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ABSTRACT

In this paper an equation is derived for the mean backscattercross section of an ensemble of snowflakes at centimeter and
millimeter wavelengths. It uses the Rayleigh-Gans approximation, which has previously been found to be applicable at these
wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random
and unpredictable, we find from simulations of the aggregation process that their structure is “self-similar” and can bedescribed
by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles
as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain,a
variable describing their mean shape and two variables describing the shape of the power spectrum. The exponent of the power
law is found to be−5/3. In the case of 1-cm snowflakes observed by a 3.2-mm wavelength radar, the backscatter is 40–100
times larger than that of a homogeneous ice-air spheroid with the same mass, size and aspect ratio.

1. Introduction

Most surface precipitation polewards of 60–70◦ lati-
tude is in the ice phase, but devising reliable methods to
estimate snowfall rate from space has proved very chal-
lenging (Levizzani et al. 2011). Recently, the 94-GHz
(3.2 mm wavelength) CloudSat radar has been used to
make estimates of snowfall from space (Liu 2008); this
frequency has the advantage of a very high sensitivity to
low snowfall rates, but these retrievals have significant un-
certainties due to the uncertain backscatter cross section
of snowflakes at wavelengths shorter than the size of the
particle.

The state-of-the-art in computing the backscatter cross
section of snowflakes is to use the Discrete Dipole Ap-
proximation (DDA; Draine and Flatau 1994), but this
is very computationally expensive and requires a large
number of realistic 3D snowflake shapes to be generated.
Since aggregate snowflakes tend to have a low density
at the millimeter scale, the Rayleigh-Gans approximation
(RGA; van de Hulst 1957; Matrosov 1992; Westbrook
et al. 2006) may be used. It is also applicable for light
scattering by some aerosol aggregates (Sorensen 2001).
The RGA approximates the electric field experienced by
a dipole within the particle as the incident electric field,
thereby neglecting any interaction between dipoles. This
leads to a simple equation for the backscatter that requires
only a 1D description of the structure of the particle in the
direction of propagation of the incident wave. Compar-
isons between DDA and RGA by Tyynelä et al. (2012)
and Leinonen et al. (2013) found RGA to be accurate typ-

∗Corresponding author address:Robin J. Hogan, Dept. of Meteorol-
ogy, Earley Gate, P.O. Box 243, Reading, RG6 6BB, United Kingdom.
E-mail: r.j.hogan@reading.ac.uk

ically to around 2 dB. While this difference is not negli-
gible, Leinonen et al. (2013) argued that RGA is useful
as it captures the first-order physics of the problem, pro-
viding a good estimate of backscatter cross section with
the interactions between dipoles being only a relatively
minor correction. Moreover, as will be shown, the dif-
ferences due to different assumptions on the nature the
internal structure can be much larger than 2 dB.

In the framework of RGA, if the 1D function describ-
ing particle structure could be parameterized in some way
then it would avoid the need to generate a large ensem-
ble of 3D snowflakes. A common and simple approach
to treating this function is to approximate snowflakes
as “soft spheroids”, that is, oblate horizontally oriented
spheroids with an aspect ratio of around 0.6 composed of
a homogeneous mixture of ice and air (e.g. Matrosov et al.
2005b). While this has been found to perform very well
for aggregates in ice clouds for particle sizes no larger
than the wavelength (Hogan et al. 2012), it has been found
to systematically underestimate the backscatter for larger
snowflakes (e.g. Petty and Huang 2010; Tyynelä et al.
2011).

In this paper, we first use numerically simulated ag-
gregates to parameterize the mean shape of this 1D func-
tion describing particle structure, and show that devia-
tions from the mean have a power spectrum that follows a
power law. This enables the function to be parameterized
by three coefficients: one for the mean shape and two for
the power law (section 2). These are then used to derive
an equation for the mean backscatter cross section of an
ensemble of aggregate snowflakes, and validate it against
the mean backscatter of the simulated aggregates (section
3). Finally, we demonstrate the impact of the new model
on calculations of 94-GHz radar reflectivity factor for re-
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alistic snow distributions (section 4). This work naturally
explains why the soft-spheroid approach systematically
underestimates the backscatter of large snowflakes. Note
that comparisons of DDA against RGA are not performed,
since they have been carried out in previous papers (e.g.
Tyynelä et al. 2012; Leinonen et al. 2013).

2. Statistical description of particle shape

a. The Rayleigh-Gans approximation

In Rayleigh-Gans theory (also known as the Born ap-
proximation), the backscatter cross section (or radar cross
section) of an arbitrary shaped particle illuminated by a
plane wave propagating in the directions is given by (van
de Hulst 1957; Westbrook et al. 2006; Leinonen et al.
2013)

σb =
9k4|K|2

4π
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, (1)

where k is the wavenumber of the radiation andK =
(ε − 1)/(ε + 2) is the Clausius-Mossotti factor withε the
dielectric constant of solid ice. The maximum extent of
the particle in thes direction isD and thes coordinate
is centred on the particle such that the particle lies com-
pletely in the range−D/2 ≤ s≤ D/2. A(s) is the area of
particle material intersected by a plane at ranges. In the
case of ice aggregates,A(s) is the area of solid ice inter-
sected by the plane. Naturally, exp(i2ks) may be replaced
by cos(2ks) + i sin(2ks), and in the case of particles that
are symmetric abouts = 0, such as spheres and spheroids,
the integral ofA(s)i sin(2ks) is zero so the complex expo-
nential may be replaced by cos(2ks). But in the general
case it is necessary to retain the imaginary term. Note that
(1) gives backscatter cross section with units m2, but in
some conventions there is an extra factor of 4π on the de-
nominator to yield cross section per unit solid angle (units
m2 sr−1); see Bohren and Huffman (1998) for a discus-
sion.

For soft spheres and horizontally aligned soft oblate
spheroids observed by a vertical- or nadir-pointing radar,
we may writeA(s) = π f (D2

max/4− s2/α2), where f is
the fraction of the volume of the ice-air mixture that is
ice,Dmax is the maximum extent of the particle in the hor-
izontal dimension andα is the aspect ratio such that the
maximum extent of the particle in the vertical dimension
is D = αDmax. Substitution into (1) yields

σb =
9π|K|2 f 2

16k2α4
[sin(kD) − kDcos(kD)]

2
. (2)

In section 4, this expression for soft spheroids will be
compared to the new approximation developed in this pa-
per.
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FIG. 1: Example of a simulated aggregate of bullet rosettes, shown in
the plane of its longest (x) dimension and shortest (z) dimension, with
the intensity of the shading proportional to the amount of ice in the third
(y) dimension. See the dotted lines in Figs. 2a and 2b for theA(x) and
A(z) functions for this particle.

b. Ensemble of simulated aggregates

Equation 1 is easy to use for individual arbitrarily
shaped particles for whichA(s) is known. For an ensem-
ble of particles of the same size but with different internal
structures, it is possible to laboriously compute the mean
backscatter cross section by applying (1) to theA(s) func-
tion of each particle separately, and averaging. More el-
egant and convenient is to describe the characteristics of
A(s) statistically, such that a formula can be derived for
the mean backscatter cross section of an ensemble of par-
ticles.

To demonstrate how the structure of snowflakes may
be characterized, we make use of three databases each
of around 50 simulated aggregate snowflakes generated
using the aggregation model of Westbrook et al. (2004).
The aggregates in the first database are each composed
of around 100 bullet rosettes of different sizes, where
the aspect ratio of the columnar branches of the bullet
rosettes is 3.5. The second database comprises aggregates
of hexagonal columns with an aspect ratio of 3.5 and the
third comprises aggregates of plates with an aspect ratio
of 0.2. Since ice particles fall with their maximum ex-
tent oriented horizontally (e.g. Sassen 1977; Pruppacher
and Klett 1997; Hogan et al. 2002), each aggregate has
been oriented such that its maximum extent lies in thex
direction and its minimum extent in thez direction. Ma-
trosov et al. (2005a) reported measurements of horizon-
tally aligned particles wobbling with a standard deviation
of 9◦. For a representative aspect ratio for aggregates of
0.6 (e.g. Matrosov et al. 2005b; Hogan et al. 2012), such
wobbling only increases the extent of the particle in the
vertical direction by 2% which is much less than the un-
certainty in the vertical dimension of the particle, so may
be safely neglected.

An example of an aggregate of bullet rosettes is de-
picted in Fig. 1. We stress that the three databases are
unlikely to capture the full diversity of real snow aggre-
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FIG. 2: The normalized area of ice,A(s)/A(s), of the ensemble of horizontally-aligned aggregates of bullet rosettes discussed in section 2b, as a
function of distance through the aggregates: (a) horizontally, (b) vertically, and (c) in a random direction. The blacksolid line indicates the mean of
the ensemble while the gray shaded region encompasses one standard deviation. The dashed lines show the fit to the mean represented by the first
term on the right hand side of (3) with theκ coefficients in Table 1. The dotted lines in panels a and b indicateA(x) andA(z), respectively, for the
specific aggregate shown in Fig. 1.

gates, but rather provide plausible models of three com-
mon types of aggregates. If the parameters characteriz-
ing aggregate structure do not vary very much between
databases then this provides confidence that the scatter-
ing properties of other types of ice aggregate in the at-
mosphere are likely to be similar to those reported here.
Nonetheless, there would be value in applying the anal-
ysis method described in this paper to other sources of
three-dimensional aggregate structure information. A fur-
ther point to note is that the analysis here is independent
of the absolute size of the aggregates or their mass-size
relationship.

We next consider theA(s) functions for the database
of simulated aggregates of bullet rosettes. The dotted lines
in Figs. 2a and 2b depictA(x) andA(z), respectively, for
the aggregate shown in Fig. 1. These are the functions
that would be used in (1) to compute the backscatter cross
section for a radar observing the particle horizontally (par-
allel to thex axis) and vertically. The solid black line in
these figures shows these functions averaged over all 50
aggregates. In fact, the line in Fig. 2a is the average over
the two horizontal dimensions [i.e. the average ofA(x)
and A(y)], since it can be assumed that the maximum
dimension of the particle, while in the horizontal plane,
would have a random azimuth angle. The solid black line
in Figure 2c shows the average ofA(x), A(y) andA(z),
intended to approximately represent the shape that is rele-
vant for random particle orientation. In each panel of Fig.
2 the gray region indicates one standard deviation above
and below the mean.

An interesting aspect of the mean structure is the dif-
ference in kurtosis between Figs. 2a and 2b, with the mean
structure in the vertical direction tending to be peaked
strongly in the middle (positive kurtosis), while the mean
structure in the horizontal direction has a much flatter
distribution (negative kurtosis). This difference can be
explained by considering two quasi-spherical aggregates
(i.e. with similarA functions in the vertical and horizon-

TABLE 1: Parameters describing the structure of horizontally-oriented
aggregates in the horizontal dimension (relevant for horizontally point-
ing radars), the vertical dimension (relevant for vertically pointing
radars), and without consideration of orientation or direction of inci-
dence (relevant for randomly oriented aggregates). The kurtosis param-
eter describes the mean structure in (3) while the power-lawprefactor
describes the amplitude of the fluctuations about the mean structure in
(5). Note that the parameter defining the slope of the power law in (3)
has been found to have a value ofγ = 5/3 for all cases considered.

Kurtosis Power-law
Incidence parameter (κ) prefactor (β)
Aggregates of bullet rosettes or columns
Horizontal −0.11 0.56

Vertical 0.19 0.23
Random 0.00 0.45

Aggregates of plates
Horizontal −0.12 0.61

Vertical 0.18 0.21
Random −0.05 0.51

tal) of similar size that collide to form a larger aggregate.
The join point will likely be near the edge of both. The
new particle will then align itself horizontally such that
the centres of the original aggregates are at around the
same height. The horizontal functionA(x) aligned along
the new particle’s major axis will then be very different
from A(z): A(x) will be broader due to the presence of the
two original aggregates, and will have a minimum some-
where close to the middle corresponding to the join point;
by contrastA(z) will be an average of the structures of the
two aggregates and this average will tend to smooth out
fluctuations from the mean behavior.

c. Fourier-like decomposition of particle shape

The next step is to parameterize both this mean shape
and the fluctuations from the mean exhibited by individ-
ual particles. Most previous statistical descriptions of ag-
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gregates have been in terms of the density autocorrelation
function, assuming that their internal structure is fractal
and therefore that the autocorrelation follows a power law
(see the review by Sorensen 2001). However, to represent
the finite size of the aggregate requires the power law to be
multiplied by a semi-arbitrary cut-off function, and the re-
sulting backscatter can be quite sensitive to the functional
form that is chosen. Leinonen et al. (2013) described
the autocorrelation function instead in terms of the sum
of two Gaussians, one representing the overall aggregate
and the other the individual monomers. The sharpness
of the edges of a Gaussian meant that no cut-off func-
tion was required, but the two-Gaussian model does im-
plicitly assume the monomers to be randomly distributed
within the aggregate, neglecting the possibility of inter-
nal clumping at other scales, which is expected from the
fractal paradigm.

Our approach is different: instead of considering the
autocorrelation function, the statistical description ofthe
ensemble of particles is obtained by performing a decom-
position ofA(s) as follows:

A(s) = a0

[

(

1 +
κ
3

)

cos
(πs

D

)

+ κ cos

(

3πs
D

)]

+

n
∑

j=1

a′

j cos

(

2π js
D

)

+ a′′

j sin

(

2π js
D

)

, (3)

whereA(s) is nonzero only in the range±D/2. The first
term on the right hand side captures the gross structure
averaged across the ensemble, while the second term rep-
resents fluctuations of an individual particle from the en-
semble average in terms of a summation capturing the
smaller-scale and smaller-amplitude variations. This is
similar to a Fourier decomposition of a real function, ex-
cept that rather than the first term on the right-hand-side
being constant withs, it has a prescribed shape expressed
in terms of two cosines. Theκ coefficient controls the
kurtosis of this shape while conserving total volume. The
case ofκ = 0 leads to just a single cosine, and it can be
seen from the dashed line in Fig. 2c that this is a very good
fit to the ensemble-mean behavior for random orientation.
The dashed lines in Figs. 2a and 2b show that an equally
good fit can be obtained for the ensemble-mean behavior
for horizontal and vertical orientation by manipulatingκ;
the actual values used are shown in Table 1. This justi-
fies the functional form within the square brackets in (3).
Note that Leinonen et al. (2013) instead describedA(s) by
a Gaussian. While the Gaussian is convenient mathemat-
ically, we argue that it is less appropriate than the form
given by (3) because it is nonzero for alls, and is a plau-
sible fit only for the mean shape ofA(z) (Fig. 2b), but not
the other two cases (Figs. 2a and 2c).

Table 1 also showsκ for the other two aggregate
databases. In the case of the aggregates of plates the dif-
ferences are fairly small, and for aggregates of columns,
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FIG. 3: The dots are normalized power spectra of the internal struc-
ture of the horizontally-aligned aggregates of bullet rosettes discussed in
section 2b, computed using the decomposition in (3) and averaged over
the database of particles. The three spectra correspond to the horizontal
direction, vertical direction and averaged over all directions. The solid
lines indicate fits to the spectra at scales larger than individual monomers
(here corresponding toj < 20) of the form in (5), using the coefficients
in Table 1. The dashed line indicates that the structure of the particles
at scales smaller than individual monomers follows a power law with a
slope of−4.

κ is indistinguishable from the value for aggregates of
bullet rosettes. This is unsurprising since the individual
branches of the simulated bullet rosettes had the same as-
pect ratio as the columns.

Onceκ is estimated from the ensemble of particles,
we may perform the decomposition represented by (3) on
a real particle with knownA(s). The coefficient of the first
term is set to

a0 =
π

2D
V, (4)

whereV =
∫ D/2

−D/2 A(s)ds is the volume of material (i.e.
solid ice) in the particle. This ensures that the integral of
the first term is equal to the volume of the particle (since
the integral of the term in square brackets in Eq. 3 in the
range±D/2 is 2D/π). The first term may then be sub-
tracted fromA(s) and a Fourier transform performed on
the residual to compute the termsa′

j anda′′

j to whatever
order (represented byn in Eq. 3) is required. Note that
terms with indexj correspond to variations with a wave-
length ofD/ j.

This decomposition has been performed on each par-
ticle in the database of aggregates of bullet rosettes to ob-
taina0, a′

j anda′′

j for each of the three directionsx, y andz.
The dots in Fig. 3 depict normalized power spectra of the
form 〈a′2

j +a′′2
j 〉/〈a2

0〉 as a function ofj for horizontal inci-
dence (an average of the variables derived from directions
x andy), vertical (derived from thez direction) and ran-
dom incidence (an average of the variables derived from
all three directions).

At scales larger than individual monomer crystals (j
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less than around 20 in these examples, corresponding to
scales larger thanD/20), the power spectra all follow a
single power law. This behavior indicates that the shape
of the particles, as described byA(s), are statistically
self-similar or fractal. This result supports the fractal
paradigm of Sorensen (2001), but by performing a power
spectrum on fluctuations from the mean shape rather than
by parameterizing the autocorrelation function as a power
law we have sidestepped the problem of having to define
a cut-off function.

The solid lines in Fig. 3 represent fits of the form

〈a′2
j + a′′2

j 〉/〈a2
0〉 = β(2 j)−γ, (5)

whereβ andγ are coefficients of the fit.β quantifies the
“energy” (i.e. amplitude squared) of the fluctuations rel-
ative to 〈a2

0〉, and γ quantifies the rate at which energy
decreases when moving to smaller scales. The reason
for the “2” in the (2 j)−γ term is so thatβ = 1 has the
effect of making the amplitude of the first cosine in the
first term on the right-hand-side of (3) scale in exactly the
same way as the terms in the summation. The best-fit val-
ues ofβ for all three aggregate types are shown in Table
1, while γ appears to have a value indistinguishable from
the Kolmogorov value of 5/3 for all three curves and all
three aggregate types. The appearance of the Kolmogorov
value in this context is surprising given that aggregation is
a random process and in these simulations did not involve
turbulence.

At scales smaller than individual monomer crystals (j
larger than around 30 in these examples), the exponent
appears to be closer to−4; this corresponds to the scale
of solid ice within the monomer. Since all monomers are
solid ice on very small scales, the same exponent should
be found for all monomers, and indeed it is also found for
aggregates of plates. A slight difference is that for aggre-
gates of plates there is a more gradual transition between
the slopes of−5/3 and−4 than for aggregates of bullet
rosettes or columns.

3. Backscatter of an ensemble of aggregates

a. Derivation of equation for backscatter cross section

In this section we derive a formula for the ensemble-
average backscatter cross section,〈σb〉, of a population of
aggregate particles of the same size (i.e. the same value of
D) but with different shapes. Their shapes are assumed
to be statistically self-similar in the sense described in
the previous section. We first evaluate the integral in (1),
which for convenience we define as

I =

∫ D/2

−D/2

A(s) exp(i2ks)ds, (6)

for a single particle whoseA(s) function has been decom-
posed as in (3). This is achieved by replacing the sum of

a cosine and a sine wave in (3) as follows:

a′

j cos

(

2π js
D

)

+ a′′

j sin

(

2π js
D

)

=
1
2

[

a j exp

(

−i
2π js

D

)

+ a∗

j exp

(

i
2π js

D

)]

, (7)

wherea j = a′

j + ia′′

j and a∗

j is the complex conjugate
of a j . Note that although the right-hand-side of (7) in-
troduces imaginary terms, they cancel to leave the real
function on the left-hand-side, and the presence of expo-
nentials is much easier to deal with when working out the
integral in (6), which evaluates as

I = a0 cos(kD)

[

(

1 +
κ
3

)

(

1
2k + π

D

−
1

2k− π
D

)

− κ
(

1

2k + 3π
D

−
1

2k− 3π
D

)]

−

n
∑

j=1

(−1) j sin(kD)

[

ia′

j

(

1

2k + 2π j
D

+
1

2k− 2π j
D

)

+ a′′

j

(

1

2k + 2π j
D

−
1

2k− 2π j
D

)]

.

(8)

To derive a formula for the ensemble-average
backscatter cross section,〈σb〉, it can be seen from (1)
that the task is to find an expression for〈|I |2〉. Equation 8
has 2n + 1 terms on the right-hand-side, one correspond-
ing to each “a” coefficient, so taking the square leads to a
large number of cross-multiplication terms.

To simplify the situation, we assume that the phase of
the fluctuation at a particular scale is random. This has
a number of consequences that can be expressed mathe-
matically, and is justifieda posterioriby the good agree-
ment between the resulting equation with direct applica-
tion of (1) to the ensemble of simulated aggregates. First,
it means that the ensemble average of the amplitudes of
the individual sine and cosine waves is zero (since the am-
plitudes can be of either sign), i.e.

〈a′

j〉 = 〈a′′

j 〉 = 0. (9)

Second, the randomness of the fluctuations means that
there is no correlation between the amplitude of the sine
and cosine term in (3), i.e.

〈a′

ja
′′

j 〉 = 0. (10)

Third, it means that the phase and amplitudes of the fluc-
tuation at one scale are uncorrelated with those at another
scale, i.e.

〈a′

ja
′

k〉 = 〈a′′

j a
′′

k 〉 = 0, (11)

where j 6= k.
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FIG. 4: Comparison of the mean backscatter cross section (solidline) and its spread (gray region) of the ensemble of horizontally-oriented aggre-
gates of bullet rosettes discussed in section 2b computed bydirect application of (1), to the equation derived in this paper given by (12) (dashed
line). The dotted line shows the cross section of the individual particle depicted in Fig. 1, while the gray solid line shows the backscatter of a
homogeneous ice-air spheroid with the same mass as the aggregate and same dimension in the direction of propagation of radiation. The left panel
shows the results for horizontally propagating radiation and the right panel shows results for vertically propagatingradiation (so using numbers
from the first and second rows in Table 1, respectively). The normalization of the two axes makes the results applicable toall particle sizes, densities
and dielectric constants, provided that the conditions aremet for applicability of the Rayleigh-Gans approximation.

The result of (9)–(11) is that when we square (8) and
insert into (1), the ensemble average of all the cross-
multiplication terms is zero, so in practice we only need

to square the 2n + 1 terms individually. Thus we obtain
the mean backscatter cross section of an ensemble of ag-
gregates:

〈σb〉 =
9πk4|K|2V2

16

{

cos2(x)

[

(

1 +
κ
3

)

(

1
2x + π

−
1

2x− π

)

− κ
(

1
2x + 3π

−
1

2x− 3π

)]2

+ β
n
∑

j=1

(2 j)−γ sin2(x)

[

1

(2x + 2π j)2 +
1

(2x− 2π j)2

]

}

, (12)

wherex = kD. We refer to this model as theSelf-Similar
Rayleigh-Gans Approimation(SSRGA). This expression
produces radar backscatter cross section with units of
area. In the small particle limit the term in braces tends to
4/π2 and the whole expression reduces to the Rayleigh
approximation. In a numerical implementation of this
formula we need to be careful with the denominators of
some of the terms going to zero, but with cos or sin2 in
the numerator the result is finite. Specifically the terms
cos(x)/(2x−π), cos(x)/(2x−3π) and sin2(x)/(2x−2π j)
become−1/2, 1/2 and 1/4, respectively, in the limit of
their denominators tending to zero.

Note that because (12) only uses the coefficients of
a single power law, it is only applicable when the wave-
length is longer than the size of individual monomers. In
the case of ice particles, Schmitt and Heymsfield (2014)

reported ice monomer sizes up to 250µm, much smaller
than the wavelength of any meteorological radar. Thus
it is valid to neglect the steeper part of the power spec-
trum in Fig. 3 for current applications to snow. Should
(12) ever be applied in a regime where the wavelength is
smaller than individual monomers, then in principle the
summation in (12) could be split into two ranges ofj,
one representing the aggregate structure and the other the
monomer structure, with Fig. 3 suggesting that the latter
should have an exponent of−4.

b. Evaluation of new equation for single particle sizes

We now evaluate (12) for the mean backscatter cross
section of an ensemble of aggregates of the same size,
by comparing it with the mean of explicit application of
the Rayleigh-Gans equation given by (1) to the ensem-
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ble of aggregates of bullet rosettes discussed in section
2b. The results are shown in Fig. 4 for both horizon-
tally and vertically looking radars. Comparing the solid
and dashed black lines, we see that the equation performs
very well up tokDx ≃ 100 andkDz ≃ 50. At larger sizes
or smaller wavelengths, corresponding to the wavelength
being smaller than the individual monomer crystals from
which the aggregates are composed, the actual backscat-
ter drops below that predicted by (12). This corresponds
to the change in slope in Fig. 3. Note that the specific
location of the change in slope depends on the relative
size of the overall aggregates compared to the individual
monomers. For relatively larger aggregates (those com-
posed of many more monomers) the new equation would
be applicable up to larger values ofkD. However, the es-
sential rule is that the shortest wavelength for which the
new equation is applicable is approximately equal to the
maximum monomer size, so for the Schmitt and Heyms-
field (2014) value of 250µm, the equation would be ap-
plicable up to frequencies of around 1200 GHz.

There are other small deviations between the two
lines, the largest being atkDz ≃ 6. This is believed to be
because the assumptions made in section 3a, which while
good, are not being perfectly satisfied, i.e. that the phase
of the fluctuations at one scale is either not perfectly ran-
dom or is not completely uncorrelated with the fluctua-
tions at other scales.

Nonetheless, the equation is clearly a much better fit
than the use of soft spheres or spheroids, which are shown
by the solid gray lines. Consider 1-cm snowflakes ob-
served by a 94 GHz radar, which correspond tokD ≃ 20:
Fig. 4 shows that the soft spheroid assumption underesti-
mates the backscatter cross section by around a factor of
40 for vertical incidence and 100 for horizontal incidence,
similar to the difference found by Tyynelä et al. (2011)
in calculations using the Discrete Dipole Approximation.
This difference is entirely due to the summation term in
(12), which represents the fluctuations of mass within the
particle on the scale of the wavelength that are ignored in
the soft-spheroid assumption.

4. 94-GHz reflectivity factor for realistic snow distri-
butions

In this section we illustrate the impact of the new SS-
RGA scattering model for computations of radar reflec-
tivity factor at the common frequency of 94 GHz, and
hence the implications for retrievals in ice clouds and
snowfall, by comparing it to soft sphere and soft spheroid
models for realistic particle size distributions. We first
consider the model of Field et al. (2005), in which ice-
particle size distributions are parameterized as a function
of temperature and ice water content. This model was
derived from a large database of aircraft-measured size
distributions in mid-latitude ice clouds and snow. We
assume the mass-size relationship of Brown and Fran-
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FIG. 5: The relationship between ice water content and 94-GHz radar
reflectivity factor computed for the Field et al. (2005) sizedistributions
at 0◦C assuming the Brown and Francis (1995) mass-size relationship.
The sphere model assumed a homogeneous ice-air mixture and used the
Maxwell-Garnet mixing rule to compute the dielectric constant of the
mixture for use in a Mie-scattering calculation. The oblatespheroid
model used the Rayleigh-Gans approximation given by (2) foraspect
ratios of 0.6 and 0.5. The Self-Similar Rayleigh-Gans modelused (12)
with the coefficients for aggregates of bullet-rosettes or columns viewed
at vertical incidence in Table 1, for the same two aspect ratios. The cir-
cles correspond to distributions with a median volumetric diameter of
7.3 mm.

cis (1995), which was found by Hogan et al. (2006) and
Hogan et al. (2012) to lead to very good agreement be-
tween co-located Rayleigh-scattering radar measurements
and aircraft observations in clouds containing unrimed ice
particles. While the computed reflectivity factor,Z94, does
depend on the mass-size relationship, thedifferencein
Z94 between different scattering models does not depend
on the prefactor of the mass-size relationship and is only
weakly dependent on the exponent. Thus differences be-
tween models are essentially a function of particle size
only, and these differences increase with particle size, so
we consider a temperature of 0◦C, for which the Field
et al. (2005) model predicts the largest particles.

Figure 5 depicts the relationship between ice water
content and four scattering models: soft spheres, horizon-
tally oriented soft spheroids, the new SSRGA equation
given by (12) with the coefficients in Table 1 for aggre-
gates of bullet-rosettes or columns observed at vertical in-
cidence, and Rayleigh scattering. Both the particle mass
and horizontal extentDmax are identical between models.
The assumed vertical extent of the particles is identical
between the soft spheroid model and SSRGA. In this sec-
tion we first consider the case of all particles having an
aspect ratio ofα = 0.6, which we regard as the “most
likely” value based on previous observational and theo-
retical work (Korolev and Isaac 2003; Westbrook et al.
2004; Matrosov et al. 2005b; Hogan et al. 2012); these are
shown by the black solid and dashed lines in Fig. 5. At the
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end of the section we consider the impact of changing this
value.

To get an idea of how far up the curves in Fig. 5
real snow distributions are found, we use the finding of
Heymsfield et al. (2007) that if aircraft size distributions
in snow are fitted by an exponential distribution of the
form N(Dmax) = N0 exp(−ΛDmax), the minimum slope
parameter typically found is aroundΛ = 5 cm−1, corre-
sponding to a maximum median volumetric diameter of
D0 = 7.3 mm. The Field et al. (2005) size distributions
are not simple exponentials, but median volumetric diam-
eter can be computed for any distribution and the circles in
Fig. 5 show the points on the curves whereD0 = 7.3 mm.
It can be seen that for particles this large, the SSRGA pre-
dictsZ94 4.9 dB higher than the soft-spheroid approxima-
tion and 9.9 dB higher than the soft-sphere approxima-
tion. In terms of the effect on retrievals, we can see that if
these curves were used in a look-up table, the retrieved ice
water content (IWC) for an observedZ94 of 5 dBZ would
be a factor of 4.5 higher if soft spheroids were assumed
compared to the more realistic SSRGA. For an observed
Z94 of −5 dBZ, the overestimate would be around 25%.
While it is most straightforward to illustrate the impact on
retrievals based on empirical relationships between IWC
andZ94 (possibly also including temperature), in principle
any ice or snow retrieval making use ofZ94 measurements
would be affected.

Aircraft observations of snow size distributions con-
taining much larger particles have been reported, for
example by Lawson et al. (1998) who measured size
distributions that could be fitted byN(Dmax) = 3 ×
104 exp(−100Dmax) (SI units) with a maximum measured
size of 5 cm. Assuming again the Brown and Francis
(1995) mass-size relationship, SSRGA predictsZ94 =
9.8 dBZ, which is 16 dB higher than that predicted by the
soft-spheroid model and 24 dB higher than predicted as-
suming soft spheroids. Thus it is clear that soft spheres
and spheroids are totally inadequate for modelling the
mm-wave backscatter from snowflakes.

The results so far in this section are for the “most
likely” snowflake aspect ratio of 0.6, but there is of course
uncertainty in this value. The largest particles measured
by Korolev and Isaac (2003) at temperatures warmer than
−15◦C were reported to have a mean aspect ratio of 0.6
with a standard deviation of 0.1 (see their Fig. 11), and
from a much smaller aircraft sample, Hogan et al. (2012)
foundα ≃ 0.5 for Dmax ≃ 4 mm (their Fig. 4). Therefore,
we also compute the relationships assumingα = 0.5,
shown by the gray lines in Fig. 5. The change in the IWC-
Z94 relationship due to this change in aspect ratio is also
substantial, and forZ94 < 0 dBZ it is almost as large as the
difference between the SSRGA and soft-spheroid models.
Therefore, it is also important that future work can put a
tighter bound on the aspect ratio of large snowflakes.

5. Conclusions

In this paper the “Self-Similar Rayleigh-Gans Ap-
proximation” (SSRGA) has been introduced to derive an
equation (Eq. 12) for the backscatter cross section of en-
sembles of aggregate snowflakes at centimeter and mil-
limeter wavelengths. It is applicable provided that the
wavelength is longer than the individual monomer crys-
tals within the aggregate, and that the mean density of the
particle is low enough that the Rayleigh-Gans approxima-
tion (RGA) is applicable. This is valid for dry aggregates,
but further work would be required to explore the extent to
which riming might invalidate this assumption. The equa-
tion is much more convenient and far less computationally
expensive than applying the Discrete Dipole Approxima-
tion to a large number of simulated 3D particles. It is
also much more accurate than the soft-spheroid approxi-
mation, predicting much higher backscatter cross sections
for larger particles. This is important not only for snow
remote sensing, but also potentially for radar retrievals in
ice clouds.

A unique aspect to this work is that in characterizing
the ice distribution functionA(s) in the viewing direction
s, we first parameterize the mean structure, then describe
the fluctuations from the mean in terms of a power law,
finding a−5/3 exponent. The fact that a power law exists
supports the fractal paradigm of Sorensen (2001), while
avoiding the problems associated with using the autocor-
relation function. It is intriguing that the exponent of the
power law appears to take the Kolmogorov value and an
interesting theoretical challenge for a future study would
be to attempt to explain this based on the statistics of the
aggregation process. It is also interesting that Leinonen
et al. (2013) were able to provide a reasonable fit to the
backscatter cross section when they did not use a power
law. However, their autocorrelation model required the
size of the monomers to be scaled up by a factor of as
much as 7, which thereby artificially added structure at
scales intermediate between individual monomers and the
aggregate as a whole. We argue that Fig. 3 is compelling
evidence that a power law is the best way to describe
the internal structure at the full range of scales from the
monomers up to the entire aggregate, and is likely to scale
up better to aggregates of many more than 100 monomers.

We have provided the three coefficients that describe
particle structure (β, γ and κ) for horizontal, vertical
and random incidence, and for aggregates composed of
columns, plates and bullet rosettes. Further work is re-
quired to estimate these parameters for aggregates of other
crystal types such as dendrites, and to confirm that the
coefficients are invariant for much larger aggregates than
those considered here. While Westbrook et al. (2004)
found universality in certain bulk properties of aggre-
gates, there is a need to verify this for the specific case
of these three coefficients. Furthermore, the results re-
ported in this paper are potentially applicable to scattering
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by any types of aggregates (provided the RGA is applica-
ble), such as optical scattering of aerosol aggregates (e.g.
Sorensen 2001), but this might also require new coeffi-
cients to be derived.

Another avenue for future work arises because for ra-
diometry the full scattering phase function is required
rather than simply the backscatter cross section. Van de
Hulst (1957) showed how the RGA could be applied to
compute the scattering at any angle, so the SSRGA could
be extended to other scattering parameters. Note, how-
ever, that the RGA is unable to predict polarimetric pa-
rameters since these depend on interactions between the
dipoles within the particle, something that the RGA ex-
plicitly neglects.
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