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ABSTRACT4

Pseudomomentum and pseudoenergy are both measures of wave activity for disturbances5

in a fluid, relative to a notional background state. Together they give information on the6

propagation, growth and decay of disturbances. Wave activity conservation laws are most7

readily derived for the primitive equations on the sphere by using isentropic coordinates.8

However, the intersection of isentropic surfaces with the ground (and associated potential9

temperature anomalies) are a crucial aspect of baroclinic wave evolution. A new expression10

is derived for pseudoenergy that is valid for large amplitude disturbances spanning isentropic11

layers that may intersect the ground. The pseudoenergy of small amplitude disturbances is12

also obtained by linearising about a zonally symmetric background state. The new expression13

generalises previous pseudoenergy results for quasi-geostrophic disturbances on the β-plane14

and complements existing large amplitude results for pseudomomentum.15

The pseudomomentum and pseudoenergy diagnostics are applied to an extended winter16

from ERA-Interim data. The time series identify distinct phenomena such as a baroclinic17

wave life cycle where the wave activity in boundary potential temperature saturates nonlin-18

early almost two days before the peak in wave activity near the tropopause. The coherent19

zonal propagation speed of disturbances at tropopause level, including distinct eastward,20

westward and stationary phases, is shown to be dictated by the ratio of total hemispheric21

pseudoenergy to pseudomomentum. Variations in the lower boundary contribution to pseu-22

doenergy dominate changes in propagation speed; phases of westward progression are asso-23

ciated with stronger boundary potential temperature perturbations.24
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1. Introduction25

Wave activity is a measure of the amplitude of the difference between any flow and a26

suitable background flow. It is defined to be second order in disturbance quantities so that it27

represents an amplitude and it is also globally conserved for adiabatic and frictionless flows.28

Wave activity is the basis of most wave-mean flow interaction theory (Bühler, 2009) and has29

led to important concepts such as the non-acceleration theorem of Charney and Stern (1961),30

expressing the inability of steady, conservative waves to alter the zonal mean zonal flow, and31

its many generalisations subsequently (Andrews et al., 1987). Wave activity theorems are32

also central to the theory of wave instability on shear flows (Bretherton, 1966b).33

Solomon and Nakamura (2012) described three different forms of wave activity and their34

relationship. The first type are Eulerian measures of wave activity, evaluated at each point35

in physical coordinates based on deviations of the full flow from a background state. If the36

background is defined using the Eulerian zonal mean of the full flow, as in Charney and Stern37

(1961), the global conservation law is not respected exactly at large amplitude. However,38

McIntyre and Shepherd (1987) formulated a general recipe to construct Eulerian measures39

of wave activity that are conserved exactly at large-amplitude when measured relative to a40

zonally symmetric background state that is a solution of the governing fluid equations. It41

is possible to specify a wave activity density and flux at every point in physical space us-42

ing their method. The second type are Lagrangian measures based on averaging quantities43

over selected material volumes and using their centre of mass as a coordinate. The result-44

ing Generalised Lagrangian Mean theory, first obtained by Andrews and McIntyre (1978),45

has an exact wave activity conservation law but becomes problematic as material surfaces46

are increasingly distorted by stretching and folding associated with chaotic advection. The47

third type, introduced as A∗ by Nakamura and Solomon (2010), replaces material contours48

with potential vorticity (PV) contours and uses these to calculate deviations from a Modified49

Lagrangian Mean (MLM) background state, as defined by McIntyre (1980). The MLM back-50

ground state is the zonally symmetric re-arrangement of the full flow obtained by preserving51
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the mass and circulation of volumes sandwiched between two isentropic surfaces where PV52

exceeds some value Q (for all θ and Q). The equivalent latitude of any wavy PV contour is53

defined as the latitude occupied by the corresponding PV contour in the MLM state. The54

wave activity A∗ is defined in equivalent latitude space and has an exact conservation law55

like the GLM wave activity. However, since non-conservative processes eventually limit the56

finescales in the PV distribution it is possible to evaluate A∗ for chaotic flows where it would57

eventually not be possible to follow the material contours necessary to calculate the GLM58

wave activity. A∗ satisfies a non-acceleration theorem for the Eulerian zonal mean flow.59

However, wave activity density cannot be evaluated at every location in physical space - it60

is defined in the PV-θ coordinates of the MLM background state.61

Other forms of wave activity for large-amplitude disturbances have been derived previ-62

ously by considering different background states. For example, Tanaka et al. (2004) have63

formulated a wave activity (pseudomomentum) flux which is valid for large-amplitude dis-64

turbances to the primitive equations and makes an attractive separation between the vertical65

flux associated with form drag over corrugated isentropic surfaces and those associated with66

eddy diabatic mixing. This theory makes use of the Eulerian zonal mean of pressure on67

isentropic surfaces as a vertical coordinate and the background state is defined in terms of68

the mass-weighted isentropic zonal mean state (Iwasaki, 1989).69

The approach taken here will be to develop the theory of Eulerian wave activity measures,70

but evaluate disturbances relative to the MLM background state. The MLM state is in71

balance and an exact solution to the primitive equations without eddy forcing. As will be72

seen below, these wave activity measures also relate to the displacement of PV contours from73

their position in the background state but the disturbances are evaluated in physical space74

rather than equivalent latitude.75

A crucial aspect in the definition of wave activity density, A, is that it should obey a76

local conservation law:77

∂A

∂t
+

1

a cosφ

∂F (λ)

∂λ
+

1

a cosφ

∂

∂φ

(
F (φ) cosφ

)
+
∂F (θ)

∂θ
= S (1)
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where (F (λ), F (φ), F (θ)) are the components of wave activity flux in isentropic spherical co-78

ordinates (λ is longitude, φ is latitude, θ is potential temperature and a is Earth’s radius).79

S denotes non-conservative effects including diabatic and frictional processes. The global80

integral of wave activity is conserved if S = 0 and there is no flux across the boundaries of81

the integration domain.82

Wave activity conservation laws relate to conserved properties of the full flow, for example83

energy or zonal angular momentum. However, these properties are not conserved by the84

perturbation alone because there is in general “exchange” between the background state and85

perturbation. In addition to the usual invariants such as energy and angular momentum,86

any function of θ and potential vorticity (PV) is globally conserved for the full flow, since87

these two quantities are conserved following all fluid parcels if the flow is adiabatic and88

frictionless. This family of additional invariants are called Casimirs. A systematic approach89

to finding wave activity conservation laws (McIntyre and Shepherd, 1987) is to combine90

energy or angular momentum with a Casimir that is chosen to obtain a disturbance quantity91

that is at least second order and globally conserved.92

The definition of the background state is vital to the existence of a wave activity con-93

servation law at finite perturbation amplitude. It is essential to describe the background94

state as a function of PV and θ in order to use the Casimir method. If the background95

state is also zonally symmetric, the pseudomomentum conservation law is obtained by the96

angular momentum-Casimir method. If the background state is steady (time symmetric)97

the pseudoenergy conservation law is obtained by the energy-Casimir method.98

Bretherton (1966b) was the first to point out that growth of normal mode disturbances99

on a shear flow requires that the normal mode structure has zero global pseudomomentum100

(otherwise its pseudomomentum would increase with mode amplitude). This arises from101

cancellation between positive wave activity focussed where the background state meridional102

PV gradient is positive and negative wave activity where the PV gradient is negative. In103

the case of baroclinic instability, the negative wave activity is associated with potential tem-104
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perature perturbations along the lower boundary. Bretherton (1966a) described baroclinic105

growth in a 2-layer quasi-geostrophic model in terms of counter-propagating Rossby waves106

which have equal and opposite pseudomomentum. This result has been generalised to any107

zonal jet (Heifetz et al., 2004) and the primitive equations on the sphere (Methven et al.,108

2005a). The phase propagation of the Rossby wave components depends on the ratio of109

their pseudoenergy to pseudomomentum, taking into account the boundary terms. How-110

ever, these theories consider only small amplitude waves. New theory is needed for large111

amplitude disturbances, taking into account potential temperature perturbations along the112

lower boundary.113

Brunet (1994) was the first to use the ratio of pseudoenergy and pseudomomentum to114

define the phase speed of structures obtained from the statistics of atmospheric analysis data.115

The technique he developed obtains Empirical Normal Modes as structures emerging from116

an eigen value decomposition of the data using pseudomomentum as a norm of disturbances.117

His initial work applied a shallow water form of wave activity to PV data on the 315K118

surface. Zadra et al. (2002) extended this technique to data on 16 isentropic levels using the119

full primitive equation wave activity. In both cases, the boundary terms in pseudoenergy120

and pseudomomentum were neglected and a small amplitude form of pseudoenergy was121

used. The primary purpose of this paper is to consider the ramifications of wave activity122

conservation for the zonal propagation of disturbances when including new theory relating123

to large amplitude disturbances with boundary wave activity.124

The novel theoretical results of this paper relate to pseudoenergy and terms associated125

with the intersection of isentropic layers with the ground. However, the methodology is illus-126

trated by deriving pseudomomentum results (which have already been published in similar127

forms). Section 2a applies the Casimir technique to derive pseudomomentum valid for large128

amplitude disturbances described by the primitive equations on the sphere. The result is129

essentially the same as Haynes (1988) but including a method to simplify the evaluation130

of wave activity using mass and circulation integrals, introduced in the shallow water con-131
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text by Thuburn and Lagneau (1999). Section 2b considers the problem of evaluating the132

pseudomomentum integral for isentropic layers that intersect the ground. The presentation133

is brief, following Magnusdottir and Haynes (1996). Section 2c illustrates the procedure to134

derive wave activity in the limit of small disturbance amplitude. The Haynes (1988) result135

for pseudoenergy density valid at large amplitude is re-derived in Section 3a, as a necessary136

step towards the new result for integral pseudoenergy in Section 3b. The small amplitude137

limit of pseudoenergy is derived in Section 3c.138

Many studies involving wave activity have been theoretical, applied to idealised models139

or applied to atmospheric data with approximations (such as small amplitude or quasi-140

geostrophic expressions). Nakamura and Solomon (2011) is the first study applying wave141

activity calculations valid at large amplitude to study wave-mean flow interaction through-142

out the atmosphere (from the ground to stratopause) using atmospheric analyses. They used143

the A∗ measure of pseudomomentum rather than the “Casimir type” evaluated in physical144

space. Here, the large amplitude expressions for pseudoenergy (energy-Casimir) and pseudo-145

momentum (zonal angular momentum-Casimir) are applied to re-analysis data in Section 4.146

Conclusions are obtained regarding the link between the integral conservation properties and147

the coherent zonal propagation of disturbances at tropopause level.148

2. Pseudomomentum conservation149

a. Pseudomomentum density for large amplitude disturbances150

Specific zonal angular momentum (divided by the Earth’s radius, a) at a point on the151

sphere rotating at rate Ω is:152

Z = (u+ aΩ cosφ) cosφ (2)
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Following McIntyre and Shepherd (1987) and Haynes (1988), the pseudo-(angular)momentum153

density is defined by:154

P (λ, φ, θ, t) = −r(Z + C) + ro(Zo + Co). (3)

C(q, θ) is called a Casimir density and is a function of PV and potential temperature alone.155

Ertel PV under the hydrostatic approximation is given by q = ζ/r where r is the pseudo-156

density in isentropic coordinates and ζ is the vertical component of absolute vorticity eval-157

uated taking derivatives of velocity components along isentropic surfaces. The notation158

Co means C(qo, θ) where qo(φ, θ, t) denotes the background state PV and the perturbation159

qe = q − qo is defined as the difference between the full PV and the background state at a160

point on a given isentropic surface1. Since Z and C are globally conserved, so is P and it161

must obey a conservation law where A is replaced by P in (1). The aim is to choose C so162

that P is second order in disturbance quantities.163

Taylor expansion of the Casimir density can be written:164

C = Co +

(
∂C

∂q

)
o

qe + C2(qo, qe, θ) (4)

where
(
∂C
∂q

)
o

means the functional derivative of the Casimir at constant θ, evaluated at the165

background state PV value qo. C2 is the residual which would include the second and all166

higher order terms in a series expansion. An exact integral form for C2 is given later. Writing167

(3) in terms of background state and perturbation quantities:168

P = −rC2 − reue cosφ (5)

−roue cosφ−
(
∂C

∂q

)
o

ζe − re
{
Zo + Co − qo

(
∂C

∂q

)
o

}
where the identity rqe = ζe − reqo has been used. Expressing ζe = (1/a cosφ)∂ve/∂λ −169

1Note that P is positive where the meridional PV gradient is positive – see (22). Haynes (1988) and

Magnusdottir and Haynes (1996) used the opposite sign for P .
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(1/a cosφ)∂(ue cosφ)/∂φ and rearranging gives:170

P = −rC2 − reue cosφ (6)

− 1

a cosφ

∂

∂λ

{
ve

(
∂C

∂q

)
o

}
+

1

a cosφ

∂

∂φ

{
ue

(
∂C

∂q

)
o

cosφ

}
−ue

{
ro cosφ+

1

a

∂

∂φ

(
∂C

∂q

)
o

}
− re

{
Zo + Co − qo

(
∂C

∂q

)
o

}
The top line is second order (or higher) and the next line is expressed as a horizontal171

divergence. Therefore in order to make the global integral of P a second order quantity the172

terms in the last line must be zero, giving two relations defining the Casimir density:173

∂

∂φ

(
∂C

∂q

)
o

= −aro cosφ (7)

Zo + Co − qo
(
∂C

∂q

)
o

= 0 (8)

Integration of the first equality gives:174 (
∂C

∂q

)
o

= −a
∫ φ

0

ro(φ̃, θ, t) cos φ̃ dφ̃ (9)

=
1

2πa
{M(Q, θ)−Ms(θ)}

where M(Q, θ) is the integral of mass across an isentropic layer175

M(Q, θ) = 2πa2

∫ π/2

φ(Q)

ro cos φ̃ dφ̃ (10)

and Ms(θ) is total mass of the isentropic shell in the Northern Hemisphere. Here it is176

assumed that the background state is zonally symmetric with PV varying monotonically177

along isentropic surfaces, so that each latitude, φ, maps to a unique PV value Q = qo(φ, θ).178

The wave activity is simpler to evaluate if the background state is identified with the179

modified Lagrangian mean (McIntyre, 1980). The MLM state is defined as an adiabatic180

rearrangement of the 3D flow (at any instant) to obtain a zonally symmetric state with the181

same mass and circulation integrals as evaluated from the 3D state:182

M(Q, θ) =

∫ ∫
q≥Q

ra2dλ cosφ dφ ; C(Q, θ) =

∫ ∫
q≥Q

rqa2dλ cosφ dφ (11)
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where the double integral spans high PV regions enclosed by the disturbed contours183

defined by q = Q. For adiabatic, frictionless flow both these integrals are conserved (for184

all Q, θ) owing to mass continuity and Kelvin’s circulation theorem. This in turn implies185

that the equivalent latitudes2 of the PV contours defining the MLM state cannot change:186

the state is steady. The final step is to note an explicit expression for C2 valid at arbitrary187

perturbation amplitude:188

C2(qo, qe, θ) =

∫ qe

0

(qe − q̃)
∂2C

∂q̃2
(qo + q̃, θ) dq̃ = C − Co − qe

(
∂C

∂q

)
o

(12)

which can be verified using integration by parts. Thuburn and Lagneau (1999) simplified189

this expression by performing the integration over PV values analytically:190

2πaC2 =

∫ qe

0

(qe − q̃)
∂M
∂q̃

(qo + q̃, θ) dq̃ (13)

=

∫ qo+qe

qo

(qe + qo − η)
∂M
∂η

(η, θ) dη

= q [M]qqo − [C]qqo

where the first step uses (9), the second step changes integration variable to η = qo + q̃ and191

the last step uses the result:192

Q
∂M
∂q

(Q) =
∂C
∂q

(Q) (14)

relating the variation of mass and circulation with PV value along isentropic surfaces.193

b. Pseudomomentum including boundary terms194

If an isentropic layer does not intersect the ground, the integral of pseudomomentum195

over the global shell amounts to the integral of −rC2−reue cosφ because the flux divergence196

terms on the second line of (6) integrate to zero and the third line is identically zero from197

the Casimir definition. However, care must be taken to include boundary terms in the wave198

activity when isentropic layers intersect the ground. Define D to be the domain where the199

2Equivalent latitude is here defined as the latitude of the PV contour in the zonally symmetric background

state with value Q.
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isentropic layer of the full flow is above ground and Do the domain where the layer in the200

background state is above ground. They will differ due to displacements of θ contours along201

the ground in the wavy state, as illustrated in Fig. 2 of Magnusdottir and Haynes (1996).202

It is useful to partition space into several subdomains dependent on the locations of the203

lower boundary in the 3D and background (2D) states. D∩Do is the intersection of regions D204

and Do. In general its boundary is not zonally symmetric. Let D̄ denote an area bounded to205

the south on each isentropic surface by the maximum latitude at which the disturbed surface206

intersects the lower boundary (D̄ must be a subset of D∩Do where the full and background207

states are above ground at every longitude). Let D \ (D ∩ Do) denote the portion of the208

isentropic layer of the full flow that lies outside the intersection domain. The background209

state quantities are not defined here. Similarly Do\(D∩Do) is the portion of the background210

state outside the intersection domain. The global integral of pseudomomentum density (5)211

can then be written:212

P =

∫
D̄
{−rC2 − reue cosφ} a2 cosφ dλ dφ dθ (15)

−
∫
∂D̄

(
∂C

∂q

)
o

ue cosφ a dλ dθ

+

∫
(D∩Do)\D̄

{
−rC2 − (ro + re)ue cosφ−

(
∂C

∂q

)
o

ζe

}
a2 cosφ dλ dφ dθ

−
∫
D\(D∩Do)

r(Z + C) a2 cosφ dλ dφ dθ +

∫
Do\(D∩Do)

ro(Zo + Co) a
2 cosφ dλ dφ dθ.

The first line is the “interior pseudomomentum” split into a “Rossby wave term” (related213

to displacing PV contours) and a “gravity wave term” (which is typically much smaller on214

baroclinic eddy scales). The second line comes from Gauss’ theorem applied to the flux215

divergence term in (6) and noting that ve integrates to zero around a latitude circle. It216

will be denoted Pb for boundary integral. The third line will be denoted Pd for within the217

domain of intersection and the fourth line Pe for exterior to the intersection domain.218

Pb and Pd are evaluated using (9) and the values of the mass integrals obtained from the219

disturbed 3-D state. In order to evaluate the Pe term, (8) is used to express Casimir density220
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in terms of mass and circulation integrals:221

C(Q, θ) = −Z(qo = Q, θ) +
Q

2πa
{M(Q, θ)−Ms(θ)} (16)

=
1

2πa
(−C(Q, θ) +Q {M(Q, θ)−Ms(θ)}) .

where Stokes’ theorem was used to relate the angular momentum around the zonally sym-222

metric contour qo = Q to the circulation integral, C(Q, θ).223

c. Pseudomomentum in the small amplitude limit224

In the limit of small perturbation amplitude, the expression for pseudomomentum density225

(15) can be simplified. This is especially important for the boundary terms because as the226

perturbations to the intersection of isentropic shells with the ground become smaller, D → Do227

and the integrals Pd and Pe cannot be evaluated by numerical integration. Nevertheless,228

their contribution is important to the pseudomomentum of normal modes (Heifetz et al.,229

2004).230

Firstly, consider the “Rossby wave term” −rC2. In (12) we can assume that the second231

derivative of C is constant across the range of the perturbation so that integration over PV232

values gives:233

Pw = −ro
(
∂2C

∂q2

)
o

q2
e

2
(17)

= −ro
∂

∂φ

(
∂C

∂q

)
o

∂φ

∂qo

q2
e

2

=
r2
o cosφo
qoy

q2
e

2

where y = aφ and qoy = ∂qo/∂y is the background state meridional PV gradient. The234

“gravity wave term” is unaltered at small amplitude. The integral over the intersection235

region, Pd, can be incorporated into the interior integral if the boundary integral is taken236

around ∂(D ∩Do).237

By definition the mass enclosed by the background state PV contour everywhere coinci-238

dent with the intersection of the isentropic layer with the ground (qbo = Q) is M(Q, θ) =239
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Ms(θ) giving (∂C/∂q)o = 0 at the boundary ∂Do from (9). Therefore there is no contribu-240

tion to the boundary integral Pb wherever ∂(D ∩Do) is coincident with ∂Do. This occurs if241

the boundary θ contour of the perturbed state lies south of the contour for the background242

state (φbe = φb − φbo < 0). Furthermore, the derivative can be written:243 (
∂C

∂q

)
o

=
∂

∂φ

(
∂C

∂q

)
(φb − φbo) = −ro cosφ aφbe (18)

using (7) for the last step. This can be substituted into the integral Pb where φbe > 0.244

The final integrals are the exterior terms, Pe. In region D \ (D ∩ Do) the perturbed245

isentropic shell lies south of the background shell so that φbe < 0. Using (2), (4), (8) and246

(18), then dropping second order terms in the integrand, the first Pe term becomes:247

Pe1 ≈ −
∫
D\(D∩Do)

{(ro + re)(Zo + Co) + ro(Z − Zo + C − Co)} a2 cosφ dλ dφ dθ (19)

≈ −
∫
D\(D∩Do)

{
(ro + re)qo

(
∂C

∂q

)
o

+ ro

(
ue cosφ+ qe

(
∂C

∂q

)
o

+ C2

)}
a2 cosφ dλ dφ dθ

≈ −
∫ ∫ ∫ 0

φbe

{
−r2

oqoaφ
′ + roue

}
a2 cos2 φbo dφ

′ dλ dθ

≈
∫ ∫ {

−r2
oqo

a2φ2
be

2
+ roueaφbe

}
a cos2 φbo dλ dθ

In region Do \ (D ∩ Do) the perturbed isentropic shell lies north of the background shell so248

that φbe > 0. The second Pe term becomes:249

Pe2 ≈
∫
Do\(D∩Do)

roqo

(
∂C

∂q

)
o

a2 cosφ dλ dφ dθ (20)

≈
∫ ∫ ∫ φbe

0

−r2
oqoaφ

′a2 cos2 φbo dφ
′ dλ dθ

≈
∫ ∫

−r2
oqo

a2φ2
be

2
a cos2 φbo dλ dθ

Note that the φ2
be

and ueφbe terms from Pe and Pb appear in both domains where φbe > 0250

and φbe < 0 and can therefore be integrated globally. It is useful to write all boundary terms251

as delta-function contributions to the global integral:252

Pb + Pe =

∫ ∫ {
−r2

oqoro
a2φ2

be

2
+ roueaφbe

}
cos2 φboa dλ dθ (21)

=

∫ ∫ ∫ {
r2
oqoro

y2
be

2
− roueybe

}
cosφbo

∂θo
∂y

δ(θ − θbo)a2 cosφ dλ dφ dθ
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where the integral over θ values along the boundary was transformed to an integral over253

latitude using dθ = − ∂θ/∂φ|b dφ and then the delta-function δ(θ − θbo) was introduced254

to pick out the boundary from a 3-D integral re-introducing θ as the vertical coordinate.255

Gathering all terms, the expression for the pseudomomentum density of small amplitude256

waves is:257

P =
r2
o cosφo
qoy

q2
e

2
− reue cosφ+

{
r2
oqo

y2
be

2
− roueybe

}
cosφbo

∂θbo
∂y

δ(θ − θbo). (22)

Note that the interior terms were first derived for the primitive equations for small258

amplitude disturbances by Andrews (1983b). Equivalent boundary terms were derived by259

Magnusdottir and Haynes (1996) and presented in this form by Methven et al. (2005a).260

Often the assumption of PV conservation is used to relate small amplitude meridional air261

parcel displacements along isentropic surfaces, η, to PV anomalies using η = −qe/qoy . In262

this case the Rossby wave term Pw can be written in the familiar form, r2
o cosφ qoy

1
2
η2.263

3. Pseudoenergy conservation264

a. Pseudoenergy density for large amplitude disturbances265

Following Haynes (1988), the pseudoenergy density can be defined by:266

H(λ, φ, θ, t) = r(E +B)− ro(Eo +Bo). (23)

where specific energy is defined as:267

E =
1

2

(
u2 + v2

)
+ h(p, θ) (24)

and h is the specific enthalpy. As before, the Casimir density (written B to distinguish it268

from the Casimir C used for pseudomomentum) can be expanded in terms of PV pertur-269

bations following (4) and similarly the enthalpy function can be expanded in the pressure270
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perturbation defined with reference to a given isentropic surface:271

h = ho +

(
∂h

∂p

)
o

pe + h2(po, pe, θ) (25)

= ho +

(
∂h

∂p

)
o

pe +

∫ pe

0

(pe − p̃)
∂2h

∂p̃2

∣∣∣∣
θ

(po + p̃, θ) dp̃

Writing (23) in terms of background state and perturbation quantities and using rqe =272

ζe − reqo and re = −(1/g)∂pe/∂θ obtains:273

H =
r

2
(u2

e + v2
e) + rB2 + rh2 + r(uoue + vove) (26)

+re

{
Eo +Bo − qo

(
∂B

∂q

)
o

}
+

(
∂B

∂q

)
o

ζe −
(
∂h

∂p

)
o

1

2g

∂(p2
e)

∂θ
+ ro

(
∂h

∂p

)
o

pe

The first order ro(uoue + vove) and ζe terms can be transformed into a horizontal flux274

divergence as for pseudomomentum. The final first order pe term requires more attention.275

For the particular case of an ideal gas:276

h = cpT = θcp

(
p

poo

)κ
(27)

where cp is the specific heat capacity, R is the specific gas constant, κ = R/cp = 2/7 and poo277

is a constant reference pressure. The enthalpy derivatives can then be evaluated explicitly:278

∂h

∂p

∣∣∣∣
θ

=
κh

p
;

∂2h

∂p2

∣∣∣∣
θ

=
κ(κ− 1)h

p2
;

∂

∂θ

∣∣∣∣
λ,φ

∂h

∂p

∣∣∣∣
θ

=

{
κ

pθ
− κ(κ− 1)

gr

p2

}
h (28)

Using the definition of pseudodensity, ro = ρo∂zo/∂θ, and the ideal gas law, p = ρRT ,279

yields:280

ro

(
∂h

∂p

)
o

pe =
∂zo
∂θ

pe =
∂

∂θ
(zope) + gzore (29)

Manipulating the above expressions gives the result:281

H =
r

2
(u2

e + v2
e) + rB2 +

{
rh2 +

p2
e

2g

∂

∂θ

(
∂h

∂p

)
o

}
+ re(uoue + vove) (30)

+
1

a cosφ

∂

∂λ

{
ve

(
∂B

∂q

)
o

}
− 1

a cosφ

∂

∂φ

{
ue

(
∂B

∂q

)
o

cosφ

}
+
∂

∂θ

{
zope −

p2
e

2g

(
∂h

∂p

)
o

}
+ue

{
rouo +

1

a

∂

∂φ

(
∂B

∂q

)
o

}
+ ve

{
rovo −

1

a cosφ

∂

∂λ

(
∂B

∂q

)
o

}
+re

{
Eo +Bo + gzo − qo

(
∂B

∂q

)
o

}
.
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The top line contains four second order terms: perturbation kinetic energy, a “Rossby282

wave term” (rB2 involving PV contour displacements), available potential energy (APE)283

and a “gravity wave term” involving correlations between perturbation density and velocity.284

The second and third lines are expressed as a flux divergence. However, the last two lines285

are first order and must be eliminated by defining the energy-Casimir using the relations:286 (
∂B

∂q

)
o

= Ψ (31)

Eo +Bo + gzo − qo
(
∂B

∂q

)
o

= 0 (32)

where the background state mass streamfunction is defined by rouo = −(1/a)∂Ψ/∂φ and287

rovo = (1/a cosφ)∂Ψ/∂λ. Note that uo and vo must be rotational when the background state288

flow is adiabatic (Haynes, 1988). It can also be shown that the second equality is always289

satisfied if the Casimir is defined using the streamfunction.290

b. Pseudoenergy including boundary terms291

The procedure from Section 2b is used to produce a new expression for integral pseu-292

doenergy including boundary terms where isentropic surfaces intersect the ground:293

H =

∫
D̄

{
r

2
(u2

e + v2
e) + rB2 + rh2 +

p2
e

2g

∂

∂θ

(
∂h

∂p

)
+ re(uoue + vove)

}
a2cosφ dλ dφ dθ (33)

+

∫
∂D̄

(
∂B

∂q

)
o

ue cosφ a dλ dθ

+

∫
(D∩Do)\D̄

{
r

2
(u2

e + v2
e) + rB2 + rh2 +

p2
e

2g

∂

∂θ

(
∂h

∂p

)
o

+(ro + re)(uoue + vove) +

(
∂B

∂q

)
o

ζe

}
a2 cosφ dλ dφ dθ

+

∫
D∩Do

[
zope −

p2
e

2g

(
∂h

∂p

)
o

]top
bot

a2 cosφ dλ dφ

+

∫
D\(D∩Do)

r(E +B) a2 cosφ dλ dφ dθ −
∫
Do\(D∩Do)

ro(Eo +Bo) a
2 cosφ dλ dφ dθ.

The last line involves integration of E + B over the portions of the 3D or background294

(2D) state that lie outside the intersection domain D∩Do. Preliminary work evaluating the295
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terms from atmospheric analyses has found that the two integrals typically are large with a296

high degree of cancellation in their sum (He). In Section 3c it will be shown that together297

they reduce to a second order boundary term in the small amplitude limit.298

The fourth integral, Ht, is taken across the bottom and top boundaries of the intersection299

domain and arises from integrating the vertical flux divergence in (30). Note that the zope300

term is typically much smaller because on the boundaries the zonal average pressure of the301

3D state is close to the pressure of the background MLM state, so that zope integrates almost302

to zero around a latitude circle.303

The top line is the interior pseudoenergy which can be partitioned into kinetic energy304

(Hk = r
2
(u2

e + v2
e)), a “Rossby wave term” (Hw = rB2), the available potential energy305

(Ha = rh2 + p2e
2g

∂
∂θ

(
∂h
∂p

)
o
) and the “gravity wave term” (Hg = re(uoue + vove)). The second306

integral, Hb, arises from the horizontal flux divergence terms in (30) evaluated around the307

boundary of the zonally symmetric inner region D̄. The third integral, Hd, spans the part308

of the intersection region D ∩Do lying outside D̄ (derived from (26)).309

Mass streamfunction Ψ(Q, θ) is found by integrating rouo polewards along isentropic310

surfaces from the equator (assigning Ψ = 0 there) or the lower boundary if the isentropic311

surface intersects it. In order that the boundary terms are all quadratic, Eo +Bo = 0 at the312

boundary Do. Using the condition (32) implies that:313

Ψb =
gzo
qo

∣∣∣∣
b

(34)

The energy-Casimir density is found by integrating (31) with respect to PV along isentropic314

surfaces using the boundary condition Bb = −Eob . B2 can be calculated from its definition315

(4) given B(Q, θ) and Ψ(Q, θ).316
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c. Pseudoenergy in small amplitude limit317

Now consider the pseudoenergy terms in the limit of small amplitude perturbations to a318

steady, zonally symmetric basic state. The second order energy-Casimir term becomes:319

B2 ≈
(
∂2B

∂q2

)
o

q2
e

2
=

(
∂Ψ

∂q

)
o

q2
e

2
=
∂Ψ

∂φ

∂φ

∂qo

q2
e

2
= −rouo

qoy

q2
e

2
(35)

The available potential energy reduces at small amplitude to:320

rh2 +
p2
e

2g

∂

∂θ

(
∂h

∂p

)
o

≈ ro

(
∂2h

∂p2

)
o

p2
e

2
+
p2
e

2g

∂

∂θ

(
∂h

∂p

)
o

(36)

≈ κho
gpoθ

p2
e

2

where the last step uses (28). In the absence of background state orography, Ψb = 0 from321

(34) and for small amplitude perturbations:322

Ψ ≈ ∂Ψ

∂φ
(φb − φbo) = −arouoφbe (37)

Following the same technique as for the pseudomomentum boundary terms (19) and (20),323

one obtains the pseudoenergy density for small amplitude perturbations:324

H =
ro
2

(
u2
e + v2

e

)
+
κho
gpoθ

p2
e

2
− r2

ouo
qoy

q2
e

2
+ reuoue (38)

+

{
−r2

oqouo
y2
be

2
+ rououeybe

}
∂θbo
∂y

δ(θ − θbo)

using vo = 0 for the zonally symmetric state. Note that Methven et al. (2005a) presented325

(without showing a derivation) a similar small amplitude expression for pseudoenergy, but326

the boundary and APE terms have been corrected here3. The “Rossby wave terms” in the327

interior (Hw) and on the boundary are equal to the Rossby wave terms in pseudomomentum328

density multiplied by −uo/ cosφ (i.e., the zonal angular velocity of the background state).329

Zadra et al. (2002) describe Hw as the “Doppler term” because the ratio of interior integral330

pseudoenergy to pseudomomentum can be written as an intrinsic phase speed, −(KE +331

3The errors in Eqn.(6) of Methven et al. (2005a) do not affect the results obtained in that paper since

only the “Rossby wave terms” (Hw) were required in the calculations.
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APE)/P , plus a Doppler mean wind, −Hw/P . This pseudoenergy expression entends the332

results of Andrews (1983a) for small amplitude quasi-geostrophic disturbances in height or333

pressure coordinates on a β-plane.334

4. Application to atmospheric analyses335

The pseudomomentum (15) and pseudoenergy (33) diagnostics for large amplitude distur-336

bances were applied to atmospheric data obtained from the ECMWF Re-Analysis Interim337

dataset (ERA-I). The results are illustrated for the extended northern hemisphere winter338

00UT 1 November 2009 to 00UT 1 April 2010 using re-analyses every 6 hours.339

a. Calculating perturbation variables from the ERA-Interim dataset340

The calculations are performed on the full resolution output of the ECMWF IFS model341

used for the re-analysis. The core output is spectral data at T255 resolution on 60 model342

levels (hybrid-pressure η-coordinate) for vorticity, divergence, temperature as well as surface343

pressure. The data is first transformed to u, v and θ on a linear Gaussian grid (512 longitudes344

× 256 latitudes) on model levels. The variables u and θ are interpolated horizontally to the345

mid-points of the grid in longitude and v and θ are interpolated to the mid-points in µ346

(sine of latitude). Linear vertical interpolation is then used to find u, v and p in a C-grid347

pattern in the horizontal (with p at the cell centres) on 131 isentropic (θ) levels from 218348

to 2979K (equally spaced in θ upto 320K, blending to equal spacing in pseudo-height above349

400K). Relative vorticity at cell centres is found by finite difference on the C-grid along350

isentropic surfaces. Geopotential on the top isentropic surface is found by integrating the351

hydrostatic equation upwards in η-coordinates from the ground. Pressure and geopotential352

there define Montgomery potential, M . The hydrostatic relation in isentropic coordinates353

is then integrated downwards to find M on every isentropic surface. The pseudo-density354

in isentropic coordinates, r, is found from derivatives of M with respect to θ using centred355
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finite difference. The wind components are then readily obtained from derivatives of M by356

finite difference along isentropic surfaces.357

This particular numerical method was used because it is consistent with the technique358

used to obtain the modified Lagrangian mean (MLM) background state through PV inver-359

sion. The first step in obtaining the MLM state is to calculate the mass and circulation360

integrals (11) within the contours of a discretised set of PV values, Qk, on a set of po-361

tential temperature surfaces, θm, from the full 3-D state. The MLM state is defined as a362

zonally symmetric adiabatic re-arrangement of the 3-D state that contains the same mass363

and circulation within every PV contour. The procedure to satisfy the mass and circulation364

constraints simultaneously starts by calculating a first guess zonally symmetric state. Given365

the PV of this state, qo(φ, θ), and circulation integrals, C(qo = Q, θ), the lower boundary366

potential temperature and upper boundary pressure, it is possible to obtain M through in-367

verting an almost elliptic equation. Winds and density are found from horizontal and vertical368

derivatives of M . Mass and circulation integrals are then calculated for this 2-D state. They369

will differ from those of the 3-D state, but the latitudes of the background state PV contours370

on isentropic surfaces and θ contours on the lower boundary are adjusted and the state is371

inverted again. The process is iterated until the mass and circulation integrals converge on372

those of the original 3-D data. The details of this procedure will be described in a separate373

article where the properties of the background state will be explored.374

The most important aspects for this article are that the MLM state is a zonally symmetric375

solution of the primitive equations which would be steady if PV and θ were materially376

conserved (i.e., the flow were adiabatic and frictionless). It is a suitable state to partition377

perturbations from the full flow (i.e., qe = q−qo) that will obey the wave activity conservation378

laws derived here, even at large amplitude.379
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b. Pseudomomentum results380

Figure 1 shows the integral over the northern hemisphere of the various terms comprising381

pseudomomentum and pseudoenergy, divided by the total mass of atmosphere in the hemi-382

sphere. Both the “boundary” terms in pseudomomentum, Pb and Pe, are negative while all383

the other terms are positive. The “gravity wave term”, Pg, is the smallest, as is the “gravity384

wave term” in pseudoenergy, Hg. Although the balanced flow associated with Rossby waves385

can contribute to the “gravity wave term”, gravity and Kelvin waves have no influence on386

PV contours (unless they break and dissipate). The implication of the small magnitude of387

Pg relative to all other terms is that Rossby wave activity dominates.388

The interior pseudomomentum has been partitioned into three. Pd is associated with the389

volume (D ∩Do) \ D̄ which is just above ground in both the full and background states but390

lies within the range of latitudes where the full state intersects the ground. Ptrop represents391

wave activity above Pd to the 400K isentropic surface and Pstrat is the integral of all wave392

activity above 400K to the top isentropic boundary of the analysis domain (3043K; pressure393

≈ 10− 20 Pa) which lies in the mesosphere. Clearly pseudomomentum is dominated by the394

troposphere. Interestingly, Pd is approximately equal and opposite to Pb + Pe. Baroclinic395

waves have negative boundary wave activity associated with a surface potential temperature396

wave and positive interior wave activity associated with an upper wave in PV along isentropic397

surfaces. In the small-amplitude limit these two counter-propagating Rossby wave (CRW)398

components describe the evolution and mechanism for baroclinic instability (Methven et al.,399

2005a). It is the case that any growing normal mode must have exactly zero total pseudo-400

momentum (otherwise the disturbance could not grow without violating global conservation401

of pseudomomentum). The near-cancellation observed in the analyses is suggestive that Pd402

and the boundary terms are dominated by baroclinic wave activity.403

However, it is also clear that there is much more interior pseudomomentum in the Ptrop404

term. This must be related to wave activity in the upper troposphere and lower stratosphere405

that is in excess of that required for baroclinic normal mode growth. There are many possible406
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interpretations of this result that merit further investigation.407

One is simply that some finite amplitude wave activity at tropopause level persists with-408

out recourse to modal baroclinic growth. This could perhaps occur through continuous409

excitation of transient wave growth by baroclinic or barotropic mechanisms (Farrell, 1982)410

associated with existing perturbations on the tropopause. Rivest and Farrell (1992) intro-411

duced “quasi-modes” as particular combinations of continuous spectrum modes which have412

similar zonal phase speeds. They showed that the decay rate of quasi-modes is related to413

the spread in frequencies of the contributing modes. De Vries et al. (2009) showed how such414

non-modal growth on any zonal shear flow can readily be interpreted in terms of Rossby wave415

components, even in situations where the PV gradient is continuous. If somehow upper level416

Rossby waves are continually forced, they would cause low level Rossby waves (associated417

with boundary potential temperature perturbations and vorticity) to grow as they moved418

along. However, the weaker amplitude in the boundary wave activity at all times indicates419

that they do not have sufficient time to phase-lock and grow in concert with the upper waves420

(modally) before the waves decay, by damping or transience.421

Even if starting with modal growth, the nonlinear saturation of baroclinic waves also422

occurs faster at low levels than at the tropopause. Thorncroft et al. (1993) outlined a423

“saturation-propagation-saturation” mechanism involving lower wave nonlinear saturation424

in amplitude, the vertical propagation of a Rossby wave packet resulting in continued up-425

per wave amplification and eventually nonlinear saturation there by Rossby wave breaking.426

Methven et al. (2005b) replaced the vertical propagation element of the paradigm with the427

interpretation that the lower and upper counter-propagating Rossby wave properties do not428

change, except that the lower CRW amplitude ceases to grow, due to nonlinear wave break-429

ing limiting its meridional extent, while the upper CRW continues to grow through the same430

baroclinic growth mechanism. Thus nonlinear baroclinic wave behaviour may explain to431

some extent the dominance of interior pseudomomentum.432

Planetary wave activity, including stationary waves, also make a large contribution since433
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the background used to partition disturbances from the full atmospheric state is defined as434

zonally symmetric. Evidence for planetary and near-stationary waves will be presented in435

Section 4d.436

Note that there are two clear maxima in stratospheric pseudomomentum at 45 and 92437

days (15 Dec 2009 and 31 Jan 2010). These correspond to the beginning of a minor and438

major stratospheric sudden warming event respectively and are related to large-amplitude439

planetary wave activity and nonlinear wave breaking.440

c. Pseudoenergy results441

In the pseudoenergy time series, the interior PV displacement term, Hw, and “gravity442

wave term”, Hg, are both negative, but with the Hw term which is associated with Rossby443

waves being much larger. The small-amplitude limits of pseudoenergy and pseudomomentum444

show that the corresponding density Hw = −Pwuo/ cosφ. Since the flow at tropopause level445

is mainly westerly (uo > 0), this explains the strong anti-correlation between Hw and Ptrop.446

It is also clear that Hw has a larger fractional variation than Ptrop.447

The interior (domain D̄) disturbance kinetic energy and available potential energy are448

positive definite and exhibit variability, although not as marked as in Hw. The sum Hd +449

Hb +Ht is generally positive and smaller than the interior energy terms. The Hb term has450

the smallest magnitude of the three and Ht is always positive over this period. Hd can451

be both positive or negative and is more variable. The most variable term is the “exterior452

term”He related meridional displacements of potential temperature contours along the lower453

boundary. It is positive throughout the winter shown but smaller and even negative in454

November and March. It also exhibits a stronger diurnal cycle than the other terms which455

is related to a diurnal cycle in the isentropic density field of the tropical lower troposphere456

of the background state. The diurnal cycle will not be explored here, but is shown so that457

no time filtering is applied to the re-analysis data.458
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d. Interpretation of wave activity459

The peak hemispheric pseudomomentum, KE, APE and Hw are all associated with one460

event between days 84-90 (23-29 Jan 2010) which makes an interesting case study. The461

signature of this event is visible first in the growth of APE from 23 Jan 2010. At the same462

time a weak dip develops in the boundary pseudomomentum term Pe. These are associated463

with the growth in meridional displacements of potential temperature contours along the464

lower boundary (i.e., a lower CRW). Pe reaches a minimum first at 12UT 25 Jan 2010465

followed by a peak in APE 12 hours later. The interior KE and Ptrop peak at 06UT 27 Jan466

2010, coincident with a distinct minimum in Hw.467

Figure 2a shows a snapshot of PV anomalies on the 311K surface at 12UT 26 January468

2010 between the peak in disturbance APE and KE. The field shown is ro(q−qo) = roqe which469

has units of s−1 and is closely related to quasigeostrophic PV. To a reasonable approximation470

the magnitude of these anomalies scales in proportion to the balanced winds that would be471

obtained by PV inversion. Although the Ertel PV, q, is approximately conserved moving472

with air parcels on isentropic surfaces, clearly the PV anomalies are not and depend on the473

displacement of PV contours relative to their latitudes in the background state. The striking474

feature is a PV wave with zonal wavenumber 8. It has large amplitude so that positive PV475

anomalies are displaced to the south of the background state tropopause location (≈ 50N)476

and negative PV anomalies are displaced to the north. The wave is much more distinct477

around the latitude of the positive (cyclonic) PV anomalies. Animations reveal that the478

wave grew at all longitudes simultaneously and strongly resembles a baroclinic wave life479

cycle. The hemispheric wave activity diagnostics show that it developed through mutual480

interaction between lower boundary potential temperature and tropopause level PV waves,481

saturated first a low levels and peaked several days later coinciding with the maximum in482

disturbance KE, as described in Thorncroft et al. (1993) and Methven et al. (2005b). It is483

a beautiful example of the relevance of baroclinic instability to the atmosphere. However,484

it is also clear that this disturbance occurred on a backdrop of much greater wave activity485
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throughout the hemisphere. As mentioned earlier, it is possible that a large portion of the486

other wave activity is associated with stationary waves.487

The relationship between pseudoenergy and zonal pseudomomentum contains informa-488

tion regarding zonal propagation. In the case of neutral sinusoidal modes, c = −H/P489

equals the phase speed of the mode. For disturbances of more general large amplitude struc-490

ture, Brunet (1994) argued that c can be taken as a definition of “coherent propagation491

speed”. The physical interpretation is that c is the speed of the frame of reference from492

which the disturbance appears most steady (i.e., moving with the disturbance). In the case493

of growing normal modes, both H and P are zero and this formula cannot work. How-494

ever, Heifetz et al. (2004) showed that the problem is solved by decomposing the growing495

normal mode into two untilted counter-propagating Rossby wave structures with equal and496

opposite pseudomomentum and non-zero pseudoenergy. In this case, the phase speed of497

the growing normal mode is given by the average self-propagation speed of the two compo-498

nents (−H1/P1 −H2/P2)/2. When presented with the analysed atmospheric flow featuring499

large amplitude breaking Rossby waves it is not known precisely how to partition into suit-500

able Rossby wave components. However, Brunet (1994) pioneered the method of Empirical501

Normal Mode (ENM) decomposition based on obtaining eigenstructures from data that are502

orthogonal with respect to a pseudomomentum norm, in a similar fashion to the CRW the-503

ory. He discussed the Haynes (1988) expressions for pseudomomentum and pseudoenergy in504

his theory, but in his analysis of PV on the 315K isentropic surface he used expressions ap-505

propriate for the shallow water equations to avoid the need to integrate wave activity in the506

vertical. Zadra et al. (2002) applied the ENM technique to analysis data using the Haynes507

(1988) wave activity on 16 isentropic levels spanning 270 to 450K, but treating 850hPa as508

the lower boundary of the data. They presented results for zonal wavenumbers 1, 5 and 9509

and inferred that all the modes had eastward phase speeds in the range 4-15 m s−1. However,510

their analysis neglected the effects of boundary wave activity.511

Here, boundary terms will be included. Since the boundary pseudomomentum is neg-512
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ative, it is important to note that the total pseudomomentum is always positive due to513

the dominance of the interior tropospheric term. The relevance of c = −H/P to observed514

wave behaviour around the mid-latitudes will be investigated, where H and P are the total515

pseudoenergy and pseudomomentum. Figure 3a shows the speed c evaluated throughout516

the extended winter. The ratio is converted from m s−1 to degrees longitude per day by517

assuming that the reference frame moves as a solid body rotation in the zonal direction518

and that c relates to the speed at 50◦N which is the approximate tropopause location and519

centre of wave activity throughout DJF (not shown here). There is clearly variability on520

long timescales. For example, between day 95 and 120 the value is particularly steady os-521

cillating about zero (dominated by the diurnal cycle mentioned earlier). In this period we522

might expect the dominance of stationary wave activity. Figure 3b shows a longitude-time523

(Hovmoeller) plot of meridional wind on the 311K surface averaged at each instant across524

the mid-latitude band 45-60N (where it intersects the tropopause). Clearly, days 95-120 are525

indeed relatively stationary with three especially strong ridges (flanked by strong v > 0 to526

the west and v < 0 to the east) at 50E, 240E and 340E (approximately the Urals, Rockies527

and East Atlantic). Figure 2b shows the PV anomaly pattern at 12UT 9 Feb 2010 (near528

the beginning of this period). Meridionally oriented ridges of low PV air are seen extending529

from the subtropics into the polar regions in the vicinity of 240E and 340E and it is these530

features and the elongated troughs between them that were relatively steady for almost a531

month.532

The first half of November 2009 (to day 18) and the last portion of March 2010 (from533

day 128) are characterised by positive (eastward) propagation speed c and it is clear from534

the Hovmoeller plot that these periods have a succession of eastward moving troughs and535

ridges. The faster disturbances appear to be moving at approximately 20◦day−1 which is536

consistent with c.537

There is a long period with predominantly negative c from days 23-70, implying net west-538

ward propagation. The Hovmoeller plot reveals that this is associated with a planetary wave539
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pattern retrogressing with eastward synoptic activity superimposed. The planetary wave is540

dominated by zonal wavenumber 2. Initially it propagates slowly westwards at ∼ −5◦day−1.541

The ridge moving from 240E to 210E (westwards from the Rockies) is particularly promi-542

nent until day 40. The same wavenumber 2 pattern then continues to propagate westwards543

at a faster pace ∼ −10◦day−1 until day 70. The observed propagation of meridional wind544

patterns is consistent with the time series of c in the top panel. Note that the c < 0 period545

is interupted by a strong event of c ≈ 0 around day 50. This appears to be associated546

with a stronger packet of eastward synoptic wave activity superposed on the wavenumber 2547

disturbance. It could also be related to wave activity at different latitudes or levels in the548

atmosphere. Note that the “baroclinic wave life cycle” event on days 87-89 is also clear as a549

spike of eastward propagation during an otherwise near-stationary period.550

5. Conclusions551

Expressions for two measures of wave activity, pseudomomentum and pseudoenergy, have552

been derived that are valid for large amplitude disturbances described by the primitive553

equations on the sphere. Account is taken of the intersection of isentropic layers with the554

ground and the movement of the intersection. The result for pseudomomentum (15) was555

obtained previously by Magnusdottir and Haynes (1996), but the pseudoenergy expression556

(33) has not been shown before. A new expression for pseudoenergy (38) is also obtained in557

the limit of small disturbances from a zonally symmetric background state.558

In order to evaluate pseudomomentum and pseudoenergy from analysis or numerical559

model data, it is first necessary to define and calculate a background state. Disturbances560

are naturally defined as deviations between the full 3-D state and the background. In order561

for the global wave activity conservation laws to apply, it is essential that the background562

state is itself a solution of the primitive equations. It was shown that pseudomomentum563

is easier to evaluate if the zonally symmetric modified Lagrangian mean state is used as564
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the background. Methven (2010) presented some preliminary results obtaining the modified565

Lagrangian mean state from meteorological analyses and the same technique has been used566

here (detailed paper in preparation). Nakamura and Solomon (2011) have obtained a similar567

modified Lagrangian mean PV distribution from global data, but prescribing the Eulerian568

zonal mean potential temperature as the lower boundary. They did not obtain the associated569

density field by inverting background state PV which would be necessary to define interior570

or boundary wave activity as presented here.571

It was shown using ERA-Interim atmospheric data that the “coherent propagation speed”572

measure c, obtained from hemispheric integrals of pseudoenergy and pseudomomentum, does573

reflect the key characteristics of disturbance propagation seen at tropopause level. The wave574

activity diagnostics then enable a dissection of the aspects of the atmospheric flow that575

are most important to the propagation. The two periods of particularly strong westward576

propagation (days 36-46 and 55-70) were associated with the highest values of the “lower577

boundary term” in pseudoenergy He and also lower magnitude (and therefore more positive)578

PV displacement term Hw. Although possessing synoptic and longer-timescale variability,579

the pseudomomentum is much less variable than the pseudoenergy. However, in these two580

westward periods Pe was stronger (more negative) and Pw was slightly weaker (less positive).581

This indicates a stronger disturbance in potential temperature in the lower troposphere and582

slightly less activity at tropopause level.583

These results differ markedly from Brunet (1994) who identifies westward modes (from584

Empirical Normal Mode decomposition) as those where interior disturbance energy is greater585

than the magnitude of the Doppler term in pseudoenergy, (KE + APE) > |Hw|. In the586

season studied here disturbance energy is always smaller, (KE + APE) < |Hw|. It is the587

boundary term in pseudoenergy, He, that makes to total pseudoenergy positive and therefore588

the coherent zonal propagation speed c (= −H/P) negative. The boundary wave activity589

terms were also neglected in Zadra et al. (2002), which likely explains why they deduced590

that quasi-modes at all zonal wavenumbers were associated with positive (eastward) phase591
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speeds. They also used the zonal and time mean of the analyses to define the background592

state, even though on its own it is not a solution to the governing equations. This would593

tend to reduce the pseudomomentum density on isentropic surfaces where they intersect the594

tropopause because the zonal mean state has a much smaller meridional PV gradient than595

the MLM state (recall the linearised form Pw = r2
o cosφ qoy

1
2
η2). However, the difference in596

zonal mean and MLM zonal flow is likely to have the greatest influence on zonal phase speed597

through the Doppler term −Hw/P which in the small amplitude limit reduces to −uo/ cosφ.598

An event was also identified from the wave activity diagnostics resembling a baroclinic599

wave life cycle and the evolution of PV at this time reveals that there was indeed the almost600

simultaneous growth and decay of a zonal wavenumber 8 disturbance. Wave activity growth601

in boundary potential temperature and APE were first to peak (nonlinear saturation) with602

upper level PV disturbance and KE peaking 1-2 days later. The later stage of the life cycle603

has the opposite signature (more negative Hw, He and more positive Pw and KE) relative604

to the “westward propagation phases”.605

In the extended winter studied, the month-long stationary period and the periods of606

westward coherent zonal propagation (c < 0) were dominated by a zonal wavenumber two607

pattern at tropopause level. At the same time there were clearly eastward propagating608

disturbances with shorter wavelengths (synoptic scale baroclinic waves). The Empirical609

Normal Mode decomposition technique of Brunet (1994) presents a means to partition cleanly610

the total pseudoenergy and pseudomomentum between different wavenumber components611

and estimate their characteristic phase speeds. It would be necessary to extend the analysis612

of Zadra et al. (2002) to include the boundary wave activity terms and re-examine the613

dominant modes or quasi-modes that describe the observed atmospheric behaviour.614

The boundary term in pseudoenergy, He, was shown to have much stronger variation615

over the season than the other terms in pseudoenergy or pseudomomentum. This is a very616

interesting aspect because it has an influence on the net propagation speed around the617

hemisphere, even at tropopause level. Further investigation into the phenomena responsible618
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for this variation and its characteristics in other years could yield insight into why this619

particular winter was characterised by blocked flow and persistent weather patterns bringing620

especially cold conditions in northern Europe, North America and the Far East of Asia.621

For example, greater zonal asymmetry in lower boundary potential temperature (perhaps622

enhancement of land-sea contrast) would be reflected in greater He, increasing the likelihood623

for stationarity or slow westward propagation. If the cold surface conditions intensify under624

the stationary weather systems, this raises the possibility of a positive feedback mechanism625

on the lower tropospheric temperature pattern via its effects on zonal wave propagation.626

Acknowledgments.627

Thanks to Paul Berrisford, part of the National Centres of Atmospheric Science (NCAS)628

Climate Directorate, for his advice on isentropic coordinates and tenacity with our work629

on background states. Thanks to the Dynamical Processes Group in the Department of630

Meteorology at the University of Reading, especially Brian Hoskins, Mike Blackburn, Tom631

Frame, Hylke de Vries and Tim Woollings, for exciting discussions on Rossby waves, wave632

breaking and relation to persistent weather patterns. This work was supported by grant633

NE/D011507 from the Natural Environment Research Council in the UK.634

29



635

REFERENCES636

Andrews, D., 1983a: A conservation law for small-amplitude quasi-geostrophic disturbances637

on a zonally asymmetric flow. J. Atmos. Sci., 40, 85–90.638

Andrews, D., 1983b: A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J.639

Atmos. Sci., 40, 1877–1883.640

Andrews, D., J. Holton, and C. Leovy, 1987: Middle atmosphere dynamics. Academic Press,641

489 pp.642

Andrews, D. and M. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-643

mean flow. J. Fluid Mech., 89, 609–646.644

Bretherton, F., 1966a: Baroclinic instability and the short wavelength cut-off in terms of645

potential vorticity. Q. J. R. Meteorol. Soc., 92, 335–345.646

Bretherton, F., 1966b: Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc.,647

92, 325–334.648

Brunet, G., 1994: Empirical normal mode analysis of atmospheric data. J. Atmos. Sci., 51,649

932–952.650

Bühler, O., 2009: Waves and mean flows. Cambridge University Press, 341pp.651

Charney, J. and M. Stern, 1961: Propagation of planetary-scale disturbances from the lower652

into the upper atmosphere. J. Geophys. Res., 66, 83–110.653

De Vries, H., J. Methven, T. Frame, and B. Hoskins, 2009: An interpretation of baroclinic654

initial value problems: Results for simple basic states with nonzero interior PV gradients.655

J. Atmos. Sci., 66, 864–882.656

30



Farrell, B., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39,657

1663–1686.658

Haynes, P., 1988: Forced, dissipative generalisations of finite-amplitude wave-activity con-659

servation relations for zonal and non-zonal basic flows. J. Atmos. Sci., 45, 2352–2362.660

Heifetz, E., C. Bishop, B. Hoskins, and J. Methven, 2004: The counter-propagating Rossby661

wave perspective on baroclinic instability. Part I: Mathematical basis. Q. J. R. Meteorol.662

Soc., 130, 211–231.663

Iwasaki, T., 1989: A diagnostic formulation for wave-mean flow interactions and Lagrangian664

mean circulation in a hybrid vertical coordinate of pressure and isentropes. J. Meteorol.665

Soc. Japan, 67, 293–312.666

Magnusdottir, G. and P. Haynes, 1996: Wave activity diagnostics applied to baroclinic wave667

life cycles. J. Atmos. Sci., 53, 2317–2353.668

McIntyre, M., 1980: Towards a Lagrangian-mean description of stratospheric circulations669

and chemical transports. Phil. Trans. R. Soc. Lond., A296, 129–148.670

McIntyre, M. and T. Shepherd, 1987: An exact local conservation theorem for finite-671

amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure672

and on Arnol’d’s stability theorems. J. Fluid Mech., 181, 527–565.673

Methven, J., 2010: Diagnostics of the extratropics. ECMWF Seminar 2009 on Diagnosis of674

Forecasting and Data Assimilation Systems, ECMWF, 25–51.675

Methven, J., E. Heifetz, B. Hoskins, and C. Bishop, 2005a: The counter-propagating Rossby676

wave perspective on baroclinic instability. Part III: Primitive equation disturbances on the677

sphere. Q. J. R. Meteorol. Soc., 131, 1393–1424.678

Methven, J., E. Heifetz, B. Hoskins, and C. Bishop, 2005b: The counter-propagating Rossby679

31



wave perspective on baroclinic instability. Part IV: Nonlinear life cycles. Q. J. R. Meteorol.680

Soc., 131, 1425–1440.681

Nakamura, N. and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjust-682

ments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis.683

J. Atmos. Sci., 67, 3967–3983.684

Nakamura, N. and A. Solomon, 2011: Finite-amplitude wave activity and mean flow adjust-685

ments in the atmospheric general circulation. Part II: Analysis in the isentropic coordinate.686

J. Atmos. Sci., 68, 2783–2799.687

Rivest, C. and B. Farrell, 1992: Upper-tropospheric synoptic-scale waves. Part II: Mainte-688

nance and excitation of quasi-modes. J. Atmos. Sci., 49, 2120–2138.689

Solomon, A. and N. Nakamura, 2012: An exact Lagrangian-mean wave activity for finite-690

amplitude disturbances to barotropic flow on a sphere. J. Fluid Mech., 693, 69–92.691

Tanaka, D., T. Iwasaki, S. Uno, M. Ujiie, and K. Miyazaki, 2004: Eliassen-Palm flux diag-692

nosis based on isentropic representation. J. Atmos. Sci., 61, 2370–2383.693

Thorncroft, C., B. Hoskins, and M. McIntyre, 1993: Two paradigms of baroclinic wave life694

cycle behaviour. Q. J. R. Meteorol. Soc., 119, 17–55.695

Thuburn, J. and V. Lagneau, 1999: Eulerian mean, contour integral and finite-amplitude696

wave activity diagnostics applied to a single layer model of the winter stratosphere. J.697

Atmos. Sci., 56, 689–710.698

Zadra, A., G. Brunet, and J. Derome, 2002: An empirical normal mode diagnostic algorithm699

applied to NCEP Re-analyses. J. Atmos. Sci., 59, 2811–2829.700

32



List of Figures701

1 Time series of pseudomomentum and pseudoenergy terms integrated over the702

northern hemisphere and divided by atmospheric mass. Using 6-hourly ERA-703

Interim data from 00UT 1 Nov 2009 until 00UT 1 Apr 2010. (a) Ptrop and704

Pstrat (bold, solid), Pe (thin, solid), Pd (dotted), Pb (dashed) and Pg (dash-705

dot). (b) Hw (bold, solid), He (thin, solid), KE (bold, dotted), APE (thin,706

dotted), Hd +Hb +Ht (dashed) and Hg (dash-dot). 34707

2 Snapshots of PV anomalies on the 311K isentropic surface. Anomalies defined708

as ro(q − qo) where qo is the Ertel PV of the zonally symmetric background709

state. (a) 12UT 26 Jan 2010 one day before the northern hemisphere distur-710

bance KE peaked, associated with the mature phase of a baroclinic wave life711

cycle with zonal wavenumber 8. (b) 12UT 9 Feb 2010 during the stationary712

phase characterised by strong ridges at 50, 240 and 340E where low PV air713

reached polar latitudes. Polar stereographic projection from North Pole to714

15◦N with 0◦E at the bottom of each plot. Contour interval 0.25 × 10−4s−1.715

White positive. 35716

3 (a) Time series of minus the ratio of total pseudoenergy to pseudomomentum717

which can be interpreted as a form of coherent zonal propagation speed (see718

text). (b) Longitude-time plot of mid-latitude meridional wind on the 311K719

surface (averaged over 45-60N). Shading from black to white over range -70720

to +70 m s−1 every 10 m s−1. The bold lines indicate translation speeds of721

−5◦day−1, the stationary phase and +20◦day−1. 36722
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b
)

a
)

Fig. 1. Time series of pseudomomentum and pseudoenergy terms integrated over the north-
ern hemisphere and divided by atmospheric mass. Using 6-hourly ERA-Interim data from
00UT 1 Nov 2009 until 00UT 1 Apr 2010. (a) Ptrop and Pstrat (bold, solid), Pe (thin, solid),
Pd (dotted), Pb (dashed) and Pg (dash-dot). (b) Hw (bold, solid), He (thin, solid), KE
(bold, dotted), APE (thin, dotted), Hd +Hb +Ht (dashed) and Hg (dash-dot).
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a)

b)

Fig. 2. Snapshots of PV anomalies on the 311K isentropic surface. Anomalies defined as
ro(q− qo) where qo is the Ertel PV of the zonally symmetric background state. (a) 12UT 26
Jan 2010 one day before the northern hemisphere disturbance KE peaked, associated with
the mature phase of a baroclinic wave life cycle with zonal wavenumber 8. (b) 12UT 9 Feb
2010 during the stationary phase characterised by strong ridges at 50, 240 and 340E where
low PV air reached polar latitudes. Polar stereographic projection from North Pole to 15◦N
with 0◦E at the bottom of each plot. Contour interval 0.25× 10−4s−1. White positive.
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b
)

a
)

Fig. 3. (a) Time series of minus the ratio of total pseudoenergy to pseudomomentum
which can be interpreted as a form of coherent zonal propagation speed (see text). (b)
Longitude-time plot of mid-latitude meridional wind on the 311K surface (averaged over
45-60N). Shading from black to white over range -70 to +70 m s−1 every 10 m s−1. The bold
lines indicate translation speeds of −5◦day−1, the stationary phase and +20◦day−1.
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