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Abstract This paper describes a new approach for modelling the interaction of solar
and thermal-infrared radiation with complex multi-layer urban canopies. It uses the
discrete-ordinate method for describing the behaviour of the radiation field in terms
of a set of coupled ordinary differential equations that aresolved exactly. The rate at
which radiation intercepts building walls and is exchangedlaterally between clear-air
and vegetated parts of the urban canopy is described statistically. Key features in-
clude the ability to represent realistic urban geometry (both horizontal and vertical),
atmospheric effects (absorption, emission, and scattering), and spectral coupling to
an atmospheric radiation scheme. In the simple case of a single urban layer in a vac-
uum, the new scheme matches the established matrix-inversion method very closely
when eight or more streams are used, but with the four-streamconfiguration being
of adequate accuracy in an operational context. Explicitlyrepresenting gaseous ab-
sorption and emission in the urban canopy is found to have a significant effect on net
fluxes in the thermal infrared. Indeed, we calculate that forthe mid-latitude summer
standard atmosphere at mean sea level, 37% of thermal-infrared energy is associated
with a mean-free-path of less than 50 m, which is the typical mean line-of-sight dis-
tance between walls in an urban area. The interaction of solar radiation with trees has
been validated by comparison to Monte Carlo benchmark calculations for an open
forest canopy over both bare soil and snow.
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1 Introduction

There is a growing need to represent urban areas accurately in weather and climate
models, in order to improve predictions of both the conditions experienced by city
residents and the interaction with the atmosphere above (Baklanov et al., 2018). In
the case of radiative transfer, the complexity of urban surfaces presents a significant
computational challenge. The fastest 1D urban canopy radiation schemes make many
assumptions, typically assuming a single infinitely long street canyon of fixed height
and width, in vacuum (e.g. Masson, 2000; Harman et al., 2004). At the other extreme
are 3D models that represent an explicit urban geometry via ray tracing, with the
capability to treat urban vegetation and atmospheric effects (e.g. Gastellu-Etchegorry,
2008; Lindberg et al., 2008). Three-dimensional models canbe used to evaluate 1D
schemes, but are far too slow and memory-hungry to incorporate into a weather or
climate model.

Given the importance of urban vegetation for the neighbourhood energy balance
(Grimmond et al., 2010) and the need to represent height variations within the urban
canopy (Yang and Li, 2015), intermediate-complexity models have been developed
that represent buildings of different height (Schubert et al., 2012), street trees (Redon
et al., 2017) or both (Krayenhoff et al., 2014). However, it is questionable whether
they have struck the right balance between complexity and computational cost: all
three models mentioned above still make the poor assumptionof an infinitely long
street canyon (see Hogan, 2019), while one (Krayenhoff et al., 2014) uses the com-
putationally expensive ray-tracing approach.

In this paper we propose a new framework to represent solar (hereafter ‘short-
wave’) and thermal-infrared (hereafter ‘longwave’) radiative transfer in complex ur-
ban canopies. It is underpinned by the 1D discrete-ordinatemethod (e.g. Stamnes
et al., 1988), in which a set of coupled ordinary differential equations is written for
2N streams of radiation travelling at different zenith angles, plus one for the direct
solar beam in the shortwave. The equations are solved exactly for a multi-layer de-
scription of the urban canopy. Virtually all atmospheric radiation schemes used in
weather and climate models are based on the 2-stream discrete-ordinate method (i.e.
one upwelling and one downwelling irradiance).

To represent buildings and vegetation, we use the SPARTACUS(SPeedy Algo-
rithm for Radiative TrAnsfer through CloUd Sides) approach, which has previously
been used to represent 3D radiative effects associated withclouds (Hogan et al., 2016)
and forests (Hogan et al., 2018). The new ‘SPARTACUS-Urban’scheme divides each
layer of the urban canopy into a clear-air and vegetated region, and terms are added
to the differential equations to represent the rates of lateral exchange of radiation
between regions, and the rate at which radiation interceptsbuilding walls. Previous
SPARTACUS implementations used only two streams but in thispaper we improve
the accuracy by generalizing to 2N streams. Our approach has the following advan-
tages over previous 1D urban radiation schemes:

• Realistic urban geometry. Rather than explicitly solving for a specific urban ge-
ometry, which is only tractable for very simplistic building layouts, we take a
more statistical approach. Hogan (2019) found that the probability distribution of
horizontal wall-to-wall separations in real cities is wellfitted by an exponential



Flexible Treatment of Radiative Transfer in Complex Urban Canopies 3

distribution, which leads to much better predictions of radiative exchange than
the infinite street canyon. This result is perfectly suited to incorporation into a
discrete-ordinate model, since it predicts that radiationtravelling at a particular
zenith angle will be attenuated by buildings according to the Beer-Lambert law,
in the same way as radiation propagating in a turbid atmosphere.

• Complex vegetation. Hogan et al. (2018) have already validated the SPARTACUS
approach for representing 3D solar radiation interaction with trees, including the
capability to represent crown heterogeneity. The present scheme can be thought
of as an extension of that proposed by Hogan et al. (2018) to include buildings.

• Atmospheric absorption, emission, and scattering. It is ubiquitous in current ur-
ban radiation models to treat the space between buildings asa vacuum, but this
is a poor assumption in a significant fraction of the longwavespectrum where the
mean free path of the radiation can be less than the building separation. We quan-
tify the importance of longwave absorption and emission by coupling the new
scheme to the gas-optics model of an atmospheric radiation code.

• Coupling to the free atmosphere. Care has been taken to formulate the scheme to
enable it to be coupled consistently with an atmospheric radiation scheme, specif-
ically ‘ecRad’ (Hogan and Bozzo, 2018). This coupling can bedone to ensure ex-
actly the same spectral intervals are used in the urban canopy as the atmosphere
above, if required.

Sections 2 and 3 provide a detailed description of the methodin the shortwave
and longwave, respectively. In Sect. 4 various aspects of the scheme are evaluated
against existing methods for canopies with a simplistic vertical structure. In Sect.
5 the importance of longwave atmospheric effects in urban canopies is quantified
using the new model. Finally, Sect. 6 discusses how the scheme could be extended in
future, for example to represent pitched roofs. Note that evaluation against fully 3D
calculations for real urban scenes with complex vertical structure will be the subject
of a future paper.

2 Shortwave Method

This section defines numerous symbols; for convenience, those that appear in more
than one equation are listed in Appendix 1.

2.1 Definition of Regions and Streams

The treatment of radiation in vegetated urban areas takes asits starting point the
SPARTACUS approach for treating 3D structures that has previously been used for
clouds and forests. As illustrated in Fig. 1, we divide the canopy vertically into lay-
ers and horizontally into regions. Radiation is modelled inclear-air regiona and
vegetated regionv, while building regionb is impermeable to radiation. It is straight-
forward to extend this to more regions, for example to represent vegetation of differ-
ent densities (Hogan et al., 2018), or alternatively to neglect vegetation completely.
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SPARTACUS then assumes that the rate of radiation exchange between permeable re-
gions, and the rate at which radiation intercepts building walls, is proportional to the
area of the vertical interface between these regions. As shown in Fig. 1a, all surfaces
are currently assumed to be either horizontal or vertical, but the statistical descrip-
tion in SPARTACUS can accommodate different parts of the same building having
different heights, and individual tree crowns whose width varies with height.

In the shortwave part of the spectrum, the ‘direct’ (i.e. unscattered) radiation at a
particular height in the urban canopy is described by a vector containing one irradi-
ance component for each permeable region:

s =
(

sa

sv

)

, (1)

where these are irradiances into a plane oriented perpendicular to the sun. To convert
into a horizontal plane they should be multiplied byµ0, the cosine of the solar zenith
angleθ0. Note that irradiances here are for one particular spectralinterval and multi-
ple calculations would be required to integrate over the full spectrum to account for
spectral variations in surface and atmospheric properties.

To describe the diffuse radiation field, previous SPARTACUSimplementations
used the 2-stream method in which one number (the irradianceinto a horizontal
plane) was used to describe the diffuse radiation in each hemisphere. As will be
shown in Sect. 4, we have found that two streams is insufficient to capture the ex-
change of diffuse radiation between the street, walls, and sky of an urban area, so we
generalize SPARTACUS to 2N streams such that the diffuse radiation field in each
hemisphere is described by radiation travelling inN discrete directions. Thus, the up-
welling diffuse radiation at a particular height in the urban canopy is described by
a vector, which for the four-stream (N = 2) case is given byu = (ua

1 ua
2 uv

1 uv
2 )

T,
whereui

k is the irradiance component in regioni due to radiation travelling in discrete
directionk. The mean upwelling irradiance is obtained simply by summing the ele-
ments ofu. An analogous vectorv describes downwelling diffuse radiation. The blue
arrows in Fig. 1b depict the one direct and four diffuse streams in regiona in the case
of N = 2.

Following Sykes (1951) and Stamnes et al. (1988), and indeedmost multi-stream
radiation schemes, we choose the discrete angles using ‘double-Gauss’ quadrature,
in which the cosine of the zenith angle,µ , is discretized using Gaussian quadrature
separately in the ranges−1< µ < 0 (upwelling streams) and 0< µ < 1 (downwelling
streams). For a 2N-stream scheme the discrete zenith angles in one hemisphereare
written asθ1 to θN , and their cosines asµ1 to µN . In the equations in this paper, all
µk terms are treated as positive in both the upwelling and downwelling hemispheres.
Each quadrature point is assigned a weightwk, dictated by the rules of Gaussian
quadrature, with the weights summing to unity. In Sect. 4 we examine how the error
decreases asN is increased.
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Fig. 1: Illustration of how the features of a real urban neighbourhood can be represented in SPARTACUS-
Urban. (a) Buildings and trees in a 1 km×1 km area of London centred on 51.519◦N, 0.123◦W. The
buildings are shown with vertical walls and flat roofs, consistent with the assumptions in the current ver-
sion of the scheme. SPARTACUS-Urban approximates the horizontal building layout statistically by the
exponential model of Hogan (2019). (b) Illustration of how the neighbourhood could be divided into lay-
ers and regions within SPARTACUS. Radiation is allowed to penetrate into the clear (white) and vegetated
(green) regions, but not the buildings (red). Consistent with most atmospheric radiation schemes, we use
a depth coordinate increasing down from canopy top, and likewise index the layers starting at 1 in the
uppermost layer, because it is then a little easier to ensurenumerical stability with sunlight originating at
canopy top (z = 0) and decreasing exponentially with increasingz. The blue arrows indicate the discrete
radiation directions used in a four-stream shortwave scheme, while the black arrows labelledf aw and f av

denote the rate at which clear-air radiation intercepts building walls, and passes into the vegetation region,
respectively. Symbols are defined in Appendix 1.
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2.2 Formulation of Differential Equations

SPARTACUS formulates the 1D shortwave radiative transfer problem as a set of cou-
pled ordinary differential equations written in matrix form (Hogan et al., 2016):

d
dz





u
v
s



= ΓΓΓ





u
v
s



 , (2)

wherez is defined as height measureddown from the top of the canopy as shown
by the vertical axis in Fig. 1b. In this convention, which matches that in most atmo-
spheric radiation schemes, sunlight originates from the top of the canopy (z = 0) and
decreases with increasingz. The exchange matrixΓΓΓ may be written in terms of five
component matrices:

ΓΓΓ =





−ΓΓΓ1 −ΓΓΓ2 −ΓΓΓ3

ΓΓΓ2 ΓΓΓ1 ΓΓΓ4

ΓΓΓ0



 . (3)

The subscripts of the component matrices follow those of theanalogousγ0–γ4 coeffi-
cients used in conventional 2-stream radiation schemes (Meador and Weaver, 1980),
rather than the indices of zenith anglesθk.

TheΓΓΓ0 matrix describes the rate at which direct downwelling radiation changes
along its path and may be expressed as the sum of two componentmatrices (Hogan
et al., 2018):

ΓΓΓ0 =

(

− f av
0 + f va

0
+ f av

0 − f va
0

)

+

(

ea
0

ev
0

)

. (4)

The first component matrix represents exchange of radiationbetween regions. Thef i j
k

coefficients express the rate at which radiation in the angleindexedk (wherek = 0
indicates direct radiation) is transferred from regioni to region j, per unit vertical
distance travelled, and is given by

f i j
k =

Li j | tanθk|

πci , (5)

whereci is the fractional area of the domain covered by regioni, andLi j is the nor-
malized perimeter length, i.e. the length of the interface between regionsi and j per
unit area of the horizontal domain. The modulus of the tangent is required to ensure
that f i j

k is positive for upwelling streams (whenθk > 90◦). The second component
matrix in (4) represents extinction of the direct beam due toscattering and absorption
by the air, leaves or building walls, and its elements are given by

ei
k =−σ i/µk − f iw

k (1−αwpw), (6)

whereσ i is the volume extinction coefficient of regioni representing scattering and
absorption by the air and/or leaves, andf iw

k represents the rate of radiation intercep-
tion by the building walls, which may be represented in the same form as (5) but
with Liw being the building perimeter length surrounding regioni per unit area of the
domain. If reflection from the building walls has a specular component, appropriate



Flexible Treatment of Radiative Transfer in Complex Urban Canopies 7

for buildings with a glass facade, then the specularly reflected light would retain its
original zenith angle and is therefore best treated as remaining in the same stream, i.e.
not being scattered at all. Thus (6) reduces the building interception term by a factor
1−αw pw, whereαw is the albedo of the wall andpw the fraction of that reflection
that is specular.

If we neglect vegetated regions for the moment, then the near-surface value ofLaw

may be derived from building polygon data: if a horizontal areaA of a city contains
buildings with a total perimeter lengthL thenLaw = L/A. At a particular height in
the urban canopy we consider only the perimeter of buildingsof at least that height,
so bothL andLaw decrease with height. Other length scales have been used in the
literature to characterize building horizontal scale and separation, and can be used
to estimateLaw. Most common is the typical street width,W : under the assumption
that the urban canopy is composed of infinite streets all of widthW , the total length
of street in a domain of horizontal areaA is Lstreet= (1− cb)A/W , wherecb is the
fractional horizontal area of the domain occupied by buildings (denoted asλp by
Grimmond and Oke, 1999). Since each street has two walls,L = 2Lstreet, and hence

Law = 2(1− cb)/W. (7)

(A small modification is needed if a certain known fraction ofthe vegetation perime-
ter is in contact with building walls, or close enough that any radiation emerging
from the vegetation immediately strikes a wall.) Hogan (2019) showed that for the
purposes of radiative transfer, the infinite-street assumption was a poor fit to real
cities; he found that the distribution of wall-to-wall horizontal separation distances in
real cities (considering all azimuth angles) was well approximated by an exponential
distribution, and described a method to estimate the e-folding separation distance,
X , from building polygon data. If the distribution is a perfect exponential thenX is
also the mean wall-to-wall horizontal separation distance. Combining his equations
23 and 25 leads toW = 2X/π , and hence

Law = π(1− cb)/X . (8)

As shown in Sect. 4.1, the Hogan (2019) exponential model of urban geometry is
fully consistent with SPARTACUS-Urban since solutions to (2) predict the intensity
of radiation propagating in a particular direction to vary exponentially with distance.

TheΓΓΓ1 matrix in (3) represents the rate at which diffuse radiationchanges along
its path and is given by three component matrices:

ΓΓΓ1 =









− f av
1 + f va

1
− f av

2 + f va
2

+ f av
1 − f va

1
+ f av

2 − f va
2









+









ea
1

ea
2

ev
1

ev
2









+ΓΓΓ2. (9)

The f i j
k terms again represent exchange between regions and are given by (5). The

ei
k terms in the second component matrix again represent loss due to scattering and

absorption by the air, leaves or building walls, and are given by (6). The third com-
ponent matrix describes the rate at which diffuse radiationis scattered, either by the
air in the canopy or the walls, into other diffuse streams. Ifwe assume that, after
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accounting for specular reflection from the walls, the scattering is isotropic, then this
term is equal for radiation scattered into the upward and downward streams, so is
equal toΓΓΓ2 in (3) and is given by

ΓΓΓ2 =









ea
11 ea

21
ea

12 ea
22

ev
11 ev

21
ev

12 ev
22









, (10)

where theei
kl terms express the rate at which radiation in regioni and streamk is

scattered into streaml in either the same or the opposite hemisphere, given by

ei
kl =

wlσ iω i

2µk
+

vl f iw
k αw(1− pw)

2
. (11)

The two terms mirror those in (6): the first represents isotropic scattering by the
air or leaves, whereω i is the single scattering albedo of regioni, while the second
represents non-specular scattering by walls (the 1− pw term removing the specular
fraction). Both terms are divided by two since radiation is assumed to scatter equally
into the two hemispheres. The second term uses a weighting appropriate for vertical
surfaces given by

vl = wl sinθl

/ N

∑
j=1

w j sinθ j. (12)

This weighting assumes that non-specular scattering by thewalls is Lambertian,
which leads to the sinθl dependence since the radiation emitted by a small element
of a vertical plane towards a viewer is proportional to the angle subtended by the
element at the viewer, which varies as sinθl . The summation on the denominator
ensures energy conservation. The final two matrices in (3),ΓΓΓ3 andΓΓΓ4, represent scat-
tering from the direct beam into the upward and downward streams, respectively. In
the case of isotropic scattering by air and leaves they are equal and given by

ΓΓΓ3 = ΓΓΓ4 = µ0









ea
01

ea
02

ev
01

ev
02









, (13)

where the elements are given by (11).

2.3 Solving the Equations for a Single Layer

Figure 2 depicts the steps in the SPARTACUS-Urban solver. The first step is to solve
(2) for each individual layerj, computing the following matrices fromΓΓΓ:

• R j is the diffuse reflectance matrix such that if the layer is illuminated from
above by diffuse radiationv j−1/2 only, then the reflected radiation due to scat-
tering within the layer isu j−1/2 = R jv j−1/2. As shown in Figs. 1b and 2, half
indices indicate properties defined at the interface between layers.
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6. Atmospheric radiation
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9. Facet absorption1. Compute matrices

Fig. 2: The main steps in the SPARTACUS-Urban shortwave and longwave solvers in the case of a two-
layer representation of the urban canopy, where the shaded boxes indicate the main variable or variables
involved, and the numbered steps are referred to in the text.

• T j is the diffuse transmittance matrix such that diffuse illumination from above
leads to the transmitted radiation exiting the base of the layer beingv j+1/2 =
T jv j−1/2.

• E j is the direct transmittance matrix such that if the layer is illuminated from
above by direct radiations j−1/2 only, then the direct radiation emerging from the
base iss j+1/2 = E js j−1/2.

• S+
j andS−

j describe the scattering of the direct beam such that for the same direct-
only illumination from above,u j−1/2 = S+

j s j−1/2 is the upward diffuse radiation
emerging from the top of the layer andv j+1/2 = S−

j s j−1/2 is the downward diffuse
radiation emerging from the base.

There are generally three methods for computing these matrices. The doubling method
(e.g., Thomas and Stamnes, 1999) is conceptually straightforward and numerically
stable, but computationally expensive. The matrix-exponential method (e.g., Flatau
and Stephens, 1988; Hogan et al., 2016) is computationally faster but becomes nu-
merically unstable if the optical depth of the layer along any of the discrete angles is
too large. We therefore prefer the eigendecomposition method (e.g., Stamnes et al.,
1988), which is both fast and numerically stable. Appendix 2describes how this
method is used to derive the matrices above.

2.4 Computing the Albedo Profile

Here we describe steps 2–4 of Fig. 2 in which we pass up throughthe layers of
the canopy computing the albedo of the entire scene below each layer interface. Al-
though this is similar to Sect. 2.6 of Hogan et al. (2018), it is complicated by the
use of more than two streams and the variation of building andvegetation cover with
height. We define matrixA j+1/2 as the albedo to diffuse downwelling radiation (i.e.
the white-sky albedo) of the scene below interfacej + 1/2 (including the surface
contribution), and matrixD j+1/2 as the corresponding albedo to direct radiation (i.e.
black-sky albedo). They are defined such that the upwelling irradiances at this inter-
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face are equal to the sum of the reflected downwelling diffuseand direct irradiances:

u j+1/2 = A j+1/2v j+1/2+D j+1/2s j+1/2. (14)

At the surface (interfacen+1/2 for ann-layer description of the canopy), these
matrices have the following forms (forN = 2 and two regions; step 2 of Fig. 2):

An+1/2 =









αah1 αah1

αah2 αah2

αvh1 αvh1

αvh2 αvh2









; (15)

Dn+1/2 = µ0









αah1

αah2

αvh1

αvh2









, (16)

whereα i is the surface albedo beneath regioni (allowing for the possibility to repre-
sent trees being planted over a different surface type), andis weighted by an equiva-
lent term to (12) but for Lambertian reflection by a horizontal surface:

hl = wlµl

/ N

∑
j=1

w jµ j. (17)

The zero entries in (15) and (16) simply represent the fact that light incident on the
surface beneath clear-sky is not reflected up into the vegetated region, but note that at
higher levels in the canopy these these entries are not zero due to lateral exchange of
radiation between regions.

To compute the albedo matrices at the top of a layer (indexedj−1/2) given the
albedos at the base (indexedj+1/2) and the properties of the layer, we apply Eqs.
33 and 34 of Hogan et al. (2018):

A j−1/2 = R j +T jB−1A j+1/2T j ; (18)

D j−1/2 = S+
j +T jB−1

(

D j+1/2E j +A j+1/2S−
j

)

, (19)

whereB = I−A j+1/2R j. This is a form of the ‘Adding Method’ and accounts for
multiple internal reflections between layerj and the layers below (step 3, Fig. 2). If
the definition of the regions was the same in each layer, then we could repeat this
process immediately for the layers above until we reached the top of the canopy.
However, both tree area and building area tend to decrease with height (see Fig. 1b),
accompanied by a corresponding increase in clear-sky area.Therefore, we need to
map from the albedo defined using the regions just below the interface,Abelow j−1/2,
to the albedo defined in the regions just above the interface,Aabovej−1/2, and similarly
for D. Following Hogan et al. (2016) for clouds, ‘directional overlap matrices’ are
used. For downwelling radiation, overlap matricesV andW are defined such that

vbelow= Vvabove; (20)

sbelow= Wsabove, (21)
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where subscripts ‘above’ and ‘below’ denote irradiances just above and below a layer
interface. Similarly, overlap matrixU is defined such thatuabove=Uubelow. This leads
to Eq. 31 of Hogan et al. (2016) mapping the diffuse albedo across layer interface
j−1/2, and an equivalent expression for direct albedo (step 4, Fig. 2):

Aabovej−1/2 = U j−1/2Abelow j−1/2V j−1/2; (22)

Dabovej−1/2 = U j−1/2Dbelow j−1/2W j−1/2. (23)

A complication arises because we do not simulate radiative transfer inside build-
ings, so the horizontal domain of the radiation simulation (the white and green regions
in Fig. 1b) varies with height. This means that some of the clear-sky region in layer
j−1 overlies a roof, and will ‘see’ the roof albedo,αb. To represent this, we intro-
duce a pseudo region in the lower layer for the exposed roof area by expanding the
albedo matrices as follows:

Abelow j−1/2 =





A j−1/2

αbh1 αbh1

αbh2 αbh2



 ; (24)

Dbelow j−1/2 =





D j−1/2

µ0αbh1

µ0αbh2



 . (25)

The overlap matrices allow for arbitrary overlapping of buildings, vegetation, and
clear-air in adjacent layers, but if we were to make the assumption that there are no
overhanging trees or buildings, and no trees on top of buildings, then the overlap
matrix for direct downwelling radiation has the form

W j−1/2 =





ca
j/ca

j−1
(cv

j − cv
j−1)/ca

j−1 1
(cb

j − cb
j−1)/ca

j−1



 , (26)

whereci
j is the fractional area of regioni in layer j, andcb

j represents the fractional
area of buildings in layerj. The three elements in the left column of (26) describe the
fraction of clear-air radiation in layerj −1 that enters the clear-air, vegetation, and
flat-roof regions in layerj; they sum to 1. The single non-zero element in the right
column of (26) states that all radiation in the vegetated region of layer j − 1 enters
the vegetated region of layerj. Equation 26 can represent tree crowns over a clear
region near the surface by setting the extinction coefficient of the ‘vegetated’ region
to zero in the lowest layers, as illustrated in the bottom-right of Fig. 1b. To represent
trees overhanging buildings, the third element in the rightcolumn of (26) may be set
to the fraction of the vegetated region in layerj − 1 that overlies a roof in layerj,
with a corresponding reduction in the second element.

The overlap matrices for diffuse radiation have more elements since we have
N streams in the upward and downward hemispheres for each region, but radiation
remains in the same stream as it passes through an interface so the matrices are sparse.
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Thus, the matrix for downwelling diffuse radiation is the same as for direct, but with
each element replicated for each stream:

V j−1/2 =





Ica
j/ca

j−1
I(cv

j − cv
j−1)/ca

j−1 I
I(cb

j − cb
j−1)/ca

j−1



 , (27)

whereI is theN×N identity matrix. Similarly, the matrix for upwelling diffuse radi-
ation is given by

U j−1/2 =

[

I I
(

1− cv
j−1/cv

j

)

I

Icv
j−1/cv

j

]

. (28)

The middle column distributes upwelling radiation in the vegetated region of layer
j into the clear-air and vegetated regions of layerj − 1 according to the vegetation
cover in each layer. The other two columns indicate that all upwelling radiation from
the clear-air and flat-roof regions in layerj−1 ends up in the clear-air region of layer
j.

2.5 Computing the Irradiance Profile

We now have a profile of albedo matrices just above and just below each layer in-
terface. If SPARTACUS-Urban is to be coupled to an atmospheric radiation scheme
then at this point the scalar direct and diffuse albedos at canopy top (interface 1/2)
need to be computed (step 5, Fig. 2). Applying (22) and (23) provides the albedo
matrices just above interface 1/2, where the overlap matrices (Eqs. 26–28) are de-
fined assuming a pseudo-layer 0 representing the free atmosphere above the urban
canopy; here there are no buildings or trees socv

0 = cb
0 = 0 andca

0 = 1. The scalar
albedo of the scene to direct radiation,αdir,sceneis then simply the top-left element
of Dabove1/2. The scalar albedo to diffuse radiation,αdiff ,scene, is computed assuming
that the downwelling diffuse radiation at the top of the urban canopy is isotropic so
the streams are weighted according to (17).

As illustrated in Fig. 1 of Hogan and Bozzo (2018), an atmospheric radiation
scheme takes the direct and diffuse albedos as a boundary condition and computes the
full profile of irradiances through the atmosphere. The direct and diffuse downwelling
irradiances at the base of the lowest atmospheric layer, i.e. at the top of the urban
canopy, are passed back into SPARTACUS-Urban. The urban radiation calculations
can be performed either at the same spectral resolution as the atmosphere above, or
using a coarser spectral resolution according to the availability of data on the spectral
dependence of material properties within the urban canopy.

The downwelling irradiances from the atmospheric radiation scheme are inserted
into the clear-sky region of the irradiance vectors just above canopy top,sabove1/2 and
vabove1/2 (step 6, Fig. 2), with the diffuse irradiance again being distributed isotropi-
cally into the streams using the weighting in (17). These aretranslated into the irra-
diances just below the canopy top using (20) and (21); step 7 in Fig. 2. Note that the
final elements ofsbelow1/2 andvbelow1/2 contain the irradiances incident on the flat
roofs of the buildings in layer 1. Knowing the roof albedo we can therefore compute
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the net irradiance into this surface and pass it to an energy balance model for the
roof. The roof irradiances are removed from these vectors and then Eqs. 39, 40, and
42 of Hogan et al. (2018), the downward part of the Adding Method, are applied to
obtain the irradiances just above the base of the layer (step8, Fig. 2). This process is
repeated down to the surface to obtain the full irradiance profile.

In an atmospheric radiation scheme, the heating rate of eachlayer is propor-
tional to the convergence of net irradiance across the layer, which is easy to com-
pute from the irradiances at layer interfaces. In an urban canopy we wish to compute
the net radiation absorbed separately by each facet and region (step 9, Fig. 2). The
treatment of flat roofs was described above. For the other terms we define vector
n j = (na

j nv
j nw

j )
T as the net power absorbed by the air, vegetation, and walls in

layer j, per unit area of the entire domain. It is computed from

n j = Ndiff
j (û j + v̂ j)+Ndir

j ŝ j , (29)

whereû j, v̂ j, and ŝ j are the irradiance components vertically integrated across the
layer (in W m−1), expressions for which are given in Appendix 2. TheN matrices
represent the rate (in m−1) at which radiation in each diffuse and direct stream is
absorbed by each facet:

Ndiff =





Na
1 Na

2
Nv

1 Nv
2

W a
1 W a

2 W v
1 W v

2



 ; (30)

Ndir =





Na
0

Nv
0

W a
0 W v

0



 . (31)

The rate at which radiation in streamk is absorbed in regioni is Ni
k = σ i(1−ω i)/µk,

which is like the first term on the right-hand side of (6) except that rather than rep-
resenting loss by extinction, it represents gain by absorption. Similarly, the rate at
which radiation in regioni in streamk is absorbed by walls isW i

k = f iw
k (1−αw),

which is the absorption analogue of the second term on the right-hand side of (6).
Some urban energy balance models treat the sunlit and shadowed parts of the walls
separately (e.g. Oleson et al., 2008), which could be accommodated by computing
the direct solar heating of walls (associated with theW i

0 terms in Eq. 31) separately.

3 Longwave Method

The longwave implementation of SPARTACUS-Urban follows the general structure
described by Hogan et al. (2016), which is similar to the shortwave but with the
direct solar beam removed and thermal emission added. Hoganet al. (2016) allowed
for a variation in temperature with height within model layers, but to simplify the
problem we assume that although the temperatures of walls, vegetation, and clear-air
are different from each other, they are each constant with height in individual layers.
Thus the coupled differential equations may be written in matrix form as

d
dz

(

u
v

)

= ΓΓΓ
(

u
v

)

+

(

−b
b

)

, (32)
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whereΓΓΓ is as in (3) but without the bottom row and right column of sub-matrices, and
b represents the rate of thermal emission into each stream with height. The negative
sign on the firstb entry is because this is for upwelling radiation andz increases in a
downward direction. The elements of theΓΓΓ1 andΓΓΓ2 sub-matrices ofΓΓΓ are as defined
in (9) and (10) except using optical properties in the longwave part of the spectrum.
ForN = 2 we haveb = (ba

1 ba
2 bv

1 bv
2 )

T, where the rate of emission into streamk of
regioni is

bi
k =

hkciσ i(1−ω i)B(T i)

µk
+

vkLiw(1−αw)B(T w)

2
. (33)

The first term on the right-hand side of (33) represents emission by the air or veg-
etation, whereT i is the temperature of the emitters in regioni, andB is the Planck
function integrated across the spectral interval being simulated. In Sect. 5, multiple
quasi-monochromatic SPARTACUS-Urban computations are combined to obtain ir-
radiance profiles for the full longwave spectrum. The secondterm on the right-hand
side represents emission by the walls at temperatureT w. Since the emission is by
a vertical surface, we use thevk weighting of streams given by (12), but divide by
two since the radiation is split between the two hemispheres. The emission rate is
proportional toLiw, the normalized perimeter length of wall in contact with region i.
In real cities, the temperatureT w of the various walls at a given height can vary sub-
stantially depending on whether a wall is sunlit or in shadow, and indeed this affects
the longwave radiation field (Krayenhoff and Voogt, 2016; Morrison et al., 2018). To
interface SPARTACUS-Urban with urban energy balance models that simulate more
than one wall temperature,B(T w) in (33) should be the Planck function averaged
over all the walls in a given layer.

The eigendecomposition method in the longwave case is described in Appendix
3, but note that computation of the diffuse reflectance and transmittance matrices for
each layer,R j andT j, from ΓΓΓ1 andΓΓΓ2 is exactly as in the shortwave case. Appendix
3 also describes the computation of the layer-wise emissionvectorp j containing the
upwelling irradiance at layer top due entirely to emission within the layer. Since tem-
perature is assumed constant through the depth of the layer,this is equal to the irradi-
ance emitted downwards at the base of the layer. Hogan et al. (2016) described how
to treat a vertical variation in temperature within the layer, which leads to different
layer-wise emission vectors at the top and base of the layer.

The solution to the longwave problem follows exactly the same sequence as
shown in Fig. 2, but with some different calculations being performed at each step.
In the upward pass through the layers, the matrixA is propagated using the same
equations as in the shortwave. In addition, we propagate a vector g containing the
upwelling irradiances in each region and stream at a particular interface associated
with radiation that originates from thermal emission belowthat interface (possibly
involving scattering in its journey up to that interface). At the surface its elements are
gaboven+1/2 = (ga

1 ga
2 gv

1 gv
2 )

T, wheregi
k = hk(1−α i)ciB(T i

s ). HereT i
s is the sur-

face temperature below regioni allowing for different temperatures beneath vegeta-
tion and clear air, and(1−α i) is the surface emissivity beneath regioni. The Adding
Method for layerj consists of applying Eq. 28 of Hogan et al. (2016) to obtain the
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emission just below the interface atj−1/2:

g j−1/2 = p j +T jB
(

gabovej+1/2+Aabovej+1/2p j
)

, (34)

where as beforeB = I−Aabovej+1/2R j. We then have the complication of adding the
emission from the area of flat roofs at interfacej−1/2, which by analogy with (24)
is dealt with by adding extra terms to the vector:

gbelow j−1/2 =





g j−1/2

h1(1−αb)(cb
j − cb

j−1)B(T
b)

h2(1−αb)(cb
j − cb

j−1)B(T
b)



 , (35)

whereT b is the roof temperature,(1−αb) is the roof emissivity, and(cb
j −cb

j−1) is the
fractional area of the domain containing roof at interfacej−1/2. This is translated
to the regions of the layer above by applying the upward overlap matrix:

gabovej−1/2 = U j−1/2gbelow j−1/2, (36)

and the procedure is repeated to the top of the urban canopy. As with walls, if in-
formation is available on the horizontal variation in roof temperature (e.g. Lindberg
et al., 2015) thenB(T b) in (35) should be the Planck function averaged over all the
roof area at interfacej−1/2.

At the top of the canopy, the scalar upward longwave emissionis computed (sim-
ply the sum of the elements ofg) and, along with the scalar albedo, is presented to the
longwave part of an atmospheric radiation scheme (step 6, Fig. 2). As in the short-
wave, the radiation scheme then provides the downwelling diffuse radiation at canopy
top, which is propagated down through the canopy. Overlap rules are implemented
as in the shortwave, with the final entries of thevbelow1/2 vector again containing the
downwelling irradiances into the roof at interfacej −1/2. From these, and the roof
emission rates in (35), we compute the net irradiance into the roof and can pass it
into an energy balance model for the roof. The roof irradiances are removed from
vbelow1/2 and then Eqs. 32 and 34 of Hogan et al. (2016), the downward part of the
Adding Method in the longwave, are applied to obtain irradiances just above the base
of the layer. This process is repeated down to the surface.

We then compute the net radiation into each facet of the urbansurface analo-
gously to (29), but without the direct solar term and with a new term that subtracts
the thermal emission by each facet:

n j = Ndiff
j (û j + v̂ j)−





qa

qv

qw



∆z j, (37)

where the vertically integrated irradiancesû j andv̂ j are computed as in Appendix 3,
and the emission rates by regioni and by the walls are the terms on the right-hand
side of (33) but summed over each stream of the two hemispheres:

qi = 2ciσ i(1−ω i)B(T i)∑N
k=1 hk/µk; (38)

qw = (1−αw)(Law +Lvw)B(T w)∑N
k=1 vk. (39)
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4 Evaluation

In this section we evaluate SPARTACUS-Urban and its underlying assumptions in
simplified scenarios for which existing models are available. We consider only one or
two canopy layers and assume the air in the canopy to be completely transparent to
radiation. This paves the way for consideration of atmospheric effects in Sect. 5 and
more detailed evaluation in complex multi-layer scenes in future research.

4.1 Radiative Exchange Factors

Here we evaluate the discrete-ordinate method underpinning SPARTACUS-Urban
subject to the assumption that the ‘exponential model’ of urban geometry proposed
by Hogan (2019) is correct. Consider an urban canopy in whichall walls are vertical
and all buildings are of heightH. The air in the canopy is transparent to radiation
and vegetation is not included. In such a scenario, radiative exchange is determined
by just three independent variables:F0g is the fraction of direct solar radiation just
below canopy top that penetrates down to the ground,Fgs is the fraction of diffuse
radiation emanating isotropically from the ground that penetrates to the sky, andFww

is the fraction of diffuse radiation emanating isotropically from a wall that strikes
another wall.

Hogan (2019) derived analytic formulas for these factors for an exponential dis-
tribution of wall-to-wall separation distances with e-folding distanceX . The simplest
was for direct solar radiation:

F0g = exp(−t0), (40)

wheret0 is the ratio of the horizontal distance travelled by direct radiation penetrating
the canopy to the e-folding separation. More generally for radiation travelling with a
zenith angleθk it is given bytk = | tan(θk)|H/X . SPARTACUS-Urban satisfies (40)
exactly since it is simply a form of the Beer-Lambert law.

The analytic formulas provided by Hogan (2019) forFgs andFww are much more
complicated, involving sine and cosine integrals. They areplotted as a function of the
wall-to-ground area ratio by the thick grey lines in Fig. 3. In a 2N-stream discrete-
ordinate approximation, we perform a weighted sum over eachof the N streams in
one hemisphere, using (12) or (17) to weight each stream according to whether the
diffuse radiation is emanating from a horizontal or vertical surface:

Fgs =
N

∑
k=1

hke
−tk ; (41)

Fww = 1−
N

∑
k=1

vk
e−tk

tk
. (42)

Thus it can be seen that (41) is just like averaging (40) overN discrete zenith angles.
The slightly more complex form forFww arises due to an integration over all possible
emission heights up the walls of the canopy. The grey lines inFig. 3 show how the
discrete-ordinate method approaches the exact solution with increasing numbers of
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Fig. 3: (a) The fraction of diffuse radiation emanating isotropically from the ground of a single-layer
urban canopy in vacuum that penetrates to the sky, and (b) thefraction of diffuse radiation emanating
isotropically from the wall of the same canopy that strikes another wall. The thick grey lines show the
analytic results for an urban canopy that obeys the ‘exponential model’ of Hogan (2019), and the black
lines show the predictions by the discrete-ordinate methodusing increasing numbers of streams. All lines
are plotted with respect to the ratio of wall-to-ground area, equal toπH/X , whereH is the canopy depth
andX is the e-folding wall-to-wall separation distance.

streams. Hogan (2019) analyzed four real and contrasting urban scenes with wall-
ground area ratios in the range 0.26–1.4; over this range of values it would appear that
4 or 8 streams is adequate to represent diffuse radiative transfer. Two streams would
appear to be insufficient, but this needs to be tested in real scenarios, particularly in
the shortwave where direct radiative transfer is often dominant. In practice the choice
of the number of streams is a trade-off between accuracy and computational cost; the
cost of anN-stream scheme is approximately proportional toN3.

4.2 Comparison to the Matrix-Inversion Method

To investigate the consequences of the findings in Sect. 4.1 on longwave radiation,
we compare SPARTACUS-Urban to the matrix-inversion technique of Harman et al.
(2004) for the same idealized single-layer canopy. Their method computes the radia-
tive power into the ground and wall facets,vg andvw, by solving the following 2×2
matrix problem:

(

1 −Fwgαw

−Fgwαg 1−Fwwαw

)(

vg

vw

)

=

(

F sgvs +FwgEw

F swvs +FwwEw +FgwEg

)

, (43)

whereαg and αw are the albedos of the ground and wall facets,vs is the down-
welling longwave power from the ‘sky’ facet at canopy top, and E i = Ai(1−α i)σT 4

i
is the broadband emitted radiation from faceti as a function of its total areaAi,
emissivity 1−α i, and temperatureTi. The symmetry of the urban geometry leads
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Fig. 4: The net outward longwave flux from the ground and wall facets of an idealized single-layer ur-
ban canopy containing air transparent to radiation, as a function of the depth of the canopy. Results are
shown for the matrix-inversion technique of Harman et al. (2004), and the 2-, 4-, and 8-stream versions
of SPARTACUS-Urban. The wall and ground facets are assumed to have a skin temperature of 31.1◦C
and an emissivity of 0.95, the sky facet has an effective emission temperature of 10.3◦C and the e-folding
building separation isX = 50 m. Net flux here is the radiative power per unit area of the ground facet,
which excludes buildings.

to the following relationships between radiative exchangefactors (e.g. Hogan, 2019):
Fgw = 1−Fgs, F sg = Fgs, F sw = Fgw, andFwg = Fws = (1−Fww)/2.

Figure 4 compares the net outward fluxes from the ground and wall facets (i.e.
Eg−vg andEw−vw) between SPARTACUS-Urban and the matrix-inversion method,
both assuming the exponential model of urban geometry with an e-folding building
separation ofX = 50 m, a representative value from the real scenes analyzed by
Hogan (2019). The other properties of the scene are described in the caption of Fig.
4, and match those in Sect. 5. We see that as in Fig. 3, the 2-stream configuration is not
very accurate, while 4 and 8 streams are much closer to the matrix-inversion method.
This gives us confidence that SPARTACUS-Urban represents horizontal building ge-
ometry accurately, enabling atmospheric effects to be investigated in Sect. 5, some-
thing not possible using the matrix-inversion technique.

4.3 Comparison to Monte-Carlo Simulations in Forests

Hogan et al. (2018) developed ‘SPARTACUS-Vegetation’, a 2-stream radiation scheme
targeted at forests, and evaluated it against Monte Carlo calculations in the visible
and near-infrared. While it was shown to be a significant improvement over existing
schemes, some errors were present when simulating scenes with snow on the ground.
Since SPARTACUS-Urban without buildings can be thought of as the same scheme



Flexible Treatment of Radiative Transfer in Complex Urban Canopies 19

0 15 30 45 60 75 90
Solar zenith angle (°)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 fl

ux
(a) Bare-soil surface

SPARTACUS reflectance
SPARTACUS absorptance
SPARTACUS transmittance
2 stream
4 stream
8 stream
Monte Carlo

0 15 30 45 60 75 90
Solar zenith angle (°)

(b) Snow surface

Fig. 5: Comparison of normalized irradiances versus solar zenith angle for the ‘open forest canopy’ sce-
nario of Widlowski et al (2011) with a tree cover of 0.5 and optical properties appropriate for visible
radiation, over surfaces with an albedo of (a) 0.122 and (b) 0.964. The Monte Carlo calculations are from
Widlowski et al (2011) at solar zenith angles of 27◦, 60◦ and 83◦. Absorptance is the fraction of the in-
coming solar radiation absorbed by the vegetation while transmittance is the ratio of the downward solar
radiation at the surface to the incoming radiation at the topof the canopy.

but extended to 2N streams, it is interesting to investigate the accuracy gained by the
use of additional streams.

The circles in Fig. 5 show the Monte Carlo calculations of Widlowski et al (2011)
for their ‘open forest canopy’ scenario, in which tree crowns are treated as homoge-
neous spheres of diameter 10 m, 4 m above the ground, with an areal coverage of 0.5,
a domain-average leaf-area index of 2.5 and a single-scattering albedo ofωv = 0.13.
Following Hogan et al. (2018), these have been represented in SPARTACUS-Urban
using two layers with the upper layer containing cylinders of vegetation similar to
those shown in Fig. 1, but with a central core of higher optical depth to approximate
the distribution of zenith optical depth of spheres. Regionsa andv in the lower layer
have the same area as in the upper layer, but are both transparent to radiation (also
illustrated in layer 8 of Fig. 1b).

The dot-dashed lines in Fig. 5 show the 2-stream simulationsby SPARTACUS-
Urban, which agree well with Monte Carlo calculations over adark surface, but tend
to underestimate reflectance and overestimate absorptanceover a light surface illu-
minated by high sun. Virtually identical behaviour can be seen for SPARTACUS-
Vegetation in Fig. 2f of Hogan et al. (2018). One slight difference between the two
schemes is that SPARTACUS-Urban treats leaves as isotropicscatterers whereas
SPARTACUS-Vegetation can represent anisotropic scattering, but in practice this has
a barely perceptible impact on fluxes.

Physically, the problem with the 2-stream scheme is that direct solar radiation
incident on the snow-covered surface is reflected up at a fixedzenith angle of 60◦
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Fig. 6: Cumulative probability
distribution of atmospheric
mean free path in the longwave
part of the spectrum for the
near-surface conditions of three
standard atmospheres indicated
in the legend. The calculations
use the RRTM-G gas optics
model, which employs 140
spectral intervals.

0.01 0.1 1 10 100 1000 10000
Mean free path (m)

0

20

40

60

80

100

P
la

nc
k-

w
ei

gh
te

d 
cu

m
ul

at
iv

e 
pr

ob
. (

%
)

Mid-latitude winter
Mid-latitude summer
Tropical

(since the double-Gauss quadrature scheme represents the distribution ofµ by a sin-
gle valueµ1 = 0.5), too much of which intercepts a tree crown before escapingthe
canopy. This is also evident in Fig. 3a, which shows that the 2-stream scheme un-
derestimates the diffuse ground-to-sky factor. The dashedand solid lines in Fig. 5b
show that the additional angles used by the 4- and 8-stream configurations largely
remove the reflectance and absorptance bias. This gives us confidence in the underly-
ing ability of SPARTACUS-Urban to represent the radiative effects of trees, although
an important part of a future paper will be to validate it in scenes containing both
buildings and trees.

5 Importance of Longwave Atmospheric Absorption

One key advantage of SPARTACUS-Urban in the longwave is its ability to repre-
sent absorption and emission by gases in the canopy, neglected in almost all previ-
ous urban radiation schemes. The need to account for atmospheric effects in thermal
imaging cameras is recognized (Meier et al., 2011), yet these cameras operate in
the infrared atmospheric window part of the spectrum where atmospheric effects are
weakest; significant parts of the longwave spectrum have a much larger absorption.

Before performing longwave urban simulations with SPARTACUS-Urban, we
examine the range of absorption coefficients predicted by the RRTM-G gas-optics
model of Mlawer et al. (1997), which underpins the radiationschemes of many
weather and climate models. Figure 6 shows the cumulative probability of absorp-
tion mean free path (the reciprocal of the volume absorptioncoefficient) for the
near-surface conditions of three of the standard atmospheres from McClatchey et al.
(1972). The contributions from water vapour, carbon dioxide, ozone, methane, nitrous
oxide, CFC-11, and CFC-12 have been included. Each of the 140spectral intervals in
RRTM-G has been weighted according to its contribution to the black-body spectrum
at the near-surface temperature of the standard atmosphere. Hogan (2019) reported
e-folding wall-to-wall distances in the rangeX ∼ 38–57 m for real cities. Figure 6
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Fig. 7: The net outward flux from the ground and wall facets of asingle-layer urban canopy, along with the
net emission by the air within the canopy, computed using the8-stream version of SPARTACUS-Urban
coupled to the RRTM-G gas-optics model. The urban canopy is placed beneath the mid-latitude summer
standard atmosphere, the air temperature 20 m above the urban canopy isTabove= 21.1◦C, and the wall
and ground facets have a skin temperature of 31.1◦C. These conditions match those in Fig. 4, but with
the addition of atmospheric absorption and emission. The panels show results for air temperature in the
urban canopy,Tair, of (a) 21.1◦C and (b) 26.1◦C. In the 20 m above the urban canopy, air temperature is
assumed to vary linearly betweenTair andTabove. This leads to a slight difference in downwelling fluxes at
the canopy top, and hence a difference in the net flux at the ground for a building height of 0 m between
panels a and b. The dashed lines show the results where gas absorption and emission within the canopy
have been neglected.

shows that in the case of the MLS standard atmosphere, 37% of longwave emission
at the surface is associated with an atmospheric mean free path of less than 50 m,
highlighting that simulations neglecting atmospheric effects in the longwave are un-
likely to be accurate. In the MLS standard atmosphere, if we consider the parts of
the spectrum with a mean free path of less than 50 m, then 77.94% of this energy is
associated with wavelengths longer than 12.2µm, 22.01% with wavelengths shorter
than 8.5µm, and only 0.05% with wavelengths in the infrared atmospheric window
between.

To estimate the impact of atmospheric absorption on net irradiances, SPARTACUS-
Urban calculations have been performed for the 140 spectralintervals of RRTM-G
using the urban scenario considered in Sect. 4.2 and Fig. 4, but with the clear-sky
MLS standard atmosphere above. The atmospheric optical properties are different in
each spectral interval, and by summing the narrow-band irradiances in each interval
we obtain broadband irradiances. The near-surface air temperature is 21.1◦C for this
standard atmosphere, and to represent typical daytime conditions we assume the skin
temperature of the ground and walls to be 10◦C warmer than this. Atmospheric radia-
tion calculations by the ecRad radiation scheme of Hogan andBozzo (2018) provide
downwelling longwave irradiance at the top of the canopy in each spectral interval.
The dashed lines in Fig. 7a depict 8-stream calculations at this spectral resolution but
neglecting absorption and emission in the urban canopy itself. These results match
Fig. 4 closely, which used a single band for the whole longwave spectrum.
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The solid lines in Fig. 7a show the corresponding results when atmospheric ab-
sorption in the canopy is included, using the RRTM-G scheme to compute atmo-
spheric extinction coefficients in each spectral interval using gas concentrations from
the MLS standard atmosphere. Here we have assumed the air temperature in the
canopy,Tair, to be equal to the air temperature above the canopy,Tabove. The pres-
ence of atmospheric absorption significantly modifies the energy balance of the ur-
ban canopy, and its impact increases with building height. Since the air is 10◦C cooler
than the surrounding ground and walls, it absorbs more radiation than it emits, the net
absorption rising to 75 W m−2 for 50-m high buildings. This is accompanied by an in-
crease in net emission by the ground and walls compared to when atmospheric effects
are neglected. These results highlight the need to incorporate atmospheric effects into
longwave radiation calculations in urban canopies.

In reality the temperature of the air in the canopy will be determined by both tur-
bulent and radiative exchanges with the urban surface and the air above the canopy,
and so in principle could be warmer than the air above the canopy. Figure 7b depicts
the results for calculations in whichTair is 5 K warmer thanTabove, so half way be-
tween the temperature of the air above and the skin temperature of the ground and
walls. This changes the net irradiances significantly.

6 Discussion and Conclusions

A flexible and efficient urban radiation scheme ‘SPARTACUS-Urban’ has been de-
scribed that can represent realistic building layouts, variations in building height, the
specular component of reflection from building walls, urbanvegetation, atmospheric
effects between buildings, and spectral coupling to the atmosphere above. The level
of complexity is configurable, specifically the number of layers, streams, regions, and
spectral intervals. This makes it suitable both for simulating detailed scenes in which
an accurate vertical profile is required, and for use in large-scale weather and climate
models where speed is more important and the number of morphological variables
describing an urban area may be limited.

To evaluate the scheme, simple one- and two-layer scenes forwhich existing
schemes or 3D Monte Carlo calculations are available have been used. While a 2-
stream representation of the diffuse radiation field is adequate for representing trees
over dark surfaces (Hogan et al., 2018), we find that 4 or 8 streams are needed to
represent radiative exchange between the horizontal and vertical surfaces of an ur-
ban area, and for representing trees over snow-covered surfaces. Work is in progress
to test the scheme against explicit 3D calculations in more complex multi-layered
scenes from real cities, and will be reported in a future paper.

The new scheme has been coupled to a comprehensive gas-optics model and used
to demonstrate the importance of longwave absorption and emission by air between
buildings, something that has been ignored by almost all previous schemes. The net
absorption by the air is strongly dependent on its temperature, which is determined
by turbulent as well as radiative heat fluxes. It would therefore be necessary to couple
SPARTACUS-Urban to an urban energy balance scheme to fully evaluate the impor-
tance of atmospheric radiative effects in urban canopies.
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There are several interesting possibilities for the futuredevelopment of SPAR-
TACUS-Urban. As with most urban radiation schemes, it currently represents only
perfectly vertical or perfectly horizontal surfaces, withisotropic emission or scatter-
ing by these surfaces being represented by the weightings ofthe different streams
given by (12) or (17). Emission or scattering by inclined surfaces could, in princi-
ple, be represented by using a different weighting between streams according to the
angle of the inclination, which should improve the accuracyof simulations in urban
areas with a large area of pitched roofs. However, this wouldneed to be weighed
against the increase in complexity and computational cost:theΓΓΓ matrix in (3) would
no longer have repeated elements, breaking the symmetry exploited in the eigende-
composition (Appendix 2) and leading to the reflectance and transmittance matrices
being different for upwelling and downwelling radiation.

One particularly challenging aspect in modelling real cities is that neighbour-
hoods of quite different character can lie adjacent to one another and therefore in-
teract radiatively; for example, clusters of tall buildings are often separated by low-
rise areas and small parks. With just one clear-air and one vegetated region we must
either perform separate radiation calculations for each neighbourhood, thereby ne-
glecting radiative interactions, or homogenize the building and vegetation statistics
into a single calculation, thereby neglecting the differences between neighbourhoods.
However, SPATACUS-Urban is quite flexible in how the regionsare specified; we
just need to know their fractional area and the length of the interface with all other
regions. Therefore, a third option would be to introduce separate clear-air and veg-
etated regions for each type of neighbourhood, with some radiative exchange per-
mitted between the clear-air regions of different neighbourhoods. Such an approach
would allow buildings of different albedo and temperature to be used in the different
neighbourhoods, while still interacting radiatively. This could facilitate forecasts of
the variation in intensity of the urban heat island effect across the different neigh-
bourhoods of a city.
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Appendix 1: List of Symbols

The following list includes symbols used in more than one equation in Sect. 2.

Aabovej−1/2 albedo to diffuse downwelling radiation of entire scene below interface
j−1/2, with matrix elements configured for regions in the layerabove
the interface (layerj−1)

ci
j fraction of layer j occupied by regioni, which may be clear-air (a),

vegetation (v) or building (b)
Dabovej−1/2 asAabovej−1/2 but for direct radiation



24 Robin J. Hogan

ei
k rate at which radiation in regioni and streamk is extinguished by scat-

tering or absorption, per unit vertical distance travelled(m−1)
ei

kl rate at which radiation in regioni and streamk is scattered into stream
l of the same or the opposite hemisphere (m−1)

E j transmission matrix for direct radiation in layerj

f i j
k rate at which radiation in the angle indexedk passes from regioni to j

per unit vertical distance travelled (m−1); if j is ‘w’ then interception
by the wall is indicated

hk weighting of streamk as the contribution to an irradiance into a hori-
zontal surface

Li j length of interface between regionsi and j normalized by the area of
the domain (m−1); if j is ‘w’ then the normalized length of the building
walls is indicated

pw fraction of the reflection from the walls that is specular
R j diffuse reflectance matrix of layerj
si element of vectors: the direct irradiance in regioni (W m−2)
s vector of downwelling direct irradiances in each region at aparticular

height, where subscriptj−1/2 would indicate irradiances at interface
j − 1/2, and subscripts ‘above’ or ‘below’ indicate irradiances in the
regions just above or below an interface (W m−2)

S+
j matrix describing the fraction of direct solar radiation entering each

region at the top of layerj that is scattered back up out of each region
S−

j matrix describing the fraction of direct solar radiation entering each
region at the top of layerj that is scattered out of each region at the
base of that layer

T j diffuse transmittance matrix of layerj
ui

k element of vectoru: the irradiance in regioni and streamk (W m−2)
u vector of upwelling irradiances in each region and stream ata particular

height (W m−2; subscripts as fors)
U j−1/2 upward overlap matrix expressing how upwelling irradiances in regions

just below interfacej−1/2 are transported into regions just above
vk weighting of streamk as the contribution to an irradiance into a vertical

surface
vi

k element of vectorv: the irradiance in regioni and streamk (W m−2)
v vector of downwelling diffuse irradiances in each region and stream at

a particular height (W m−2; subscripts as fors)
Vi−1/2 downward overlap matrix expressing how downwelling diffuse irradi-

ances in regions just above interfacej−1/2 are transported into regions
just below

wk weighting of streamk according to Gaussian quadrature
W j−1/2 asV j−1/2 but for downwelling direct irradiances

X e-folding separation distance in an exponential fit to the distribution of
wall-to-wall separation distances (m); see Hogan (2019)

z depth into the canopy measured from the top of the tallest building (m)
α i albedo of faceti, which may be wall (w), roof (b), ground beneath clear-

air (a) or ground beneath vegetation (v)
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ΓΓΓ matrix expressing the rates of radiation exchange between irradiance
components in each stream and each region (m−1)

ΓΓΓ0 · · ·ΓΓΓ4 sub-matrices ofΓΓΓ representing specific interactions (m−1)
θk zenith angle of streamk, wherek = 0 indicates the solar zenith angle
µk cosine ofθk

σ i extinction coefficient of regioni (m−1)
ω i single scattering albedo of regioni

Appendix 2: The Eigendecomposition Method in the Shortwave

This appendix describes how the matrices listed in Sect. 2.3are derived from the
m×m matrix ΓΓΓ in (3) for a layer of thickness∆z. The first step is to decomposeΓΓΓ
into eigenvaluesλk and corresponding eigenvectorsgk (for k from 1 tom), such that
solutions to (2) have the form





u
v
s





z

=
m

∑
k=1

ckgk exp
[

λk(z− z j−1/2)
]

, (44)

where thec j coefficients are determined by the boundary conditions. Thenature of the
matrices in radiative transfer problems is such that the eigenvalues and eigenvectors
are always real, making this decomposition more efficient (Stamnes et al., 1988).

Due to the zero elements and block structure ofΓΓΓ, the eigenvalues and eigen-
vectors can be computed efficiently by building them up from eigendecompositions
of the smaller sub-matrices. If matrixG is defined such that itskth column contains
eigenvectorgk then it has the following form:

G =





G1 G2 G3

G2 G1 G4

G0



 . (45)

The sub-matrixG0, and its corresponding eigenvalues, are computed by perform-
ing an eigendecomposition of just theΓΓΓ0 sub-matrix of (3). The direct transmission
matrix E is simply the matrix exponential ofΓΓΓ0 (Hogan et al., 2016), which can be
computed directly from the eigendecomposition.

Stamnes et al. (1988) showed thatG1 andG2 could be computed by manipulating
the result of an eigendecomposition of(ΓΓΓ1−ΓΓΓ2)(ΓΓΓ1+ΓΓΓ2). If ΓΓΓ1 andG1 are of size
n× n, then the firstn eigenvalues ofG are positive, and the secondn are negative
with λk+n = −λk. This latter property is exploited in the computation of thediffuse
reflectance and transmittance matrices,R andT. These can be considered to be the
irradiances exiting each side of the layer in response to each element of the down-
welling irradiance at the top,v j−1/2, being set to one in turn, while all elements of the
upwelling irradiance at the base,u j+1/2, are set to zero. The direct irradiance is also
zero, so we may simplify the problem by excluding the eigenvectors corresponding
to direct radiation held in the right column of sub-matricesin (45). Thus we seekn
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sets ofck coefficients from (44), one set for each element ofv j−1/2. Packing these
coefficients into a 2n× n matrixC leads to the following:

(

G1D−1 G2D
G2 G1

)

C =

(

0
I

)

, (46)

whereD is a diagonal matrix with exp(−λk∆z) on thekth diagonal, and henceD−1 is
likewise but with exp(+λk∆z) on thekth diagonal. Each row of (46) expresses (44)
for one of the boundary conditions. The top half (i.e. the topn rows) expresses the
condition that the upwelling irradiances at the base of the layer are all zero, while
the bottom half expresses that the downwelling irradiancesat the top are set to one in
turn.

The problem with solving (46) computationally is that for very optically thick
layers, exp(+λ j∆z) can overflow, even in double precision. Therefore, we followthe
stabilization procedure of Stamnes et al. (1988) and solve instead for a scaled set of
coefficientsC′ defined as

C′ = C
(

D−1

I

)

. (47)

Thus (46) becomes
(

G1 G2D
G2D G1

)

C′ =

(

0
I

)

. (48)

This can be solved efficiently by exploiting the block-symmetric structure of the ma-
trix on the left-hand side, which enables its inverse to be written in terms of the Schur
complement. The presence of zeros on the right hand side thenmeans that not all
parts of the inverted matrix need to be computed.

Once we haveC′, we evaluate the upwelling part of (44) at the top of the layer
and the downwelling part at the base of the layer, which are equal to the diffuse
reflectance and transmittance matrices:

(

R
T

)

=

(

G1 G2

G2D−1 G1D

)

C =

(

G1D G2

G2 G1D

)

C′. (49)

The absence ofD−1 in (48) and (49) shows that, via the use of the scaled set of co-
efficientsC′, we can computeR andT without computing any positive exponentials.
The matricesS+ andS−, which describe the fraction of incoming direct radiation
scattered into the upwelling and downwelling diffuse streams, may be computed us-
ing a similar procedure toR andT but instead deriving a set of coefficients consistent
with the each element of the direct irradiance at the top of the layer being set to one
in turn.

Section 2.5 computes the net radiation absorbed at each facet in layer j from
the vertically integrated irradiances across the layer. Here we describe how to com-
pute the vertically integrated shortwave irradiances,f̂ j, in terms of the irradiances
at a given height,f(z). These vectors are simply the concatenation of the individual
irradiance vectors:

f̂ j =





û j

v̂ j

ŝ j



 and f(z) =





u(z)
v(z)
s(z)



 . (50)
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The vertical integral off(z) is

f̂ j =

∫ z j+1/2

z j−1/2

f(z)dz, (51)

which may be evaluated by writing the solution to (2) in termsof a matrix exponen-
tial:

f(z) = exp
[

ΓΓΓ× (z− z j−1/2)
]

f j−1/2, (52)

wheref j−1/2 is the irradiance vector at the top of the layer, which has already been
computed. Substituting into (51) and integrating yields

f̂ j = ΓΓΓ−1 [exp(ΓΓΓ∆z j)− I]f j−1/2 (53)

where∆z j = z j+1/2− z j−1/2 is the thickness of the layer. Substituting in (52) atz =
z j+1/2 yields

f̂ j = ΓΓΓ−1(f j+1/2− f j−1/2
)

. (54)

Thus we may compute the vertically integrated irradiances across a layer fromΓΓΓ and
the known irradiances at the top and base of the layer.

Appendix 3: The Eigendecomposition Method in the Longwave

In the longwave, solutions to (32) have the form
(

u
v

)

z
=

m

∑
k=1

ckgk exp
[

λk(z− z j−1/2)
]

−ΓΓΓ−1
(

−b
b

)

, (55)

where the first term on the right-hand side is the homogeneouspart of the solution and
is expressed in terms of eigenvalues and eigenvectors just as in the shortwave solution
(Eq. 44). The reflectance and transmittance matrices are computed exactly as in the
shortwave case described in Appendix 2. We also requirep, the irradiance upwelling
from the top or downwelling from the base of the layer due onlyto emission within
the layer, which may be found by setting boundary conditionsthat the downwelling
radiation at the top and the upwelling radiation at the base of the layer are zero. As
in Appendix 2, we need to solve a system of equations to obtainthe corresponding
scaled set of coefficients:

(

G1 G2D
G2D G1

)

c′b = ΓΓΓ−1
(

−b
b

)

, (56)

where now we only need one set of coefficients contained in vector c′b, and the inho-
mogeneous term from (55) now appears on the right-hand side.Once the coefficients
have been computed, the upwelling irradiance at the top of the layer is equal top,
given by the top half of (55) in matrix form:

p =
(

G1D G2
)

c′b +ΓΓΓ−1b, (57)

where as in Appendix 2 we account for the fact that the coefficients inc′b are scaled.
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Finally we compute the layer-integrated longwave irradiances needed in (37). We
integrate (55) with height across the layer of thickness∆z to obtain

(

û
v̂

)

j
=

m

∑
k=1

ckgk
exp(λk∆z)−1

λk
−ΓΓΓ−1

(

−b
b

)

∆z

= G
(

Z
Z

)

c′−ΓΓΓ−1
(

−b
b

)

∆z, (58)

where the first term on the second line has been written in terms of a vector of
scaled coefficientsc′, and Z is a diagonal matrix whosekth diagonal element is
[1− exp(−λk∆z)]/λk. The coefficientsc′ are the sum of the contribution from ra-
diation emitted within the layer,c′b, radiation entering from above,C′v j−1/2, and ra-
diation entering from below,C′u j+1/2 (the latter being prefixed by a term to swap the
elements ofC′ since the coefficients in this matrix were derived for radiation entering
from above):

(

û
v̂

)

j
= G

(

Z
Z

)[

C′v j−1/2+

(

I
I

)

C′u j+1/2+ c′b

]

−ΓΓΓ−1
(

−b
b

)

∆z. (59)
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