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ABSTRACT

Radiation schemes in general circulation models currently make a number of simplifications when ac-
counting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new
scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud
in each vertical level of the model as opposed to one. One of these regions is used to represent the optically
thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky
region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition,
the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of
adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of
data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave
radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in
size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%,
while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for
the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for
inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to
improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.

1. Introduction

Clouds have an important role in the radiation bud-
get of the earth (Liou 1986). In a study of marine strati-
form cloud by Randall et al. (1984), it was stated that a
mere 4% increase in global cloud cover could counter-
act the warming caused by a doubling of carbon diox-
ide. This implies that the radiation balance of the earth
in general circulation models (GCMs) is very sensitive
to the representation of clouds. However, the size of a
GCM grid box is never small enough to accurately cap-
ture the finescale structure present in most cloud types.
Instead, clouds are typically represented as horizontally
homogeneous across the fraction of each level of the
grid box that they occupy [as in, e.g., all seven forecast
models evaluated by Illingworth et al. (2007)]. Using
this so-called plane-parallel representation introduces
significant biases in the top-of-atmosphere radiative

fluxes (e.g., Cahalan et al. 1994; Pomroy and Illing-
worth 2000). These biases are caused by the nonlinear-
ity of the relationship between optical depth and either
shortwave albedo or longwave emissivity and, in the
shortwave, their magnitude is seen to vary with solar
zenith angle and surface albedo (Carlin et al. 2002). The
challenge is to find computationally efficient methods
of accounting for these biases.

From data used by Albrecht et al. (1988), a 15%
overestimate was reported in top-of-atmosphere short-
wave albedo when the inhomogeneity of stratocumulus
was neglected, and a value of between 10% and 15%
was reported by Barker and Davies (1992) in an inves-
tigation using stochastically modeled, broken cumulus
cloud. Carlin et al. (2002) investigated the effect of in-
homogeneity on the radiative properties of high cloud.
They used cloud radar data to infer a bias in shortwave
albedo of 11% when averaged over all solar zenith
angles. A further positive bias was identified in long-
wave emissivity of high cloud in the study of Pomroy
and Illingworth (2000), when inhomogeneity was ne-
glected.

In theory, to produce reasonable representations of
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the top-of-atmosphere radiative fluxes, low and per-
haps unphysical ice or liquid water content values have
to be used in the GCM (Harshvardhan and Randall
1985). Despite this, other factors, such as the overlap
assumption, may act to offset the bias (Hogan and Kew
2005). These results have implications for the formation
of precipitation (Jakob and Klein 1999) and could af-
fect the reliability of its simulation of future climate
scenarios.

Methods have been proposed that overcome this
plane-parallel bias without significant additional com-
putational cost in the radiation scheme of GCMs. The
simplest method is to scale the optical depth of the
clouds in the grid box by a certain factor and use this
“effective optical depth” in the radiation calculations in
place of the true optical depth. A number of values for
this factor have been suggested. Cahalan et al. (1994)
studied marine stratocumulus and suggested using a re-
duction factor of 0.7. They recognized that the optimum
value would vary for different times of the year and
locations on the earth. This scaling factor method has
been implemented in the model of the European Cen-
tre for Medium-Range Weather Forecasts (Tiedtke
1996), with the factor applied to both ice and liquid
clouds over the whole globe, in both the shortwave and
longwave. Davis et al. (1990) suggested raising the op-
tical depths to the power of 0.8. Methods involving scal-
ing with a single factor, however, tend to underperform
in certain areas of the world and under certain weather
regimes, and it is now well recognized that a single
value is inappropriate for global use. The diverse values
of scaling factor were investigated in the shortwave by
Oreopoulos and Cahalan (2005), who used global sat-
ellite data from different seasons. They found values
from 0.65 to 0.8, depending on time of year, cloud par-
ticle phase, and global location, although with more
extreme values at certain locations. Scaling factor is
also a function of grid box size, as shown by Pomroy
and Illingworth (2000). They considered longwave
emissivity for ice clouds and evaluated the scaling fac-
tor at different grid box sizes. They found scaling fac-
tors varying from 0.93 for a 10-km grid box down to
0.47 for a 300-km grid box. Another problem with scal-
ing factor approaches is that scaling factors derived
from satellite data or vertically integrated radar mea-
surements will not necessarily be appropriate for appli-
cation to each model level.

More recently, advanced cloud schemes have been
developed that statistically simulate variation in cloud
across model grid boxes. Both Tompkins (2002) and
Bushell et al. (2003) propose methods to determine
cloud fraction by prognosing the variance of water con-
tent. The challenge is to use this information in the

radiation scheme. A gamma-weighted radiative trans-
fer scheme was proposed by Barker (1996), who
weighted the optical depth across a grid box using a
gamma distribution. He found this method to be no
more than four times more computationally expensive
than the method using homogeneous, plane-parallel
clouds with a two-stream approximation. Carlin et al.
(2002) considered the effect that the gamma-weighted
transfer scheme had on the shortwave albedo. They
found that the significant biases introduced by using the
plane-parallel method were markedly reduced by ap-
plying the scheme. Rossow et al. (2002) also found a
gamma distribution to be suitable when modeling op-
tical depth in their observational study, and the suit-
ability of the gamma distribution was compared with
that of a lognormal distribution by Hogan and Illing-
worth (2003), using radar data. However, both the
gamma and lognormal distributions have the concep-
tual disadvantage that they are unbounded at the upper
limit, implying a small but nonzero probability of opti-
cal depths tending toward infinity. Tompkins (2002)
used a beta distribution outside the radiative transfer
scheme to describe relative humidity and cloud frac-
tion. This choice has two advantages over the gamma
distribution. First, the distribution is bounded, with fi-
nite upper and lower limits. Second, it can be both posi-
tively or negatively skewed [distributions of relative hu-
midity were shown to skew both positively and nega-
tively by Larson et al. (2001)].

An alternative method is the Monte Carlo indepen-
dent column approximation (McICA) method (Pincus
et al. 2003). A multicolumn independent column ap-
proximation (ICA) can be used to simulate radiative
transfer through inhomogeneous clouds in a GCM
grid box, when coupled to a “cloud simulator” that
generates columns drawn from the probability distribu-
tion function (PDF) predicted by the cloud scheme
(Räisänen et al. 2004). The challenge, however, is to
achieve a similar accuracy without greatly increasing
the computational cost of the scheme. One of the prob-
lems with the ICA is the effective double integral; that
is, the fact that we are integrating in both space and
wavelength when calculating the radiative fluxes, which
is very time consuming. The McICA seeks to solve this
issue by generating a number of columns containing
possible cloud arrangements and performing the radia-
tive calculation for each spectral band using a different
column. This means that the integral across both space
and wavelength is evaluated at the same time, thereby
drastically increasing efficiency. The advantage of the
McICA is that, as it effectively represents the indepen-
dent column case, the output fluxes should have zero
bias with respect to the ICA, but with no notable in-
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crease in computer run time. However, as the full ra-
diation scheme is not run on each column, random (but
unbiased) errors are introduced in the instantaneous
fluxes. Despite implementation in a number of models,
opinions are still divided as to whether these errors
have a significant effect on forecast skill.

In this investigation, we present Tripleclouds, a new
method of representing cloud inhomogeneity in radia-
tion schemes. The method is introduced in section 2. It
works by using two cloudy regions in each vertical level
and a single clear-sky region. One of the cloudy regions
is used to represent the optically thinner cloud in the
level, while the other represents the optically thicker
cloud. For this to work in a standard radiation code,
changes must be implemented in both the two-stream
solver and the cloud overlap component of the code, as
described in section 3. We then perform sensitivity tests
on the new scheme. The data and method are discussed
in section 4, and the results are presented in section 5.
There then follows a comparison between Tripleclouds,
the plane-parallel method, and the scaling factor
method proposed by Cahalan et al. (1994) in section 6.
The results are summarized in the final section.

2. The Tripleclouds method

The goal of the various methods discussed in the pre-
vious section has been to account for inhomogeneity in
the GCM without drastically increasing computer run
time. Using the ICA would give radiative fluxes that
are close to reality, within the limitations discussed by
O’Hirok and Gautier (2005). However, the computer
time required to perform such a run is high, and inap-
propriate for use in a GCM. In the new method, the
continuous PDF of water content in a vertical level of a
grid box is modeled using a number of discrete values.
Two cloudy regions of different optical depths were
used diagrammatically in order to demonstrate the ef-
fect of inhomogeneity in longwave emissivity by Pom-
roy and Illingworth (2000) and in the shortwave albedo
by Carlin et al. (2002). If these two regions were actu-
ally used to represent the cloud in the radiation scheme,
it may therefore be sufficient to remove the plane-
parallel biases in both shortwave and the longwave. We
now test the hypothesis of whether it is possible to rep-
resent the PDF by just two cloudy regions and one
clear-sky region.

Figure 1 shows a schematic of how the Tripleclouds
method works. Consider first the column of atmo-
sphere within a single GCM grid box from which a
single vertical level is extracted. For now, it is assumed
that we know exactly how the cloud is distributed
across the level in the form of the PDF of water con-
tent. In practice, within a GCM, the distribution will

have to be determined either using cloud water vari-
ance predicted by an advanced cloud scheme (Tomp-
kins 2002; Bushell et al. 2003) or diagnosed using em-
pirical relationships (e.g., that of Hogan and Illingworth
2003). The Tripleclouds scheme is then applied to the
nonzero water content values in the PDF, as shown in
Fig. 1. The distribution is divided into two regions
through a given percentile of the distribution. This
“split percentile” is chosen to be the median, or 50th
percentile. This equally splits the cloud into optically
thinner cloud (lower water content) and optically
thicker cloud (higher water content). A value of “lower
percentile” is then chosen. In Fig. 1, this is chosen to be
the 16th percentile. The water content value corre-
sponding to this percentile, W1, is found, and all the
water content values representing the thinner cloud are
set to this value. The water content value for the thicker
cloud region, W2, is chosen such that the mean of W1

and W2 is equal to the mean water content of the cloudy
part of the level, W.

The lower percentile and the split percentile are the
two tunable parameters in Tripleclouds, and varying

FIG. 1. Schematic showing the method behind Tripleclouds: (a)
the continuous PDF of water content and (b) the cumulative fre-
quency. The lines demonstrate how the Tripleclouds calculation is
implemented; the two shaded boxes in (a) represent the resulting
two-point PDF. See text for a full explanation.
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these will have the effect of changing the amount of
represented cloud inhomogeneity. The values chosen
here are the control values and will be justified a pos-
teriori by their performance on real data. The choice of
50 for the split percentile is made so that the two cloudy
regions both have the same cloud fractions. The value
of 16 for the lower percentile has the appealing prop-
erty that, for a Gaussian PDF, the standard deviation of
the resulting two values is the same as that of the full
PDF. In practice, this Gaussian fit is only appropriate
for cases with low fractional cloud variance, on account
of the small but finite probability of negative water
content. It should be noted that, for low fractional vari-
ance, the Gaussian distribution is a good approximation
to both the lognormal and gamma distributions. As-
suming we have two water content values W1 and W2,
whose mean is W, then

W1 � W2 � 2W. �1�

Also, for the two water content values to represent the
standard deviation �W, they must be separated by two
standard deviations:

W2 � W1 � 2�W. �2�

Eliminating W2 leaves an equation in the lower water
content value W1:

W1 � W � �W. �3�

A Gaussian distribution of W is defined as

p�W� �
1

�2��W

exp��
�W � W�2

2�W
2 �. �4�

The fraction of the distribution with water content
lower than W1 is therefore given by

f1 � �
��

W1

p�W� dW, �5�

and, when this is written in terms of standard integrals,
it is found that

f1 �
1
2 �1 � erf��

1

�2��� 0.159, �6�

corresponding to a lower percentile of just under 16.
In Fig. 2, both the Tripleclouds and plane-parallel

approximations are applied to radar data from Chilbol-
ton in Hampshire, southern United Kingdom. The data
were measured by the 94-GHz vertically pointing radar
on 28 June 2003 and have an equivalent horizontal ex-
tent of about 450 km (the mean wind speed in the cloud
level is of order 15 m s�1). The distribution of ice water
content across the domain is as shown in Fig. 2a and is
derived from radar reflectivity factor and temperature
using the empirical method of Hogan et al. (2006). Fig-
ures 2b and 2c show the same data when the plane-
parallel and Tripleclouds approximations are applied to
them. The raw data show a region of thicker cloud in
the center of the domain (between 0800 and 0900 UTC)
that is not represented in the plane-parallel case. Using
Tripleclouds, however, a region of thicker cloud is
clearly represented in this area. The performance of

FIG. 2. Comparison of the plane-parallel and Tripleclouds schemes when applied to obser-
vational data: (a) just over 8 h of radar retrievals of ice water content taken from Chilbolton,
southern United Kingdom, on 28 Jun 2003 and (b), (c) the same data when the plane-parallel
and Tripleclouds approximations are applied directly without any parameterizations or as-
sumptions that affect overlap.
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these methods in a radiation scheme using longer peri-
ods of radar data is compared in section 6.

As a preliminary test of the Tripleclouds method
without the complications caused by overlap consider-
ations, we consider an ice cloud in a single model level
that fills the grid box horizontally and has a lognormal
horizontal distribution of water content (and hence op-
tical depth), similar to the illustration in Fig. 1a. The
mean shortwave albedo and longwave emissivity are
calculated both for the complete PDF of optical depth
(equivalent to an ICA calculation) and for three differ-
ent approximations.

Figures 3a and 3b show the albedo and emissivity
biases as a function of the mean cloud optical depth and
the fractional standard deviation of the optical depth
distribution for the plane-parallel approximation, that
is, where the cloud is taken to be horizontally homoge-
neous with an optical depth equal to the mean value. It
can be seen that the biases are always positive and in-
crease with the degree of inhomogeneity. For a frac-
tional standard deviation of 2 (defined here as the stan-
dard deviation of the natural logarithm of optical
depth) the albedo bias can exceed 0.15 and the emis-
sivity bias can exceed 0.3. As optical depth tends to
zero, the bias also tends to zero because in this regime
the relationship between albedo and optical depth (and
emissivity and optical depth) tends toward linearity.

Figures 3c and 3d show the biases for the scaling
factor method with a fixed factor of 0.7. While the bias
for very inhomogeneous clouds is somewhat decreased,
for homogeneous clouds this value of scaling factor
tends to overcompensate and a negative bias is evident.
Figures 3d and 3e show the biases for the Tripleclouds
method with the default values for the percentiles. It
can be seen that the biases are much smaller, particu-
larly for a fractional standard deviation less than 1,
which encompasses most of the liquid and ice cases
derived from observations (in Fig. 7). The next step is
to investigate the performance of the Tripleclouds ap-
proach for multilevel clouds in which the overlap of
both cloud boundaries and cloud inhomogeneities be-
comes important.

3. Implementing a two-stream solver with multiple
regions

Radiative transfer calculations throughout this inves-
tigation are made using the radiation scheme devised
by Edwards and Slingo (1996) and will be referred
throughout this paper as the Edwards–Slingo code. The
code is used in the Met Office’s Unified Model; hence
any amendments made to the code could be directly
implemented in this. It is also sophisticated and versa-
tile and already has the capability to represent two
cloudy regions at each height, so is well suited to ex-
periments using the Tripleclouds scheme. Currently,
this capability is exploited by partitioning cloud into
stratiform and convective regions, both of which are
individually homogeneous. However, the convection
scheme in a GCM is only triggered occasionally, so the
thicker (convective) cloud fraction will be much smaller
than the thinner (stratiform) cloud fraction, hence re-
sulting in most of the cloud in the grid box still being
horizontally homogeneous. Using Tripleclouds, the two
regions are of equal size, by definition, if the split per-
centile is fixed at 50. Before the code can be used in the
Tripleclouds experiments, however, modifications are
made. In this section, we describe how multiple regions
may be efficiently implemented in a two-stream radia-
tion scheme such as that in the Edwards–Slingo code
but with modifications that make it both more efficient
and more accurate. We also discuss how the code is
amended to deal with overlap in the Tripleclouds
scheme.

a. Two-stream scheme with one region at each
height

To introduce the terminology we first consider the
simple problem of a two-level atmosphere with one re-
gion in each level, as illustrated in Fig. 4. This is trivially
extended to more than two levels. The upwelling and
downwelling fluxes between levels, Fi�1/2

� (where half-
level i � 1/2 may be 0.5, 1.5, or 2.5), are derived by
solving the matrix problem (e.g., Zdunkowski et al.
1982; Ritter and Geleyn 1992; Stephens et al. 2001):

�
1

1 �R1 �T1

�T1 �R1 1

1 �R2 �T2

�T2 �R2 1

1 ��s

� 	 �
F0.5

�

F0.5
�

F1.5
�

F1.5
�

F2.5
�

F2.5
�

� � �
St

�

S1
�

S1
�

S2
�

S2
�

Ss
�

� , �7�
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FIG. 3. (left) Shortwave cloud albedo bias and (right) longwave emissivity bias calculated for
idealized single-layer ice clouds with a cloud fraction of unity and a lognormal distribution of
optical depth, calculated as a function of the mean optical depth of the cloud and the fractional
standard deviation of optical depth across the grid box (equal to the standard deviation of the
natural logarithm of optical depth). (a), (b) The biases for the plane-parallel approximation;
(c), (d) the biases for the scaling factor method with a value of 0.7; and (e), (f) the biases for
Tripleclouds with a lower percentile of 16 and a split percentile of 50. Contour interval is 0.01
for albedo bias and 0.02 for emissivity bias. For the purposes of this figure, albedo 
 has been
calculated from optical depth � using 
 � 0.2 � 0.525�/(� � 3.5), which reproduces the albedo
predicted by the Edwards–Slingo code to within 0.02 for the control conditions considered in
section 5 (the same approximation was used in Fig. 11 of Hogan and Kew 2005). Likewise, we
follow Pomroy and Illingworth (2000) and calculate emissivity � from the absorption optical
depth �a (assumed to be equal to �/2) using � � 1 � exp(�1.66�a), which also closely repro-
duces the full calculations of the Edwards–Slingo code.
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where 
s is the surface albedo and Ri and Ti are the
reflection and transmission functions of level i, derived
from the optical depth, single-scattering albedo, and
asymmetry factor of the atmosphere at that height
(Meador and Weaver 1980). The convention followed
is of i increasing downward from the top of the atmo-
sphere where i � 1/2. In the longwave, the upward and
downward source terms, S�

i , represent thermal emis-
sion, while in the shortwave they represent scattering of
the direct solar beam into the diffuse components con-
sidered by the two-stream equations. The surface up-
ward emission is represented by S�

s , while the diffuse
downward component from the top of atmosphere is S�

t

(usually zero). Equation (7) is of tridiagonal form, so
can be solved efficiently by one pass of Gaussian elimi-
nation followed by back substitution.

The way that this procedure is implemented in the
Edwards–Slingo code has a physical interpretation that
will now be described, as in the next section it will be

used to extend the code to multiple regions at each
height.

We first consider the Gaussian elimination step,
which consists of working up from the surface and for
each half-level calculating both the albedo and the up-
ward emission of the entire atmosphere below that level.
Given 
i�1/2, defined as the albedo of the atmosphere
below level i � 1/2 (starting with the surface albedo 
s),
the albedo below the level above is given by

�i�1�2 � Ri � Ti
2�i�1�2�1 � Ri�i�1�2 � Ri

2�i�1�2
2 . . .�.

�8�

The terms on the right-hand side represent direct re-
flection from the atmosphere in level i (Ri), reflection
from the atmosphere below this level accounting for
two-way transmission (T2

i 
i�1/2), and multiple reflec-
tions between level i and the atmosphere below. The
infinite series may be reduced to

�i�1�2 � Ri � Ti
2�i�i�1�2, �9�

where

�i � �1 � Ri�i�1�2��1. �10�

Likewise, the upward emission from the atmosphere
below half-level i � 1/2 is given by

Gi�1�2 � Si
� � Ti�i�Gi�1�2 � Si

� �i�1�2�. �11�

Thus, the equations for the upwelling fluxes in (7) may
be replaced by

Fi�1�2
� � �i�1�2Fi�1�2

� � Gi�1�2. �12�

With a little further manipulation, (7) becomes

�
1 ��0.5

1

��1�1.5T1 1

�T1 �R1 1

��2�sT2 1

�T2 �R2 1

� 	 �
F0.5

�

F0.5
�

F1.5
�

F1.5
�

F2.5
�

F2.5
�

� � �
G0.5

St
�

�1�G1.5 � S1
� �1.5�

S1
�

�2�Ss
� � S2

� �s�

S2
�

	 , �13�

which is easy to solve by back-substitution.

b. Efficient solver for multiple regions

When we come to consider more than one region at
each height (typically with one region representing
clear sky and the others representing cloud), we must
solve for the upwelling and downwelling fluxes in each
region. First some notation is introduced. We define

Fi�1/2
a� as the upwelling and downwelling flux just above

half-level i � 1/2 in region a (and similarly for regions
b, c, etc.), but take it to be the power in region a divided
by the total area of the grid box, not just the area of
region a. This way the gridbox-mean flux, Fi�1/2

� , is
simply the sum of the fluxes in each of the regions.
Cloud overlap is specified by defining transfer coeffi-
cient Vab

i�1/2 as the fraction of the downwelling radiation
leaving region a at level i that enters region b at level

FIG. 4. Schematic of a two-level atmosphere with the reflection,
transmission, and source coefficients (R, T, and S� respectively)
at each level and the upwelling and downwelling fluxes (F�) be-
tween each level.
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i � 1 (and similarly for Vaa
i�1/2,Vab

i�1/2, etc.). Likewise,
Uab

i�1/2 is the fraction of upwelling radiation leaving re-
gion a at level i � 1 that enters region b at level i. Thus
the equation defining the downwelling flux in region a
just above a half-level is

Fi�1�2
a� � Si

a�

� Ti
a�Vi�1�2

aa Fi�1�2
a� � Vi�1�2

ba Fi�1�2
b� � · · ·�

� Ri
a�Vi�1�2

aa Fi�1�2
a� � Vi�1�2

ba Fi�1�2
b� � · · ·�,

�14�

and for the upwelling flux:

Fi�1�2
a� � Si

a�Ui�1�2
aa � Si

b�Ui�1�2
ba � · · ·

� Ti
aUi�1�2

aa Fi�1�2
a� � Ti

bUi�1�2
ba Fi�1�2

b� � · · ·

� Ri
aUi�1�2

aa �Vi�1�2
aa Fi�1�2

a� � Vi�1�2
ba Fi�1�2

b� � · · ·�

� Ri
bUi�1�2

ba �Vi�1�2
ab Fi�1�2

a� � Vi�1�2
bb Fi�1�2

b� � · · ·�

� · · ·, �15�

where the ellipses indicate similar terms corresponding
to third and further regions. The reason that (14) and
(15) have different forms is that Fa�

i�1/2 and Fa�
i�1/2 are

the fluxes just above a half-level, that is, at the bottom
of a model level. Therefore, the downwelling flux at the
bottom of region a depends primarily on the properties
of region a (Ra

i , etc.), whereas the upwelling flux de-
pends on the properties of all of the regions in the level
below, each weighted by the appropriate transfer coef-
ficient. If we had defined the fluxes as being just below
a half-level, then the general form of (14) and (15)
would have been reversed.

It can be seen that for N regions, each component of
the flux depends on 2N other flux components, so each
row and column of the matrix to be solved will have
2N � 1 nonzero elements. Naturally, this is much more
computationally expensive to solve than a tridiagonal
system, but it will now be shown that a modification can
be made that results in both much closer agreement
with the independent column approximation (ICA) and
more efficient code.

The principal point to note is that, in (15), terms
involving Fb�

i�1/2 correspond to downwelling radiation at
the base of region b that is immediately reflected back
up into region a. This is “anomalous horizontal photon
transport”; for the horizontal resolution of most global
forecast and climate models, only a very small fraction
of such transport would occur, and in the ICA this
transport is zero. The corresponding error in shortwave
domain-mean upwelling flux for a very simple scenario
is demonstrated in Fig. 5, which shows a comparison
of ICA and the standard two-region solver in the Ed-
wards–Slingo code. By setting the offending terms in
(15) to zero, the matrix problem would be more effi-
cient to solve, but this would not significantly reduce
the error in the shortwave because the downwelling
radiation beneath the clear-sky region of a grid box is
still reflected back into both cloudy and clear-sky
halves of the grid box, when in the ICA it would remain
within the clear half and lead to a larger upwelling flux
at the top of the atmosphere. Note that the longwave
errors are much smaller because of the much reduced
role for scattering.

This problem is solved by appealing to the physical

FIG. 5. (a) Demonstration of the problem of anomalous horizontal photon transport, and its
solution, for a single level of ice cloud with a visible optical depth of 20, an effective radius of
50 m, and a cloud fraction of 0.5, as illustrated by the gray region. (b) The corresponding
upwelling shortwave fluxes calculated by the Edwards–Slingo code for a solar zenith angle of
45°, a surface albedo of 0.5, and the U.S. Standard Atmosphere, 1976 (McClatchey et al. 1972).
Results are shown for the ICA (in which the code was run independently on the clear and
cloudy halves of the column), the “standard” solver utilizing (14) and (15) to describe the
relationship between the fluxes, and the “new” solver described at the end of section 3b.
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interpretation of Gaussian elimination presented in sec-
tion 3a. We recursively define 
a

i�1/2 as the albedo of
the atmosphere below region a of level i by adapting (9)
to multiple regions:

�i�1�2
a � Vi�1�2

aa �Ri
a � �Ti

a�2�i
a�i�1�2

a �

� Vi�1�2
ab �Ri

b � �Ti
b�2�i

b�i�1�2
b �

� · · ·, �16�

and similarly for Ga
i�1/2 (and likewise for regions b, c,

etc.).
Thus, the complex expression for the upwelling flux

in each region given by (15) is replaced by the much
simpler expression (12) applied separately to each re-
gion. Physically, this means that, at each height, the
downwelling radiation in a particular region is either
reflected back up into the same region or absorbed;
none is reflected up into another region. Therefore,
anomalous horizontal photon transport is almost com-
pletely eliminated. This new scheme is also more effi-
cient since, rather than solving a dense matrix problem,
only two passes are required: the first up through the
atmosphere to calculate the 
 and G terms, followed by
a downward pass to calculate the fluxes.

The new scheme has been implemented in the Ed-
wards–Slingo code for two and three regions at each
height. Figure 5 demonstrates the much-improved per-
formance of the new scheme compared to ICA. The
small residual error is due to the fact that anomalous
photon transport is only eliminated when it is associ-
ated with downward radiation being reflected back up-
ward. Upward radiation may still be reflected down-
ward into a different region, although generally this
results in a much smaller error.

c. Overlap considerations

As well as the amendments in the previous subsec-
tion, the Edwards–Slingo code needed further modifi-
cations before it could be used to compare the perfor-
mance of Tripleclouds with that of other methods. The
cloud component of the code currently applies a form
of maximum-random overlap (Geleyn and Hollings-
worth 1979). Regions of both cloud and clear sky in
adjacent levels are assumed to overlap maximally, and
any cloud or clear sky unaccounted for by maximum
overlap is assumed to overlap randomly. It would be a
trivial exercise to extend this overlap method to a cloud
scene with three regions at each height. As this inves-
tigation is exclusively considering representations of in-
homogeneity, biases introduced by any other potential
sources should be minimized. Hence, we require the
ability to recreate any arrangement of overlap for any

cloud scene, and the maximum-random overlap
method currently applied in the Edwards–Slingo code
is incapable of this.

For a pair of adjacent levels, each with three regions,
the overlap can be described by a three-by-three “over-
lap” matrix:

O � �
Xc,c Xc,l Xc,h

Xl,c Xl,l Xl,h

Xh,c Xh,l Xh,h
� , �17�

where Xa,b represents the areal fraction of the column
covered by both region a in the upper level and region
b in the lower level. The labels c, l, and h refer to the
clear sky, thinner cloud (lower water content), and
thicker cloud (higher water content) regions, respec-
tively. An example of cloud overlap between two levels
is shown in Fig. 6 along with the cloud fraction vectors
C1 and C2. In this case, the overlap matrix is

O � �
0.2 0.2 0.2

0.2 0.0 0.0

0.0 0.1 0.1
� . �18�

The Tripleclouds scheme currently outputs three
quantities: the fractions of each level that are assigned
to each cloud region; the water content values of each
of these regions in each level, and a three-by-three
overlap matrix for each interface, as in (18). These can
then be used as inputs for the radiation code that de-
termine the exact arrangement of the clouds without
any need for overlap approximations, and are used to
calculate the transfer coefficients U and V in (14) and
(15). The overlap matrices themselves are entered in
the code in the form of a four-column vector, contain-

FIG. 6. An example of overlap between two levels of cloud. The
pale gray region represents the thinner cloud; the dark gray region
represents the thicker cloud. The vectors C1 and C2 are the cloud
fractions in each level, where the first number in the vector rep-
resents the clear-sky fraction, the second represents the thinner
cloud fraction, and the third represents the thicker cloud fraction.
The resulting overlap matrix for these two levels is given in Eq.
(18).
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ing four of the elements of the overlap matrix at each
interface. From these four values, in addition to the
vector C in each level, it is possible to calculate the
remaining terms in the matrix, using the condition that,
for a given interface, the sums of the columns of the
overlap matrix correspond to the region fractions in the
level above and the sums of the rows give the fractions
in the level below. There is also the condition that, by
definition, the elements of the matrix must all add up to
one.

Amendments have been made to the Edwards–
Slingo code that allow the overlap to be read in and
used in this way. The modified version of the code will
be used throughout this investigation.

4. Observational data and experimental method

For the purposes of this investigation, we use fields of
ice and liquid water content (IWC and LWC) derived
from a combination of radar, lidar, and microwave ra-
diometer measurements as part of the Cloudnet
project. The retrieval processes used in Cloudnet are
summarized by Illingworth et al. (2007): IWC is derived
from radar reflectivity and temperature (Hogan et al.
2006), while LWC is derived from measurements of
cloud base, cloud top, and liquid water path. These
datasets are all derived from the 94-GHz vertically
pointing radar, the infrared lidar ceilometer, and mi-
crowave radiometers at Chilbolton and have a vertical
resolution of 60 m and temporal resolution of 30 s. The
raw water content data are then averaged both hori-
zontally and vertically. Horizontal averaging is used to
reduce the time taken to perform the ICA runs by a
factor of 5; vertical averaging is performed so that the
resolution is comparable to that of a GCM. The result-
ing resolutions are 240 m in the vertical and 2.5 min in
the horizontal. A total of 250 h of data are used in this
study, taken from 12 different days in the period from
January 2003 to March 2004. Each daylong period is
split into 10 scenes of length 125 min, starting from
midnight. The resulting 120 scenes are all single phase:
half of them contain only ice cloud, half of them contain
only liquid water cloud. Assuming a horizontal wind of
5 m s�1 in the boundary layer and 15 m s�1 in the free
atmosphere, this results in scene sizes of between 40
and 120 km. The ice scenes feature predominantly fron-
tal cases, selected to represent a very wide range of
cloud geometries, while the liquid scenes feature
mainly stratus and stratocumulus clouds with physical
depths of between 500 m and 2 km, a range of optical
depths, and varying degrees of inhomogeneity. Figure
7a shows histograms of mean IWC (pale gray) and
LWC (dark gray) for the cloudy regions in each of the

levels, while Fig. 7b shows the spread of the same quan-
tities in the form of fractional standard deviation.

A number of calculations were performed on each
scene, using both the ICA and a number of “single
column” runs. A full list of all runs performed on each
scene is given in Table 1. The ICA runs integrate each
high-resolution column of the observational data indi-
vidually, using one homogeneous region in each verti-
cal level (i.e., no partial cloudiness), then average the
fluxes across the scene. The single-column runs are
made to mimic the operation of a GCM. The Triple-
clouds outputs (cloud fractions and water content for
each region in each level and overlap at each inter-
face; see section 3c) are used as inputs to the Edwards–
Slingo code in such a way that the code processes the
entire scene in a single integration.

5. Initial experiments and sensitivity tests

In this section, we investigate the sensitivity of the
performance of Tripleclouds to lower percentile, split

FIG. 7. Histograms showing the variation in the statistical prop-
erties of water content across the scenes: The distributions of (a)
mean water content and (b) fractional standard deviation of water
content are shown for the regions containing cloud in each vertical
level in each of the 120 scenes.
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percentile, horizontal grid box size, vertical resolution,
and solar zenith angle. A single-column Tripleclouds
run is performed on each of the scenes, then the biases
are evaluated with respect to the ICA runs (using the
ICA runs as “truth”). Each of the variables is then
changed to test the sensitivity. For this experiment, cer-
tain values are held constant: surface albedo is set to
0.2, and effective radius values for ice particles and liq-
uid droplets are set to 50 and 5 m, respectively. For
the thermodynamic profile, the Standard U.S. Atmo-
sphere is used (McClatchey et al. 1972). The shortwave
calculation uses five spectral bands; the longwave cal-
culation uses nine spectral bands. The “control” values
of lower and split percentile are 16 and 50, respectively.
For vertical resolution, the control value is 240 m; for
solar zenith angle, it is 60°.

Before testing sensitivity, we calculate the value of
mean plane-parallel shortwave albedo bias across the
scenes. All biases throughout this experiment are cal-
culated in terms of the change to the “cloud radiative
forcing.” First, the upward clear-sky longwave and
shortwave fluxes are calculated at the top of the atmo-
sphere. These upward top-of-atmosphere fluxes are
then subtracted from the clear-sky fluxes across each of
the scenes, leaving only the change in net top-of-
atmosphere flux that is due to the presence of clouds.
This is called the cloud radiative forcing (CRF). By
definition, this quantity will be negative in the short-
wave and positive in the longwave. Throughout this
paper, however, when referring to CRF in the short-
wave, we shall take the modulus such that it is always a
positive quantity. This enables the longwave and short-
wave CRFs to be more easily compared. CRF is calcu-
lated both for the control ICA runs and the experimen-
tal runs, and the percentage error for each scene is
calculated as

percentage error � 100 	
CRF �X� � CRF �ICA�

CRF �ICA�
,

�19�

where CRF(X) is the cloud radiative forcing calculated
in experiment “X.” The percentage biases are then cal-
culated across the scenes as

percentage bias � 100 	 �CRF �X� � CRF �ICA�

CRF �ICA�
�.

�20�

Percentages will be used so that our results can be
directly compared to those derived from Albrecht et al.
(1988). The scenes with little or no cloud are excluded
from the analysis, as they could give a high percentage
bias in CRF for a very small absolute bias. A domain-
mean optical depth threshold of 0.01 is used to discrimi-
nate between the scenes with sufficient cloud to use,
which leaves 98 “cloudy” scenes.

a. Plane-parallel albedo bias

Figure 8 shows a scatterplot comparing the errors in
shortwave and longwave CRF for the 98 cloudy scenes
against the domain-mean optical depth at 550 nm.
The scenes are separated into the ice cases (filled
circles) and liquid cases (open circles). A positive
plane-parallel CRF error is seen for almost all of the
scenes, with values up to nearly 30% being calculated.
The mean bias is found to be of order 8%, which is
lower than the value of 15% from Albrecht et al. (1988)
in their field study, although the order of magnitude is
comparable. However, we do expect a lower value for
our study: we are considering approximately GCM-
gridbox-sized scenes, while Albrecht et al. (1988) used
a much longer time series of cloud data. In contrast, the
mean bias using Tripleclouds is less than 1%. The other
points in Fig. 8 are described in section 6.

b. Sensitivity to lower percentile

In this experiment, we vary the lower percentile from
16 and run Tripleclouds on each of the 98 cloudy scenes
at each value of lower percentile. The results from this
are shown in Fig. 9. The black lines show the mean
biases at each lower percentile value when averaging
over all the cloudy scenes. The solid gray lines show
separately the mean biases over the cloudy ice and liq-
uid scenes, and the dashed gray lines show the edges of
the range within the 10th and 90th percentiles of the
errors for the individual scenes and each lower percen-
tile value. This range is hereafter referred to as the

TABLE 1. List of all the runs performed on each of the scenes for the rest of this experiment.

Independent column ICA control run
ICA Tripleclouds run: “TCICA”

Two region, single column Plane-parallel run: “PP”
Single-column scaling factor, with a scaling factor of n: “SF(n)”

Three region, single column Tripleclouds runs, with varying percentiles, vertical resolution, and horizontal gridbox size:
“TC(n),” where n is lower percentile
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“spread.” The results show that there is a difference in
mean biases across the ice scenes and the liquid scenes.
This is caused by the difference in mean optical depth
across the cases: the liquid cases have a higher mean
optical depth, as shown in Fig. 7. A similar result is
found when applying the Tripleclouds scheme to the
idealized case used in Fig. 3. At high values of fractional
variance, we see that there is a switch in sign of the
biases when optical depth increases.

We also find that there is no one unique value of
lower percentile that creates a zero bias in both short-
wave and longwave CRF, although it should be noted
that the size of the relative biases generated by varying
percentile is small with respect to the plane-parallel
biases. For all values of percentile shown, the mean bias
never exceeds the 8% plane-parallel bias found in the
previous subsection. In fact, in the range of lower per-
centile from 10 to 20, the mean bias never exceeds a

FIG. 8. Plot of the cloud radiative forcing errors of the 98 cloudy scenes as a function of
domain-mean optical depth using different schemes: abbreviations for the runs defined in
Table 1.
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magnitude of 2%, and the spread never gives an error
above 10%.

The optimum value of lower percentile that mini-
mizes the mean biases seems slightly different for the
shortwave and longwave. In the shortwave, the opti-
mum is about 19, while the longwave optimum is about
13. Using a value of 16 for both spectral regions, there-
fore, should not cause significant biases to be intro-
duced into the radiative calculations; in fact, much less
than 1% in terms of CRF. There is also an increase in
bias with rising lower percentile. This is as expected:
increasing the lower percentile has the effect of making
the representation more homogeneous, and positive bi-
ases imply a more homogeneous case. The value of 16,
proposed in section 2 on theoretical grounds, will be

retained as the lower percentile on account of the fact
that, under a lower percentile of 16, the Tripleclouds
scheme performs well in both longwave and shortwave
parts of the spectrum and for scenes containing ice and
liquid water.

c. Sensitivity to split percentile

Next, we investigate the sensitivity of the CRF biases
to the split percentile, while the lower percentile is held
constant. Variation of the split percentile has more than
one effect on the cloud representation. Raising the split
percentile allocates more of the cloud to the thinner
cloud region, so increasing the weighting of the lower
water content value. The water content for the thicker
region will then not only be weighted less, but will also
be forced to a higher value to ensure conservation of
the mean. The results of the split percentile sensitivity
experiment are shown in Fig. 10.

Increasing the split percentile is seen to have the ef-
fect of making the biases more negative. So, a higher
value of split percentile implies a less plane-parallel
behavior and, hence, more inhomogeneous representa-

FIG. 9. Variation of mean cloud radiative forcing bias with vary-
ing lower percentile when the 98 cloudy scenes are approximated
using Tripleclouds: (a) the variation of percentage bias in short-
wave CRF with respect to the ICA run and (b) the variation of
percentage bias in longwave CRF. The black lines show the mean
biases over the scenes at each lower percentile value, and the gray
dashed lines show the edges of the spread in error bounded by the
10th and 90th percentiles at each lower percentile value. The solid
gray lines show the mean biases over just the ice scenes (pale
gray) and the liquid scenes (dark gray).

FIG. 10. As in Fig. 9, but for variation of cloud radiative forcing
bias with varying split percentile using Tripleclouds.
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tion of the cloud. Considering the mean biases over all
ice and liquid cases, varying split percentile between 25
and 75 gives mean relative biases not exceeding 8%,
and for the chosen value of 50 the mean bias is not
more than 1%. This indicates that the choice of 50 for
the split percentile is suitable. Again, the biases for the
ice scenes suggest a slightly higher value, and the liquid
scenes suggest a slightly lower value. The overall aver-
age biases point toward an optimum value of 49 in the
shortwave and of 56 in the longwave. However, the
scenes that were used were chosen for the fact that they
represent a wide variety of different cloud types. On
account of this wide representivity, we can conclude
that, for most cases, the optimum value of split percen-
tile is not significantly different from 50.

Lower percentile and split percentile are not inde-
pendent of each other in terms of CRF bias. In these
two sensitivity tests, it was found that 16 and 50 were a
suitable combination, but the dependence implies that,
for any value of split percentile that we choose, a value
of lower percentile can be found that minimizes the
biases. In reality, the tuning of the lower percentile to
16 is only valid for the chosen split percentile value of
50, and this second sensitivity experiment merely con-
firms that a split percentile of 50 is appropriate for use
with a lower percentile of 16.

d. Sensitivity to horizontal gridbox size

We next consider the effect of varying horizontal
gridbox size on the CRF biases from both Tripleclouds
and the scaling factor method. The vertical resolution
of the input data is held at 240 m, and the horizontal
resolution of the input radar data is kept at 2.5 min. The
period from each of the 12 days containing the 98
scenes is then divided into different numbers of scenes
with varying horizontal size. As the horizontal scale of
the observational data is temporal, the length in space
of the scenes will be different in the free atmosphere
from that in the boundary layer as the distance–time
relationship for ice and liquid cases will be different.
For this reason, the horizontal axis is expressed in terms
of time. Using values of 5 and 15 m s�1 as typical wind
speeds for the liquid cloud and ice cloud levels, respec-
tively, the time axis can be considered to run from
about 10 to 180 km for the ice cases and 4 to 60 km for
the liquid cases. For comparison purposes, runs are also
performed with the scaling factor method using a factor
of 0.9.

Figure 11 shows the results. In the longwave, the bias
for the scaling factor method is seen to decrease with
increasing gridbox size, in agreement with the findings
of Pomroy and Illingworth (2000). In the shortwave, it
is found that the same is also true: there is a depen-

dence of the bias on gridbox size, although the bias is
seen to increase with increasing gridbox size. In con-
trast, we see that Tripleclouds has a weak dependence
on horizontal gridbox size except at lower gridbox sizes,
where there is a dependence, with decreasing gridbox
size increasing bias in the longwave and decreasing bias
in the shortwave. The mean bias for Tripleclouds never
exceeds 2% through the range shown, and the spread
lines never exceed 5% in the shortwave or 2% in the
longwave.

e. Sensitivity to vertical resolution

Next, the scenes are evaluated with varying values of
vertical resolution, and the mean biases evaluated as
before. Variation of vertical resolution is seen to have
little effect on the biases in CRF, both in the shortwave
and longwave for the Tripleclouds scheme; hence the

FIG. 11. Variation of cloud radiative forcing bias when the 12
days of data are evaluated using Tripleclouds with lower percen-
tile of 16 and the scaling factor method with a scaling factor of 0.9
with varying horizontal gridbox size. The lines represent the mean
percentage bias across all the scenes at each gridbox size for
Tripleclouds (black) and scaling factor (gray). The error bars
show the spread of individual scenes bounded by the 10th and
90th percentiles. The scaling factor error bars are offset slightly
for clarity.
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figure for this is not shown. The magnitude of the biases
in the longwave is small with Tripleclouds, with the
mean bias never exceeding 1% and the spread never
exceeding 3%. In the shortwave, the result is similar,
with negligible biases introduced by considering vary-
ing resolution. Even the outliers in the range rarely
introduce biases over 1%. A similar result is obtained
from the scaling factor method, with the mean bias over
all scenes at about 1% in the shortwave and �0.5% in
the longwave when a scaling factor of 0.9 is used. There
is no significant dependence of the biases on vertical
resolution.

f. Sensitivity to solar zenith angle

Finally, we consider the effect of changing solar ze-
nith angle on the relative biases. The scenes are all
evaluated as before at differing values of solar zenith
angle. For comparison, two scaling factor runs are also
performed using 0.9 and 0.7 as the scaling factor. The
results are shown in Fig. 12 (for shortwave CRF only, as
the longwave fluxes have no dependence on the solar
zenith angle). Across the range of solar zenith angles,
for constant lower and split percentiles, the percentage
biases are insignificant for Tripleclouds: the mean bi-
ases do not exceed 1% at any value of solar zenith angle
and the spread never exceeds 3%. In fact, there is no
real shift in biases with changing solar zenith angle in
the Tripleclouds scheme. Comparison with the scaling
factor method, however, shows that there is a depen-
dence of bias on solar zenith angle. For the case where
0.7 is used as the factor, the dependence is strong, with

a bias of a much larger magnitude at smaller solar ze-
nith angles than that at larger angles, perhaps suggest-
ing that a different value of scaling factor is required for
each solar zenith angle. Despite this, the dependence is
weaker for a scaling factor of 0.9, which performs better
at lower solar zenith angles, with the mean bias never
exceeding 2% at higher angles. A lower value of scaling
factor seems appropriate at higher solar zenith angles,
while a higher value is better for lower solar zenith
angles. In Tripleclouds, there is a slight variation in bias
with solar zenith angle, to a comparable magnitude to
that of the scaling factor method using 0.9. However,
the error bars indicate that the spread of the errors
using Tripleclouds is reduced by a factor of about 1.5,
with a much larger reduction at low angles. It is seen
that this combination of split percentile and lower per-
centile can produce a reliable, nonbiased output irre-
spective of solar zenith angle at the time.

6. Comparison of Tripleclouds and the
plane-parallel methods

The different cloud representation methods are now
compared. We start by performing a simple calculation
to estimate the difference in computer run time be-
tween the plane-parallel (two-region) and Tripleclouds
(three-region) representations. Consider a model that
has n vertical levels, m of which contain clouds. The
time taken for the code to evaluate one region in one
level will be a constant value, irrespective of whether
the region contains clear sky or cloud. Hence, the time
taken for a single two-region integration is proportional
to n � m (n clear-sky regions, m cloudy regions). As
Tripleclouds introduces an extra region into each of the
m cloudy levels, the time for this run is proportional to
n � 2m. So, the increase in run time can be written as

run time increase �
n � 2m

n � m
. �21�

The version of the ECMWF model used in the study of
Illingworth et al. (2007) has 60 model levels. Nineteen
of these lie in the height range in which most clouds
form, here taken to be the range from 1 to 10 km.
Substituting m � n/3 into Eq. (21) predicts a run-time
increase of 25%, which is approximately what is found
empirically.

The 98 cloudy scenes are then evaluated using the
Edwards–Slingo code at the default values described in
the section 5. We perform eight runs on each scene, all
of which are described below. The resultant CRF val-
ues are compared with the ICA runs when none of the
methods are applied, which we again use as the truth.
The results are shown in Figs. 8 and 13.

Figure 8 compares the individual CRF errors for each

FIG. 12. Variation of shortwave cloud radiative forcing bias,
when the 98 cloudy scenes are evaluated using Tripleclouds and
the scaling factor method with varying solar zenith angle: lines as
described in Fig. 11. The solid gray line uses a scaling factor of 0.9;
the dashed gray line uses a scaling factor of 0.7.
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cloudy scene when using the plane-parallel, the scaling
factor, and the Tripleclouds schemes. As mentioned be-
fore, the plane-parallel scheme results in positive errors
in nearly all the cases, with the majority of the points
giving errors of under 10% in the shortwave and long-
wave, but with outliers giving errors of up to 30% in the
shortwave and 40% in the longwave. The scaling factor
with a value of 0.7 seems to have the opposite problem,
with errors being mostly negative. At higher optical
depths, the errors are of similar order (but of opposite
sign) to those of plane-parallel, but at decreasing values
of optical depth these errors become increasingly nega-
tive, reaching magnitudes as high as 30% in both the
shortwave and the longwave. The reason for the high
percentage biases at low optical depth is because of the
shape of the relationship between either albedo or
emissivity and optical depth. At low optical depths, this
is approximately linear, so application of the same scal-
ing factor is inappropriate. This is not a problem suf-
fered by Tripleclouds, whose points have errors with
much smaller magnitudes and a lower spread.

The first bar in Fig. 13 shows the mean plane-parallel
bias introduced by using a conventional plane-parallel
approximation. It results in a bias in the CRF of about
8% in both shortwave and longwave. The next three

bars show the effects of applying the scaling factor to
the optical depth using a scaling factor of 0.7 [as pro-
posed by Cahalan et al. (1994) and used by the
ECMWF; Tiedtke (1996)] and, for comparison, values
of 0.8 and 0.9. Despite its operational use, the factor of
0.7 is clearly inappropriate for the scenes that we are
using, as it overcorrects the CRF biases, leaving a mean
bias that is negative in both the shortwave and long-
wave. Similar results were found regarding the suitabil-
ity of 0.7 as the scaling factor (e.g., Barker et al. 1996;
Pincus et al. 1999; Rossow et al. 2002). A value of scal-
ing factor between 0.8 and 0.9 seems more realistic.

The last four bars show the results from various
Tripleclouds runs. The three bars on the right show the
runs from Tripleclouds, using lower percentiles of 6, 16,
and 26. An independent-column run using Tripleclouds
is also performed for comparison (TCICA). This is
evaluated in the same way as the control ICA run (as
described in section 4), but with the Tripleclouds ap-
proximation applied to the observational data as shown
in Fig. 2c. This run is performed to check that the over-
lap code for the single-column runs (described in sec-
tion 3c) behaves correctly. There are small differences
in the biases for the TCICA run with the TC(16) run in
both shortwave and longwave. This therefore validates
the code changes in section 3 for much more compli-
cated cloud scenes than in Fig. 5. In fact, the mean CRF
biases for Tripleclouds are seen to be small with respect
to the biases for both the operational PP and SF(0.7)
runs, with values of below 1% in both the shortwave
and the longwave.

Overall, the Tripleclouds TC(16) method performs
well. First, the amount of random error is reduced using
the Tripleclouds method. Even in comparison to the
best of the scaling factor methods, the reduction in
spread is apparent: the spread for the SF(0.9) run is
about one and a half times larger than that of the
TC(16) run. Second, the optimum lower percentile in
Tripleclouds is not largely dependent on solar zenith
angle or resolution, while the optimum scaling factor
has a relatively strong dependence on solar zenith
angle. As solar zenith angle is constant in this experi-
ment, its variation would cause an increase to the size of
the scaling factor error bars. Third, the biases have a
much lower sensitivity to the lower percentile in Triple-
clouds than to the scaling factor over a reasonable
range of values.

The heating rates are compared in Fig. 14. A profile
of domain-mean heating rate is obtained for each of the
cloudy scenes, and the root-mean-squared heating rate
error is calculated with respect to the ICA run, using
the 240-m-thick levels from the surface up to 12 km.
The rms ensures that the variation in sign of the error

FIG. 13. Variation of the cloud radiative forcing of the scenes
using different cloud approximation methods: the (a) shortwave
and (b) longwave CRF percentage bias. Abbreviations for the
runs are as defined in Table 1. The bars show the mean biases over
the scenes for each method, and the error bars show the edges of
the spread in error bounded by the 10th and 90th percentiles for
each method.
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does not affect the results. The rms errors are calcu-
lated as a percentage of the rms heating rate, and the
overall mean rms biases are then found by averaging
these percentage errors across all the scenes.

We see in Fig. 14 that the plane-parallel method gives
an rms error of 13% in the shortwave and 20% in the
longwave. Using the scaling factor, the representation
of the heating rates deteriorates as the factor reduces, a
result also found by Oreopoulos and Barker (1999).
The Tripleclouds cases, however, perform much better.
The independent-column Tripleclouds run performs
best, while the single-column runs do not introduce
much extra error in heating rate. Comparing TC(16)
with SF(0.8) and SF(0.9), the two runs which produced
the best results when minimizing the CRF biases, it is
apparent that Tripleclouds significantly outperforms
the scaling factor method. Tripleclouds, therefore, not
only reduces biases in top-of-atmosphere radiative
properties, it reduces biases in the atmospheric distri-
bution of heating.

7. Discussion and conclusions

This paper presents Tripleclouds, a method of ac-
counting for cloud inhomogeneity in the radiation
scheme of GCMs. It makes use of the ability of the
Edwards–Slingo code to include an extra cloudy region
in the radiative transfer calculation, leading to a repre-

sentation that has a single clear-sky region and two
cloudy regions. These two cloudy regions are assigned
to optically thinner cloud and optically thicker cloud.

The values of water content that are applied to these
two cloudy regions are determined using statistical con-
siderations. If the distribution of water content in a
single level were to be modeled as Gaussian, then using
the 16th percentile of the distribution gives an accurate
measure of its standard deviation. In reality, the distri-
bution of water content is more lognormal (Hogan and
Illingworth 2003), although it turned out that using the
16th percentile was an adequate method of defining the
water content in the thinner cloud region. The water
content in the thicker region can then be chosen to
conserve mean water content in the level. The two
cloudy regions are weighted equally, so the regions rep-
resent the thinner half and thicker half of the clouds in
the domain level.

Tripleclouds is seen to be an improvement on the
widely used plane-parallel cloud representation. Over
the 12 days of radar data analyzed here, containing a
range of different cloud types, the plane-parallel albedo
bias was 8%. Using Tripleclouds reduced this bias to
less than 1%. The scaling factor of 0.7, proposed by
Cahalan et al. (1994) and applied worldwide in the
ECMWF model by Tiedtke (1996), is shown here to be
inappropriate for the midlatitude ice and liquid clouds
analyzed. The shortwave albedo bias using this scaling
factor was larger in magnitude than that of the unscaled
plane-parallel representation, with a value of order
11%.

Running the radiation code with different values of
scaling factor showed that the value of 0.7 is a signifi-
cant overcompensation, with a value between 0.8 and
0.9 seeming more appropriate for the cloud scenes con-
sidered. However, it should be borne in mind that,
throughout the scheme comparison carried out in sec-
tion 6, all of the variables were held constant, and it was
seen that, while not a function of vertical resolution, the
scaling factor had a dependence on solar zenith angle
and a weak dependence on horizontal gridbox size. So,
that some value of scaling factor between 0.8 and 0.9
may seem to be most appropriate, in fact only implies
that it is appropriate for the particular solar zenith
angle in question. Another complication in the choice
of scaling factor occurs for lower values of optical
depth, where its relationship with both shortwave al-
bedo and longwave emissivity becomes close to linear;
hence the scaling factor needs to become much nearer
to one.

In contrast, the Tripleclouds scheme is seen to have
no such dependence on solar zenith angle or optical
depth. It is also applicable to different values of vertical

FIG. 14. Variation of mean rms heating rate biases in both (a)
shortwave and (b) longwave for the 98 cloudy scenes: bars and
error bars defined in Fig. 13.
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resolution and horizontal gridbox size without any need
for major recalibration of the percentiles. Variation of
the lower percentile (and also split percentile) of
Tripleclouds results in a small change in bias in the
radiative properties, although the sensitivity of the bias
to the Tripleclouds parameters is much smaller than
that of the scaling factor.

It was also found that, for both the shortwave and
longwave heating rates, applying the scaling factor to
the plane-parallel approximation results in a degrada-
tion in quality of the representation; that is, the random
errors increase in magnitude, and again there is a strong
dependence of the errors on scaling factor. In Triple-
clouds, not only are the heating rate errors insensitive
to the lower percentile, the errors overall are reduced
with respect to the plane-parallel heating rate biases.

Further steps are still required in the verification of
Tripleclouds as a viable cloud representation scheme
suitable for use in weather and climate models. So far,
we have been running the radiation code on radar data,
in which we know exactly where the clouds are in our
scene. In reality, the weather or climate model only has
knowledge of cloud fractions and gridbox-mean ice or
liquid water contents, and certainly no knowledge of
cloud arrangement. The overlap parameterization still
needs to be considered and implemented into the Ed-
wards–Slingo code in place of the current overlap
scheme that reads in a prescribed overlap from the
source data. Current parameterizations of overlap that
exist include random overlap and maximum-random
overlap (Geleyn and Hollingsworth 1979). However,
we intend to make use of a newer form of overlap that
uses a decorrelation pressure to calculate overlap,
which creates a range of overlaps varying from maxi-
mum random to total random, depending on separation
of adjacent layers of clouds. Investigations into ways of
determining this decorrelation pressure have already
been made, for example, that of Hogan and Illingworth
(2003). This study also considers ways of modeling
cloud water variance, which is another variable that is
required for Tripleclouds to be applied to model data.
Using variances typical of different regions of the
world, the Tripleclouds scheme can then be used to
model data output and test the applicability of the
scheme at all latitudes and world weather regimes.

Comparisons of Tripleclouds with more sophisticated
methods than the scaling factor method are also pos-
sible future steps in the Tripleclouds investigation.
Methods such as the statistical approach of Oreopoulos
and Barker (1999), the single scattering property renor-
malization process of Cairns et al. (2000) and the Monte
Carlo independent column approximation method of
Pincus et al. (2003) would provide an insightful com-

parison of the performance of Tripleclouds with respect
to other state-of-the-art cloud schemes. It is also pos-
sible to extend the three-region Tripleclouds scheme to
atmospheric quantities beyond cloud variables, such as
aerosol optical depth. Surface properties, such as sur-
face albedo and emissivity, can also be inhomogeneous
on scales smaller than that of a GCM grid box. This is
particularly true at coastlines, where the properties of
the land and the sea surfaces can be very different.
There is often a tendency for boundary layer clouds to
form preferentially over the land or the sea. Implemen-
tation of a multiregion representation of such surface
properties could provide more realistic behavior of
fluxes into and out of the surface.

Acknowledgments. The first author is funded by the
University of Reading under an RETF studentship.

REFERENCES

Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observa-
tions of marine stratocumulus clouds during FIRE. Bull.
Amer. Meteor. Soc., 69, 618–626.

Barker, H. W., 1996: A parameterization for computing grid-
averaged solar fluxes for inhomogeneous marine boundary
layer clouds. Part I: Methodology and homogeneous biases. J.
Atmos. Sci., 53, 2289–2303.

——, and J. A. Davies, 1992: Solar radiative fluxes for stochastic,
scale-invariant broken cloud fields. J. Atmos. Sci., 49, 1115–
1126.

——, B. A. Wielicki, and L. Parker, 1996: A parameterization for
computing grid-averaged solar fluxes for inhomogeneous ma-
rine boundary layer clouds. Part II: Validation using satellite
data. J. Atmos. Sci., 53, 2304–2316.

Bushell, A. C., D. R. Wilson, and D. Gregory, 2003: A description
of cloud production by non-uniformly distributed processes.
Quart. J. Roy. Meteor. Soc., 129, 1435–1455.

Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B.
Snider, 1994: The albedo of fractal stratocumulus clouds. J.
Atmos. Sci., 51, 2434–2455.

Cairns, B., A. A. Lacis, and B. E. Carlson, 2000: Absorption
within inhomogeneous clouds and its parameterization in
general circulation models. J. Atmos. Sci., 57, 700–714.

Carlin, B., Q. Fu, U. Lohmann, G. G. Mace, K. Sassen, and J. M.
Comstock, 2002: High-cloud horizontal inhomogeneity and
solar albedo bias. J. Climate, 15, 2321–2339.

Davis, A., P. Gabriel, S. Lovejoy, D. Schertzer, and G. Austin,
1990: Discrete angle radiative transfer. III: Numerical results
and meteorological applications. J. Geophys. Res., 95, 11 729–
11 742.

Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new
radiation code. I: Choosing a configuration for a large-scale
model. Quart. J. Roy. Meteor. Soc., 122, 689–719.

Geleyn, J.-F., and A. Hollingsworth, 1979: An economical ana-
lytical method for the computation of the interaction be-
tween scattering and line absorption of radiation. Contrib.
Atmos. Phys., 52, 1–16.

Harshvardhan, and D. A. Randall, 1985: Comments on “The pa-
rameterization of radiation for numerical weather prediction
and climate models.” Mon. Wea. Rev., 113, 1832–1833.

1 JUNE 2008 S H O N K A N D H O G A N 2369



Hogan, R. J., and A. J. Illingworth, 2003: Parameterizing ice cloud
inhomogeneity and the overlap of inhomogeneities using
cloud radar data. J. Atmos. Sci., 60, 756–767.

——, and S. F. Kew, 2005: A 3D stochastic cloud model for in-
vestigating the radiative properties of inhomogeneous cirrus
clouds. Quart. J. Roy. Meteor. Soc., 131, 2585–2608.

——, M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval
of ice water content from radar reflectivity factor and tem-
perature and its use in evaluating a mesoscale model. J. Appl.
Meteor. Climatol., 45, 301–317.

Illingworth, A. J., and Coauthors, 2007: Cloudnet—Continuous
evaluation of cloud profiles in seven operational models us-
ing ground-based observations. Bull. Amer. Meteor. Soc., 88,
883–898.

Jakob, C., and S. A. Klein, 1999: The role of vertically varying
cloud fraction in the parameterization of microphysical pro-
cesses in the ECMWF model. Quart. J. Roy. Meteor. Soc.,
125, 941–965.

Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder
Haar, and W. R. Cotton, 2001: Small-scale and mesoscale
variability of scalars in cloudy boundary layers: One-di-
mensional probability density functions. J. Atmos. Sci., 58,
1978–1994.

Liou, K.-N., 1986: Influence of cirrus clouds on weather and cli-
mate processes: A global perspective. Mon. Wea. Rev., 114,
1167–1199.

McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and
J. S. Garing, 1972: Optical properties of the atmosphere. 3rd
ed. Air Force Cambridge Research Laboratories Rep.
AFCRL72-0497, 108 pp.

Meador, W. E., and W. R. Weaver, 1980: Two-stream approxima-
tions to radiative transfer in planetary atmospheres: A uni-
fied description of existing methods and a new improvement.
J. Atmos. Sci., 37, 630–643.

O’Hirok, W., and C. Gautier, 2005: The impact of model resolu-
tion on differences between independent column approxima-
tion and Monte Carlo estimates of shortwave surface irradi-
ance and atmospheric heating rate. J. Atmos. Sci., 62, 2939–
2951.

Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-
scale cloud variability in a multi-layer 1D solar radiative
transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301–330.

——, and R. F. Cahalan, 2005: Cloud inhomogeneity from
MODIS. J. Climate, 18, 5110–5124.

Pincus, R., S. A. McFarlane, and S. A. Klein, 1999: Albedo bias
and the horizontal variability of clouds in subtropical marine
boundary layers: Observations from ships and satellites. J.
Geophys. Res., 104, 6183–6191.

——, H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible,
approximate technique for computing radiative transfer in
inhomogeneous cloud fields. J. Geophys. Res., 108, 4376,
doi:10.1029/2002JD003322.

Pomroy, H. R., and A. J. Illingworth, 2000: Ice cloud inhomoge-
neity: Quantifying bias in emissivity from radar observations.
Geophys. Res. Lett., 27, 2101–2104.

Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A.
Randall, 2004: Stochastic generation of subgrid-scale cloudy
columns for large-scale models. Quart. J. Roy. Meteor. Soc.,
130, 2047–2067.

Randall, D. A., J. A. Coakley Jr., D. H. Lenschow, C. W. Fairall,
and R. A. Kropfli, 1984: Outlook for research on subtropical
marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 1290–
1301.

Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation
scheme for numerical weather prediction models with poten-
tial applications in climate simulations. Mon. Wea. Rev., 120,
303–325.

Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the
observed mesoscale variations of clouds for the earth’s radia-
tion budget. J. Climate, 15, 557–585.

Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Param-
eterization of atmospheric radiative transfer. Part I: Validity
of simple models. J. Atmos. Sci., 58, 3391–3409.

Tiedtke, M., 1996: An extension of cloud-radiation parameteriza-
tion in the ECMWF model: The representation of subgrid-
scale variations of optical depth. Mon. Wea. Rev., 124, 745–
750.

Tompkins, A. M., 2002: A prognostic parameterization for the
subgrid-scale variability of water vapor and clouds in large-
scale models and its use to diagnose cloud cover. J. Atmos.
Sci., 59, 1917–1942.

Zdunkowski, W. G., W.-G. Panhans, R. M. Welch, and G. J.
Korb, 1982: A radiation scheme for circulation and climate
models. Beitr. Phys. Atmos., 55, 215–238.

2370 J O U R N A L O F C L I M A T E VOLUME 21




