes

associated with the bright band (Frostet al., 1991 and Strakaet al., 2000). This region

is unsuitable for theZ/ZDR technique as the melting flakes result in highZ (as much as

13 dB higher than the rain it melts into) and also an increase inZDR. Again theLDR

threshold (for accepted data,LDR< −20dB) is used to remove these points and points

above the detected bright band are removed to avoid measurement in the ice, as shown in

figure 5.3.

5.2.3 HAIL

Particularly during the summer time, hail can occur in convective events resulting in ice

particles below the freezing level. Hail cannot be unambiguously identified usingZ, ZDR

andLDR, although, its presence will raiseZ (due to larger particles). There will also be

a reduction in theZDR recorded in the location of the hail (due to tumbling particles so
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Figure 5.3 Z-ZDR plot from an area of rainfall data which is infected by melting snow from the “bright

band”. The combined red and green pixels show the recorded data. The red pixels are those rejected by

theLDR thresholding, the green are those which are accepted. Also plotted for reference is the blue line of

Nw= 8000 mm−1 m−3 and theZ1mm/hr line is shown in black.

no mean alignment), but larger positive values are observedin the area surrounding the

hail (Bringi et al., 1984). Smyth and Blackman (1999) suggested the best technique for

identification of hail is the loss of consistency of the threevariables,Z, ZDR andφDP

along a ray. Hail should be removed before an integratedZ/ZDR technique is used.

Options to determine the appropriateNw or a will now be considered.

5.3 AVERAGE POINT-BY-POINT RAINFALL RATES

This method would involve calculating the rainfall rate at each point from its individualZ

andZDR, as per section 2.4.2. The data points are then plotted aslog R againstZ (figure

5.4). From this the best fit line to this data is calculated, but this poses a significant

problem of how to determine this best fit. The very noisy nature of the data (especially in

ZDR) means that the data is not very highly correlated, meaning that the fit ofZ against
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R is rather different to a fit ofR againstZ. The solution is an “SD-fit”, with slope given

by the ratio of the standard deviation ofZ and standard deviation ofR, which passes

through the mean of both data sets. See figure 5.4 for an example of this problem; the

three lines show the two possibilities from correlation andthe “SD-fit”.
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d
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Figure 5.4 An example of use of the average point-by-point rainfall rate method. This data is quite well

correlated, although the lines showing the results from the3 possible fits, (blue) for the fit ofdBZ given

log R [result: a=853, b=0.65], (red) the SD-line [result: a=572,b=0.98] and (green) the fit oflog R given

dBZ [result: 313, b=1.47], are quite different. When the correlation is lower (usually from small dynamic

range) the differences in the three lines will be larger.

Apart from issues with calculatingR that will plague later possibilities, this method

has a serious problem: for a givenZDR bothR andZ scale withNw. This means that the

result is biased, towardsb = 1. This bias must be removed.

5.3.1 USING THE REFLECTIVITY FOR 1 MM HR−1

The bias can be removed ifZDR is converted to a variable that is not dependent onZ

but can easily give the result ofa andb. The answer to this problem is to useZ1mm/hr,

which is defined as the reflectivity that would have a rainfallrate of1 mm hr−1. This is
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dependent onZDR and is calculated by the formula given by Illingworth and Blackman

(2002):

Z1mm/hr =
Z

R
= 21.48 + 8.14 ZDR − 1.385 (ZDR)2 + 0.1039 (ZDR)3. (5.8)

FromZ1mm/hr it is trivial to calculate the rainfall rate,

dBR = dBZ − dBZ1mm/hr (5.9)

noting thatR = 10dBR/10. It was noted in section 2.4.2 that the calculation could be

improved by use ofZ1mm/hr = f(log10 ZDR). This is formulated as

Z1mm/hr =
Z

R
= 1.3910 (log ZDR)3 +6.3556 (log ZDR)2 +12.6032 (log ZDR)+28.6576.

(5.10)

OnceZ1mm/hr is calculated this is plotted against dBZ (figure 5.5), and this data fitted.

This plot does not have the scaling dependence thelog R against dBZ plot has, asZ1mm/hr

is effectively a rescaling of theZDR data. The fit obtained has the form

dBZ = mZ1mm/hr + c. (5.11)

From this thea andb must be derived. Starting from

Z = aRb;

convert into decibels,

dBZ = 10 log a + b dBR. (5.12)

From combination with equation 5.9 this leads to

dBZ = 10 log a + b dBR + b dBZ1mm/hr,

therefore;

dBZ(1 − b) = 10 log a + b dBZ1mm/hr,

hence;

dBZ =

( −b

1 − b

)

dBZ1mm/hr +
10 log a

1 − b
. (5.13)
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Compare this with equation 5.11, resulting in:

m =
−b

1 − b
(5.14)

and

c =
10 log a

1 − b
. (5.15)

Equation 5.14 leads to

b =
m

m − 1
(5.16)

and equation 5.15 gives

10 log a = c(1 − b).

Using equation 5.16 this leads to

1 − b = 1 − m

m − 1
=

m − 1

m − 1
− m

m − 1
=

m − 1 − m

m − 1
=

−1

m − 1
=

1

1 − m

so

10 log a =
c

1 − m
. (5.17)

So from the fit inZ/Z1mm/hr space, equations 5.17 and 5.16 can be used to calculate the

Z-R relationship parametersa andb.

This method is an improvement in that the bias caused by scaling of Z andR has

been removed, and the two axes being fitted are now genuinely independent. There does

however remain a rather serious problem, and one that will beyet more serious in the

operational environment, negativeZDR. This was discussed in section 2.4.4, and would

mean any points of negativeZDR must be “left out” as aZ1mm/hr would not be calculable

for negative values ofZDR. Leaving out the points will non-uniformly remove some

data points, removing one side of the distribution of data, but not removing the opposite

(positive) extreme. This will bias derived results, which will be serious especially in low

rain.

5.4 BANDING THE DATA

An option to counter negativeZDR is to “band” the data to create averaged points with

far reduced errors, hence considerably less likely to give anegativeZDR. It is important
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Figure 5.5 An example of use of point-by-pointZ1mm/hr rainfall rate method. The lines show the results

from the 3 possible fits, (blue) for the fit ofdBZ givenZ1mm/hr [result: a=24, b=2.1], (red) the SD-line

[result: a=80, b=1.8] and (green) the fit ofZ1mm/hr givendBZ [result: 181, b=1.6].

to remember that most of the error is inZDR and notZ. To maintain information on

the distribution of the data it is best to band by number of points rather thanZ value; to

demonstrate this see figure 5.6. The banding is performed by sorting the data byZ, and

the first20 points are selected, averaged inZ andZDR to create the new data point which

is saved. Then the process is repeated for each group of20 consecutive points to create

banded data to be used for calculation. The chosen value of20 points is variable, chosen

to maximise the number of data points remaining, but making negativeZDR in the newly

created data uncommon.

The banded data is then used to calculateZ1mm/hr and calculate theZ-R relationship

to be used as in the previous section (5.3.1). The rare bandedpoints with negativeZDR

will no longer cause the bias problem; these points incorporate an average and hence

both extremes of the data are ignored. There does still remain a problem: by averaging

bothZ andZDR the variation in the two is not being fully implemented wherethe data

density is low. Where there is a large spread ofZ within a band, theZDR spread will
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Figure 5.6 An example ofZDR againstZ, demonstrating the banding technique. Every20 data points

(black x) are averaged to create the smaller, less error prone, data (pink o). It can be seen that banding has

removed the points of negativeZDR. This reduced data is then used for calculation ofa andb.

inevitably be increased and biased due to the curvature of constantNw lines. Where the

changing curvature of theZ/ZDR line is high, this will have the largest effect of biasing

the averaged point.

5.4.1 CONSISTENCY

The methods described thus far all calculate values ofa and b, and often the derived

values vary in an unphysical way. This is caused by there not being sufficient dynamic

range in the data to determine both variables, asb is essentially a slope anda essentially

an intercept parameter, and changingb changesa, but the effect of the change in the

derived rainfall rate is small. The highly varyinga will give us no physical interpretation

of the underlying processes, being masked by the variationsin b resulting from the small

dynamic range in available data. Section 5.1.1 demonstrated thatb changes represent the

relationship between drop size distribution parametersNw andDo.

The noise in theZDR data and common lack of dynamic range of data mean there
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is little signal to detect the second mode of variation (b). The difficulty of detecting the

signal of the variations inb mean that an assumption ofb must be made. Hence it will

be assumed thatNw remains constant over small areas, and the technique considered will

calculate what theNw is over the small region. This is a very similar to the assumption

of Testudet al. (2000), although in that paper the assumption is made over long radial

sectors (see figure 4 of Le Bouaret al., 2001), and physically it is less likely thatNw

remains constant over these large radial regions than more square regions of similar area.

Using the normalised gamma distribution of raindrop sizes and drop shape functions

(section 2.3), expected values ofZ andZDR can be derived for any combination of drop

spectrum parameters. This means that the expected positionof points inZ/ZDR space

for rainfall of constantNw can be calculated, figure 5.7. The figure shows clearly thatZ

scales withNw and thatNw changes do not effectZDR. To estimateNw over a region

(and hencea) the most appropriate curve similar to the red curves of figure 5.7 must be

found.
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Figure 5.7 An example of an area of data Z/ZDR points (x) with lines of constantNw (red line) these

are for800, 2 500, 8 000, 25 000, 80 000 mm−1 m−3, lowest values to the lower right, higher to the upper

left. A method to determine which of these lines is most appropriate for this data is needed.
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All the suggested methods to this point could work to only calculate the value ofa.

However these would be functioning simply as a large scale average of theZDR over the

region, losing some of the possible benefits of theZDR data. A method to utilise the

individual data points to find the most appropriateNw value is used, hencea to use over

the region.

5.5 OPTIMISED Z /ZDR FIT

All of the previous methods could have the restriction in thevalue of b incorporated,

although the assumption thatNw remains constant over the small regions considered

means that the calculation ofa can be made directly from theZ andZDR data. Given

the relationship betweenDo andNw (b) the position of “true” (having no sampling error)

points inZ/ZDRspace can be calculated for any chosen value ofNw (using assumed drop

shapes and fall velocities) ora. This means the measured data (which has the large

sampling noise) can be compared to lines of constantNw (see figure 5.7) to find the line

which is most appropriate to the data of the selected region.The chosen line will have

the smallest residuals assuming the error is all inZDR, so Z error is negligible. This

technique will give equal weight to data with negativeZDR, yet remain stable. It will be

described in far more detail in the remainder of this chapter.

5.5.1 REFLECTIVITY/DIFFERENTIAL REFLECTIVITY SPACE

The values of dataZ andZDR observed within the chosen region (Z andZDR data shown

in figure 5.8 show an example of such data; in this case it is a5 × 5 km box containing

vigorous cold frontal rain) can be plotted inZ-ZDR space (this is shown in figure 5.9).

In figure 5.9 the line plotted for a drop spectrum of constantNw= 8000 mm−1m−3

andµ = 5 is shown, allowing only the median drop diameter (Do) to increase for higher

rainfall rates. This line is calculated from the raindrop sizes of Andsageret al. (1999)

and the normalised gamma spectrum to calculate theoreticalradar returns.
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Figure 5.8 A 5×5 km box of (a) reflectivity (dBZ) and (b) differential reflectivity (ZDR) data. This box

is located in an area of vigorous frontal rain approximately35 km from the antenna. Axis numbering is in

km from the radar.

Figure 5.9 dBZ plotted againstZDR for the data in figure 5.8. The blue line shows the line of constant

Nwof 8000 mm−1m−3 and constantµ of 5. This data shows thatNw=8000 mm−1m−3 is a good fit to this

particular data. The red line shows the line for1 mm hr−1 rainfall rate, assumingµ = 5.

Points moving vertically inZ-ZDR space are altering the drop concentration,Nw.

Movement upwards implies higher concentrations (hence larger rainfall rates); down-

wards is for reducing concentration (lower rainfall rates). Horizontal motion is for changes
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in the median drop size: higherZDR implies larger drops; smallerZDR, smaller drops.

The figure also shows the spread of data as a result of theZDR sampling errors.

5.5.2 OPTIMISING TO FIT DATA

Chapter 2 discussed the problems that occur as a result of noisy ZDR in section 2.4.3.

Our method of overcoming the high noise levels is to assume that the natural drop spec-

tra properties do not change over the small areas which are being considered. This clearly

leads to a compromise, as the area must be large enough to reduce the noisyZDR signal

sufficiently for an accurate estimate of the drop concentration, but keep the area consid-

ered to a minimum to reduce the magnitude of natural variations. The size of the boxes

to be used will be discussed later in this chapter in section 5.6.2.1.

To describe the method of estimating the drop concentrationof the rainfall in the

selected region, a graphical approach will be used, as shownin figure 5.10, on page 97.

After selecting the data from the chosen region, the scatterof Z andZDR is examined;

see plot (a). The estimate ofNw required is gained from the position of this data relative

to lines of constantNw. A line of constantNw has the form of the red line in plot (b);

the optimum line of this form to fit the data is to be found. As the error inZDR is

high relative to the signal,ZDR error will almost exclusively be dominant overZ error,

therefore the errors inZ will be neglected. The horizontal residuals from the attempted

fit (red line) are calculated as shown (in blue) in plot (c). The mean square residual is

used to measure how well the curve matches the data. Hence, byallowing onlyNw to

vary, to calculate the best fit to the data the minimum mean square residual is found.

Increasing the drop concentration does not alterZDR, although reflectivity scales with

the change. This means that doubling the drop concentrationmoves the curve inZ/ZDR

space only by doubling in theZ direction (a gain of3 dB). Plot (d) shows some examples

of lines of different drop concentrations. An iterative approach is used to find the best

Nw (with lowest mean square residual),N⋆
w for the data (plot [e]). This assumes that the

raindrop size spectrum shape parameter,µ, is constant. Changes inµ have a similar effect

in Z/ZDR space to changes in concentration, soµ variation may be mistaken as a drop
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concentration change, this was seen in section 3.2.3. This means that the true spectrum

concentration is equal toN⋆
w only whenµ = 5. The derivedN⋆

w is then passed to the

equation

a = 138

√

8000

N⋆
w

, (5.18)

for µ = 5. Or

a = 218

√

8000

N⋆
w

, (5.19)

whenµ = 0 to calculatea of the chosen area. The rainfall rates of individual pixels are

then calculated usingZ = aR1.55.

5.6 THE INTEGRATED REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY TECHNIQUE: ALGORITHM

Before passing to the integratedZ/ZDR technique the area of data to be analysed must be

selected. The selected data has thresholds applied to remove data from non-rain targets.

At this point it must be decided if enough data from rain is present, assuming enough rain

pixelsNw anda are estimated, else the region is defined as unsuitable and passed to the

categorisation for the reason for rejection. These basic steps are shown in the form of a

flowchart in figure 5.11.

This section will consider the implementation of each of these steps in more detail.

5.6.1 APPLYING THRESHOLDS

The fits toZ/ZDR data rely on the use of data only from rain, as was examined in section

5.2. Data passed to this point of the algorithm will contain points with non-rain origin

which must be removed. For data from the Chilbolton radar thisremoval is done by

clearing all data withLDR greater than−20 dB, hence removing clutter, anaprop and

melting snow. Data beyond the detected bright band is also removed as ice (which will

not have the same drop shapes as liquid water). At low rainfall ratesZDR will have no
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Figure 5.10 Flowchart of the steps to estimateNw anda.
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Figure 5.11 Flowchart of the basic steps of the integratedZ/ZDR technique .

signal and begin to suffer from problems related to the signal to noise ratio. Rain too

light for this technique is removed by accepting only data ofgreater than20 dBZ (this is

too low, soZDR will be 0 dB or very close to it for all but the most extreme DSDs). The

data that was accepted as moderate to heavy rain is then passed on.

5.6.2 CALCULATING ‘a’

5.6.2.1 HOW MUCH DATA IS NEEDED?

For accurate (25%) rainfall rates at3−10 mm/hrZDR must be accurate to0.1 dB. Assume

an error inZDR of σpoint and thatN points are to be considered. This means that these

points have total error:

σ
total

=
σ

point
√

N
samp

. (5.20)

Hence the number of points required for0.1 dB accuracy is

N
req

=
(σ

point

0.1

)2

. (5.21)
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So when considering the CAMRa radar (whereσpoint ≈ 0.2 dB), to achieve the required

accuracy, the average of4 points is required (for an operational radar this number is much

larger,∼ 25, depending on accuracy). The plot showing the required points for different

values of the error is shown in figure 5.12. Unless this required number of points is met,

accurate estimates ofNw anda are not possible and the chosen region must be rejected

for the technique.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

σ
point

P
oi

nt
s 

re
qu

ire
d 

fo
r 

0.
1d

B
 a

cc
ur

ac
y

linear error
logarithmic error

Figure 5.12 The required number of points for different errors inZDR.

To demonstrate this, real radar data is used. For this a section of data points of extent

with 64 pixels in range and azimuth is selected. This sector of data is then used to

calculatea andNw with grid resolutions from4096 pixels to just4 pixels. The resultant

values ofNw are shown in figure 5.13. The figure shows that at lower resolutions the

reduced resolution simply averages out any underlying signal present with averaging.

The highest resolution plotted is on the limit of accuracy suggested numerically, and it

can be seen that this data predominantly shows signal, possibly with small amounts of

noise present. This shows that very small grid resolutions can be used with Chilbolton

data as expected since theZDR is very accurate. However, it would be interesting to see

the result when noise is added to the data to simulate an operational radar. To do this
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Figure 5.13 Colour plots showing theNw calculated from grid of various sizes. The data used was taken

with the accurate CAMRa radar, where each pixel has range of300 m and has0.28 ◦ in azimuth at a range

of 50 km (so pixels are near square). The grid scales are [top left]∼ 20 km, [top centre]∼ 10 km, [top

right] ∼ 5km, [lower left]∼ 2.5 km, [lower centre]∼ 1.2 km, [lower right]∼ 0.6 km.

Gaussian noise of0.5 dB is added to theZDR data of figure 5.13. The procedure is then

repeated to yield figure 5.14. This figure shows similar values to that without noise for the

top plots and lower left. However as would be expected, the noise inZDR has generated

large noise levels in estimatedNw when4 points are used and is still noisy at16 points.

This shows that to achieve good accuracy, but to avoid unnecessary smearing of the data,

with a0.5 dB ZDR error one must estimateNw over a grid size of∼ 64 points. It is worth

noting that the area this many points covers would be dependent on radar resolution.
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Figure 5.14 Colour plots showing theNw calculated from grid of various sizes. The data used was taken

with the accurate CAMRa radar but with0.5 dB Gaussian noise added toZDR, where each pixel has range

of 300 m and has0.28 ◦ in azimuth at a range of50 km (so pixels are near square). The grid scales are [top

left] ∼ 20 km, [top centre]∼ 10 km, [top right]∼ 5km, [lower left]∼ 2.5 km, [lower centre]∼ 1.2 km,

[lower right]∼ 0.6 km.

5.6.2.2 ITERATING TO FIND DROP CONCENTRATION

Section 5.5.2 and figure 5.10 described the theory behind estimatingNw but not how this

is achieved algorithmically.Nw is estimated iteratively, starting with wide bounds on the

possible values ofNw. These are reduced until the bestNw is achieved. At each stage of

the iteration the bounds are evenly divided intoN values ofT , whereT is a value related

to Nw via the equation:

NW = 8000
(

10(
T−16.67

10 )
)

; (5.22)

the first and lastT corresponding to the maximum and minimumNw (T is used for speed

of the algorithm, but is essentially a scaling ofNw). For each value the theoretical curve
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of constantNw is calculated, using the polynomial:

dBZ = −0.472 (log ZDR)4 +4.65 (log ZDR)3−17.79 (log ZDR)2 +39.81 (log ZDR)+T,

(5.23)

applicable at S-band (the effect ofT is a displacement only in theZ direction), so as

to calculate the root mean square error in theZDR direction. The minimum root mean

square is found and maximum and minimum points are set to the values ofNw either side

of that with lowest least square; see figure 5.15. The same process is repeated untilNw
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Figure 5.15 The curve showing the method of estimating the optimalNw. This case is the first iteration

showing the9 trial points. The best of the nine is5, so the algorithm is reset with minimum at4 and

maximum at6.

is found to a suitable accuracy. The whole method is described in the flowchart of figure

5.16. For optimal speed9 values ofT are chosen per iteration (this number performs the

least calculations of RMS error to achieve required accuracyin T , Nw or a).

5.6.3 REJECTION

It is important to know whether the output from the integrated Z/ZDR technique was

reliable for each point and the causes of any unreliability.A number of problems will
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Figure 5.16 Flowchart of the integratedZ/ZDRtechnique.
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lead to an unreliable result; most importantly will be a lackof data points confirmed as

from rain. However a rejected result may be able to indicate the cause of the failure and

hence suggest other methods for rainfall calculation (for instance areas of attenuation

would be suitable for the ZPHI technique of Testudet al., 2000). The rejections and

possible responses are shown in table 5.1.

No rain areas with no signal No rainfall calculation is needed

Clutter > 50% clutter/anaprop A correction scheme should be applied

Bright band Area in the melting snow VPR correction

Light rain Z < 25 dBZ Use defaultZ-R method.

Attenuated WhereφDP is significant Apply the ZPHI technique

Not enough data < 25 good pixels Use a standard method.

Table 5.1 The options for rejection of the result of the ZPHI technique, the causes of the rejections and

possible responses.

It is important to recognise what options can be taken from a rejected result. Areas

without rain need to be examined to determine whether this was caused by no precipi-

tation, or data rejected as clutter or above the bright-bandfor example. In areas of light

rain theZDR signal will be too small for reliable use, so a more basicZ formulation is

needed. Where the technique identifies that the signal has suffered from attenuation, a

phase shift should have occurred. In this case the alternative methods are used.

5.6.4 USE OVER SCANS

When run, the technique returns values ofa and also returns a rejection number, indicat-

ing whether the data was rejected and the reason if it was. Whenrun repeatedly over a

PPI scan, a plot as in figure 5.17 can be made showing the changinga, calculated rainfall

rates and rejections.
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Figure 5.17 The final output from running the IntegratedZ/ZDR/ Technique with5 km resolution from

a PPI. The top-left showsa, top-rightR calculated from the technique, with areas rejected blankedout.

The bottom panels show rejection and the reasoning in two plots.

5.7 RETURNING b VARIATION

As was explained in section 5.4.1,b has been set as constant for the calculation ofa,

but naturallyb may vary. However there is often too small a dynamic range of data to

adequately measureb, resulting in undesirable unphysicalb despite the calculated rainfall

rates being reasonable. It is possible to allowb variation into the optimised technique, as

changingb changes theNw to Do relationship and hence theZ/ZDR curve, although the

effect ofa remains only a change inZ (no ZDR change), so the besta can be calculated

for any b. To determineb, the besta is calculated for several reasonable values ofb,

noting the RMS residual of each optimala. The optimal relation is then thea and b
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combination with lowest RMS residual, selecting the optimalb if significantly different

from 1.5. Some examples of this are shown in figure 5.18.
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Figure 5.18 Examples of the optimised selection ofb. The black crosses show the data, pink circles

show bandedZ for ease of comparison to the lines (note these are not used bythe algorithm and are purely

a visual aid). The coloured lines show the best fit for the respective value ofb, blueb = 1.5, redb = 1.7

and greenb = 1.9.

5.8 SUMMARY

This chapter has examined the potential of usingZ andZDR over an area to estimate

the rainfall rates, hence utilising the signal available from ZDR, but not greatly suffer-
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ing from the high noise levels in its measurement. The chapter started with a return to

the normalised gamma distribution of raindrops, where it was shown that, assumingNw

remains constant the rainfall is calculated usingZ = aR1.5, wherea is inversely pro-

portional to the square root of drop concentration. This means that if the data within the

chosen area can be used to estimateNw (assumingµ remains constant), the value ofa can

be estimated for use in calculating rainfall rates. When the rain does not have constant

Nw, butNw is related toDo, the exponent of equation 5.2 deviates from1.5. When con-

centration increases with median drop diameter the value ofb is lowered (as suggested

for convective rain), and when concentration decreases as drop sizes increase,b is raised

(as often used for stratiform rain).

It is important to remove data points that come from non-raintargets as the data will

have unexpected and potentially extreme values of eitherZ or ZDR (depending on what

the scattering targets are). The problems of various non-rain targets were discussed in

terms of the effect onZ andZDR. The removal of these non-rain points is considered,

most being removed by a strictLDR threshold of−20 dB. Hail can be removed by iden-

tification of regions whereZ, ZDR andφDP lose their consistency.

Given that the aim is to finda (orNw which is related toa) from the data of the chosen

area, a number of possibilities are considered. The first method examined was that where

the rainfall rate is estimated from each point individually, then the fit oflog R againstZ

is used to estimatea andb. Unfortunately, there are several problems, such as the poor

correlation of the plot making the fit difficult to justify andthe result is biased towardb =

1. To remove the bias, a fit betweenZ andZ1mm/hr (the reflectivity that would correspond

to 1 mm/hr rainfall given the observedZDR) is considered. Fits inZ andZ1mm/hr space

are shown to be related toa andb and do not have the bias, but retain problems from

the low correlation. Both of these methods had issues whenZDR is negative, as the

unphysicalZDR cannot be used asZ1mm/hr cannot be calculated. However the negative

values form part of the distribution ofZDR, so their removal will introduce a bias.

To remove the bias caused by negatively observedZDR, the data may be “banded”,

creating averaged data from the true underlying data, with reduced noise inZDR, which
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is hence less likely to be negative and, if it is, will remove both ends of theZDR spread.

This data that results from banding is used as true data in theZ1mm/hr method. This

method suffers when the variation inZ is large: any band will contain a spread ofZ

values; the larger the spread the larger the variation in thetrueZDR (the value before the

sampling noise).

All of these methods generate unphysical variations ina and b when the dynamic

range of data is small (although retain good estimates of rainfall). It would be preferable

for the values to be more meaningful before rainfall calculation. The large noise inZDR

means the signal corresponding to the second mode of variation (b) is often too small to

detect. It is therefore assumed thatb remains constant at1.5, the same assumption as in

the ZPHI technique of Testudet al. (2000) but the assumption in this work is less strict

as the distances with no variation are smaller. This assumption leads to the method of

an optimisedZ/ZDR fit. Given a constantNw (and assumingµ remains constant), values

of Z and correspondingZDR can be calculated. The optimisedZ/ZDR fit will be a line

of constantNw, which has the minimal deviation from the data. The method introduced

the effective drop concentration,Nw
∗, which is derived (it is effective asµ changes are

disguised within). Nw
∗ is then utilised to estimateR. The algorithm was described

and amount of data required for suitable accuracy is considered. Rejection of unreliable

results is important, so a rejection method is considered, which not only indicates an

unreliable result, but indicates possible other methods for calculating rainfall.

The chapter concludes with a brief discussion of the possible return to allowingb to

vary, but within the optimisedZ/ZDR method, adjusting when the evidence for the change

is available. The following chapter will discuss use of thisoptimisedZ/ZDR method and

the results it yields.
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CHAPTER 6:

THE INTEGRATED

REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY TECHNIQUE:

RESULTS

6.1 EXAMPLES AND DEMONSTRATIONS

In this chapter the use of the integratedZ/ZDR technique will be studied via a number of

examples of its use.

6.1.1 EXAMPLE 1: FULL RUN-THROUGH

First a region of data of size25 km2 is selected; for this example theZ andZDR data is

shown in figure 6.1. The first step will be to check for non-raintargets in this area with

anLDR threshold of−20 dB. For this example all points pass and are accepted as rain.

Now this data will be used to find the optimal drop concentration via iteration. For

each value ofNw to be tested theZ andZDR values expected are calculated. Each point

is then considered to be measured correctly inZ, hence the residuals from our calculated

line and each point are calculated by the difference in the point’s ZDR and the expected

ZDR for thatZ. The mean square residual is calculated for comparison withother chosen

Nw values.

The steps of the iteration are shown in table 6.1 closing on toa value ofNw =

10000 mm−1 m−3. TheZ/ZDR line for this drop concentration is plotted over the data

Page 109



Chapter 6: The Integrated Reflectivity/Differential Reflectivity Technique: Results

dBZ

30

35

40

45

50

55

−9 −8 −7 −6 −5

30

31

32

33

34

Distance West (km)

D
is

ta
nc

e 
N

or
th

 (
km

)

(a) dBZ
Z

DR
 (dB)

0.5

1  

1.5

2  

−9 −8 −7 −6 −5

30

31

32

33

34

Distance West (km)

D
is

ta
nc

e 
N

or
th

 (
km

)

(b) ZDR (dB)

Figure 6.1 A 5x5 km box of (a) reflectivity (dBZ) and (b) differential reflectivity (ZDR) data . This box

is located in an area of vigorous frontal rain approximately35 km from the antenna.

points in figure 6.2. ThisNw is converted toa with equation 5.19 to give a value of

a = 123.5 when assumingµ = 5 (or 195 if µ = 0). This value is then used on eachZ

value used within the chosen region for rainfall rates.
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Figure 6.2 The plot ofZDR and dBZ of the data and the line of best fit.
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step 1

T 0 5 10 15 20 25 30 35 40

Nw (m−3 mm−1) 172 545 1722 5446 17222 54462 172220 544620 1722200

a 941 528 297 167 94 53 30 17 9.4

RMS 1.8026 1.1541 0.6595 0.3046 0.2822 0.4993 0.7030 0.8778 1.0845

step 2

T 15.00 16.25 17.50 18.75 20.00 21.25 22.50 23.75 25.00

Nw (m−3 mm−1) 5446 7263 9685 12915 17222 22966 30626 40840 54462

a 167 145 125 109 94 81 71 61 53

RMS 0.3046 0.2551 0.2349 0.2465 0.2822 0.3314 0.3864 0.4431 0.4993

step 3

T 16.2500 16.5625 16.8750 17.1875 17.5000 17.8125 18.1250 18.4375 18.7500

Nw (m−3 mm−1) 7263 7804 8387 9012 9685 10407 11184 12018 12915

a 145 140 135 130 125 121 117 113 109

RMS 0.2551 0.2471 0.2410 0.2369 0.2349 0.2350 0.2370 0.2409 0.2465

step 4

T 17.1875 17.2656 17.3438 17.4219 17.500017.5781 17.6562 17.7344 17.8125

Nw (m−3 mm−1) 9012 9176 9342 9512 9685 9861 10039 10222 10407

a 130 129 128 127 125 124 123 122 121

RMS 0.2369 0.2362 0.2357 0.2352 0.2349 0.2348 0.2347 0.2348 0.2350

step 5

T 17.5781 17.5977 17.6172 17.6367 17.6562 17.6758 17.6953 17.7148 17.7344

Nw (m−3 mm−1) 9861 9905 9950 9995 10040 10086 10131 10177 10222

a 124.3 124.0 123.7 123.5 123.2 122.9 122.6 122.4 122.1

RMS 0.2348 0.2347 0.2347 0.2347 0.2347 0.2347 0.2347 0.2348 0.2348

Table 6.1 The iteration steps of example 1. Red colours indicate the minimum RMS at this iteration,

leading to the blue colours showing the bounds of the next iteration.
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6.1.2 EXAMPLE 2: VARIATIONS WITHIN EVENTS

For this example a single scan will be examined. The chosen scan is from14:20 GMT on

the9th Oct. 2000, taken from the Chilbolton radar. A selection of areas of thisscan will

be examined to show the differences that result. The reflectivity of this scan is shown

in figure 6.3, also showing some important phenomenon effects in the data. The general

weather conditions seen are a cold front approaching Chilbolton from the west, preceded

by widespread moderate rainfall. Behind the front are some weak convective showers.

F

B

B

O

Figure 6.3 False colour plot showing reflectivity of a single PPI performed on9th Oct. 2000. The

scale on x and y axes are in kilometres. The image is annotatedas follows: B shows the location of

the bright band on this scan; O shows a sector which contains anumber of partially obscured beams,

spotted by reduced reflectivity (for calculatingNw these rays have the data removed); F shows a cold front

approaching Chilbolton.

Firstly, data from the front will be examined. Data from a5 × 5 km area centred

about an area of the front is used and plotted in figure 6.4. This data hasa = 75 and

Nw = 28000 mm−3 mm−1.

The next region to consider is the rain preceding the front; figure 6.5 shows an exam-

ple of this data. This example showsa = 133 andNw = 8600 mm−3 mm−1. This means
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Figure 6.4 Plot of Z andZDR for an area of rainfall based within the front. Also plotted are the fitted

line of constant “a”s (henceNws) and ofa = 300.

that there are more drops in the frontal rain than the rain that precedes it.
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Figure 6.5 Plot ofZ andZDR for an area of rainfall to the east of Chilbolton. Also plotted are the fitted

line of constant “a”s (henceNws) and ofa = 300.
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Figures 6.6 and 6.7 show the values ofa and effective drop concentration over the

scan.

Figure 6.6 A false colour plot showing the values

of a over the scan shown in figure 6.3.

Figure 6.7 A false colour plot showing the values

of Nw over the scan shown in figure 6.3.

6.1.3 EXAMPLE 3: TIME VARIATIONS

In this example the time variations that are detected by the integratedZ/ZDR technique

are examined. The data for this example was taken during the early afternoon of the21st

of April, 2004. During the time to be examined in this examplethe radar performed a

scanning procedure where a45◦ sector was scanned back and forth, with RHIs performed

occasionally to confirm the location of the bright band. Thismeans that59 scans are

performed within the72 minutes that are examined. The weather during the scanning

procedure was dominated by widespread moderate rainfall from a passing frontal system.

During the time this example considers the rain shows very little variation. This can be

seen in figure 6.8. This lack of variation in reflectivity suggests that there is little variation

within character of the rainfall.

To examine the use of the integratedZ/ZDR technique over this period the data chosen

to examine for each scan will be from a square of size5 × 5 km centred on the point

selected for figure 6.8. This yields the variations ina throughout the period, as plotted in

figure 6.9.
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Figure 6.8 A plot showing how the reflectivity changes over an hour. The reflectivity is recorded at a

single point.
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Figure 6.9 A plot of the variation ofa over an hour while scanning a45◦ sector repeatedly. The plot

shows crosses for thea calculated from each scan.

Given the value ofa and the reflectivity of the point, the rainfall rate variation over

the period can be calculated, as shown in figure 6.10. This shows that the rain rate is

under-estimated throughout the period by both of the demonstrated standard algorithms.

6.1.4 FURTHER EXAMPLES

A number of other examples are shown in table 6.2. This table shows the date and rain

type that the data was taken from, a plot ofZ/ZDR space showing the region’s data and the

best fit line (note these plots have identical axis sizing), the resultant drop concentration

anda for each region.
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Figure 6.10 A plot of the variation of rainfall rate over an hour while scanning a45◦ sector repeatedly.

The plot shows in black, crosses for theR calculated using the integratedZ/ZDR technique on each scan.

The crosses in red shows the rainfall rate calculated from a traditionalZ − R, Z = 300R1.5; the blue

shows the rainfall rate calculated form the UK Met Office standardZ − R, Z = 200R 1.6.

6.2 THE PHYSICAL BASIS OF RESULTS

This section will examine how results from the integratedZ/ZDR technique are explained

from the physical processes that underlie the observations.

6.2.1 VARIATIONS OF DROP CONCENTRATION WITH Z

It has been shown previously that, assumingµ remains constant, changes in drop concen-

tration (Nw) correspond to changes in reflectivity, but notZDR. In Marshall and Palmer

(1948) rain,Nw is effectively constant.

It is quite possible that the integratedZ/ZDR technique will give results which show

a relationship betweenZ andNw. Figure 6.11 shows two examples of the comparison.

The line plotted showing the average, which in plot (a) demonstrates a shallow positive

gradient, suggesting thatNw increases with reflectivity. This pattern is analogous witha

lower value of ‘b’ (high Nw suggests lowa, which in turn implies high rainfall rates, the

same applies in reverse). This is likely to change from eventto event. It has been shown

previously that thisb alteration is caused byNw changing withDo. Plot (b) shows the

gradient at low reflectivity to be negative, becoming positive at 35 dBZ.
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Table 6.2 A table of examples of the integratedZ/ZDR technique on different rains.
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Figure 6.11 A plot of the drop concentration (Nw) against mean reflectivity from16 point Chilbolton

boxes. Also plotted is a line showing how the mean varies frombands ofZ. This data was derived from

data taken by CAMRa radar, for (a) on18 August2000, for (b) the data is from9 October2000.

6.2.2 THE DIFFERENCES BETWEEN CONVECTIVE AND STRATI-

FORM RAIN

The physical processes involved when forming the drop size distributions of rain are

dependent on the method of formation of the rain and the conditions that lead to them. In

section 1.1 it was mentioned that the principal rain “type” dictates theZ−R relationship

used when polarisation diversity information is not available. This is seen in the use of

Z = 300R1.4 in the USA, while in BritainZ = 200R1.6 is used. This is because in the

UK stratiform rain is dominant, whereas in the USA convective rain is more important,

this change has been known for many years, e.g. Battan (1973).The differentZ − R

relations show the pattern of change ofNw with Do in the differentb, but also different

drop concentrations are shown in thea. Stratiform rain tends to leave the cloud in the

form of snow, which falls and melts once it passes the0 ◦C isotherm. This melting snow

may explain theZ − R relation in stratiform conditions: as the snow flakes get larger

(and hence become larger raindrops upon melting) collisions become more frequent, so

accretion and aggregation occur at faster rates. This will mean that the drop concentration

becomes lower as the drops grow. This type of situation was considered in section 5.1.1,

where the effect ofNw falling as1/Do was shown to result inb close to the1.6 widely
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used in Europe. In convective precipitation the snow phase is not present, so the large

flakes are not a factor in the development of the rain beneath.In convection theb is lower.

This would be explained by a relation such asNw rising asDo
2, which in section 5.1.1

was shown to give rise to ab of 1.34. This would mean that the drops are bigger as they

become more numerous.

To examine how different types of rain are picked up by the integratedZ/ZDR tech-

nique first a scan will be considered. This will be the same as the scan of example 6.1.2.

For ease of understanding thea calculated for this scan will be shown, zoomed into the

front, with contours of reflectivity (figure 6.12). The noisein reflectivity means that con-

tours ofZ without any additional averaging are noisy, so for the contours, reflectivity is

averaged with its neighbouring points (note this averagingis only used for the contours).

Calculation using the integratedZ/ZDR technique used unaveraged data. The solid con-

tours show the location of the heavier rain falling from the front. It can be seen that the

a calculated in the heavy rain is generally lower than the surrounding areas. During the

approach of the front, the value ofa is higher than average. To demonstrate this more

clearly a plot showing howa andZ change along a ray is shown in figure 6.13. This ray

is chosen to cross the front. The maximum rain from the front occurs at a range of ap-

proximately45 km, which coincides with the lowa. This suggests in the frontal rain, as

the rainfall rate increases, the drop concentration rises,similar to the convective example

above whereNw ∝ D2
o. The more consistent stratiform rain to the east of Chilbolton

shows less variation ina as well asZ. The heavier rain in this region (> 35 dBZ) shows

a possible increase ina, which suggests higher rainfall rates have lower drop concen-

trations, and therefore larger drop sizes. This follows thesuggestion of a relationship

similar toNw ∝ 1/Do.

To examine the relationships of howa changes withZ they are plotted in figure 6.14.

The previous paragraph suggested the two rain “types” had different characteristics so

these are differentiated in the plot. First consider the frontal rain (the red circles). This is

positively correlated, with coefficient0.41. This is from a total of93 points, and using a

student-t test this is significant at the99% level, confirming the suggested relationship that
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Figure 6.12 Plot of thea from a scan. Overlaid are contours of reflectivity (this is averaged to make

contours less noisy and hence more meaningful). The contours are for: solid line40 dBZ, dashed line

35 dBZ and dotted line20 dBZ. This shows where the rain and heavy rain is occurring.
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Figure 6.13 Plot ofa and reflectivity along a ray through the front from figure 6.12. Reflectivity is shown

in red (axis to the left), with the black showinga (axis to the right).

effective drop concentration increases with rainfall rate. When considering the stratiform

rain (blue crosses) the expected correlation is not seen. From 254 points available a

correlation of−0.042 is obtained, this is not significant even at the95% level.

Finally this will be examined in terms of drop size distribution parameters,Nw and

Do, which will give the physical backing to the results obtained. The results are shown
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Figure 6.14 Plot ofN⋆
w against the meanZ of the box for the data in figure 6.13. For this figure the data

has been separated by azimuth into rain from the front (red ‘o’s) and rain from the preceding stratiform

rain (blue ‘x’s).

in figure 6.15. N⋆
w has been calculated via the integratedZ/ZDR technique, remember

that this isN⋆
w, not Nw, as changes inµ occur are not detected and appear through the

method simply as a change inN⋆
w. The calculation ofDo is from the equation of Bringi

and Chandrasekar (2001),

Do = 1.529Z 0.467
DR , (6.1)

appropriate for S-band. TheZDR used was the averageZDR of box, to limit the effect

of noise inZDR. Here it is clear that for this rain the drop concentration decreases with

increasing drop size.

Page 121



Chapter 6: The Integrated Reflectivity/Differential Reflectivity Technique: Results

0.6 0.8 1 1.2 1.4

10
3

10
4

10
5

D
o
 (mm)

N
W   

*  (
m

−
3  m

m
−

1 )

Figure 6.15 Plot ofN⋆
w againstDo (calculated fromZDR) of the box for the data in figure 6.13. For this

figure the data has been separated by azimuth into rain from the front (red ‘o’s) and rain from the preceding

stratiform rain (blue ‘x’s).

6.3 COMPARISON WITH RAIN GAUGES

6.3.1 GAUGE COMPARISON PROBLEMS

Rain gauges suffer from a number of problems that cause errorsin the measured rainfall

rates. These work alongside problems with the comparison ofradar derived rainfall rates

with the measurement of a rain gauge.

Possibly the biggest problem comes from rain-gauges measuring rain falling through

a small area (∼ 0.01 m2), whereas the radar measures the integrated rain over a large

volume (∼ 4000000 m3). The very small scales of variation (both temporal and spatial)

in rain mean that this comparison is not perfect.

Another problem comes from the positions of the measurements. The rain-gauge is

at ground level, whereas the radar sampling volume is above the rain-gauge by∼ 250 m.
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This means that the rain measured by the radar still has to fall to the rain-gauge leading

to several possibilities and inevitabilities.

A raindrop that falls into the rain-gauge must have passed through the radar sampling

volume previously, meaning that the rain-gauge lags behindthe radar.

If a horizontal wind is blowing the raindrops will drift, which means that the drops

falling into the rain-gauge will not necessarily have passed the radar sampling volume

directly over the gauge, but have been blown into the gauge from other radar pixels.

The raindrops may undergo a change during the fall from radarvolume to the rain-

gauge. Mostly this will be evaporation of the drops, reducing the rain intensity. However

the radar beam may “over-shoot” the rain, and measure rain before the rain falls through

saturated air, hence condensing to the drops and increasingthe rainfall intensity (this

effect is common in mountainous areas where “seeder-feeder” rain is commonplace).

Figure 6.16 shows this effect, on the left the rain falls through a region of saturated air,

so the drops grow, to the right no such saturated region is encountered, hence the drops

evaporate.

Falling through dry airFalling through saturated air

Figure 6.16 Schematic diagram of rainfall spectra changing as the dropsfall. The grey shaded area is a

cloud where the air is saturated.

These various effects all act to make radar rain-gauge comparisons especially diffi-

cult.
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6.3.2 CASE STUDY - 21 APRIL, 2004

To compare the use of the integratedZ/ZDR technique with the data recorded by rain-

gauges a single case will first be examined. The case examinedis that of the day described

in section 6.1.3, which involved moderate rainfall for several hours. During this time the

CAMRa radar was performing a scan routine which involved PPI scans over a sector to

the west of Chilbolton. In this region5 rain gauges operated by the Environment Agency

are located. These raingauges are of tipping bucket type, with bucket size of0.2 mm,

recording the time of each tip to an accuracy of1 second or1 minute, depending on

which gauge is being considered. These gauges are describedin table 6.3.

Location Name Range from Chilbolton Time Resolution

Easterton 40 km 1 minute

Harestock 26 km 1 second

Tidworth 18 km 1 second

Tisbury 44 km 1 second

Winterbourne Stoke 32 km 1 second

Table 6.3 Environment Agency raingauges to the west of Chilbolton.

Having rain gauge tip times is powerful and allows for greater detail of rainfall rates

than is available from accumulations that are frequently considered. However there re-

mains a lack of sampling even at light rainfall rates: a rate of 12 mm/hr corresponds to

60 bucket tips per hour, which is a tip once per minute. At3 mm/hr the bucket tips at a

rate of just15 per hour, or a tip every4 minutes. This demonstrates an important factor in

measurement of rain via raingauges: higher rainfall rates give better temporal resolution.

The time resolution available for the moderate rainfall rates considered in this thesis are

samples once every1-4 minutes. It should also be noted that the raingauge records the

time only when a0.2 mm bucket is filled with rain. The rain distribution to fill this bucket

is not in any way recorded, so a tip simply only supplies the time at which a0.2 mm ac-

cumulation has built up. This may take one hour to happen, appearing to record a rate of

0.2 mm/hr, although this may occur from a period of59 minutes with no rain followed by
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one minute of12 mm/hr rainfall. Hence it is important to remember the tipping bucket

raingauge measures the rainfall accumulations, not the instantaneous rainfall rates.

Initially longer accumulations will be considered. To calculate the accumulations

from the radar data the derived rate from each scan is considered to fall for the time

centred on the scan. In practice the rain will change from the“snapshot” being viewed

from the radar. However the scans repeat frequently (45 s with 5 minute breaks) for

this case study so the variation between scans will be small,so error incorporated will

be small (this effect is examined in detail in chapter 4). ThePPI scans are taken at an

elevation of0.7◦, which is the lowest possible available elevation to avoid beam blocking

within the scanned sector.

Figure 6.17 shows the accumulation at the Tisbury gauge. This gauge is at a range

of 44 km west-south-west of the radar, and given the scan elevation of 0.7◦ this implies

the radar beam is centred685 m above the raingauge. This means that from falling from

the centre of the beam to landing in the gauge takes a drop∼ 100 s. This lag will be

corrected for, but will retain a small error.

This plot shows accumulations calculated by several different methods suggested in

chapters 2 and 5. The plots have been shown for two options from the data. Plot (a) shows

the accumulations with unaltered data from the CAMRa radar; plot (b) is calculated after

adding extra noise to theZDR data to simulate data that would be available from an

operational radar. In both cases the integratedZ/ZDR technique is operated on a5 km

grid. The most important observations from plots (a) and (b)are that the point-by-point

Z andZDR method suffers from the poorZDR data, shown by the accumulation being

much lower than the other methods and raingauge predict. Thetrace from point by point

Z andZDR is also noisier; the use of accumulations has the effect of disguising this. It is

clear from the figures that the integratedZ/ZDR technique shows very little difference in

the results (hencea) with or without addedZDR error, demonstrating that the technique

can handle the noise well.

When considering the total accumulations predicted by the various methods the gauge

shows a total of9.4 mm, the simpleZ − R estimates this as7.6 mm, and theZ andZDR
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Figure 6.17 Rainfall accumulation at the Tisbury raingauge. Plot (a) uses data as available from the

CAMRa radar, so has very goodZDR. Plot (b) gives the same result, but calculated having increased the

noise onZDR to 0.5 dB, so at an operational level. The lines are as follows: large black circles show the

rain gauge tips (note that these are connected by a dotted black line this will however not be how the rain

proceeds between tips). The blue line shows the accumulation predicted by a simpleZ–R of Z = 200R1.5.

The green line shows the accumulation predicted via the point by pointZ andZDR using the equation 2.14

described in section 2.4.2. Finally the integratedZ/ZDR technique is shown in red. This is shown with

two lines, for differentµ possibilities. The upper line is accumulation assumingµ = 5, the lower for the

assumption thatµ = 0.

method estimates just5.4 mm. The integrated technique assumingµ = 0 suggests that

the accumulation is7.6 mm; whenµ = 5 this is9.7 mm.

Figure 6.18 shows a similar plot to figure 6.17, only for the location of the Easterton

rain gauge. This gauge lies40 km to the west-north-west of Chilbolton, which is30 km

north of Tisbury. For this gauge the radar beam is centred600 m above the gauge. A

similar pattern is shown with this gauge, the addition of theZDR noise creating an under-

estimate in the Bringi and Chandrasekar (2001) method of the green line. Also the noise

addition has very little effect on the results of the integratedZ/ZDR technique , although

this gauge shows a rain trace similar to theµ = 0 line.

Comparing accumulations has the effect of averaging out any errors; the longer the

period of accumulation the greater the averaging effect. This means that shorter accu-

mulations (averaging periods) are a more strict test of any rainfall estimation algorithm.

To that end the accumulations over smaller times will be considered. The problem here
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Figure 6.18 Rainfall accumulation at the Easterton raingauge. Plot (a)uses data as available from the

CAMRa radar, so has very goodZDR. Plot (b) give the same result, but calculated having increased the

noise onZDR to 0.5 dB, so at an operational level. The lines are as follows: large black circles show the

raingauge tips (note that these are connected by a dotted black line this will however not be how the rain

proceeds between tips). The blue line shows the accumulation predicted by a simpleZ–R of Z = 200R1.5.

The green line shows the accumulation predicted via the point by pointZ andZDR using the equation 2.14

described in section 2.4.2. Finally the integratedZ/ZDR technique is shown in red. This is shown with

two lines, for differentµ possibilities. The upper line is accumulation assumingµ = 5, the lower for the

assumption thatµ = 0.

is that the raingauge measures accumulation, so this limitshow small a period can be

used for accumulation. Another problem that is brought in when considering short accu-

mulation period is the uncertainty of time lag between the radar and gauge. Some short

accumulations are shown in figure 6.19. The first plot (a) shows a period of6 minutes

when the gauge detects0.6 mm (three tips); a rate of6 mm/hr. During this period nine

scans were performed. There is a small discrepancy between the start points of radar

(from first scan) and the gauge (first [starting] tip), the gauge being slightly after the

radar. The time to reach0.6 mm accumulation is shown in table 6.4. In this example

the integratedZ/ZDR technique shows excellent performance. The second plot of figure

6.19, (b), shows a similar plot, this time with just two tips (0.4 mm) occurring within

6.5 minutes. This time the initial tip is slightly before the first scan. On this occasion the

traditionalZ − R overestimates the rainfall occurring. However the pointwiseZ/ZDR

method performs well, but it must be remembered that the noise in ZDR will limit the
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Figure 6.19 Examination of small accumulations, (a) over the Tisbury gauge (b) over the Tidworth

gauge. The colours are as in figure 6.17. This plot shows dashed lines of3 and10 mm/hr rainfall rates.

Method Time to0.6 mm (mins)

Gauge 6.1

Int. Z/ZDR 6.0 − 6.6

PointwiseZ/ZDR 7.5

Z = 200R1.5 6.9

Table 6.4 Time to accumulate0.6 mm for the lines of figure 6.19.

usefulness of this method.

6.4 MODELLED RAINFALL

False radar data can be modelled, given the values ofa andb. To do this the expected

“true” values ofZ andZDR are calculated.Z values can then be defined and random

Gaussian noise ofZDR with standard deviation as defined, depending on the data type

being modelled. This allows the technique to be tested for consistency, and can be used

to examine the accuracy of the method.

By settinga to be300, b to 1.5 (with µ = 5), the integratedZ/ZDR technique will be

examined. To model data from an operational radar, noise will be added: aZ noise of

0.7 dB, with ZDR having0.5 dB noise. The values ofZ to be used are calculated based
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on a random mean (with variations from30 dBZ to 45 dBZ) with similarly randomly

generated standard deviation (of2 dBZ to10 dBZ). With this setup the integratedZ/ZDR

technique will be tested, compared to the “truth” which is known from the setup. The

integratedZ/ZDR technique estimates rain, the mean being100.16% of true rainfall. This

shows there is no significant bias in the results, with a standard deviation of3.97%,

from 10000 runs. The histogram is shown in figure 6.20. The accuracy is dependent on
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Figure 6.20 Histogram of results of integratedZ/ZDR technique from synthetic data to emulate an

operational radar.

the mean reflectivity: higher reflectivity areas provide better rainfall rate estimates than

lower reflectivities. This is clear from the standard deviation variations across reflectivity:

where only a reflectivity of30-32 dBZ is used the standard deviation in rainfall error is

5.0% (from1313 runs); for reflectivity of43-45 dBZ that standard deviation is3.0% (from

1325 runs). The cause of this is the shape of lines of constantNw. At lower reflectivities,

where the drops are more spherical, a line of constantNw has higher gradient than when

the reflectivity increases. The higher gradient means that achange inNw has less effect

in theZDR position of the line.

The accuracy of the technique is of course limited by the accuracy of the data. Since

the principal noise (in relation to techniques to estimate rainfall) in radar data is likely to

be inZDR the noise in its measurement is likely the determining factor in the accuracy

of derivedNw, a andR. It has been shown that the technique described can estimatethe

nature of the underlying rainfall despite large errors in individual data points. To examine
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the accuracy of the technique, Gaussian noise will be added to false data generated from

known Z − R relationship (see figure 6.21). Note that as would be expected the error
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Figure 6.21 Plot showing the error in deriveda (from standard deviation) whenZDR is given a Gaussian

noise with standard deviation as shown on the horizontal axis. The “true” values are fora = 300 and

b = 1.5. The reflectivities used in the estimation are from an area ofradar data of5 × 5 km of Chilbolton

data, totalling500 points. The statistics are generated from1000 runs.

is larger where the noise inZDR is high. These errors ina are translated into error in

derived rainfall rates, but the errors remain small. Even atthe level of1 dB noise with

the500 points used for characterisation, rainfall rates have a standard deviation error of

just3%.

The500 points used is a larger number than is needed for the25% accuracy desired

(this was seen in section 5.6.2.1). To investigate the errordependence on the number of

points being used for characterising the data, one thousandexamples of calculation are

considered from number of points ranging from one (effectively a gate-by-gate method)

to 512 points. The errors are expected to follow equation 5.20, so the error is halved

when the number of points is squared. This is demonstrated infigure 6.22, showing

the expected linear shape, passing through the origin (zeroerror when infinite points are

used). It can be seen that the error does halve when comparinga calculation from four
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Figure 6.22 Plot showing the error in derivedR (from standard deviation when calculated using reflec-

tivity of 39.8 dB [trueR = 10 mm/hr]). The scale is oflog R (hence factor errors), whenZDR is given

a Gaussian noise with standard deviation of0.5 dB. The “true” values are fora = 300 andb = 1.5. The

reflectivities used in the estimation are from an area of radar data of5× 5 km of Chilbolton data; the accu-

racy is shown compared to the number of points used for calculation. Equation 5.20 describes the expected

relationship between error and number of points, which goesas 1√
N

(lower horizontal axis). The number

of points this corresponds to is shown on the upper horizontal axis. The statistics are generated from1000

runs.

points with one of16.

This method does not allow for change in drop size distribution within the considered

area. Although this will likely be small over the areas beingconsidered, its effect may be

problematic.

6.5 SUMMARY

This chapter has shown a number of examples of the use of the optimised integrated

Z/ZDR technique described in chapter 5 with real radar data. An example showing the

use of the algorithm in full detail was shown in example 1, including a table showing

the iterative approach. Example 2 demonstrated use of the optimised integratedZ/ZDR
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technique over a complete scan, showing variations in calculated drop concentrations.

This example scan was considered further in terms of the types of rainfall occurring

within the scanned rain.

Example 3 showed the temporal variations detected by the optimised integratedZ/ZDR

technique during a period of over one hour of rainfall. The example showed the varia-

tions ina detected, showing the rainfall rates from the optimisedZ/ZDR fit and simple

Z − R relationships.

The chapter continued to examine the results from the integratedZ/ZDR technique,

while attempting to explain the results physically. Differences between convective and

stratiform rain were examined: increased large drop growthat the expense of the smaller

drops in melting snow may cause the highb often found in studies of stratiform rain,

whereas drops become larger, as less of them are present. Thelack of melting level for

convective rain means that lowb has been reported widely, caused by more drops as

they get larger. A scan was examined in terms of the characteristics of the rainfall being

measured. A plot ofa andZ showed that the higher reflectivities tend to have lowera

for the frontal rain, hence higherNw. The reverse occurs in the stratiform rain. The scan

is considered to show the relationship betweenDo andNw.

The chapter continues into comparison with rain gauges. Comparing rainfall derived

from radar with gauge values is fraught with difficulty. Errors arise from a number of

possibilities, including differences in the scale of sampling region and changes in the

rain between radar beam and gauge. However, despite these problems it is shown that the

optimised integratedZ/ZDR technique gives good results with the Chilbolton radar data,

even when it is degraded to have the measurement accuracy ofZDR. The comparison is

shown to give good rates even down to very small accumulationtimes.

Finally the chapter examines the integratedZ/ZDR technique with modelled data,

where the rainfall rate is “known”. The use of modelled rain allows large amounts of data

to be simulated, making error statistics possible. Modelled data show that the integrated

Z/ZDR technique has no significant bias, with standard deviation error of ∼ 4% and

the expected lower error at higher rainfall rates caused by the curvature of the lines of

Page 132



Chapter 6: The Integrated Reflectivity/Differential Reflectivity Technique: Results

constantNw.
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CHAPTER 7:

OPERATIONAL INTEGRATED

REFLECTIVITY/DIFFERENTIAL

REFLECTIVITY

7.1 INTRODUCTION

Previous chapters have shown the potential of dual polarisation radar to improve rainfall

estimation over the traditional non-polarisation diversity radars (chapter 2). However the

noise that is inherent to the measurement of the polarisation parameters is very large,

especially in the operational environment. This noise limits the use of the phase shift

radar parameter for improved rainfall estimation to be viable only in very heavy rain.

However, as discussed in chapter 3, the changes in drop size spectra are available in the

Z andZDR data, and if this can be exploited, improved rain rates can bea reality, even

with the noisy operational radars. Chapter 5 described a technique that uses theZ and

ZDR data within a small area, finding the optimal value ofa (and henceNw), to then be

used inZ = aR1.5 for rainfall calculation. Chapter 6 showed examples of the use of the

integratedZ/ZDR technique with the accurate Chilbolton radar. In this chapter the use of

the integratedZ/ZDR technique in the operational environment (especially in the UK) is

considered. This will include the amendments to the technique that are needed because

of the different radar wavelength, higher noise levels and reduced resolution.

7.1.1 WHAT IS DIFFERENT IN THE OPERATIONAL ENVIRONMENT?

One of the principal differences between research and operational radars is the wave-

length of the radar beam. CAMRa operates at S-band (λ ≈ 10 cm), which is the wave-

Page 134



Chapter 7: Operational Integrated Reflectivity/Differential Reflectivity

length of operational radars in the United States, whereas in the UK (as well as Japan

and much of Europe) operational network radars operate at C-band (λ ≈ 5.6 cm). This

results in changes in the measured variables, affecting lines of constant drop concentra-

tion or rainfall; see figure 7.1. The smaller wavelength alsomeans that non-Rayleigh

scattering is more common due to particles of size with similar order of magnitude as the

wavelength. Entering the Mie regime greatly changes the scattering characteristics, so

ideally it should be avoided.
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Figure 7.1 Plot showing the lines of constantNw and1 mm/hr for S-band (solid lines) and C-bands

(dashed lines). Hereµ = 5 andNw = 8000 mm−1m−3 have been used.

Another major difference is in the implementation of dual polarisation techniques.

Until recently dual polarisation radars have been solely for research purposes, using an

alternate pulse technique where a horizontally polarised wave is transmitted and returns

measured in both polarisations, followed by a pulse of vertical polarisation (Goddard

et al., 1994a). All European operational weather radars to date have used simultaneous

transmission (‘hybrid’ mode) where the transmitted pulse has45◦ polarisation. This45◦

transmission method, which was initially proposed in the paper introducing the concept

of ZDR (Seliga and Bringi, 1976), is known as the “hybrid basis mode”, explained in
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Brunkow et al. (2000). The principal reason for this change is financial – ifa network

of such dual polarisation radars is to be a financially viableprospect for the future, the

radars’ cost must be kept low. The use of “hybrid” mode means that the fast rotating

chopping disk, acting as a polariser switch, as used on the CAMRa radar (Goddardet al.,

1994a), is not needed (it may result in undue expense or unreasonable unreliability).

This difference means that the linear depolarisation ratio, LDR, is not available (although

it may be possible to perform an “LDR” scan where vertically polarised transmission is

turned off, although the change to this mode would be slow so not available pulse to

pulse). Performing anLDR scan would provideZ andLDR, but notZDR. This scan will

have improved sensitivity inZ, so may be desirable, but will require time within the scan

strategy. The simultaneous transmission also means that interpolation between pulses

for differential terms is not necessary, hence improving the accuracy of the estimates in

ZDR, φDP andKDP. The accuracy of an operational radar will however be worse than a

research radar. Rapid scan rates are required operationallyto achieve good coverage at a

good time resolution, which means that dwell times are low and hence accuracy is limited

by the low number of independent samples taken. Operationalradars are also more likely

to suffer from antenna imperfections resulting in a mismatch of the vertical and horizontal

polarisations and the added radome will potentially introduce further error. Mismatched

beams is the effect where the illumination pattern from the radar is not identical for rays

of both polarisations, so if the beams see different volumes, the hydrometeors viewed

will be different.

The different implementation of polarisation in the operational environment mean

that larger errors than the research counterpart are to be expected. Figure 7.3, on page

139, shows the errors inZDR as a function of normalised (with respect to folding ve-

locity) spectral width,σvn, with copolar correlation coefficient,ρhh,vv, assumed at0.97

(reasonable for an operational radar; see later section 7.3.1.1).
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7.2 THE THURNHAM RADAR

The first operational dual-polarisation radar in the UK is located in Thurnham, near Maid-

stone, Kent (the south-east of England). The radar (photographed in figure 7.2) is to be-

Figure 7.2 Photograph of the Thurnham radar, taken from McKay (2006).

come part of the UK radar network and the project is the resultof collaboration of the

Met Office and Environment Agency. The radar specifications are given in table 7.1.

In section 2.4.3 alternate pulse dual-polarisation radarswere shown to have a fun-

damental noise inZDR, caused by the number of independent samples, the copolar cor-

relation, spectral width of the targets and interpolation necessary due to the alternating

pulses. In the ‘hybrid mode’ the interpolation is not neededas horizontal and vertical

polarisations are sent and received simultaneously, so theerror in ZDR decreases with

spectral width for all spectral widths, hence there is no optimal value for accurateZDR.

When in alternating mode very high spectral widths increase the errors again as the in-

terpolation between alternate scans became inaccurate; in‘hybrid mode’ this is not a
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Frequency 5.5 GHz

Wavelength 5.6 cm

Antenna diameter 8 m

Beam width 1 ◦

PRF 1180 Hz

range resolution 125 m

Max. digitised range 255 km

Peak power 250 kW

Noise at1 km −33 dB (in hybrid mode)

−36 dB (in single polarisation mode)

Unambiguous velocity 16.6 m s−1

Table 7.1 Properties of the Thurnham operational radar system.

problem. So the fundamental limit for a radar with the characteristics of the Thurnham

radar as a function of spectral width is given in figure 7.3. The plot shows the decrease in

error as the spectral width increases, a result of increasing number of independent obser-

vations. At0.5 m/s the lowest possible error would be0.6 dB; by 1 m/s that error limit

has reduced to0.45 dB and by2 m/s that limit is just0.3 dB.

To examine the spectral width of rainfall in the UK, Chilbolton will be used. Figure

7.4 shows spectral widths of data from a PPI, after ground clutter removal. The plot shows

contours of the density of points plotted with spectral width against reflectivity. The plot

shows that spectral widths generally increase as the reflectivity (hence rainfall) increases.

High spectral widths are also seen to be more frequent than low spectral widths (shown

by the vertical extension of density contours above the centre). The increase in spectral

width with reflectivity is explained by turbulence being greater in heavy rain High shear

across the beam is also more likely in heavier rain, as both turbulence and shear increase

spectral width. It must be remembered that the Chilbolton radar has a radar beam of1
4

◦

where the1◦ beam of the Thurnham radar is much larger. The larger beam volume for

the operational radar means that shear across the beam will be larger, increasing spectral
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Figure 7.3 Plot showing the theoretical standard

deviation of recordedZDR as a function of spec-

tral width for the Thurnham radar setup caused

solely by the sampling problem (this plot assumed

a correlation of0.97). In the UK moderate rain-

fall tends to have spectral width of∼ 0.75 m/s

which corresponds to a fundamental limit on the

accuracy ofZDR of ≈ 0.5 dB. Stormy rain has

higher Doppler widths,∼ 2.2 m/s, which means

that in stormy rain the fundamental limit ofZDR

has dropped to≈ 0.3 dB.
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Figure 7.4 Spectral width as a function of re-

flectivity. This data is taken from a single scan on

18/08/2000 with CAMRa, having used anLDR <

−20 dB threshold to remove non-rain targets. This

is the passing of a vigorous cold front. Contours

show the density of points. The plot also shows

that spectral widths are∼ 0.6 m/s.

width.

As spectral widths of∼ 0.75 m/s are expected in moderate rain (see figure 7.4 and

adding a small amount for increased shear across the beam) the Thurnham radar cannot

be expected to haveZDR more accurate than0.5 dB. The addition of radar imperfections

increase this number further. Figure 7.5 shows a histogram of observedZDR at low reflec-

tivity (23dBZ), demonstrating the spread inZDR from the instrument (at this reflectivity

the natural variability will have a very small effect). The data showsZDR has a standard

deviation of0.7 dB, 0.2 dB above the estimate from the sampling expectation. This is
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a result of imperfections in the radar meaning the copolar correlation,ρHV, drops below

the0.97 assumed.
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Figure 7.5 Histogram ofZDR data (250m resolution) with22 < dBZ < 24 from a single scan of

Thurnham radar data. Overlaid is a normal distribution, with mean0.43dB and standard deviation0.69dB.

At these low values of reflectivity the natural variability of the rainfall will be small as drop spectra changes

have little impact on drop shapes.

Given that the noise found is0.7 dB in ZDR, it is clear that rainfall rates derived

usingZDR on a point by point basis will have large errors (standard deviations will be of

order of a factor of three) and frequently observe negativeZDR where rain calculation is

either impossible or unphysical (depending on method); clearly no improvement over a

simpleZ − R method. However, theZDR data remains useful, despite the signal being

swamped by the noise; clearly averaging or integrated techniques will be needed to utilise

the information available fromZDR in the operational environment. To achieve aZDR

accuracy good enough to gain improvement over a traditionalZ − R simple averaging

would require so many points as to have an unacceptably poor spatial resolution. The

integratedZ/ZDR technique is well suited to the operational radar. It utilises the high

resolution and accurateZ data available point by point to calculate high resolution rainfall

rates, using the noisyZDR for best fit, so considering eachZDR pixel independently
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to find the average drop concentration. This method infers the signal from within the

underlying noise.

7.3 OPERATIONAL DIFFICULTIES

In this section three possible problems for operational polarisation radar will be consid-

ered and the potential for overcoming these problems will bestudied. Those problems

are calibratingZDR, the greater attenuation, but first that of ground clutter.

7.3.1 GROUND CLUTTER/ANAPROP

Because the Thurnham radar operates in simultaneous transmit mode (‘hybrid mode’)

to collect ZDR data, simultaneousLDR is not available (an “LDR scan” is performed

regularly as part of the scan strategy but this will be time offset from availableZDR data,

so it may not be relevant). This means thatLDR cannot be used for clutter rejection and

another option must be considered.

7.3.1.1 ρHV FOR CLUTTER REMOVAL

Previous sections of this thesis (2.4.3 or 7.1.1) discussedthe copolar cross-correlation,

ρHV. ρHV is the correlation of the vertically and horizontally polarised reflectivities. This

is a measurement of variety in shapes and fall modes of the targets. The value ofρHV

depends on the target type: for instance in rain one would expect a value approaching

unity, (in truth imperfections in radars mean that unity cannot be recorded so values of

≈ 0.97− 0.99 are expected with operational radar) for an operation radarsuch as Thurn-

ham, where mis-matched beams may be an issue, but higher (≈ 0.997) at Chilbolton

(Illingworth and Caylor, 1991).

Ground clutter has lower correlation as the scattering willbe non-Rayleigh, so a

threshold inρHV could be used to remove ground clutter.

The problem with usingρHV is that measurements may be rather noisy and hence
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“miss” some clutter infected points. So, althoughρHV appears a natural replacement for

LDR in removing ground targets the noise makes this very problematic.

7.3.1.2 ZDR SPREAD FOR CLUTTER REMOVAL

The next option to consider is the spread inZDR data. For this we calculate the standard

deviation of a3 × 3 pixel area (this is the same as the texture described by Gourley

et al., 2005). For rainfall the variations inZDR between pixels will be small as rainfall

variations will be small on such small spatial scales. In ground clutter or anomalous-

propagation theZDR returns a near random value so has a much higher spread (because

of the scattering characteristics of the large target the ground forms). This means that a

threshold on the value of the spread may be used for classification and removal of ground

echoes, and the value of this threshold should be at1.5 dB.

The problem that arises from this method of reduction is a return to a familiar prob-

lem: the sampling noise inZDR. Assuming there is no natural variability in the rainfall

of the nine pixels being considered, they would have a spreadequal to the sampling noise

(0.7dB). This noise is large enough to be nearing the spread expected from ground targets

(see figure 7.6), so again some ground targets may be missed byany threshold.

7.3.1.3 φDP SPREAD FOR CLUTTER REMOVAL

The spread ofφDP is similar to the spread ofZDR, only using the differential phase.

Again it is calculated as the standard deviation of a3× 3 pixel box. Again hydrometeors

are expected to have a low yet finite value, with ground targets with much higher spread

due to the random returns from the surface (the phase of the return from the surface can

in fact be exploited to gain information of the refractivityof the air [Illingworth et al.,

2005], but this is beyond the scope of this thesis). The noisein φDP is much smaller

relative to the range of expected values with the Thurnham radar (see figure 7.7), so this

option may be the best suited to use for clutter removal operationally. A cut-off to remove

clutter of5◦ removes most clutter, although for use where clutter removal is vital, such as
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Figure 7.6 False colour plot of spread ofZDR from a PPI scan with the Thurnham radar and histogram

of values found. The ground clutter can be clearly seen by eye, the hydrometeors being blue with values

≈ 0.7 dB, and clutter with higher values. It can be seen that there is significant variation of these values

within the rainfall.

for the integratedZ/ZDR technique for rainfall estimation, this could be reduced to2.5◦.
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Figure 7.7 False colour plot of spread ofφDP from a PPI scan with the Thurnham radar and histogram

of values found. The ground clutter can be clearly seen by eye, the hydrometeors being blue with values

≈ 1 ◦, and clutter with much higher values. It can be seen that there are only small variations within the

rainfall.
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7.3.1.4 USING A DYNAMIC CLUTTER MAP

Use of a “clutter map” is common (recently for example Meischneret al., 1997) for tradi-

tional single parameter radars but these do not allow for theseasonal (vegetation growth)

and long term (addition/removal of objects) variations in clutter returns. A clutter map is

also not able to detect temporary anaprop returns. A dynamicclutter map would involve

updating the clutter map used regularly with information from a previous time period.

This dynamic clutter map would predominantly remain constant with minor changes due

to changes in the ground targets. The clutter map can be formulated from consistency

of the appearance of echo in each pixel, but withLDR scans available the consistency of

highLDR may give a better clutter map.

Currently the operational network radars of the Met Office usesignal variability to

detect clutter which rejects45−95% of clutter, then the marginal signal variability points

are compared to a dynamic clutter map to remove those pixels classed as usually cluttered

(Sugieret al., 2002).

For polarisational operational radars a similar use of a dynamic clutter map could be

designed. The best parameter for determining clutter pixels operationally is the spread in

φDP values. Very high values of spread can be removed without fear of a false alarm, with

the more marginal values determined using a combination with a dynamic clutter map to

determine the likelihood of a given pixel being clutter. Similar fuzzy logic systems are

suggested by Gourleyet al. (2005) and Gourleyet al. (2006).

7.3.2 CALIBRATION OF THE RADAR

Calibration of the radar will be of the utmost importance for using rainfall estimation

algorithms. For the integratedZ/ZDR technique to retain the desired25% accuracy in

moderate rainfall rates, reflectivity must be calibrated to1 dB, andZDR to 0.1 dB. Al-

though not trivial to automate, reflectivity can be calibrated to the necessary accuracy

using the consistency ofZ, ZDR andφDP along rays as suggested by Goddardet al.

(1994b). CalibratingZDR was discussed in section 3.3. Operationally a solution must
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be found and potentially incorporated into the chosen scan strategy. Again, viewing the

sun can be ruled out as, although it occurs every day, it testsonly the receiver, not trans-

mission. This leaves the possibilities as either considering light rain or vertical dwells.

Distinguishing between lots of small drizzle drops or a small number of large raindrops

will be even tougher than with CAMRa due to the increased noise.This leads to the opti-

mal option for calibratingZDR to be vertical dwells, although these require some time in

the scan strategy to be assigned; not just during the dwell, but also adjusting elevation to

and from vertical. The Thurnham radar currently operates ona 10 minute cycle, which

performs low level PPIs at5 minute intervals, with a vertically pointing scan once per

cycle as well as “LDR scans” and high level PPIs for Doppler winds. This means thata

new calibration can be calculated every10 minutes when a target is present, which will

allow for any drift in calibration to be quickly recognised.

7.3.3 ATTENUATION AND DIFFERENTIAL ATTENUATION

Attenuation is the reduction of power of the radar beam caused by absorption and scat-

tering (not including the spreading caused by diffraction). Once the beam has reduced

power, there is less power to be scattered by the targets, hence less returned power. The

returned power is then attenuated again on the return trip, so the power of the signal de-

tected by the radar is reduced during the trip in both directions. The reduced power is then

converted to reflectivity, resulting in reduced reflectivity. For a graphical demonstration

see figure 7.8.

Attenuation of radar beams by air is a very small effect, although hydrometeors may

have a significant attenuation. The attenuation of the beam is greater at higher radar

frequencies, hence the Thurnham radar will suffer more attenuation than the Chilbolton

radar. At S-band (such as with the Chilbolton radar) attenuation by meteorological targets

is negligible in all but the very heaviest of rains. At C-band,such as used operationally in

the UK, attenuation will be a more significant problem, occurring with higher regularity.

Attenuation means that any rain behind very heavy rain appears reduced. An example of

attenuation observed with the Thurnham radar is shown in figure 7.9.
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Figure 7.8 Schematic of attenuation, with raindrops reducing the power in a radar beam. In the plot,

the radar beam is entering from the left (shown by the arrow) and meeting raindrops, represented as blue

circles. The beam passing through the drop reduces the powerin the beam behind as is indicated by the

darkening at the right of the figure. Note that in this figure the effect is vastly exaggerated.
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Figure 7.9 Attenuation as observed by the Thurnham C-band radar. Indicated is the region of heavy rain,

with the rain with reduced reflectivity behind. Lines to showradials from the radar are shown for clarity.

Differential attenuation is the effect where theZDR signal is reduced by the presence

of heavy rain nearer the radar. TheZDR is affected by attenuation due to the horizontally

polarised beam being attenuated more strongly than the vertically polarised version, be-

cause the drop shapes imply the horizontal beam must travel through more water than the

vertical beam. Differential attenuation becomes significant at lower rates than attenua-
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tion of Z, this is because of the scale of variation inZDR, despite the specific differential

attenuation (in dB per km) being smaller than the specific attenuation (attenuation per

kilometre in dB per km) because of the signal size. Differential attenuation can have

a quite interesting effect on observations. When observing light rain beyond an area

of very heavy rain, negativeZDR can be recorded, where attenuation in the heavy rain

has reduced the already lowZDR. The lower attenuation for the vertically polarised

waves is the prime reason for the current UK operational radar network, of which all but

the Thurnham radar do not offer polarisation diversity, using a vertically polarised radar

beam.

Attenuation can be corrected with reflectivity alone. Hitschfeld and Bordan (1954)

suggest that attenuation, in dB, is given by

A =

∫

KRαdr, (7.1)

whereA is attenuation in dB per mile,r is range in miles andR is mm/hr. At C-band

they suggestK = 0.0047 andα = 1.1 (note that these values are for Imperial units of

equation 7.1), calculatingR from a standardZ −R relationship. BecauseR is calculated

just from aZ − R relation, this is as error-ridden as the rainfall calculated this way for

the same drop size spectrum change reasons. However, the bigger error in the method

of Hitschfeld and Bordan (1954) is that caused by small changes in the calibration ofZ.

As the correction is applied gate-by-gate, the correction becomes unstable as shown by

Hildebrand (1978). Methods using justZ or Z andZDR for attenuation corrections suffer

from instability, and hail causes problems as it is relatively non-attenuating.

The introduction of dual polarisation to radar has meant improvement in attenuation

correction. The cause of differential attenuation is the same as the creation of the differ-

ential phase shift observed with polarisation radar (see section 2.5.1). Bringiet al.(1990)

show estimation of attenuation and differential attenuation as a function ofKDP. So

AH = βHKDP (7.2)

and

ADR = βDRKDP, (7.3)
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where, this timeA is in dB/km. Values ofβH = 0.054 andβDR = 0.0157 are suggested

for use at C-band, allowing for improved correction ofZ andZDR, although retaining

problems with stability. Smyth and Illingworth (1998) proposed a correction scheme for

S-band radar using the negativeZDR behind the heavy rain, andφDP measured, which

remains stable, presenting results showing correction good to 1 dB. At C-band Smyth

and Illingworth (1998) suggest the algorithm is simpler as theφDP would not be needed

asAH andADR can be assumed linearly related at C-band, hence the negativeZDR can

be used to estimate reflectivity attenuation.

The integratedZ/ZDR technique presented in this thesis is untested for use where

attenuation correction applies. This is because, once differential attenuation becomes

significant, phase shift is strong enough for rainfall estimation via the ZPHI technique,

so once attenuation is occurring, ZPHI should be used. This was shown to have improved

rainfall rate by Le Bouaret al. (2001).

7.4 INTEGRATED Z /ZDR IN THE OPERATIONAL ENVI-

RONMENT

Operationally the integratedZ/ZDR technique will remain essentially the same as was

described in chapter 5, although a few minor alterations arerequired. The need for a

different criterion for clutter rejection to that used for Chilbolton data was considered in

section 7.3.1. The lines of expectedZ andZDR must be corrected for the changed radar

frequency as discussed in section 7.1.1.

Use of any radar to rainfall algorithm in an operational system requires an algorithm

that can be run quickly, so that all the data processing and storage necessary can be

performed quicker than it is taken. Modern computing means that complex algorithms

are possible, but algorithm efficiency remains an importantconsideration.
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7.4.1 GRID SIZE FOR USE IN THE OPERATIONAL INTEGRATED

Z /ZDR TECHNIQUE

The increased noise and reduced resolution of the operational radar has implications on

the grid size usable with the integratedZ/ZDR technique. Assuming equation 5.21 from

section 5.6.2.1 and the error of0.7 dB, 49 points are required for25% accuracy. To

examine the grid size the method used in section 5.6.2.1 to generate figure 5.13 will be

applied for Thurnham data. Here a64 × 64 data points area is used andNw calculated

over various grid sizes ranging from4096 to 4 points, with results plotted in figure 7.10.

This figure shows the expected behaviour, with large noise inthe smallest grid, which
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Figure 7.10 Colour plots showing theNw calculated from grids of various sizes. The data used was

taken with the Thurnham radar, where each pixel has range of500 m and has1 ◦ in azimuth at a range of

90 km (chosen for a large region of moderate rain). The grid scales are [top left]∼ 55 km, [top centre]

∼ 30 km, [top right]∼ 15km, [lower left]∼ 7 km, [lower centre]∼ 3.5 km, [lower right]∼ 1.8 km. Some

extreme points are indicated in the lower middle plot, and are explained further in the text.
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is reduced in the next grid (16 points) and indistinguishable by64 points. Although the

16 point grid a shows generally good pattern there remains someunacceptable noise;

example points showing particularly extreme values which are most probably unphysical

are indicated. This means that the algorithm requires of order of 50 points as predicted

above.

As the resolution of Thurnham data is lower than Chilbolton data, the grid used needs

to be larger. Choice of grid size becomes a greater compromisefor Thurnham than

Chilbolton. Enough points for accurate calculation are required, yet if the area selected is

too large natural variability will not be adequately characterised. Within50 km a5×5 km

grid is usable, but beyond this the data volume from the1◦ beam is too small for enough

data to allow for theZDR error. To reach the ranges of the radar the grid must be increased

to 10 × 10 km (it is worth considering at the largest ranges∼ 250 km the beam is well

above the surface [∼ 7 km with a0.5◦ elevation] and also well above the bright band so

use of the integratedZ/ZDR technique is unlikely to be feasible).

For operational use it is preferable to use a grid based on a polar grid. The natural

variations in rain do not occur on a polar grid based around the radar; a Cartesian ap-

proximation would give a better representation of the true changes. This Cartesian grid

approximation is formulated to have correct range for the chosen grid scale, with number

of azimuthal rays per box decreasing with range, to give the sector of an annulus closest

to a square of defined length. To view the grid that results from the grid resolution and

Cartesianised polar coordinates, see figure 7.11. Each grid box in the figure can be seen

to be near square. The grid boxes become more square as the range from the radar in-

creases. The central ring contains just three grid boxes each with a sector, one third of a

circle. The figure also shows the resolution change, where the central grid is smaller than

the outer.
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Figure 7.11 Greyscale plot to show the near Cartesian polar grid for use with the integratedZ/ZDR

technique. The plot shows colour from a random number generator, which shows the grid clearly, although

the darkness of the colour has no real meaning.

7.5 OPERATIONAL EXAMPLES

In this section some examples of the integratedZ/ZDR technique being used with the

Thurnham operational radar will be investigated. The examples are limited due to a very

small amount of reliable data from the radar at the time of writing.

7.5.1 EXAMPLE 1

This first example is for data taken during April the7th of 2005, when the radar was in

the early testing stages, during which time it was located inAlabama, USA. The weather

on the occasion shows very heavy showers embedded in widespread moderate rainfall.

The data chosen (figure 7.12) is a5 × 5 km box of data centred on one of the embedded

convective regions. The figure shows that this region has an effective (may be aµ effect)

drop concentration of2000 m−3 mm−1. This corresponds toa = 275. This figure shows

the very large noise level in the data of the Thurnham radar, showing a spread of more

than3 dB inZDR data with40 dBZ. The estimatedN⋆
w and hencea suggest the maximum

rainfall rate within this embedded convection is51 mm/hr, whereas ifN⋆
w was assumed

to be8000 m−3 mm−1, this would be81 mm/hr.

Page 151



Chapter 7: Operational Integrated Reflectivity/Differential Reflectivity

0 1 2 3
30

35

40

45

50

Z
dr

 (dB)

dB
Z

Figure 7.12 A plot of Z andZDR for a5×5 km area of data taken by the Thurnham radar, during testing

in position in Alabama, USA. The red line shows the line corresponding toNwof 8000. The blue line

shows the fit from the integratedZ/ZDR technique which yieldsNw = 2000 anda = 275.

7.5.2 EXAMPLE 2

Example 2 considers the variations ofa over a scan. The scan occured at00 : 09 GMT,

29th October, 2005, with the radar in its final position in Thurnham. This day rain was

falling related to a front trailing from a low pressure system over the Arctic Ocean.

The left panel of figure 7.13 shows the reflectivity from the scan chosen, after removal

of ground clutter using the spread of phase shift,φDP. Note that this scan is the one used

for demonstrating clutter removal in section 7.3.1. Care hasbeen taken to ensure the data

shown does not include the bright band. Thea calculated from the data is shown in the

right panel of figure 7.13. It was calculated using a grid resolution of 5 × 5 km within

50 km range,10×10 km outside that. The scan shows that generally this event hada low

drop concentration, shown by higha. The heaviest rainfall to the north of the radar shows

a low value ofa, hence high drop concentration, although this pattern is not repeated to

the west. To the west-most side of this heavy rain region, attenuation is found, so this

data is unused for the integratedZ/ZDR technique. However the ZPHI technique would

be applicable here.
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Figure 7.13 Plots from a PPI taken at00 : 09 GMT, 29th October, 2005. [Left] Reflectivity in (dB),

[Right] a. Note that the colour is based on a log scale. Overlaid are contours of reflectivity (this is averaged

to make contours less noisy and hence more meaningful). The contours show the reflectivity (smoothed to

avoid noise) with values; solid line40 dBZ; dashed line35 dBZ and dotted line25 dBZ. These contours

show where the rain, and especially heavy rain is occurring.

7.5.3 FURTHER EXAMPLES

To demonstrate some of the variation of derivedZ − R relationships six further plots of

Z againstZDR, with lines showing best fit anda = 200 line, are shown in figure 7.14.

The data used in these plots is after careful calibration ofZDR using vertical dwells and

removal of non-rain data points. The plots span different types of rain, including heavy

showers, widespread stratiform rain and frontal rain. The grid size used varies dependent

on range from the radar, but is appropriate to give an accurate retrieval as discussed in

section 7.4.1, with grid sizes of5 to 10 km.

7.6 SUMMARY

This chapter has examined the use of the integratedZ/ZDR technique, as described in

chapter 5, in the operational environment.

The principal difference between the CAMRa radar and radar used operationally in

Europe is the wavelength that is used, affecting the occurrence frequency of non-Rayleigh

scattering by meteorological targets. To reduce the cost ofoperational dual polarisation
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Figure 7.14 A selection ofZ/ZDR plots from areas of Thurnham radar data. The data are from different

scans and days, during different conditions (all are however from events during summer months). Individ-

ual data points are shown as black crosses, with the lines shown being lines of constanta (henceNw): the

red line is thea = 200; blue is the best fit line, of value shown above the plot.

radars (to make networks of such radars a financially viable prospect) use the “hybrid”

mode of dual polarisation, where the horizontal and vertical pulses are released together

(transmitting at45◦), then receiving in both channels. This has both advantages(better

measurement ofZDR, φDP andKDP) and disadvantages (no simultaneousLDR). The fast

scan rates required operationally were explained to mean that the accuracy of measure-

ment cannot be as good as a research radar can be. With the addition of the imperfections

inevitable from the cheaper antenna on an operational radarthis means that the radar

parameters cannot be measured with great accuracy, and are unlikely to be better than

0.5 dB.

The Thurnham radar, the first polarisation radar to join the UK operational radar net-

work, was introduced in section 7.2. The specifics of this radar are examined to estimate

the expected errors inZDR using this radar, using spectral widths recorded by the CAMRa

radar. As spectral widths of0.75 m/s are expected during moderate rain events figure 7.3
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shows thatZDR in moderate rain cannot be measured more accurately than0.5 dB (be-

fore radar imperfections are added). It was then shown that the radar actually records

ZDR with an accuracy of0.7 dB with a near Gaussian distribution (figure 7.5). It was

explained that this noise inZDR data from the Thurnham radar means that point by point

Z andZDR will not be an improvement on a simpleZ − R. However the data will be

ideally suited for integrated techniques such as the integratedZ/ZDR technique or ZPHI

technique of Testudet al. (2000).

Clutter removal with the operational radar was discussed. Since simultaneousLDR is

unavailable, it was concluded that the spread (texture) ofφDP gave the best results, but a

fuzzy logic system may be implemented for more robust relations.

Section 7.3.3 describes the problems of attenuation, explaining that the lower wave-

length (than the Chilbolton radar) of the Thurnham radar means that attenuation and

hence differential attenuation are increased. Attenuation is then described in detail, with

correction discussed.

Finally, the use of the integratedZ/ZDR technique in the operational environment is

examined, explaining the need for a larger grid resolution with the operational radar due

to the lower grid resolution. The use of a polar, near Cartesian grid is examined and such

a grid shown. The chapter ends with some examples of the use ofthe integratedZ/ZDR

technique are examined, and discussing the observed results.
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CHAPTER 8:

CONCLUSIONS AND FUTURE WORK

Rainfall is of critical importance to mankind, influencing industry, property and even

livelihoods. However, rain is remarkably difficult to measure because of its small scales

of variation in time and space. Rain gauges provide a good measure of the rain at a point,

but for a good coverage radars are needed to provide remotelysensed rainfall. This thesis

has examined the potential of an integrated technique to accurately estimate the moderate

rainfall rates that are common in north-western Europe using the new operational dual-

polarisation radars.

8.1 THE NATURE OF RAINFALL

The introductory chapter, 1, described the normalised gamma distribution of rain drops

that represents natural rainfall well. Chapter 2 then showedthe drop shapes that these

sizes have, explaining the polarisation parameters available from dual-polarisation radar.

In Chapter 4,61 months of high resolution rain-gauge data is analysed. The frequency

of occurrence of rainfall rates has been examined and showedthat moderate rainfall rates

that are considered in this thesis occur at less than1% of the time, yet this rain accounts

for ∼ 40% of the accumulated rain throughout the period.

Rain was shown to have the curious property that whatever the rate, the relative

changes in that rate are constant. This was shown in chapter 4. This means that very

heavy rain has very large variations in intensity whereas the lighter rains have small

changes, however the variations are proportional to the average rate, so in relative terms

both rains are equally variant.

The decorrelation of rainfall was also examined. It was shown that as expected con-

vective rain has much shorter decorrelation time than stratiform rain as would be expected
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from the nature of the two types. The decorrelation time to a correlation of0.5 for high

accumulation convective rain is5.1 minutes, whereas for high accumulation stratiform

rain this decorrelation time is much higher,26.8 minutes. This effect is also shown from

the seasonal decorrelation, showing shorter decorrelation in the summer months. The

overall decorrelation to0.5 takes just4.5 minutes, reachinge−1 in just9.3 minutes. This

is a slower decorrelation than is shown in Barcelona in the work of Burguẽno, A. and

Vilar, E. and Puigcerver, M. (1990), as would be expected by the increased stratiform

proportion of rain in the UK. This decorrelation affects theaccuracy of calculating ac-

cumulations when taking “snapshots” of the current rain rate as does a radar. The errors

created by using “snapshots” are found to be40% when sampling only every15 minutes,

dropping to20% at 5 minutes, and just10% if one is to sample every2.5 minutes. This

will be a concern when considering accumulations as calculated by radar.

The power spectrum of rain was formulated in chapter 4. The spectrum is compared

to the model formulated by Venezianoet al.(1996), showing the same characteristic seg-

mented model with turning points similar to those expected from the work of Veneziano

et al.(1996) (the turning points at slightly higher frequencies than they found, but within

two standard deviations). The third turning point of the model is not seen in the data

from the Chilbolton drop counter, because the temporal resolution of the data is at a

similar level to the expected frequency of the final turning point. The Chilbolton data

shows the first turning point: the energy input scale (the scale of convective cell clusters),

at 16.1 minutes (∼ 10 km). The second turning point, from diffusion in turbulent flow,

occurs at4.8 minutes (∼ 3 km). Although the Chilbolton data shows the segmented spec-

trum the model predicts, the gradient of each segment is flatter than the model suggests,

having gradients of approximately half that of the model in each segment.

The nature of rainfall has inevitable effects on radar estimation of rainfall. The

amounts and sizes of drops control the radar reflectivity; the changes in these are a signif-

icant part of the large errors with traditionalZ −R radar rainfall algorithms. The shapes

of the raindrops allow for polarisation of radar beams to give increased information on

the rainfall withZDR andφDP. The raingauge data shows that the moderate rainfall rates
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that this thesis concerns constitute36% of the total accumulated rain in Chilbolton. The

decorrelation of rainfall has impacts on the accuracy of gauge-radar comparison, mean-

ing that by taking a snapshot of rainfall every5 minutes, even with perfect measurement,

a 20% error in hourly accumulation is found. This situation will be worse in convective

rain where decorrelation occurs more rapidly. The power spectral density of the rain

shows the time variations of the rainfall, showing that convective cell clusters pass at a

scale of16 minutes.

8.2 THE USE OF DUAL-POLARISATION IN OPERATIONAL

RADAR

Chapter 2 examined various methods to estimate rainfall rates from radar. The chapter

began with a brief discussion of the problem associated withusing reflectivity alone to

estimate rainfall rates. It is explained that the huge errors observed with the traditional

methods are partially caused by drop spectrum variations. Other factors such as ground

clutter and calibration problems add to these problems, creating the often quoted factor

of two error in radar rainfall estimation.

The use of differential reflectivity (defined as the ratio of horizontally and vertically

polarised reflectivity) is discussed in terms of rain rate estimation, and its appearance due

to the oblate drop shapes. Section 2.4.3 explains the sampling method of an alternate

pulse radar such as the CAMRa radar, resulting in the sampling errors inZDR. A number

of options for calculating rainfall from individualZ andZDR points are introduced: the

physically based method of Illingworth and Blackman (2002) whereZ/R is a function

of ZDR, and potential use oflog(ZDR) to defineZ/R. Further suggestions using powers

of both Z andZDR (in both logarithmic and linear terms) are considered, although it

is stated that these algorithms are unjustifiable if the power for reflectivity is not one.

The errors in rainfall rate that result form the sampling errors ofZDR are explained and

quantified, with a discussion of the problems of negativeZDR, which is unphysical, but

occurs as a result of the sampling noise.
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In section 2.5 the differential phase,φDP, is considered. Its appearance due to rain

drop oblateness is explained, followed by introducing the specific differential phase,

KDP. We saw that use ofKDP for estimating rain rates is an improvement over standard

Z − R methods as the transformation is more linear, and unaffected by hail. However,

KDP does not become large enough to be accurate for improvement until rain rates be-

come heavy. The sampling errors inKDP were explained, having similar source and form

to those ofZDR. For the moderate rainfall rates that this thesis focused upon, the specific

differential phase gives no improvement over a standardZ −R relation; only40% accu-

racy can be achieved at rain rates as high as50 mm hr−1. We see another problem with

R from KDP is the effect of the drop size distribution shape parameter,µ, which adjusts

the exponent in theKDP to R relation. A typicalµ = 5 value leaves the exponent as1.4,

hence almost as non-linear as theZ − R relations.

The combination of polarisation parameters to estimate rain rates is considered, start-

ing with the combination ofKDP andZDR. This option can use linearZDR to avoid

numerical instability from negatively observedZDR. However, the noise on bothZDR

andKDP is large, so when combining them the noise in estimated rainfall is very large,

and also the hail independence advantage ofKDP is lost.

Given the normalised drop size spectrum that represents natural rain well has three

parameters, it would seem that excellent estimates would beavailable from using the

three radar parameters,Z, ZDR andKDP. This power is however not available as the

radar parameters are not independent, a fact that is taken advantage of for calibration of

reflectivity by the technique of Goddardet al. (1994b).

Chapter 2 finishes by considering the possibility of integrated techniques to overcome

the noise in the radar’s polarisation parameters. The ZPHI technique of Testudet al.

(2000), which estimates drop concentration, so as to deriverainfall from Z = aR1.5,

wherea is a function ofNw, has been shown to give good rainfall estimation. It is

considered and shown to be especially appropriate for use inan operational environment

as it uses theφDP rather than its noisy derivativeKDP. The ZPHI technique shows great

promise for operation rainfall estimation, but is only appropriate at heavy rain rates, or
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in very widespread moderate rain. The technique estimates the drop concentration along

a radar ray, so over a long yet narrow sector, longer than likely natural changes inNw.

The heavier rains that can be estimated with the ZPHI technique amount to19% of the

rainfall accumulated in the UK; a method for the moderate rates that accumulates36%

of UK rainfall is needed to really gain the rainfall estimation benefits dual polarisation

offers to operational radar systems.

8.3 AN INTEGRATED TECHNIQUE FOR ESTIMATING

MODERATE RAINFALL RATES

Chapter 5 describes the possibilities for a rainfall estimation algorithm suitable for ac-

curate rainfall rate calculations at moderate rates. In these rains, the differential phase

has not become a significant effect, so for polarisation parameters one must turn to dif-

ferential reflectivity. In chapters 2 and 3; we saw thatZDR is noisy, with an operational

radar this noise is so large the benefit of its use is not seen when used at each gate. Even

the very accurate Chilbolton radar has noise inZDR measurement which is large enough

to cause problems with gate-by-gate methods (such as unphysical negativeZDR). Inte-

gration of the normalised gamma distribution of rain drops,with constant concentration

(Nw) yields aZ−R relationship ofZ = aR1.5, with (assumingµ is constant)a inversely

proportional to the square root ofNw. Changes in the exponent (1.5) relate to the func-

tional relationship between drop concentration and mediandrop diameter. The aim of the

technique described is to estimatea from theZ andZDR values over an area, which can

be then used as aZ − R over said area.

As the technique will use the rain drop shapes for calculation, any gates where the

targets are not rain need to be carefully removed. The effectof hail, melting snow, ice

and measuring the ground all causeZ andZDR to not give expected results when assumed

to be measuring rain, but can be removed with other polarisation parameters, especially

LDR. WhereLDR is not available (as may be the case especially operationally) the spread

of local KDP values gives an excellent removal of ground clutter. The rainfall occurring
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above the melting level (where the hydrometeors are ice) will also not have the same

shape characteristics, so the technique described is only suitable for rain detected within

the bright band.

Chapter 5 described a number of possible methods for calculating theZ−R relation-

ship to be used. Each subsequent method suggested solves problems with the previous;

such problems are with biases being induced by non-independence of fitted variables and

negativeZDR being ignored. Also consistency and physical meaning of results is a con-

sideration. Finally the optimisedZ/ZDR fit is arrived at, where the data is fitted in a least

squares fit to lines of constantNw and hencea. The method is described with a flow chart

in figure 5.10. The rest of chapter 5 examines how the optimised Z/ZDR fit is operated

computationally, including the amount of data required forestimating rainfall rate to25%

(just four points for Chilbolton data, but∼ 50 for the Thurnham radar). Finishing the

chapter is the possibility of reintroducing variability ofb.

Chapter 6 shows examples of the use of the optimisedZ/ZDR fit. The chapter ex-

amines the variations detected across a scan and with time, examining the results from

various different rain conditions. The results are considered in terms of the physical

meanings of the derived drop concentrations. A case study where the rain derived by

the integratedZ/ZDR technique is compared to that of a tipping bucket rain gauge is

examined. This shows the technique has excellent agreementwith ground “truth”.

8.4 USE OF POLARISATION RADAR IN AN OPERATIONAL

ENVIRONMENT

Dual-polarisation radars are beginning to be introduced into operational weather radar

networks of Europe (UK, France and Germany). Generally in Europe radars operate at

smaller wavelengths than Chilbolton or the operational radars in the USA. Operational

radars will inevitably not be as accurate as research radarsdue to financial constraints.

This means that the polarisation parameters are especiallynoisy. Chapter 7 introduced
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the Thurnham radar, a new dual-polarisation radar in the UK operational network. This

radar has high levels of noise in polarisation parameters:ZDR has a noise level of0.7 dB.

This level of noise is much to large for point by point rainfall usingZDR data to show

improvements over a standardZ − R method.

A significant difference between the Chilbolton CAMRa radar andthe Thurnham

radar is the mode of operation. CAMRa operates with alternating pulses, whereas Thurn-

ham operates in “hybrid mode”, with simultaneous transmission. This means that the

linear depolarisation ratio parameter is not available, soan alternative must be found for

effective removal of ground clutter and anaprop. Four options for removal of ground

clutter are considered in section 7.3.1. The copolar cross-correlation should have values

near unity in rain (imperfections in the radar reduce the value from1), but when the target

is the surface the value would be much smaller. Unfortunately, ρHV is noisy (like many

of the polarisation parameters), potentially causing missed clutter points (where clutter

is not removed) or false alarms (where a genuine rain pixel isremoved as clutter). This

means that althoughρHV seems a good replacement forLDR, the noise loses its potential.

The spread inZDR is considered next. In rainfall the noise inZDR will be approximately

at the level of the sampling noise. With the Thurnham radar, however, the0.7 dB noise

in ZDR from sampling is approaching the spread inZDR caused by ground targets. The

spread ofφDP has more promise, as the value in rain should again be small (the level

of the sampling noise ofφDP), with clutter having a high value. The range covered by

rain in this case is small enough to distinguish the clutter from rain more effectively than

with ZDR. Finally a dynamic clutter map is considered. Here the likelihood of a point

being clutter is considered from the frequency of a signal above a chosen threshold being

measured. This way points that are often cluttered are removed and by changing the clut-

ter map using the data of previous periods, the clutter map can allow for changes in the

surface being viewed (i.e. the growth/death of trees, erection of new buildings etc.). A

dynamic clutter map will be unable to detect anaprop pixels.Use ofφDP spread in con-

junction with a dynamic clutter map for marginal cases is recommended for operational

use to minimise missed clutter and false alarms.
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The shorter wavelength means that attenuation and differential attenuation are a more

significant factor. Fortunately, once attenuation becomeslarge enough to cause problems

with data inZ and ZDR, φDP becomes large enough for use in the ZPHI technique.

Attenuation must be recognised however, as incorporating attenuated data into algorithms

usingZ andZDR will lead to incorrect results.

The noisy polarisation parameters from operational radars, such as that at Thurnham,

mean that the benefit to rainfall estimation will be via integrated methods (such as the

integratedZ/ZDR technique described in chapter 5 or the ZPHI technique). Theradars

provide a good measurement ofZ (which can be calibrated to1 dB using the method of

Goddardet al., 1994b), so the use of integrated polarisation parameters and individual

reflectivity values will give good estimates of rainfall rates. The wavelength difference

alters the values ofZ andZDR a little, as is seen in figure 7.1, but the changes are known.

The reduced resolution from the operational radar mean thatthe area over which the drop

size distribution is characterised must be larger, increasing to10×10 km boxes. Also for

operational use, a polar grid is preferred for operation of the algorithm, so a polar grid

with approximate Cartesian boxes is formulated.

The optimised fit integratedZ/ZDR technique is to be tested with the Thurnham radar,

to evaluate its performance in estimating rainfall in an operational environment. However

one must be cautious with comparisons of radar and rain gauges, alternate methods of

verification may be applied, (for instance use of profiling radar to estimateNw from

Doppler spectra).

Operational radar has been shown to have very high noise levels in polarisation pa-

rameters (the Thurnham radar hasZDR noise of0.7 dB). This level of noise might be

expected to render the information provided byZDR useless. However, the integrated

Z/ZDR technique works as the noise inZDR is random, so is removed by the use of many

points, drawing the information embedded within the noisy data.
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8.5 FUTURE WORK

The work of this thesis can be continued in a number of ways. Tofurther the statistics

of rainfall, the drop distribution parameters such as normalised drop concentration or

median drop diameter, could be considered in a manner similar to the rainfall as in chapter

4, this would give insight into the scales one must average onfor algorithms such as the

integratedZ/ZDR technique.

A key improvement to the integratedZ/ZDR technique would be the introduction of

a calculated error in the derivedNw, a andR, giving an indication of the quality of the

estimate, this would be important for data assimilation into numerical models.

The technique could also be used to investigate the development of rainfall events,

for instance tracking a convective shower and using the technique could give an insight

into the micro-physical makeup of the rain in such a storm.

Finally, validation of the technique with operational radar must be performed to show

the benefit of the algorithm, this is likely to be performed using the Thurnham radar.
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ANAPROP Anomalous Propagation, the result of atmospheric conditions bend-

ing the radar beam back to the surface.

ANTENNA The device for focusing the transmitted and received signals (eg

dish).

AREAL Of/over an area.

AREAL RAINFALL Average rainfall depth over an area.

AXIAL RATIO, r The ratio of the size of major and minor axis of drops.

BEAM The volume of focused microwave energy transmitted for the radar.

CAMRa Chilbolton Advanced Meteorological Radar. The world’s largest

steerable pointable meteorological radar, operating at S-band (3GHz

frequency,10cm wavelength).

CLUTTER See “Ground Clutter”.

DIFFERENTIAL REFLECTIVITY, ZDR The ratio of power received in the hor-

izontal polarisation, given horizontal transmission, andpower re-

ceived in the vertical polarisation, given vertical transmission. De-

fined asZDR = 10 log10

(

ZH

ZV

)

; Seliga and Bringi (1976).

DOPPLER VELOCITY, v The radial velocity of the targets.

DSD Drop Size Distribution.
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DWELL TIME Time spent sampling a single ray of data.

ECHO The returned radar transmission from the target(s).

EFFECTIVE DROP CONCENTRATION The drop concentration of the normalised

gamma distribution, assuming thatµ = 5.

GATE An individual pixel in range (along the radar beam).

(GROUND) CLUTTER The result of the radar beam impacting the ground surface,

buildings or trees etc.

HYDROMETEOR A falling precipitation particle.

LINEAR DEPOLARISATION RATIO, LDR The ratio of power received in the ver-

tical polarisation and the horizontal polarisation, both given hori-

zontal transmission.

NORMALISED GAMMA DISTRIBUTION/FUNCTION A widely used raindrop

size distribution function; formula:

N(D) = Nwf(µ)(
D

Do

)µ exp(−(3.67 + µ)D

Do

)

f(µ) =
6

(3.67)4

(3.67 + µ)µ+4

Γ(µ + 4)

PPI Plan Position Indicator scan. A scan in which elevation remains

constant but azimuth changes.

RAINFALL RATE, R A measure of the amount of rain falling, usually given in

mm/hr.

REFLECTIVITY, Z Also known as the ‘reflectivity factor’; this is a measure of the
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reflectance of the target.

Z
[

mm6m−3
]

=

∫ ∞

0

|K|2
0.93

N (D) D6dD

The magnitudes of this mean it is often expressed in the logarithmic

unit, dBZ = 10 log10 (Z [mm6m−3]). This is what is detected by a

conventional radar.

RHI Range Height Indicator scan. A scan in which azimuth remains

constant but elevation changes.

SCAN RATE The speed to perform a scan (usually to perform a360◦ PPI.

SIDELOBES The further energy maxima located outside the main lobe of the

radar beam. These have low power relative to the main beam, but

may produce significant erroneous echoes in the right conditions.

SPECIFIC DIFFERENTIAL PHASE SHIFT, KDP The change of phase difference

between horizontally and vertically polarised returns with distance.

TERMINAL VELOCITY The maximum speed at which a object can fall without

decelerating, where gravitational and viscous forces are balanced.

This is the speed at which hydrometeors fall. Proportional to D0.67.

Z − R RELATIONSHIP The function by which one can convert from reflectivity

(Z) to rainfall rate (R) or vice versa.
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SYMBOLS USED

CHAPTER 1

Z Radar reflectivity.

R Rainfall Rate.

a the coefficient ofZ − R relationships;Z = aRb.

b the exponent ofZ − R relationships;Z = aRb.

Pr Received power.

Pt Transmitted power.

g Antenna gain.

θ Beamwidth (horizontal).

φ Beamwidth (vertical).

h Pulse length.

|K|2 The dielectric factor (for rain0.93).

Di Scatterer diameters.

λ Radar wavelength.

r Distance between sample and radar antenna.

C The radar constant.

N The number of drops.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

N0 The drop concentration for drops of zero size.

Λ Marshall and Palmer (1948) rain parameter, a function only of R.

Nw The drop concentration (normalised for constant liquid water content

[close toR]).

Do Median drop diameter.

µ Normalised gamma distribution; shape parameter.

f(µ) Normalising function in normalised gamma distribution; relates to the
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shape parameter.

ZDR Differential Reflectivity.

CHAPTER 2

Z Radar reflectivity.

R Rainfall Rate.

a The coefficient ofZ − R relationships;Z = aRb.

b The exponent ofZ − R relationships;Z = aRb.

N The number of something (either drops or samples depending on con-

text).

D The drop size.

r Drop axial ratio.

Do Median volume drop diameter.

µ DSD shape parameter.

Nw Drop concentration.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

ZDR Differential Reflectivity.

Z1mm/hr The reflectivity which would be a result of targets of1 mm/hr rainfall

rate.Z1mm/hr is a function ofZDR.

c The coefficient of rainrate relationships usingZDR.

g(ZDR) A function of onlyZDR.

α Z exponent ofR = c Zα Zβ
DR.

β ZDR exponent ofR = c Zα Zβ
DR.

c1 The coefficient of rainrate relationship using linearZDR.

α1 Z exponent of rainrate relationships using linearZDR.

β1 ZDR exponent of rainrate relationships using linearZDR.

SD(ẐDR) Standard deviation of observedZDR.

l The of index of summation.

ρ Correlation.

ρhh,vv Co-polar correlation at zero lag time.
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σv Spectral width.

n The number of pulses.

Ts Time between pulses.

λ The radar wavelength.

σvn Normalised spectral width.

PRF The pulse repetition frequency.

φDP Phase Shift.

φV Phase of vertically polarised return.

φH Phase of horizontally polarised return.

KDP The specific differential phase shift.

A The coefficient of anR-KDP relationship.

B The exponent of anR-KDP relationship.

c2 The coefficient of rainrate relationship usingKDP andZDR.

α2 TheKDP exponent of rainrate relationship usingKDP andZDR.

β2 TheZDR exponent of rainrate relationship usingKDP andZDR.

c3 The coefficient of rainrate relationship usingKDP and linearZDR.

α3 TheKDP exponent of rainrate relationship usingKDP and linearZDR.

β3 TheZDR multiplier of rainrate relationship usingKDP and linearZDR.

f Constant used in the ZPHI technique.

g Constant used in the ZPHI technique.

CHAPTER 3

Z Radar reflectivity.

ZDR Differential Reflectivity.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

Nw Drop concentration.

Do Median volume drop diameter.

µ DSD shape parameter.

ZH Radar reflectivity from horizontal polarisation.

ZV Radar reflectivity from vertical polarisation.
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D The drop size.

LDR The linear depolarization ratio.

ZDR MeanZDR measurement.

σZDR
Standard deviation ofZDR measurement.

CHAPTER 4

ZDR Differential Reflectivity.

Z Radar reflectivity.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

v Doppler velocity.

R Rainfall Rate.

N The number of something (either drops or samples depending on con-

text).

D The drop size.

Nw Drop concentration.

Do Median drop diameter.

µ Normalised gamma distribution; shape parameter.

f(µ) Normalising function in normalised gamma distribution; relates to the

shape parameter.

a The coefficient ofZ − R relationships;Z = aRb.

FZ(µ) A function of the shape parameter resulting from integration for reflec-

tivity.

FR(µ) A function of the shape parameter resulting from integration for rain

rate.

H(µ) A function of the shape parameter,H(µ) = FZ(µ)FR(µ)1.5.

Z1mm/hr The reflectivity which would be a result of targets of1 mm/hr rainfall

rate.Z1mm/hr is a function ofZDR.

|K|2 The dielectric factor.

LDR The linear depolarization ratio.

b The exponent ofZ − R relationships;Z = aRb.
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m The gradient of a line,y = mx + c.

c The constant of a line,y = mx + c.

N⋆
w Effective drop concentration.

σtotal Standard deviation error of combination ofNsamp points.

σpoint Standard deviation error of a single sample.

N
samp

Number of samples.

N
req

Number of samples required.

T A number used in iterating to findNw
∗; it is a function ofNw

∗.

CHAPTER 5

Z Radar reflectivity.

ZDR Differential reflectivity.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

LDR The linear depolarisation ratio.

Nw Drop concentration.

a The coefficient ofZ − R relationships;Z = aRb.

T An algorithm value defined by equation 5.22.

RMS Root Mean Square distance of points to thatNw.

Do Median drop diameter.

b The exponent ofZ − R relationships;Z = aRb.

N⋆
w Effective drop concentration.

µ Normalised gamma distribution, shape parameter.

CHAPTER 6

PHA Near instantaneous (30s average) rainfall rate as a proportion of the

hourly average rainfall rate.

R30s / Ri Near instantaneous (30s average) rainfall rate.

RHA Hourly average rainfall rate.
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r Normalised rainfall rate.

C Used in finding a model of the rainfall PDF.

P Probability of occurrence.

∆R Error in rainfall rate.

R Rainfall rate.

N Number of points.

RMS Root Mean Square distance of points to thatNw.

σoption Standard deviation of points caused by error “option”.

t Time.

τ Lag time.

ρx Correlation between rain rate now and rate lagged byx s.

Rx Rainfall rate at timex.

R Mean rainfall rate.

ω1 First turning point of segmented spectrum, corresponding to the con-

vective scale.

ω2 Second turning point of segmented spectrum, correspondingto the in-

troduction of microscale influence.

ω3 Third turning point of segmented spectrum, corresponding to very small

scales.

CHAPTER 7

Z Radar reflectivity.

ZDR Differential Reflectivity.

a The coefficient ofZ − R relationships;Z = aRb.

Nw Drop concentration.

λ Radar wavelength.

µ DSD shape parameter.

LDR The linear depolarisation ratio.

φDP Differential Phase Shift.

KDP Specific Differential Phase Shift.
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PRF The pulse repetition frequency.

dB Used to demonstrate something used in decibels;dBX = 10 log10 X

ρhh,vv/ρHV Co-polar cross-correlation.

A Attenuation.

K Coefficient in attenuation equation.

α Exponent in attenuation equation.

AH Attenuation of horizontal reflectivity.

βH Coefficient of horizontal reflectivity attenuation fromKDP.

ADR Differential attenuation; attenuation inZDR.

βDR Coefficient of differential attenuation fromKDP.

N⋆
w Effective drop concentration.

CHAPTER 8

Z Radar reflectivity.

ZDR Differential Reflectivity.

R Rainfall rate.

φDP Differential Phase Shift.

KDP Specific Differential Phase Shift.

µ DSD shape parameter.

a The coefficient ofZ − R Relationships;Z = aRb.
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of propagation effects in rainfall on radar measurements atmicrowave frequencies.

Journal of Atmospheric and Oceanic Technology, 7, 829–840.

Brunkow, D., Bringi, V. N., Kennedy, P. C., Rutledge, S. A., Chandrasekar, V., Mueller,

E. A., and Bowie, R. K. (2000). A description of the CSU CHILL National Radar

Facility. Journal of Atmospheric and Oceanic Technology, 17, 1596–1608.
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