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ABSTRACT

In this paper an equation is derived for the mean backsaatbss section of an ensemble of snowflakes at centimeter and
millimeter wavelengths. It uses the Rayleigh-Gans appnation, which has previously been found to be applicablénege
wavelengths due to the low density of snow aggregates. Adthdhe internal structure of an individual snowflake is @nd
and unpredictable, we find from simulations of the aggregatirocess that their structure is “self-similar’ and camléscribed
by a power law. This enables an analytic expression to beeatkfor the backscatter cross section of an ensemble otlesrti
as a function of their maximum dimension in the direction adgagation of the radiation, the volume of ice they contain,
variable describing their mean shape and two variablesibésg the shape of the power spectrum. The exponent of thepo
law is found to be—5/3. In the case of 1-cm snowflakes observed by a 3.2-mm wavkleadar, the backscatter is 40-100
times larger than that of a homogeneous ice-air spheroluttvit same mass, size and aspect ratio.

1. Introduction ically to around 2 dB. While this difference is not negli-
Most surface precipitation polewards of 60=7ati- gible, Leinonen et al. (2013) argued that RGA is useful

tude is in the ice phase, but devising reliable methods 39 .It captures the_flrst-order physics of the proble_m, pro-
V||gllng a good estimate of backscatter cross section with

estimate snowfall rate from space has proved very ch e interactions between dipoles being only a relatively

lenging (Levizzani et al. 2011). Recently, the 94-G dlﬁinor correction. Moreover, as will be shown, the dif-
(3.2 mm wavelength) CloudSat radar has been used, 10 ' ' '

) : . ferences due to different assumptions on the nature the
make estimates of snowfall from space (Liu 2008); thfﬁternal structure can be much larger than 2 dB
frequency has the advantage of a very high sensitivity to In the framework of RGA, if the 1D function aescrib-
low snowfall rates, but these retrievals have significant un particle structure could b’e parameterized in some way
certainties due to the uncertain backscatter cross sec h it would avoid the need to generate a large ensem-
of snowflakes at wavelengths shorter than the size of bg of 3D snowflakes. A common and simple approach
par}ll'ﬁs étate-of-the-artin computing the backscatter Crotgstreating this_function _is o approximate snovv_flakes
section of snowflakes is to use the Discrete Dipole AR> “SOf.t sph_er0|ds”, that is, _oblate horizontally oriented
proximation (DDA: Draine and Flatau 1994), but thigphermds with an aspect ratio of around 0.6 composed of
! ! . 2 a homogeneous mixture of ice and air (e.g. Matrosov et al.
is very computationally expensive and requires a Iargg%b) While this has been found to perform very well
number of realistic 3D snowflake shapes to be generated.

Since aggregate snowflakes tend to have a low dengﬁr aggregates in ice clouds for particle sizes no larger

at the millimeter scale, the Rayleigh-Gans approximatig:(n}!m the wavelength (Hogan etal. 2012), it has been found

(RGA; van de Hulst 1957; Matrosov 1992; Westbrool systematically underestimate the backscatter for farge

et al. 2006) may be used. It is also applicable for ”giaowﬂakes (e.g. Petty and Huang 2010; Tyynela et al

scattering by some aerosol aggregates (Sorensen 20 }.1)'

. " ; In this paper, we first use numerically simulated ag-
The RGA approximates the electric field experienced b¥egates tc? pgrameterize the mean shap)(/a of this 1D fugnc-
a dipole within the particle as the incident electric fiel

. . . ; fon describing particle structure, and show that devia-

thereby neglecting any interaction between dipoles. THiS
; . tions from the mean have a power spectrum that follows a
leads to a simple equation for the backscatter that requires

o o wer law. This enables the function to be parameterized
only a 1D description of the structure of the particle in tHe . .
NN ) S y three coefficients: one for the mean shape and two for
direction of propagation of the incident wave. Comp

. N he power law (section 2). These are then used to derive
:r?gieﬁﬁgvxzinetlj a?’%%?%ﬁgﬁ‘}é’é g)g?oeLantc?trgg% n equation for the mean backscatter cross section of an
' Y8hsemble of aggregate snowflakes, and validate it against
c " —— o . | the mean backscatter of the simulated aggregates (section
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alistic snow distributions (section 4). This work natuyall D,/2
explains why the soft-spheroid approach systematically
underestimates the backscatter of large snowflakes. Note
that comparisons of DDA against RGA are not performed§

since they have been carried out in previous papers (efé. ol |
Tyynela et al. 2012; Leinonen et al. 2013). E b
5 o.M
>
2. Statistical description of particle shape o
a. The Rayleigh-Gans approximation -D J2 0 D /2

. Horizontal distance
In Rayleigh-Gans theory (also known as the Born ap-

proximation), the backscatter cross section (or radascress. 1: Example of a simulated aggregate of bullet rosettesystio
section) of an arbitrary shaped particle illuminated bytee plane of its longesi) dimension and shortest)(dimension, with
plane wave propagating in the directisis given by (van the intensity of the shading proportional to the amount efiicthe third

de Hulst 1957; Westbrook et al. 2006; Leinonen et &(gzaj;Tf;?g?]g'f;iﬁi;hsa?&tlgé lines in Figs. 2a and 2b forbe and
2013)

o KKP
T T

/D/Z AS) exp(i2ks)d5{2, ) b. Ensemble of simulated aggregates

D/2

Equation 1 is easy to use for individual arbitrarily
shaped particles for which(s) is known. For an ensem-
wherek is the wavenumber of the radiation aid = ble of particles of the same size but with different internal
(e —1)/(e + 2) is the Clausius-Mossotti factor withthe structures, it is possible to laboriously compute the mean
dielectric constant of solid ice. The maximum extent dfackscatter cross section by applying (1) toAlis) func-
the particle in thes direction isD and thes coordinate tion of each particle separately, and averaging. More el-
is centred on the particle such that the particle lies comgant and convenient is to describe the characteristics of
pletely in the range-D/2 < s < D/2. A(s) is the area of A(s) statistically, such that a formula can be derived for
particle material intersected by a plane at raagi the the mean backscatter cross section of an ensemble of par-
case of ice aggregate&(s) is the area of solid ice inter-ticles.
sected by the plane. Naturally, €i¢ks) may be replaced  To demonstrate how the structure of snowflakes may
by cog2ks) + isin(2ks), and in the case of particles thabe characterized, we make use of three databases each
are symmetric abowst= 0, such as spheres and spheroidsf around 50 simulated aggregate snowflakes generated
the integral ofA(s)i sin(2ks) is zero so the complex expo-using the aggregation model of Westbrook et al. (2004).
nential may be replaced by d@ks). But in the general The aggregates in the first database are each composed
case it is necessary to retain the imaginary term. Note tbétaround 100 bullet rosettes of different sizes, where
(1) gives backscatter cross section with unit§ fut in the aspect ratio of the columnar branches of the bullet
some conventions there is an extra factor as the de- rosettes is 3.5. The second database comprises aggregates
nominator to yield cross section per unit solid angle (unié$ hexagonal columns with an aspect ratio of 3.5 and the
m? sr-'); see Bohren and Huffman (1998) for a discushird comprises aggregates of plates with an aspect ratio
sion. of 0.2. Since ice particles fall with their maximum ex-

For soft spheres and horizontally aligned soft oblatent oriented horizontally (e.g. Sassen 1977; Pruppacher
spheroids observed by a vertical- or nadir-pointing radand Klett 1997; Hogan et al. 2002), each aggregate has
we may writeA(s) = Tif (D2,,/4 — §°/a?), wheref is been oriented such that its maximum extent lies inxhe
the fraction of the volume of the ice-air mixture that iglirection and its minimum extent in tredirection. Ma-
ice, Dmax is the maximum extent of the particle in the hottrosov et al. (2005a) reported measurements of horizon-
izontal dimension and is the aspect ratio such that theally aligned particles wobbling with a standard deviation
maximum extent of the particle in the vertical dimensiosf 9°. For a representative aspect ratio for aggregates of
is D = 0Dpax Substitution into (1) yields 0.6 (e.g. Matrosov et al. 2005b; Hogan et al. 2012), such
wobbling only increases the extent of the particle in the
vertical direction by 2% which is much less than the un-
certainty in the vertical dimension of the particle, so may
be safely neglected.

In section 4, this expression for soft spheroids will be An example of an aggregate of bullet rosettes is de-
compared to the new approximation developed in this gaeted in Fig. 1. We stress that the three databases are
per. unlikely to capture the full diversity of real snow aggre-
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FIG. 2: The normalized area of icA(s)/A(s), of the ensemble of horizontally-aligned aggregates debubsettes discussed in section 2b, as a
function of distance through the aggregates: (a) horizignta) vertically, and (c) in a random direction. The blasdid line indicates the mean of
the ensemble while the gray shaded region encompassesamdeust deviation. The dashed lines show the fit to the meaasepted by the first
term on the right hand side of (3) with tikecoefficients in Table 1. The dotted lines in panels a and kcatdiA(x) andA(z), respectively, for the
specific aggregate shown in Fig. 1.

ates, but rather provide plausible models of three com-
9 P P [FABLE 1: Parameters describing the structure of horizontaligrded

mon types of aggregates. If the parameters CharaCteéb{_}'regates in the horizontal dimension (relevant for looilly point-

ing aggregate structure do not vary very much betweigq radars), the vertical dimension (relevant for verticagpointing
databases then this provides confidence that the scatfgiers), and without consideration of orientation or dicec of inci-
nce (relevant for randomly oriented aggregates). Thegigrparam-

Ing properties of other types of ice aggregate in the %Fér describes the mean structure in (3) while the powergeatactor

mosphere are likely to be similar to _those re_ported hefRscribes the amplitude of the fluctuations about the meantste in
Nonetheless, there would be value in applying the angly. Note that the parameter defining the slope of the powerina(3)

ysis method described in this paper to other Sourceshﬁ been found to have a vaIueyo:f: 5/3 for all cases considered.
three-dimensional aggregate structure information. A fur
ther point to note is that the analysis here is independent
of the absolute size of the aggregates or their mass-size
relationship.

Kurtosis Power-law
Incidence parametek] prefactor )
Aggregates of bullet rosettes or columns

We next consider th&(s) functions for the database Horizontal —0.11 0.56
of simulated aggregates of bullet rosettes. The dotted line Vertical 0.19 0.23
in Figs. 2a and 2b depict(x) andA(z), respectively, for Random 0.00 0.45
the aggregate shown in Fig. 1. These are the functions Adgregates of plates
that would be used in (1) to compute the backscatter cross ~ Horizontal —0.12 0.61
section for a radar observing the particle horizontally{pa Vertical 0.18 0.21
Random —0.05 0.51

allel to thex axis) and vertically. The solid black line in
these figures shows these functions averaged over all 50
aggregates. In fact, the line in Fig. 2a is the average over

the two ho”_zom"?" dimensions [i.e. the averageAQig) tal) of similar size that collide to form a larger aggregate.
a_nd A(y_)], since it can be as_sur_ned that '_[he maximusgy, o join point will likely be near the edge of both. The
dimension of the partlcle_, while in the horlzo_ntal plan_(f’rew particle will then align itself horizontally such that
yvoulld have a random azimuth angle. The solid black I"fﬁe centres of the original aggregates are at around the
In Figure 2¢ show; the average Afx), A(y) andA(z)., same height. The horizontal functiéx) aligned along
intended to approximately represent the shape that is reje; new particle’s major axis will then be very different
vant for random particle orientation. In each panel of Fig . A(2): A(x) will be broader due to the presence of the
2 the gray region indicates one standard deviation ab%% original aggregates, and will have a minimum some-
and be.IOW the.mean. . here close to the middle corresponding to the join point;
An mterestmg aspect of the mean structurg is the difg contrast\(z) will be an average of the structures of the
ference in kurtosis between Figs. 2a and 2b, with the m aggregates and this average will tend to smooth out
structure in the vertical direction tending to be peakegl - ations from the mean behavior.
strongly in the middle (positive kurtosis), while the mean
structure in the horizontal direction has a much flattgr
distribution (negative kurtosis). This difference can be

explained by considering two quasi-spherical aggregates 1€ next step is to parameterize both this mean shape
(i.e. with similarA functions in the vertical and horizon-2nd the fluctuations from the mean exhibited by individ-

ual particles. Most previous statistical descriptionsgf a

Fourier-like decomposition of particle shape



gregates have been in terms of the density autocorrelar -
function, assuming that their internal structure is fract § 10’17:\‘
and therefore that the autocorrelation follows a power le®
(see the review by Sorensen 2001). However, to repres«”_ _,
the finite size of the aggregate requires the power law to 10 ¢
- o ) £
multiplied by a semi-arbitrary cut-off function, and the re 3
sulting backscatter can be quite sensitive to the functiol § 10, Horzontal incid
form that is chosen. Leinonen et al. (2013) describ: { 70‘;22(0;)?5,?0 ence I
the autocorrelation function instead in terms of the su 5 | R'andorjn incidence T r
of two Gaussians, one representing the overall aggrec & 10 | 0.45 (2))"53 S "':,,..
and the other the individual monomers. The sharpne S . Vertical incidence ""-:;\ .'.h
of the edges of a Gaussian meant that no cut-off fur g 107 —0.23 (2 AR 1
tion was required, but the two-Gaussian model does i 2 0@ "
plicitly assume the monomers to be randomly distribut 10° e 102
within the aggregate, neglecting the possibility of inte Wavenumber index|
nal clumping at other scales, which is expected from the
fractal paradigm. FiG. 3: The dots are normalized power spectra of the internatstr

. . L ; . re of the horizontally-aligned aggregates of bullet tiesediscussed in
Our approach is different: instead of COHSIdermg ﬂi ction 2b, computed using the decomposition in (3) andchgeer over

autocorrelation function, the statistical descriptiortteé the database of particles. The three spectra correspohe twtizontal

ensemble of particles is obtained by performing a decomirection, vertical direction and averaged over all diaw. The solid

position OfA(S) as follows: lines indicate fits tp the_ spectra at scales Igrgertha_ni'mmﬁw monomers
(here corresponding tp< 20) of the form in (5), using the coefficients
in Table 1. The dashed line indicates that the structure epfrticles

K s 3rs at scales smaller than individual monomers follows a poaerwith a
A(s) = a {(1+ §) cos(B) + KCOS(F)} slope of 4.

+ zn:a’ cos 2ms +a’sin 2ms 3)
= I D ] D /’ K is indistinguishable from the value for aggregates of

bullet rosettes. This is unsurprising since the individual
whereA(s) is nonzero only in the rangeD/2. The first Pranches of the simulated bullet rosettes had the same as-

term on the right hand side captures the gross struct@RSt ratio as the columns. .
averaged across the ensemble, while the second term repOncek is estimated from the ensemble of particles,
resents fluctuations of an individual particle from the eMt€ may perform the decomposition represented by (3) on
semble average in terms of a summation capturing &eal particle with knowr(s). The coefficient of the first
smaller-scale and smaller-amplitude variations. This!&M IS setto -
similar to a Fourier decomposition of a real function, ex- Q = EV’ (4)
cept that rather than the first term on the right-hand-side
being constant witls, it has a prescribed shape express@dereV = ff’t/jz A(s)dsis the volume of material (i.e.
in terms of two cosines. The coefficient controls the solid ice) in the particle. This ensures that the integral of
kurtosis of this shape while conserving total volume. Thke first term is equal to the volume of the particle (since
case ofk = 0O leads to just a single cosine, and it can libe integral of the term in square brackets in Eqg. 3 in the
seen from the dashed line in Fig. 2c that this is a very gomhge+D/2 is 2D /m). The first term may then be sub-
fit to the ensemble-mean behavior for random orientatidracted fromA(s) and a Fourier transform performed on
The dashed lines in Figs. 2a and 2b show that an equalig residual to compute the terasanda;’ to whatever
good fit can be obtained for the ensemble-mean behawoder (represented hyin Eq. 3) is required. Note that
for horizontal and vertical orientation by manipulating terms with indexj correspond to variations with a wave-
the actual values used are shown in Table 1. This juséngth ofD/j.
fies the functional form within the square brackets in (3). This decomposition has been performed on each par-
Note that Leinonen et al. (2013) instead descriBés) by ticle in the database of aggregates of bullet rosettes to ob-
a Gaussian. While the Gaussian is convenient mathentain ay, & anda’ for each of the three directionsy andz.
ically, we argue that it is less appropriate than the forfthe dots in Fig. 3 depict normalized power spectra of the
given by (3) because it is nonzero for glland is a plau- form (a’”+a/?) /(aj) as a function of for horizontal inci-
sible fit only for the mean shape 8fz) (Fig. 2b), but not dence (an average of the variables derived from directions
the other two cases (Figs. 2a and 2c). x andy), vertical (derived from the direction) and ran-
Table 1 also shows for the other two aggregatedom incidence (an average of the variables derived from
databases. In the case of the aggregates of plates thealithree directions).
ferences are fairly small, and for aggregates of columns, At scales larger than individual monomer crystajs (



less than around 20 in these examples, corresponding msine and a sine wave in (3) as follows:

scales larger thaB /20), the power spectra all follow a _ )

single power law. This behavior indicates that the shape,, COS(ZT[_JS) +asin (2L15>

of the particles, as described W#y(s), are statistically ! ! D

self-similar or fractal. This result supports the fractal 1 . 2mjs . . 2Tjs

paradigm of Sorensen (2001), but by performing a power = 5 [aj exp (—'—> +aj exp (l )] . (N

spectrum on fluctuations from the mean shape rather than

by parameterizing the autocorrelation function as a POWgRerea; = & + ia’ anda; is the complex conjugate

law we have sidestepped the problem of having to defigea;. Note that although the right-hand-side of (7) in-

a cut-off function. troduces imaginary terms, they cancel to leave the real
The solid lines in Fig. 3 represent fits of the form  function on the left-hand-side, and the presence of expo-

nentials is much easier to deal with when working out the

D

(@ +aj%)/(a5) = B(2j) ™, (5) integralin (6), which evaluates as
wheref andy are coefficients of the fit quantifies the K 1 1
“energy” (i.e. amplitude squared) of the fluctuations rell = @ CcogkD) [(1+ §) (2k+ T o £>
D D

ative to (a3), andy quantifies the rate at which energy
decreases when moving to smaller scales. The reason — K ( 1 = — 1 . )]
for the “2” in the (2j)~Y term is so thaf} = 1 has the k+35 k-7
effect of making the amplitude of the first cosine in the n ( 1 1 )
ia - 4 -
"\ 2k+ 3 k-2

first term on the right-hand-side of (3) scale in exactly the — Z(—l)j sin(kD)

same way as the terms in the summation. The best-fit val- =1

ues of for all three aggregate types are shown in Table 1 1

1, whiley appears to have a value indistinguishable from + @& <2k 5 o 2 ﬂ
the Kolmogorov value of B3 for all three curves and alll D - D
three aggregate types. The appearance of the Kolmogorov (8)

value in this context is surprising given that aggregation i

a random process and in these simulations did not involve 10 derive a formula for the ensemble-average
turbulence. backscatter cross sectiofgy), it can be seen from (1)

At scales smaller than individual monomer crystgls {hat the task is to find an expression fdif?). Equation 8
larger than around 30 in these examples), the expong@f & + 1 terms on the right-hand-side, one correspond-
appears to be closer te4; this corresponds to the scald!d (0 each & coefficient, so taking the square leads to a
of solid ice within the monomer. Since all monomers af@'9e number of cross-multiplication terms.
solid ice on very small scales, the same exponent should T0 SImplify the situation, we assume that the phase of
be found for all monomers, and indeed it is also found sgye fluctuation at a particular scale is random. This has
aggregates of plates. A slight difference is that for aggi@"Umber of consequences that can be expressed mathe-
gates of plates there is a more gradual transition betwdBgfically, and is justifiea posterioriby the good agree-

the slopes of-5/3 and—4 than for aggregates of bulletr_ne”t between the resulting equation with direct applica-

rosettes or columns. Flon of (1) to the ensemble of simulated aggregatgs. First,
it means that the ensemble average of the amplitudes of
3. Back ¢ ble of the individual sine and cosine waves is zero (since the am-
. Backscatter of an ensemble of aggregates plitudes can be of either sign), i.e.

a. Derivation of equation for backscatter cross section

In this section we derive a formula for the ensemble- <aj> - <aj )=0. ©)

average backscatter cross secti@s,, of a population of Second, the randomness of the fluctuations means that

aggregate particles of the same size (i.e. the same vaIth e is no correlation between the amplitude of the sine
D) but with different shapes. Their shapes are assu cosine term in (3), i.e

to be statistically self-similar in the sense described in
the previous section. We first evaluate the integral in (1), (@a’y = 0. (10)
which for convenience we define as M

D2 Third, it means that the phase and amplitudes of the fluc-
| = / A(s) exp(i2ks)ds (6) tuation at one scale are uncorrelated with those at another
—D/2 scale, i.e.
‘al) = (a’a’y =0 11
for a single particle whosa(s) function has been decom- (@30 = (@a) =0, (11)
posed as in (3). This is achieved by replacing the sumwfierej # k.
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FiG. 4. Comparison of the mean backscatter cross section (swidand its spread (gray region) of the ensemble of hotalyroriented aggre-

gates of bullet rosettes discussed in section 2b computetirégt application of (1), to the equation derived in thip@agiven by (12) (dashed
line). The dotted line shows the cross section of the indimicparticle depicted in Fig. 1, while the gray solid line wisothe backscatter of a
homogeneous ice-air spheroid with the same mass as thegaggend same dimension in the direction of propagationditian. The left panel

shows the results for horizontally propagating radiatiod the right panel shows results for vertically propagatiadiation (so using numbers
from the first and second rows in Table 1, respectively). Tdrenalization of the two axes makes the results applicabéd! frarticle sizes, densities
and dielectric constants, provided that the conditionsyatfor applicability of the Rayleigh-Gans approximation.

The result of (9)—(11) is that when we square (8) artd square the 2+ 1 terms individually. Thus we obtain
insert into (1), the ensemble average of all the croghke mean backscatter cross section of an ensemble of ag-
multiplication terms is zero, so in practice we only neegfegates:

_9T[k4|K|2V2 K 1 1 1 1 2
(Ob) T {co§(x) {(1"" §) (2X—|—T[_ 2X—T[) - (2x+ 3m 2X—3Tt)]

S 1 1
+B;(21) Y sirf(x) [(2X+2T[j)2 + (ZX_ZHDZ} } (12)

wherex = kD. We refer to this model as tHgelf-Similar reported ice monomer sizes up to 2, much smaller
Rayleigh-Gans ApproimatiofsSRGA). This expressionthan the wavelength of any meteorological radar. Thus
produces radar backscatter cross section with unitsitois valid to neglect the steeper part of the power spec-
area. In the small particle limit the term in braces tendstimm in Fig. 3 for current applications to snow. Should
4/ and the whole expression reduces to the Raylei(fl?) ever be applied in a regime where the wavelength is
approximation. In a numerical implementation of thismaller than individual monomers, then in principle the
formula we need to be careful with the denominators sfimmation in (12) could be split into two ranges jof
some of the terms going to zero, but with cos ofsin one representing the aggregate structure and the other the
the numerator the result is finite. Specifically the ternmsonomer structure, with Fig. 3 suggesting that the latter
cogx)/(2x— 1), cogx)/(2x— 3m) and sif(x)/(2x—2mj) should have an exponent e#.

become—1/2, 1/2 and Y4, respectively, in the limit of

their denominators tending to zero. b. Evaluation of new equation for single particle sizes

Note that becau_se_ (12) only uses the coefficients of \ye now evaluate (12) for the mean backscatter cross
a smglg power law, it is O'?'V apphcgple when the WaV&action of an ensemble of aggregates of the same size,
length is longer than the size of individual monomers. comparing it with the mean of explicit application of

the case of ice particles, Schmitt and Heymsfield (201t Rayleigh-Gans equation given by (1) to the ensem-



ble of aggregates of bullet rosettes discussed in sect 1¢°
2b. The results are shown in Fig. 4 for both horizor

tally and vertically looking radars. Comparing the soli

and dashed black lines, we see that the equation perfo .~
very well up tokDy ~ 100 andkD, ~ 50. At larger sizes
or smaller wavelengths, corresponding to the waveleng
being smaller than the individual monomer crystals fro
which the aggregates are composed, the actual backs
ter drops below that predicted by (12). This correspon
to the change in slope in Fig. 3. Note that the specit
location of the change in slope depends on the relat
size of the overall aggregates compared to the individt

e Mie sphere

- - = Rayleigh—Gans spheroid a=0.6
Rayleigh—Gans spheroid a=0.5

— Self-Similar Rayleigh-Gans a=0.6

Ice water content (g m

monomers. For relatively larger aggregates (those co ' o zzgl‘e?;’;”ar Rayleigh-Gans a=0.5
posed of many more monomers) the new equation wol 10‘20 1i0 : n 20
be applicable up to larger valueskid. However, the es- 94-GHz radar reflectivity factor (dBZ)

sential rule is that the shortest wavelength for which the
new equation is applicable is approximately equal to tig;. 5: The relationship between ice water content and 94-GHarra
maximum monomer size, so for the Schmitt and Heymsflectivity factor computed for the Field et al. (2005) sdfistributions
field (2014) value of 25Qm, the equation would be ap_at 0°C assuming the Brown and Francis (1995) mass-size relaimns
. . The sphere model assumed a homogeneous ice-air mixturesaddhe
plicable up to frequencies of aro_ur.]d 1200 GHz. Maxwell-Garnet mixing rule to compute the dielectric camgtof the
There are other small deviations between the twxture for use in a Mie-scattering calculation. The oblagheroid
lines, the largest being &D, ~ 6. This is believed to be model used the Rayleigh-Gans approximation given by (2afpect

because the assumptions made in section 3a, which wHjjgs of 0.6 and 0.5. The Self-Similar Rayleigh-Gans maceld (12)
with the coefficients for aggregates of bullet-rosettesoturmns viewed

gOOd, are not.being perfeCtly S‘Ff‘tiSf.iEd’ i.e. that the ph%@ertical incidence in Table 1, for the same two aspeabsafl he cir-
of the fluctuations at one scale is either not perfectly raties correspond to distributions with a median volumetianbter of

dom or is not completely uncorrelated with the fluctua-3 mm.
tions at other scales.

Nonetheless, the equation is clearly a much better fit
than the use of soft spheres or spheroids, which are shén(1995), which was found by Hogan et al. (2006) and
by the solid gray lines. Consider 1-cm snowflakes oblogan et al. (2012) to lead to very good agreement be-
served by a 94 GHz radar, which corresponélfo~ 20: tween co-located Rayleigh-scattering radar measurements
Fig. 4 shows that the soft spheroid assumption undereafid aircraft observations in clouds containing unrimed ice
mates the backscatter cross section by around a factoP@fticles. While the computed reflectivity factds,, does
40 for vertical incidence and 100 for horizontal incidencgepend on the mass-size relationship, dhféerencein
similar to the difference found by Tyynela et al. (2011404 between different scattering models does not depend
in calculations using the Discrete Dipole Approximatiof®n the prefactor of the mass-size relationship and is only
This difference is entirely due to the summation term Weakly dependent on the exponent. Thus differences be-
(12), which represents the fluctuations of mass within th#een models are essentially a function of particle size

particle on the scale of the wavelength that are ignoreddfly. and these differences increase with particle size, so
the soft-spheroid assumption. we consider a temperature of©, for which the Field

et al. (2005) model predicts the largest particles.

Figure 5 depicts the relationship between ice water
content and four scattering models: soft spheres, horizon-
tally oriented soft spheroids, the new SSRGA equation

In this section we illustrate the impact of the new SSjiven by (12) with the coefficients in Table 1 for aggre-
RGA scattering model for computations of radar reflegates of bullet-rosettes or columns observed at vertieal in
tivity factor at the common frequency of 94 GHz, andidence, and Rayleigh scattering. Both the particle mass
hence the implications for retrievals in ice clouds arahd horizontal exterd,« are identical between models.
snowfall, by comparing it to soft sphere and soft sphercidhe assumed vertical extent of the particles is identical
models for realistic particle size distributions. We firdietween the soft spheroid model and SSRGA. In this sec-
consider the model of Field et al. (2005), in which icaion we first consider the case of all particles having an
particle size distributions are parameterized as a functiaspect ratio ofi = 0.6, which we regard as the “most
of temperature and ice water content. This model whkisely” value based on previous observational and theo-
derived from a large database of aircraft-measured sietical work (Korolev and Isaac 2003; Westbrook et al.
distributions in mid-latitude ice clouds and snow. We004; Matrosov et al. 2005b; Hogan et al. 2012); these are
assume the mass-size relationship of Brown and Frahown by the black solid and dashed lines in Fig. 5. Atthe

4. 94-GHz reflectivity factor for realistic snow distri-
butions



end of the section we consider the impact of changing tlsis Conclusions
value.

To get an idea of how far up the curves in Fig. 5 [n this paper the “Self-Similar Rayleigh-Gans Ap-
real snow distributions are found, we use the finding Bfoximation” (SSRGA) has been introduced to derive an
Heymsfield et al. (2007) that if aircraft size distribution§quation (Eq. 12) for the backscatter cross section of en-
in snow are fitted by an exponential distribution of th&embles of aggregate snowflakes at centimeter and mil-
form N(Dma) = Noe€Xp(—ADpmay), the minimum slope limeter wavelengths. It is applicable provided that the
parameter typically found is arounfd = 5 cm, corre- wavelength is longer than the individual monomer crys-
sponding to a maximum median volumetric diameter &tls within the aggregate, and that the mean density of the
Do = 7.3 mm. The Field et al. (2005) size distributionarticle is low enough that the Rayleigh-Gans approxima-
are not simple exponentials, but median volumetric diaf?n (RGA) is applicable. This is valid for dry aggregates,
eter can be computed for any distribution and the circlesit further work would be required to explore the extent to
Fig. 5 show the points on the curves whexe= 7.3 mm. which riming might invalidate this assumption. The equa-
It can be seen that for particles this large, the SSRGA pHé&n is much more convenient and far less computationally
dicts Zo4 4.9 dB higher than the soft-spheroid approxim&xpensive than applying the Discrete Dipole Approxima-
tion and 9.9 dB higher than the soft-sphere approxind#n to a large number of simulated 3D particles. It is
tion. In terms of the effect on retrievals, we can see thafis0 much more accurate than the soft-spheroid approxi-
these curves were used in a look-up table, the retrieved'i¢ation, predicting much higher backscatter cross sections
water content (IWC) for an observég, of 5 dBZ would for larger particles. This is important not only for snow
be a factor of 4.5 higher if soft spheroids were assumg&note sensing, but also potentially for radar retrievals i
compared to the more realistic SSRGA. For an observéf clouds.

Zo, of —5 dBZ, the overestimate would be around 25%. A unique aspect to this work is that in characterizing
While it is most straightforward to illustrate the impact of€ ice distribution functio\(s) in the viewing direction
retrievals based on empirical relationships between IWcwe first parameterize the mean structure, then describe
andZs, (possibly also including temperature), in principléhe fluctuations from the mean in terms of a power law,
any ice or snow retrieval making use®yf; measurementsfinding a—5/3 exponent. The fact that a power law exists
would be affected. supports the fractal paradigm of Sorensen (2001), while

Aircraft observations of snow size distributions corvoiding the problems associated with using the autocor-
taining much |arger partic'es have been reported, ﬁﬂlation function. ltis intriguing that the eXponent of the
example by Lawson et al. (1998) who measured sipwer law appears to take the Kolmogorov value and an
distributions that could be fitted b}(Dpa) = 3 x interesting theoretical challenge for a future study would
10% exp(—100Dpay) (S units) with a maximum measured?e to attempt to explain this based on the statistics of the
size of 5 cm. Assuming again the Brown and Franciggregation process. It is also interesting that Leinonen
(1995) mass-size relationship, SSRGA predicgs = €t al. (2013) were able to provide a reasonable fit to the
9.8 dBZ, which is 16 dB higher than that predicted by tHeackscatter cross section when they did not use a power
soft-spheroid model and 24 dB higher than predicted daw. However, their autocorrelation model required the
suming soft spheroids. Thus it is clear that soft sphe@i&e of the monomers to be scaled up by a factor of as
and spheroids are totally inadequate for modelling tRélch as 7, which thereby artificially added structure at
mm-wave backscatter from snowflakes. scales intermediate between individual monomers and the

The results so far in this section are for the “modggregate as a whole. We argue that Fig. 3 is compelling
likely” snowflake aspect ratio of 0.6, but there is of cour®vidence that a power law is the best way to describe
uncertainty in this value. The largest particles measuré§ internal structure at the full range of scales from the
by Korolev and Isaac (2003) at temperatures warmer tHA@nNomers up to the entire aggregate, and is likely to scale
—15°C were reported to have a mean aspect ratio of ¢/B better to aggregates of many more than 100 monomers.
with a standard deviation of 0.1 (see their Fig. 11), and We have provided the three coefficients that describe
from a much smaller aircraft sample, Hogan et al. (201pgrticle structure f§, y and k) for horizontal, vertical
founda ~ 0.5 for Dmax =~ 4 mm (their Fig. 4). Therefore,and random incidence, and for aggregates composed of
we also compute the relationships assuming= 0.5, columns, plates and bullet rosettes. Further work is re-
shown by the gray lines in Fig. 5. The change in the Iw@ulired to estimate these parameters for aggregates of other
Zsa relationship due to this change in aspect ratio is al§tystal types such as dendrites, and to confirm that the
substantial, and fofs, < 0 dBZ it is almost as large as thecoefficients are invariant for much larger aggregates than
difference between the SSRGA and soft-spheroid modéfpse considered here. While Westbrook et al. (2004)
Therefore, it is also important that future work can putf@und universality in certain bulk properties of aggre-

tighter bound on the aspect ratio of large snowflakes. 9ates, there is a need to verify this for the specific case
of these three coefficients. Furthermore, the results re-

ported in this paper are potentially applicable to scatteri



by any types of aggregates (provided the RGA is applica- model. J. Appl. Meteorol. Climatology45, 301—
ble), such as optical scattering of aerosol aggregates (e.g 317.

Sorensen 2001), but this might also require new coeffingan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook,

cients to be derived. . A. J. Heymsfield and J. D. Eastment, 2012: Radar
_ Another avenue for future work arises because for ra-  scattering from ice aggreates using the horizontally

diometry the full scattering phase function is required gjigned oblate spheroid approximatigh Appl. Me-

rather than simply the backscatter cross section. Van de teorol. Climatology51,655-671.

Hulst (1957) showed how the RGA could be applied 52

compute the scattering at any angle, so the SSRGA coufd ratio of particles in ice cloudsJ. Atmos. Sci.60

be extended to other scattering parameters. Note, how- 1795-1808 ' ' e

ever, that the RGA is unable to predict polarimetric pa- '

rameters since these depend on interactions betweenlf@®&son, R. P., R. E. Stewart and L. J. Angus, 1998: Ob-

dipoles within the particle, something that the RGA ex- servations and numerical simulations of the origin
plicitly neglects. and development of very large snowflakésAtmos.

Sci.,55,3209-3229.

Acknowledgements. This work benefited from |einonen, J., D. Moisseev and T. Nousiainen, 2013: Link-
ESA Grant 4000104528/11/NL/CT and NERC Grant ing snowflake microstructure to multi-frequency
NE/H003894/1. We thank Paul Field for useful discus- radar observations.J. Geophys. Res118, 3259—
sions. 3270.

Levizzani, V., S. Laviola and E. Cattani, 2011: Detection
and measurement of snowfall from spadeemote
Sens.3, 145-166.

Bohren, C. F., and D. R. Huffman, 1998\bsorption |ju, G., 2008: Deriving snow cloud characteristics from
and scattering of light by small particleviley, pp. CloudSat observations. J. Geophys. Res.113,
544. DO0A09, doi:10.1029/2007ID009766.

Brown, P. R. A., and P. N. Francis, 1995: Improved meftatrosov, S. Y., 1992: Radar reflectivity in snowfall.
surements of the ice water content in cirrus using a |EEE Trans. Geosci. Remote Sei3,454—461.

Zofgl'ivffr probe.J. Atmos. Oceanic Technoll?, Matrosov, S. Y., R. F. Reinking and I. V. Djalalova, 2005a:
T Inferring fall altitudes of pristine dendritic crystals

Draine, B. T, and P. J. Flatau, 1994: Discrete- from polarimetric radar datd. Atmos. Sci62,241—
dipole approximation for scattering calcu- 250,

lations.  J. Opt. Soc. Am. All, 1491-1499. Matrosov, S. Y., A. J. Heymsfield and Z. Wang, 2005b:
Dual-frequency radar ratio of nonspherical atmo-
Field, P. R., R. J. HOgan, P.R. A. BrOWI‘l, A.J. |||ingW0rth, Spheric hydrometeors_ Geophys_ Res. Lett.32,
T. W. Choularton and R. J. Cotton, 2005: Parame- | 13816, doi:10.1029/2005GL023210.

terization of ice particle size distributions for mid M :
latitude stratiform cloud.Quart. J. Roy. Meteorol. Petty, G. W., and W. Huang, 2010: Microwave backscat

Soc. 131 1997-2017. ter and extinction by soft ice spheres and com-

plex snow aggregates.J. Atmos. Sci.,67, 769—
Heymsfield, A. J., G.-J. van Zadelhoff, D. P. Donovan, F.  7g7.

Fabry, R. J. Hogan and A. J. lllingworth, 2007: ReIf?ruppac:her, H. R., and J. D. Klett, 199¥ticrophysics

fmements toice part|cl_e mass_dlmensmnal and termi- of clouds and precipitatiorKluwer, Dordrecht, The
nal velocity relationships for ice clouds - 2. Evalu- Netherlands

ation and parameterizations of ensemble ice particle e .
sedimentation velocitiesJ. Atmos. Sci.64, 1068— Sassen, K., 1977: Ice crystal habit discrimination with the

1088. optical backscatter depolarization technigileAppl.

Hogan, R. J., P. R. Field, A. J. lllingworth, R. J. Cotton Meteorol.,16,425—431. , ,
and T. W. Choularton, 2002: Properties of embegchmitt, C. G., and A. J. Heymsfield, 2014: Observational

ded convection in warm-frontal mixed-phase cloud ~duantification of the separation of simple and com-
from aircraft and polarimetric radaQuart. J. Roy. plex atmospheric ice particle&Seophys. Res. Lett.,
Meteorol. Soc.128,451-476. 41,1301-1307.

Hogan, R. J., M. P. Mittermaier and A. J. ”“ng_Sorense_n, C. M, 2001_: Light scattering by aggregates: A
worth, 2006: The retrieval of ice water con- review.Aerosol Sci. Tech35,648-687.
tent from radar reflectivity factor and temperatyynela, J., J. Leinonen, D. Moisseev and T. Nousiainen,
ture and its use in the evaluation of a mesoscale 2011: Radar backscattering from snowflakes: com-

olev, A., and G. Isaac, 2003: Roundness and aspect

REFERENCES



parison of fractal, aggregate, and soft spheroid modlestbrook, C. D., R. C. Ball, P. R. Field and A. J.
els.J. Atmos. Oceanic Techna28,1365-1372. Heymsfield, 2004: Universality in snowflake
Tyynela, J., J. Leinonen, C. D. Westbrook, D. Moisseev formation.  Geophys. Res. Lett.,32, doi:
and T. Nousiainen, 2012: Applicability of the  10.1029/2004GL020363.
Rayleigh-Gans approximation for scattering bWestbrook, C. D., R. C. Ball and P. R. Field, 2006: Radar
snowflakes at microwave frequencies in vertical in-  scattering by aggregate snowflakeuart. J. Roy.
cidenceJ. Geophys. Resl18,1826-1839. Meteorol. Soc.132,897-914.
van de Hulst, H. D., 1957ight scattering by small par-
ticles. Wiley and sons, 470 pp.

10



