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ABSTRACT

Spaceborne lidar returns from liquid water clouds contain significant contributions from photons that
have experienced many wide-angle multiple-scattering events, resulting in returns appearing to originate
from far beyond the end of the cloud. A similar effect occurs for spaceborne millimeter-wave radar
observations of deep convective clouds. An efficient method is described for calculating the time-dependent
returns from such a medium by splitting the photons into those that have taken a near-direct path out to and
back from a single backscattering event (in the case of lidar, accounting for small-angle forward scatterings
on the way, as described in Part I of this paper) and those that have experienced wide-angle multiple-
scattering events. This paper describes the modeling of the latter using the time-dependent two-stream
approximation, which reduces the problem to solving a pair of coupled partial differential equations for the
energy of the photons traveling toward and away from the instrument. To determine what fraction of this
energy is detected by the receiver, the lateral variance of photon position is modeled by the Ornstein–Fürth
formula, in which both the ballistic and diffusive limits of photon behavior are treated; this is considerably
more accurate than simple diffusion theory. By assuming that the lateral distribution can be described by
a Gaussian, the fraction of photons within the receiver field of view may be calculated. The method
performs well in comparison to Monte Carlo calculations (for both radar and lidar) but is much more
efficient. This opens the way for multiple scattering to be accounted for in radar and lidar retrieval schemes.

1. Introduction

Part I of this paper (Hogan 2008, hereafter Part I)
introduced the issue of radar and lidar multiple scatter-
ing in terms of four regimes. The first two are straight-
forward, and a very efficient method was introduced for
treating the third of these, in which multiple scattering
is dominated by small-angle forward scattering events.
In this part, we consider the fourth regime, in which
wide-angle multiple scattering becomes important. The
particular difficulty to contend with is that the associ-
ated time delay makes returning photons appear to
have originated from a range beyond the distance to
which they actually penetrated, an effect known as

“pulse stretching.” This is particularly evident for
spaceborne cloud lidar and radar because of the large
detector footprint on the cloud: for lidar this occurs in
observations of liquid water clouds (Platt and Winker
1995) and for 94-GHz radar it occurs in deep convective
clouds (Battaglia et al. 2007).

There is potentially useful information available on
the properties of clouds that can, in principle, be ex-
tracted from measurements subject to wide-angle mul-
tiple scattering. For example, the technique of “off-
beam lidar” utilizes a single laser transmitter but a re-
ceiver array with a range of fields of view (Davis et al.
1999). The different degree of multiple scattering to
which each field of view is sensitive allows the optical
depth of liquid clouds to be estimated. Further infor-
mation is available from depolarization measurements
in the presence of multiple scattering (e.g., Sassen and
Petrilla 1986), but polarization will not be treated in this
paper.
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The most rigorous method for interpreting measure-
ments from active sensors is using a variational ap-
proach, in which a first guess of the profile of atmo-
spheric properties is successively refined based on its
ability to “forward model” the measurements. The dif-
ficulty with treating wide-angle multiple scattering is
that until now there has been no forward model that is
fast enough to use in a retrieval scheme. Monte Carlo
methods have been used to model both lidar (Platt
1981) and radar (Battaglia et al. 2006) multiple scatter-
ing. Obviously these are not fast enough to use in a
retrieval scheme directly, but Cahalan et al. (2005a)
performed offline Monte Carlo simulations on a finite
set of idealized cloud profiles and then constructed a
retrieval that essentially searched for the simulation
that best matched the observations. Although this ap-
proach benefits from the accuracy of the Monte Carlo
calculations, the library of offline calculations clearly
cannot represent all possible combinations of variables.

Other theoretical work used so far to interpret wide-
angle multiple scattering has been based on diffusion
theory (Davis et al. 1999; Davis and Marshak 2002),
which is appropriate for very optically thick media in
which photons rapidly lose memory of their initial di-
rection. Although it has been applied to the exponen-
tial tails of the returns from optically thick clouds (Po-
lonsky et al. 2005), it is not suited for more mixed pro-
files in which photons have a ballistic behavior in
optically thinner regions and a diffusive behavior in
optically thicker regions. More recently, Kobayashi et
al. (2006) and Ito et al. (2007) developed an analytical
model that includes pulse stretching, but only second-
order scattering is included and the method is not fast
enough to use in retrieval algorithms (Battaglia et al.
2008).

In this paper, a method is described that is accurate
and efficient enough to use as a forward model in re-
trieval schemes both for radar and lidar multiple scat-
tering. In section 2, an overview of the method is pre-
sented and the time-dependent two-stream (TDTS)
approximation is introduced. In section 3, the contribu-
tion to apparent backscatter from those photons that
have not experienced wide-angle scattering is calcu-
lated (i.e., regimes 1 or 2 in Part I). Then in section 4,
the numerical integration of the time-dependent two-
stream equations for calculating the wide-angle compo-
nent is described. Comparison with Monte Carlo calcu-
lations is provided in section 5.

2. Overview of method

Although the method is applicable to both lidar and
radar, the conventional unit for expressing the mea-

sured range-normalized intensity is different. For sim-
plicity we use the usual lidar variable apparent back-
scatter �̂ (in units of m�1 sr�1) throughout the paper,
defined as the backscatter coefficient of the medium
that a measured intensity would correspond to in the
absence of attenuation or multiple scattering (i.e., in
regime 0 in the introduction of Part I). At radar wave-
lengths, the radar backscatter coefficient may be con-
verted to an apparent radar reflectivity factor by the
following (Donovan et al. 2001):

Ẑ �
4

|Kl |
2 ��

��4

�̂, �1�

where |Kl |
2 is a reference dielectric factor of liquid wa-

ter. Some calibration conventions use the value at cen-
timeter wavelengths, 0.93, whereas others use the value
at the frequency in question, but it should be noted that
at millimeter wavelengths it is temperature dependent.
See Hogan et al. (2006) for further discussion of radar
calibration conventions.

The method is best described by reference to the
space–time diagram in Fig. 1. The thick arrow indicates
the outgoing quasi-direct beam, containing unscattered
photons propagating away from the instrument at the
speed of light c and, in the case of lidar, photons that
have undergone small-angle forward scattering but are
still considered to be part of the same beam. The cloud
and aerosol profile is discretized into layers of thickness

FIG. 1. Schematic space–time diagram illustrating the essentials
of the algorithm. The thick arrow depicts the propagation of a
transmitted beam toward a two-layer cloud. Some of the radiation
is backscattered toward the receiver (solid open-headed arrows),
and its travel time (distance on the abscissa) may be interpreted
directly in terms of range to the layer. Some is scattered into
diffuse streams inside the cloud, with the possibility of being sub-
sequently scattered back toward the receiver (dashed open-
headed arrows). In this case the travel time cannot be interpreted
directly as a depth of penetration into the cloud.
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�r, which are assumed to be homogeneous in the di-
rections perpendicular to the quasi-direct beam. It is
also assumed that the pulse length is less than or equal
to �r. The very small fraction of photons in the quasi-
direct beam that are backscattered toward the receiver
can return to the instrument along a quasi-direct path
(i.e., allowing for small-angle forward scattering on the
return journey). They arrive at a time t (on the hori-
zontal axis in Fig. 1) that may be unambiguously con-
verted into the apparent range r using r � 2ct. Section
3 describes this part of the calculation, which uses the
algorithm described in Part I or existing algorithms
from the literature to derive the quasi-direct compo-
nent of the apparent backscatter �̂d. However, the total
apparent backscatter includes the contribution from
wide-angle scattering �̂w, such that

�̂�r� � �̂d�r� � �̂w�r�. �2�

To calculate �̂w, we consider the photons in the
quasi-direct beam that experience wide-angle scattering
within the cloud and then enter the diffuse distribution,
which is modeled at each range gate by an outgoing and
an incoming stream I� traveling in two discrete direc-
tions. Their evolution is governed by the time-
dependent two-stream equations

1
c

�I+

�t
� ��1

�I�

�r
� �1���1I� � �2I�� � S�, �3�

1
c

�I�

�t
� ��1

�I�

�r
� �1���1I� � �2I�� � S�, �4�

where the coefficients 	1 and 	2 are given by

�1 � 
1 � �̃�1 � g�	2� 	�1, �5�

�2 � �̃�1 � g�	�2�1�, �6�

and the medium is described by the standard range-
dependent quantities extinction coefficient �, single-
scattering albedo 
̃, and asymmetry factor g. The cosine
of the angle between these streams and the outgoing
direction is ��1, such that the streams propagate away
from the instrument at a speed ��1c. The two streams
are represented in Fig. 1 by the short 45° arrows; note
that the short horizontal arrows simply represent the
fraction of the diffuse radiation that does not leave a
particular layer within the time step �t.

It can be seen that (3) and (4) are simply the standard
time-independent two-stream equations with the addi-
tion of a time derivative on the left-hand side. The
time-independent form is used in the radiation schemes
of almost all weather forecast and climate models (e.g.,
Meador and Weaver 1980; Zdunkowski et al. 1982; Ed-
wards and Slingo 1996; Stephens et al. 2001; Shonk and

Hogan 2008), where the equations are solved as a
boundary value problem. In modeling the propagation
of a short pulse of radiation, we simply add the time-
derivative terms to yield a pair of coupled partial dif-
ferential equations, which are solved as an initial value
problem. The time-dependent two-stream equations
have appeared before (Durian and Rudnick 1997), but
to the authors’ knowledge, their only previous atmo-
spheric use was by Ayoubi and Nelson (1989), who
tackled the lidar multiple scattering problem but only in
the small-angle limit.

The terms on the right-hand side of (3) and (4) each
have a straightforward interpretation. The first repre-
sents radiative transport from one range gate to an-
other and is analogous to the advection term in the
Navier–Stokes equations of fluid dynamics. The second
term represents the loss of energy from a stream by
scattering and absorption (governed by 	1) and the gain
of energy by scattering from the other stream (gov-
erned by 	2). The final terms S� are functions of both
r and t and represent the source of energy from the
quasi-direct beam. Calculation of the source terms is
analogous to a short-wave time-independent two-
stream radiation scheme, in which the direct solar beam
propagates down through the atmosphere and at each
height the component that is scattered forms the source
terms for the two-stream equations, which then esti-
mate the diffuse fluxes as a function of height. In the
present case, the lidar or radar transmitter performs the
same role as the sun. Section 3 describes how the source
terms are calculated; section 4 describes how (3) and (4)
are numerically integrated forward in time.

3. Calculation of the quasi-direct component and
the source terms for the diffuse calculation

a. Radar: Single scattering

For radar observations of clouds and precipitation, in
which the diameter of the largest particles is, at most, of
the same order as the wavelength, the quasi-direct com-
ponent of the apparent backscatter �̂d is described sim-
ply by the lidar equation [provided as Eq. (1) in Part I].
As explained by Hogan (2006), if range gate i repre-
sents ranges from ri to ri � �r (over which the back-
scatter coefficient �i and extinction coefficient �i are
constant) then the apparent backscatter averaged
across the gate is

�̂ i
d � �̂i exp
�2
�ri��

1 � exp��2�i�r�

2�i�r
, �7�

where �(r) � �r
0 � dr is the optical depth of the medium

to range r from the transmitter.
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The next step is to calculate the source terms for the
diffuse calculation. The diffuse radiances in each direc-
tion I�

i, j are normalized such that they represent the
fraction of the initial transmitted energy that is present
in a particular gate i in a particular time step j in a
particular direction. Therefore, the source terms S�

i and
S�

i represent the fraction of the total transmitted en-
ergy that enters the outgoing and incoming diffuse
beams, respectively, at range gate i at time ri/c after the
pulse is transmitted. First, the average transmission to
gate i, Ti, is calculated, which is simply the one-way
equivalent of the transmission part of (7):

Ti � exp
�
�ri��
1 � exp���i�r����i�r��1. �8�

The fraction of the initial energy scattered into the dif-
fuse distribution at gate i is therefore 
̃i�i Ti, where 
̃ is
the single-scattering albedo of the medium. To deter-
mine what fraction enters the outgoing stream and what
fraction enters the incoming stream, we make use of the
Eddington phase function. In the case of scattering
from the outgoing beam (� � 1) into the two streams
(� � ��1), this predicts the azimuthally averaged
phase function p(1, ��1) � 1 � 3g�1, where g is the
asymmetry factor of the medium. Thus, the source
terms at gate i are given by

Si
� � �̃i�iTi�1 � 3gi�1�	2. �9�

The factor of 2 in the denominator is due to the nor-
malization of the phase function and ensures that in a
nonabsorbing cloud (
̃�1) with infinite optical depth,
the sum of all the source terms is unity, indicating that
all the incident radiation ends up in the diffuse distri-
bution. For g � 1/3�1, (9) results in the unphysical
S� � 0, so instead in this instance we would use S�

i �

̃i�iTi and S�

i � 0. In practice this does not occur for
radar because the particles are too small, whereas for
lidar the forward lobe in the phase function means that
it is appropriate to first apply a scaling (as described in
section 3b), which reduces g below 1/3�1.

The final step is to calculate the spatial variance of
the radiation in the unscattered beam when it reaches
gate i, which is discussed in section 4b. We denote the
distance of an individual photon from the axis of the
instrument as s. If the transmitted photon distribution
from the instrument may be described as a Gaussian
with a 1/e angular half-width of �tr, then the variance of
the spatial distribution at range r is simply

s2
d � �tr

2 r2, �10�

which is the same as Eq. (5) in Part I but with a sub-
script d to denote the quasi-direct distribution of pho-

tons, to contrast with the wide-angle distribution de-
scribed in section 4b.

b. Lidar: Small-angle multiple scattering

When the characteristic size of the scatterers is much
larger than the wavelength of the radiation, as is the
case in most lidar cloud remote sensing, half of the
photons that interact with a scatterer will be diffracted
around the particle, forming a narrow “forward-
scattering lobe” in the phase function, as discussed in
detail in Part I. The remaining half intercept the par-
ticle and are then either scattered into a wide distribu-
tion of angles (forming the large-angle component of
the phase function) or absorbed. We treat the forward-
scattered photons as being part of the “quasi-direct
beam,” behaving almost if they had not been scattered
at all.

To determine the apparent backscatter due to the
quasi-direct beam �̂d, we use the “photon variance–
covariance” (PVC) approach described in Part I. By
calculating the variance and covariance of photon po-
sition and direction as a function of range, it efficiently
includes photons that have been forward-scattered an
arbitrary number of times on the outgoing or return
journeys. Two versions are available: that of Hogan
(2006), which is O(N2) efficient for a profile defined by
N points, or the more recent version described in Part
I, which achieves O(N) efficiency with only a slight
decrease in accuracy.

To describe what happens to the widely scattered
photons, it is appropriate to define what will be referred
to as “diffraction-scaled” values for the extinction co-
efficient, single-scattering albedo, and asymmetry fac-
tor:

�
 � �	2, �11�

�̃
 � 2�̃ � 1, �12�

g
 � g � �g � 1�	�̃
. �13�

This transformation is analogous to the delta-Edding-
ton scaling (Joseph et al. 1976) used in section 4, but it
is more appropriate here when we wish only to remove
the narrow forward lobe that has already been dealt
with by the PVC model, not the often larger fraction of
the forward phase function that is removed by delta-
Eddington scaling.1 In deriving (12) we have assumed

1 Joseph et al. (1976) actually derived general scaling equations
in terms of the fraction f of the scattered energy that is in the
forward lobe. They then assumed f � g2 to obtain delta-Eddington
scaling. The diffraction scaling of (11)–(13) may be obtained from
their general equations by instead setting f � (2
̃)�1.
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that, as in Mie theory, an absorbing particle only ab-
sorbs photons that are directly intercepted by it, not
those that are diffracted into the forward lobe. There-
fore, the minimum value of 
̃ represented satisfactorily
by this approach is 0.5 (for which 
̃��0). Likewise, to
prevent negative values of g� it is necessary that g �
(2
̃)�1.

At each range gate, these values are combined with
the corresponding unscaled values for molecular scat-
tering and absorption and then used to calculate a
scaled optical depth �(r) for use in calculating the trans-
mission and source terms using (8) and (9). It should be
noted that both delta-Eddington-scaled and diffraction-
scaled values have been tried in the algorithm, but only
diffraction scaling provided satisfactory agreement with
Monte Carlo calculations. It should be stressed that
diffraction scaling is only used in (8) and (9), not in the
subsequent treatment of the radiation where standard
delta-Eddington scaling is used (e.g., in sections 4a and
4c).

For lidar, the calculation of s2
d, the spatial variance of

the photons in the quasi-direct beam, needs to include
not only the unscattered photons described by (10) but
also the broadening effect caused by the contribution
from the forward-scattered photons. This may be
achieved using the procedure described in section 2b of
Part I, but without the use of the equivalent medium
theorem (hence, s2

d is not identical to the variable s2

used in Part I).

4. Calculation of the diffuse component

This section describes the derivation of �̂w, the con-
tribution to the backscatter from the photons that have
experienced wide-angle multiple scattering. First, in
section 4a, the TDTS equations are used to estimate the
diffuse radiances in each direction as a function of time
and range from the instrument. Second, because the
photons spread out laterally, we need to calculate what
fraction of this energy remains within the instrument
field of view. This is achieved in section 4b by modeling
the lateral spatial variance of photon position using es-
sentially the same equations. Finally in section 4c, the
receiver pattern is used to estimate the intensity of the
returned radiation as a function of time.

a. Integration of the time-dependent two-stream
equations

Equations (3) and (4) are integrated on a discrete
grid in time and space, where for convenience the time
step �t is related to the grid spacing �r (assumed to be
regular) by �t � �r/c. This ensures that in one time step
the quasi-direct beam will travel a distance �r, whereas

in the optically thin limit the diffuse streams will travel
��1�r. Several different values for �1 have been pro-
posed in the literature (Meador and Weaver 1980), but
in this application, the best a posteriori agreement with
Monte Carlo calculations is found for �1 � 1/2 (e.g.,
Toon et al. 1989).

For lidar observing particles much larger than the
wavelength, the standard delta-Eddington scaling (Jo-
seph et al. 1976) is used to account for the narrow for-
ward lobe in the phase function, and all further use of
these variables in the context of lidar refers to the delta-
Eddington-scaled versions. For radar, the particles are
at most of a similar scale to the wavelength of the ra-
diation, so no delta-Eddington scaling is applied.

To solve (3) and (4), we first consider the case for
�1�	2c�t K 1, which corresponds to the limit at which
the probability of a photon being scattered into the
other direction within a single time step is much less
than unity. In this limit we can discretize (3) using an
explicit forward time step and the spatial derivative us-
ing a simple upstream scheme. Although it is known
that the first-order upstream scheme is numerically dif-
fusive, this is actually a desirable property because in
reality the radiation is not all traveling at the discrete
speeds ��1c in the r direction. So if I�

i, j represents the
outgoing radiance at range gate i and time step j, then
the radiance at the subsequent time step is given by

Ii, j�1
� � Ii, j

� � c�t 
�1�Ii�1, j
� � Ii, j

� � 	�r

� �1���1Ii, j
� � �2Ii, j

� � � Si, j
� �, �14�

and similarly for I�
i, j�1. The radiances are initialized to

zero, and hence the energy enters the system purely
through the source terms S�

i, j. Because the time step is
such that the direct beam travels exactly one range gate
in one time step, S�

i, j is only nonzero when i � j.
When �1�	2c�t exceeds unity, the simple discretiza-

tion of (14) cannot be used because it predicts that
more radiation is transferred to the other stream than is
actually present, leading to numerical instability. The
problem is that many scattering events may occur
within a single time step, so the system represented by
the coupled partial differential Eqs. (3) and (4) has
become “stiff.” A solution is to define six coefficients at
each range gate, �0

i to �5
i , expressing what fraction of

the energy in I�
i, j is transferred into adjacent range gates

(or remains at the same range gate in the case of �0
i ) in

a single time step. In this way, the forward step is imple-
mented by

Ii, j�1
� � �i

0Ii, j
� � �i

1Ii, j
� � �i�1

2 Ii�1, j
� � �i�1

3 I i�1, j
�

� �i�1
4 Ii�1, j

� � �i�1
5 I i�1, j

� � c�tSi, j
� , �15�
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and similarly for I�
i�1, j. This is illustrated in Fig. 2. The

coefficients are defined once for a given profile, includ-
ing the possibility of multiple scattering within a single
time step. The calculation of these coefficients is de-
scribed in the appendix.

b. The variance of the photon distribution

To describe the rapid lateral spreading of the photon
distribution with time, we need to model the spatial
variances of the photon distribution s2�

w (the subscript
w denotes photons arising from wide-angle scattering,
as distinct from s2

d). In the case in which diffusion
theory is applicable, one would expect the evolution of
the spatial variance in an infinite medium to be gov-
erned by

�s2
w 	�t � 4D, �16�

where D is the diffusivity of the medium. This result is
from classical diffusion theory, originally derived by
Einstein in 1905 (Einstein 1956). The prefactor of 4
corresponds to expansion in two spatial dimensions,
whereas for expansion in one or three dimensions the
prefactor would be 2 or 6, respectively. In radiative
transfer, the diffusivity is given by (Durduran et al.
1997; Davis and Marshak 2001)

D � clt 	3, �17�

where lt is the transport mean-free path:

lt � 
��1 � �̃g���1. �18�

However, as recognized by Einstein, diffusion theory
is not applicable until a number of scattering events
have taken place; if (17) is substituted directly into (16)
then it can be shown that the initial evolution of the
variance implies faster-than-light travel. A more accu-

rate description can be obtained using the Langevin
equation, which predicts the statistics of particles in
Brownian motion. Ornstein and Fürth independently
used this approach to derive the positional variance of
such particles as a function of time (Uhlenbeck and
Ornstein 1930). By drawing an analogy between
Brownian motion and a photon undergoing multiple
scattering [e.g., by replacing the mean particle speed
with the speed of light (Gopal et al. 2001)], we may
write the resulting Ornstein–Fürth formula in the lan-
guage of radiation transport:

s2
w � s2

d �
4
3

l t
2�n � e�n � 1�, �19�

where s2
d is the initial spatial variance and n � ct/lt is

the effective mean number of scattering events after
time t. Note that as with (16), the factor 4 in (19) may
be replaced by 2 or 6 to represent the evolution of the
positional variance in one or three dimensions, respec-
tively. It is easy to show that in the limit of many scat-
tering events (n k 1), the time derivative of s2

w follows
diffusion theory as described by (16) and (17), whereas
in the limit of few scattering events n k 1), we have
�(s2

w)1/2/�t � (2/3)1/2c. This latter case corresponds to a
spherical shell of unscattered photons expanding out at
the speed of light from their point of origin.

To test the validity of (19) for radiation, simple
Monte Carlo calculations have been carried out in
which a distribution of photons is initialized within an
infinite, homogeneous cloud of isotropic scatterers and
the photon trajectories are modeled over time. The ini-
tial distribution is assumed to be Gaussian in the x and
y directions (centered at x � y � 0) and a delta function
in the orthogonal r direction (at r � 0), with a random
initial direction. This approximately represents photons
that have been scattered from the quasi-direct beam
into the diffuse distribution, as described in section 3.
Figure 3 shows the evolution of the spatial variance
s2

w � x2 � y2 with time, with both axes normalized to
make the results applicable to a medium with any value
of lt. It can be seen that (19) provides an excellent fit to
the Monte Carlo results for a cloud of infinite optical
depth. Direct application of diffusion theory, however,
tends to strongly overestimate the variance at early
times. Figure 3 shows the case for an initial spatial vari-
ance of s2

d � 0, but the same results are found for
nonzero values, which has the effect of simply moving
the lines upward. The deficiencies of diffusion theory
after only a few scattering events were noted also by
Platnick (2001); he fitted empirical relationships to his
Monte Carlo calculations, but they performed less well
than the Ornstein–Fürth formula does in Fig. 3.

FIG. 2. Schematic illustrating how coefficients �0 to �5 in (15)
control how the outgoing radiance I�

i, j�1 at time step j � 1 is
determined by the radiances in adjacent layers at time step j.
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The discussion so far in this section has considered
only horizontal transport. To account for the transport
of photon variance from one gate and one stream to
another, we consider the energy-weighted variances
J� � I�s2�

w and J� � I�s2�

w . The evolution of these
quantities may be described in exactly the same way as
the diffuse radiances, as follows:

1
c

�J�

�t
� ��1

�J�

�r
� �1���1J� � �2J�� � S�s2

d

� I�
�s2

w

�

�t
�

diff
, �20�

1
c

�J�

�t
� ��1

�J�

�r
� �1���1J� � �2J�� � S�s2

d

� I�
�s2

w

�

�t
�

diff
. �21�

These are essentially the same as (3) and (4), except
that the source term from the quasi-direct beam also
includes its variance s2

d, and an additional source term
appears as a result of a diffusion-like process in the
horizontal.

In terms of discretization, (20) and (21) may be
treated in exactly the same way as (3) and (4), using an

equation analogous to (15) with the same coefficients.
When required, the variances may be recovered by di-
viding through by the diffuse radiances: s2�

w � J�/I�. To
discretize the final term of (20) and (21), we need to be
able to estimate n at time step j from each of s2�

w and
s2�

w . Unfortunately, (19) cannot be inverted directly, so
instead we make a first guess by inverting one of the
two asymptotic forms for n, depending on the value of
(s2

w � s2
d)/ l2

t :

�s2
w � s2

d� 	l t
2 � �2	3�n2; �s2

w � s2
d� 	lt

2 � 0.8,

�s2
w � s2

d� 	l t
2 � �4	3��n � 1�; �s2

w � s2
d�	lt

2 � 0.8.

�22�

One step of Newton’s method in log–log space is suffi-
cient to obtain an accurate value at time step j, nj. At
the next time step, the mean number of scattering
events will be nj�1 � nj � c�t/lt. We can therefore use
(19) to obtain

�s2
w

�t
�

diff
�

s2
w, j�1 � s2

w, j

�t

�
4l t

2

3�t
�nj�1 � nj � e�nj�1 � e�nj�. �23�

This is applied in (20) and (21) at each range gate and
each time step.

As a final point, it should be noted that despite the
good fit to the Monte Carlo results in Fig. 3, other
factors can limit the accuracy of (19). In particular, in
an optically thin cloud, the photons that escape from
the top or bottom of the cloud will preferentially be
those with a smaller lateral variance, with the result that
those photons that remain in the cloud will tend to have
a larger lateral variance than would be expected in an
infinite cloud. To illustrate this, the dashed line in Fig.
3 shows a Monte Carlo calculation for a cloud with an
optical depth of � � 3; it can be seen that as the number
of scattering events increases, (19) increasingly under-
estimates the lateral variance. However, as � increases,
the behavior quickly approaches that for � � �. One
way to represent the �-dependence could be to multiply
the first term on the right-hand side of (20) and (21) by
a factor between 0 and 1, thereby representing the fact
that the photons that are transported in the direction r
tend to be those that have a lower variance in the x and
y directions. Alternatively, lt could be artificially in-
creased near cloud boundaries so that the rate of in-
crease of variance predicted by (23) would be larger.
However, appropriate theory would have to be devel-
oped to parameterize these changes in terms of vari-
ables available to the TDTS method.

FIG. 3. Monte Carlo calculation of the evolution of the vari-
ance of photon position in the x and y directions from an initial
value of s2

d � 0. Scattering is isotropic and the results are plotted
against the mean number of scattering events n � ct/lt. The thick
gray line corresponds to Monte Carlo calculations in an infinite
domain, whereas the thin dashed gray line considers a cloud that
is finite in the r direction (orthogonal to x and y) with an optical
depth � � 3. The photons are initialized in the center of the cloud
in the r direction, and those that escape are not considered in the
calculation of the spatial variance. Also shown is the prediction of
diffusion theory [Eqs. (17) and (18)] and the Ornstein–Fürth for-
mula [Eq. (19)]. The Monte Carlo calculations used 2 � 104 pho-
tons.
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c. Calculation of apparent backscatter

The final step is to calculate the apparent backscatter
due to wide-angle scattering �̂w by considering the frac-
tion of photons at each range gate and time step that is
scattered directly back toward the receiver and de-
tected (i.e., applying the formal solution for the fluxes
to obtain the radiance in the direction of the instru-
ment). This involves convolving the photon distribution
with the receiver pattern and accounting for losses on
the return journey. The apparent backscatter compo-
nent due to scattering from the diffuse photon distri-
bution at range gate i and time step j, traveling away
from (�) and toward (�) the receiver, is given by

��̂i, j
� �

�̃i�iTi�1 � 3gi�1�

4�
�

�
0

�

Ei, j
��s�Ri�s�s ds

�
0

�

Ti�s�Ri�s�s ds

,

�24�

where the first term on the right-hand side represents
the probability that photons are scattered toward the
receiver and accounts for the transmission on the return
journey. It can be derived in an analogous way to the
source term given by (9), but note that in the case of
lidar we here use the usual delta-Eddington-scaled val-
ues rather than the diffraction-scaled values. The factor
of 4� in the denominator ensures that apparent back-
scatter is expressed as the fraction of the transmitted
energy per unit of path that is returned per steradian in
the backscatter direction (i.e., it has units of m�1 sr�1;
I� and E� are not normalized in this way). The second
term on the right consists of a convolution of the pho-
ton distribution E�(s) with the receiver pattern R(s),
where s is again the lateral distance from the receiver
axis. This is normalized by a convolution of the trans-
mitter pattern T(s) with the receiver pattern so that the
multiply scattered return is scaled correctly with respect
to the unscattered return.

We assume that the transmitter pattern and the lat-
eral photon distributions can be described by Gaussians
as follows:

Ti�s� �
1

��tr
2 r i

2 exp��
s2

�tr
2 ri

2�, �25�

Ei
��s� �

I�

�s2
w

�
exp��

s2

s2
w

��. �26�

Note that the transmitter pattern is normalized so that
its integral over all s is unity; that is, 2���

0 Ti(s)s ds � 1.
The assumption of a Gaussian lateral photon distribu-

tion is valid after many multiple-scattering events, as
well as at early times when scattered photons have not
traveled far compared to the width of the Gaussian
transmitter pattern. In other cases it is less valid (e.g.,
Durian and Rudnick 1997). More precise estimation of
the distribution shape could be achieved by using the
approach in section 4b to model moments of the distri-
bution other than the second, but the performance of
the Gaussian approximation in the next section sug-
gests that this additional level of complexity is not jus-
tified.

The receiver pattern may be described by either a
Gaussian (appropriate for a radar antenna) or a “top-
hat” function (appropriate for a lidar telescope). In the
former case, when the same antenna is used for trans-
mission and reception, the receiver pattern is the same;
i.e., Ri � Ti. Substitution of these functions into (24)
yields

��̂i, j
� �

�̃i�iTi�1 � 3gi�1�

4�
�

2Ii
�

1 � s2
w,i

�
	��fovri�

2
.

�27�

In the case of a lidar, the receiver pattern may be rep-
resented by

Ri�s� � �1	��fov
2 ; s � �fov

0; s � �fov

, �28�

which results in

��̂i, j
� �

�̃i�iTi�1 � 3gi�1�

4�
�Ii

�
1 � exp���fov

2 r i
2	s2

w,i

�
�

1 � exp��fov
2 	�tr

2 �
.

�29�

The wide-angle apparent backscatter is calculated by
summing up the appropriate values of ��̂�

i, j. The com-
plication is that although apparent backscatter is output
on the same grid as the input variables (�i, 
̃i, and gi),
the time step j must be taken into account because it
leads to returns appearing to originate farther from the
instrument. This is best explained with reference to Fig.
1: to work out the returned power at a particular “ap-
parent” range on the abscissa, we must sum up the
contributions from each range gate and time step along
the diagonal path of the returning beams. The result is
that radiation scattered toward the receiver from a
given combination of range gate i and time step j will
appear to have originated from a range r � ri � ( j �
i)c�t/2. In terms of measured backscatter due to wide-
angle multiple scattering �̂w at an apparent range gate
k, we have the following summation:
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�̂k
w � �

n�1

k

��̂n,2k�n
� � ��̂n,2k�n�1

� � ��̂n,2k�n
�

� ��̂n,2k�n�1
� . �30�

Finally, this wide-angle apparent backscatter must be
added to the quasi-direct backscatter to obtain the total
apparent backscatter [Eq. (2)].

5. Comparison against Monte Carlo calculations

In this section, the fast multiple scattering model de-
veloped in this paper will be compared to the Monte
Carlo model of Battaglia et al. (2006) for both lidar and
radar cases.

a. Spaceborne lidar

Three of the experiments from the Intercomparison
of 3D Radiation Codes (I3RC, Cahalan et al. 2005b)
are used to demonstrate the ability of the model to
represent different kinds of phase functions, as shown
by the black lines in Fig. 4. The first profile (experiment
1 of I3RC; phase III, case 7) considers a semi-infinite
horizontally homogeneous cloud with an extinction co-
efficient of 0.04 m�1 that is illuminated by an instanta-
neous pulse of photons with zero lateral width in a
direction normal to the plane of the cloud. The scatter-
ers are assumed to be isotropic (g � 0) and nonabsorb-
ing (
̃ � 1).

To model the backscatter measured from this cloud,
we use a combination of single scattering (regime 1 in
Part I) and wide-angle scattering modeled by the TDTS
method (regime 3 in Part I). A range-gate spacing of 15
m is used, and the receiver is assumed to have a top-hat
response function. Figure 5 shows the apparent back-
scatter as a function of apparent range below cloud top
for three receiver fields of view, corresponding to foot-
prints with diameters between 20 and 5000 m. Good
agreement can be seen between the Monte Carlo and
the TDTS for all fields of view, although in common
with all the lidar comparisons in this section, the TDTS
model appears to overestimate the backscatter to a
modest degree.

Figure 6 compares the total energy of the diffuse
photons within the cloud as a function of time and dis-
tance below cloud top (in the case of the TDTS model
the total energy is simply I� � I�). The diagonal edge
to the top left of each panel corresponds to the incom-
ing direct beam traveling at the speed of light. Good
agreement is evident between TDTS and Monte Carlo,
with the photon concentrations decreasing rapidly be-
yond a depth of 0.5–1 km into the cloud. Thus, the
apparent backscatter values that appear to have origi-
nated from deep in the cloud in Fig. 5 are actually
predominantly from photons that penetrate only a few
hundred meters below cloud top. Figure 7 depicts the
corresponding root-mean-square (RMS) horizontal dis-
placement of the photons within the cloud. The first

FIG. 4. Scattering phase functions used in section 5 to test the
multiple scattering model: lidar phase functions from the I3RC, in
which the Mie phase function is for a distribution of liquid drop-
lets with an effective radius of 10 �m observed by a 532-nm lidar
(black lines), and 94-GHz radar phase functions for individual ice
spheres of diameter 1 mm and liquid spheres of diameter 0.8 mm
(gray lines).

FIG. 5. Comparison of apparent backscatter vs the apparent
distance below cloud top for experiment 1 of I3RC (phase III,
case 7), which consists of a semi-infinite cloud of nonabsorbing
isotropic scatterers, as described in section 5a. The thick gray lines
show the calculations of the Monte Carlo model of Battaglia et al.
(2006); the solid black lines show the results for the new method,
in this case using a combination of the TDTS method and single
scattering (SS).
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thing to note is that where the total diffuse radiative
energy in Fig. 6 falls below around 10�5, the Monte
Carlo calculation simulates too few photons to estimate
the RMS displacement accurately. However, where the
energy is larger, good agreement is found, lending sup-
port to the use of the Ornstein–Fürth formula described
in section 4b.

The second profile (experiment 3 of I3RC; phase III,
case 7) considers the same semi-infinite cloud as in the
first profile, but with a single-scattering albedo of 
̃ �
0.98 and a Henyey–Greenstein phase function with g �

0.85, as illustrated by the black dashed line in Fig. 4.
The cloud is illuminated by a point source of photons as
before. This case is modeled by a combination of small-
angle multiple scattering using the photon variance–
covariance method of Hogan (2006) and the TDTS
method. The PVC method describes the forward lobe
as a Gaussian with a 1/e half-width of � � 0.138 rad and
assumes an isotropic phase function in the near-180°
direction. Delta-Eddington scaling is used for the
TDTS method.

The results are shown in Fig. 8, where it can be seen
that the apparent backscatter profile in the first 500 m
is rather different than in Fig. 5. This is because the
backscatter coefficient (proportional to the value of the
phase function at � � � in Fig. 4) is much less. This
leads to a considerably smaller fraction of the returned
photons originating from single scattering and small-
angle multiple scattering (the component that is calcu-
lated using the PVC method); rather, the wide-angle
multiple scattering is dominant (the component calcu-
lated using the TDTS method). The performance of the
TDTS–PVC calculation is somewhat worse than in Fig.
5, probably because the Henyey–Greenstein phase
function contains an unrealistically wide forward lobe
that blends smoothly into the rest of the phase function,
so there is a less obvious transition between small-angle
scattering and wide-angle scattering. Furthermore, the
assumption made in the PVC method that after several
forward-scattering events the photon angles with re-
spect to their initial trajectory will still be small is vio-
lated because of the relatively wide forward lobe of the

FIG. 6. The base-10 logarithm of the total diffuse radiative en-
ergy in a given level as a function of time and true distance below
cloud top for the lidar profile shown in Fig. 5, calculated by (a) the
TDTS model and (b) the Monte Carlo model. Thus, in the case of
the TDTS model, the quantity shown is log10 (I� � I�).

FIG. 7. As Fig. 6, but for the RMS horizontal deviation of pho-
tons from the lidar axis, in kilometers. In (a) (the TDTS model),
the quantity shown is �(J� � J�) /(I� � I�).

FIG. 8. As Fig. 5, but for the second profile described in section
5a (experiment 3of I3RC; phase III, case 7). This consists of a
semi-infinite cloud of absorbing particles with a single scattering
albedo of 
̃ � 0.98 and the Henyey–Greenstein phase function
shown in Fig. 4.
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Henyey–Greenstein phase function. Note that the noise
in the Monte Carlo calculations is due to the finite num-
ber of photons used.

The third profile (experiment 5 of I3RC; phase III,
case 7) considers a nonabsorbing 500-m cloud of optical
depth 20 with a more realistic phase function, described
by Mie theory for a lognormal droplet-size distribution
with an effective radius of 10 �m and a standard devia-
tion that is 0.3 times the mean radius. The “equivalent-
area radius” (required by the PVC method) for such a
distribution is 11.96 �m. This is again modeled by a
combination of the PVC and TDTS methods. Note that
the PVC method is run assuming that the phase func-
tion is isotropic in the near-180° direction (but using the
true backscatter coefficient taken from the peak in the
phase function at 180°). Although the capability exists
to represent anisotropic phase functions near backscat-
ter (described in Part I), it has a small effect on the total
apparent backscatter due to the dominance of wide-
angle multiple scattering.

The results of the comparison are shown in Fig. 9,
where it can be seen that the agreement within the
cloud is much better than for the Henyey–Greenstein
phase function. This is because there is a clear transi-
tion between the small-angle forward scattering
(caused by the sharp forward lobe a few degrees from
� � 0 in Fig. 4) and the wide-angle scattering. This
is encouraging because the Mie phase function is
much more similar to the phase functions of real clouds
(liquid and ice) than Henyey–Greenstein for the same
value of g. The backscatter profile in the topmost 50 m
of the cloud is very different from that shown in both

Figs. 5 and 8 because of the peak in the phase function
in the near-180° direction, which enhances the small-
angle multiple scattering return relative to the wide-
angle return. It should be noted that in this case, be-
cause the cloud is vertically finite, the return from be-
yond an apparent distance of 500 m is entirely due to
wide-angle multiple scattering.

b. Spaceborne radar

To evaluate the performance of the new multiple
scattering model for a spaceborne 94-GHz radar, we
use an idealized profile based on scenario 3 of Battaglia
et al. (2008). This consists of a 4-km layer of 1-mm ice
spheres overlying a 4-km layer of 0.8-mm raindrops,
with the properties indicated to the right of Fig. 10; the
corresponding phase functions are shown by the gray
lines in Fig. 4. The total optical depth of the cloud is 6.7.
The pulse length is 100 m and the radiation is unpolar-
ized. The radar is at an altitude of 715 km and is as-
sumed to have a Gaussian transmitter pattern with a 1/e
half-angle beam divergence of �tr � 1.13 mrad, similar
to CloudSat. The reference dielectric factor in (1) is
|Kl|

2 � 0.75.
Figure 10 compares the Monte Carlo model and the

new model (using the sum of the TDTS and single scat-
tering returns) for a receiver with the same Gaussian
pattern as the transmitter (the CloudSat field of view)
and an infinite field of view. Very good agreement is
again observed. It should be noted that although this
case is vertically inhomogeneous, in some regards it is
rather less challenging than the lidar comparisons in the
previous section: first, for particles smaller than the

FIG. 9. As Fig. 5, but for the third profile described in section 5a
(experiment 5 of I3RC; phase III, case 7) in which the cloud is 500
m thick and has an optical depth of 20; the scattering is described
by the Mie phase function shown by the black solid line in Fig. 4.

FIG. 10. Comparison of apparent radar reflectivity factor for the
case described in section 5b. Note that D is particle diameter and
S is extinction-to-backscatter ratio.
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wavelength, the phase function has a very simple shape,
being nearly Rayleigh (see Fig. 4). Second, the trans-
mitter has a Gaussian pattern and so after a few scat-
tering events the distribution of radiation is still reason-
ably well described by a Gaussian, unlike for the point
source in the I3RC cases.

Figures 11 and 12 compare the total energy and RMS
horizontal displacement of the radiation within the
cloud as a function of time and distance below cloud
top. The diagonal edge to the left of each panel again
corresponds to the incoming direct beam. Reasonable
agreement is evident for both variables, although as
time progresses there is a slight tendency for the TDTS
model to underestimate both of them. A possible rea-
son for this was given at the end of section 4b: if the
radiation that escapes from the top of the cloud is pref-
erentially that with a smaller spatial variance, then that
which remains will tend to have a larger variance. Like-
wise, the remaining radiation will tend to be more di-
rected in the horizontal than the vertical and so will
tend to remain in the cloud for longer. Neither of these
effects is currently represented in the TDTS model.
There is also evidence for weak artifacts introduced by
the two-stream approximation: both Figs. 11a and 12a
exhibit kinks in the contours corresponding to a broad
ray propagating out from the origin with a speed of c/2.
However, these effects do not appear to have fed
through significantly to the backscatter in Fig. 10.

6. Conclusions

A fast model has been described to calculate the
time-dependent multiple-scattering returns from lidar

or radar. It uses a hybrid approach, with the small-angle
multiple-scattering returns characteristic of lidar being
calculated by the photon variance–covariance (PVC)
method (either as formulated in Part I or as formulated
by Hogan 2006) and the wide-angle multiple scattering
that occurs for both radar and lidar being calculated
using the time-dependent two-stream (TDTS) approxi-
mation described here. Both components of the model
are O(N2) efficient or better for an N-point profile. An
intercomparison of the speeds of the various algorithms
is given in Table 1. It can be seen that the execution
time is typically on the order of milliseconds, making it
particularly suitable for use as the forward model in
spaceborne radar and/or lidar retrieval schemes in
which a new profile is recorded approximately every
100 ms. It is also useful when taking the approach of
evaluating the representation of clouds in climate and
forecast models by forward-modeling the observed
variables, something that has recently been done for
the CloudSat radar (Haynes et al. 2007) and the ICESat
lidar (Wilkinson et al. 2008).

Comparison of the new scheme against Monte Carlo
shows encouragingly good agreement both for the vari-
ables describing the photon distribution versus time
and range and for the final apparent backscatter pro-
file. Poorer agreement is found for phase functions in
which forward scattering is dominant but is not in a
very narrow forward lobe (such as the Henyey–
Greenstein phase function for g � 0.85), because then
some of the assumptions made by the PVC method are
violated. However, for both the more isotropic phase
functions that are encountered by spaceborne radar
and the narrow forward-peaked phase functions en-
countered by lidar in the large-particle limit, there is a

FIG. 11. The base-10 logarithm of the total diffuse radiative
energy in a given level as a function of time and true distance
below cloud top for the radar case shown in Fig. 10, calculated by
(a) the TDTS model and (b) the Monte Carlo model.

FIG. 12. As Fig. 11, but for the RMS horizontal deviation of the
radiation from the radar axis, in kilometers.
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much more clear-cut division between small-angle and
wide-angle multiple scattering, and the hybrid ap-
proach works well.

A number of developments of the TDTS model are
planned. First, there is a need to find a fast method to
estimate the Jacobian matrix (i.e., the derivative of the
attenuated backscatter with respect to each of the input
variables, in particular the extinction coefficient at each
range gate). This is required if the model is to be used
as part of a variational retrieval scheme (Rodgers 2000;
L’Ecuyer and Stephens 2002; Delanoë and Hogan
2008). Second, a common feature of spaceborne lidar
and radar observations is of multiply scattered cloud
echoes appearing to originate from beneath the ground.
To forward-model this phenomenon, it is necessary to
include surface reflection in the model. This capability
has recently been added to the Battaglia et al. (2006)
Monte Carlo code, which will be used to test its imple-
mentation in the TDTS code. Third, a further piece of
information available when multiple scattering occurs is
from the depolarization ratio, because in a medium that
normally does not depolarize (e.g., liquid water drop-
lets observed by lidar), the effect of multiple scattering
is to progressively depolarize the light such that, in prin-

ciple, this variable provides information on the number
of scattering events that have occurred (Sassen and Pet-
rilla 1986). To interpret such measurements correctly,
the capability to model the depolarization due to mul-
tiple scattering will be added to both the PVC and
TDTS models.

The code for the algorithm is freely available for
download from the lead author’s web site (http://www.
met.reading.ac.uk/clouds).
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APPENDIX

Discretizing the Two-Stream Equations in
Optically Thick Media

As discussed at the end of section 4a, for optically
thick media (specifically those with lt � �r) a simple
discretization of the time-dependent two-stream equa-
tions such as (14) is inaccurate and may be numerically
unstable. A solution is to use the discretization given in
(15), in which the coefficients �0

i to �5
i are precom-

puted at each gate i. These coefficients describe how an
initial radiance I�

i, j (or I�
i, j) at time step j is distributed

among the outgoing and incoming radiances in the ad-
jacent range gates at the subsequent time step j � 1.
This appendix outlines how these coefficients are de-
rived.

For simplicity, we assume that the properties of
range gates i � 1 and i � 1 are the same as at gate i; this
ensures that the �i coefficients only depend on the
properties at gate i. The photons that constitute the
radiance I�

i, j are assumed to be traveling in the same
direction ��1. In a single time step �t � �r/c, the total
distance traveled by an unabsorbed photon will be �r.
However, we are interested in the mean distance trav-
eled in the direction toward or away from the instru-
ment in a single time step. In the two-stream approxi-
mation, the maximum that this can be is �1�r.

Our approach is semiempirical. First, high-resolution
runs of the time-dependent two-stream method are per-
formed to estimate the coefficients as a function of the
optical depth within a single range gate, using the
simple discretization of (14). In each simulation, a one-
dimensional grid between r � ��r and r � 2�r is ini-
tialized with I� � 1 between r � 0 and r � �r and I� �
0 elsewhere; I� is set to 0 everywhere. The high-
resolution grid spacing �r� is chosen to ensure that the
optical depth within a single high-resolution layer is less
than 0.05. The simulation is run for time �t � �r/c, but

TABLE 1. Execution time of the various algorithms for a profile
described by N � 100 cloudy points, relative to the time for the
Hogan (2006) algorithm (which takes 1.9 ms on a 1-GHz Intel
processor). The reported efficiency enables the time for any other
number of points to be estimated. Relative execution times are
reported to two significant figures and have been calculated from
repeated calls to the core algorithm, thereby excluding any time
associated with memory allocation and input/output of data. The
O(N ) PVC method was described in Part I and its speed is re-
ported here for both the standard implementation and the imple-
mentation taking into account the anisotropic phase function in
the near-180°direction (assuming liquid droplets). The “explicit”
method was outlined in Part I and separately calculates the con-
tribution from each order of scattering (up to the indicated order)
as in the Eloranta (1998) algorithm; the reported speed is found to
be within 20% of Eloranta’s algorithm for the same profile. The
Monte Carlo model is that of Battaglia et al. (2006), the speed of
which scales with the number of photons used and hence the
accuracy; Battaglia et al. (2008) reported that 28 � 106 photons
took 5 h to compute on a single 3-GHz Intel processor.

Algorithm Efficiency Relative time

Quasi-small-angle scattering
PVC (Part I) N 0.066
PVC (Part I, anisotropic) N 0.10
PVC (Hogan 2006) N2 1.0
Explicit to 3rd order N3 23
Explicit to 4th order N4 590
Explicit to 5th order N5 62 000
Wide-angle scattering
TDTS (this paper) N2 8.7
Monte Carlo — �107
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using time steps of �t� � �r�/c. At the end of the simu-
lation, the six coefficients are calculated as the fraction
of the initial energy that has been transported to each
of the two directions and three ranges of �r in the
domain. The results for 
̃ � 1 and g � 0.45 are shown
by the symbols in Fig. A1 as a function of the optical
depth of one layer. Figure A2 shows the same, but for
a layer of partially absorbing isotropic scatterers.

The next step is to fit these computations analyti-
cally. When one attempts to calculate analytically the
distance that radiation will be transported in the sce-
nario described above, it becomes clear that four par-
ticular variables must be important. These variables are
now derived. They are then combined to fit the mod-
eled points indicated in Figs. A1 and A2, and heuristic
arguments are presented to explain the analytical ex-
pressions.

The first variable is the fraction of photons that will
remain unscattered after a single time step:

Ft � exp���r	lt�, �A1�

where lt is the transport mean-free path [see Eq. (18)].
The second variable is the fraction of photons that are
unabsorbed (although they may be scattered) after a
single time step:

Fa � exp���r	la�, �A2�

where la � [�(1 � 
̃)]�1 is the absorption mean-free
path. Of those photons that are scattered before a time

step has elapsed, the mean fraction of a range gate that
has been traversed at the point of scattering provides
our third variable, given by

L �
1

�r �0

�r

�1r exp��r	lt� dr��
0

�r

exp��r	lt� dr

� �1� lt
�r

�
Ft

�1 � Ft�
	. �A3�

Last, we consider the behavior in the optically thick
limit when there are many scattering events within the
time step. In this situation, diffusion theory may be
applied, and the fraction of the radiation that diffuses
from one layer to the next in a single time step provides
the fourth variable:

Ld � �1Fa�lt 	3�r�1	2. �A4�

The form of this expression can be explained as follows:
(16) and (17) predict that in a time step the mean-
squared displacement changes in proportion to clt�t �
lt�r, and hence the root-mean-square displacement in
proportion to �lt�r. Because (A4) is the fraction of a
range gate that has been traversed, we divide through
by �r and multiply by Fa to remove absorbed photons.

Expressions for the coefficients �0
i to �5

i are derived
by assuming that the total transport from one gate and
direction to another can be described by the sum of a
nondiffusive component, which dominates in the opti-
cally thin limit and involves the first three variables, and
a diffusive component, which dominates in the optically
thick limit and involves the fourth variable. The non-
diffusive transport component essentially describes the
transport of photons that have some memory of their
initial direction within a single time step. A combina-
tion of empirical fitting and physical insight was used

FIG. A1. Values of the coefficients introduced in (15) vs the
optical depth of a single model level for a cloud with 
̃ � 1 and
g � 0.45. The symbols are derived from a high-resolution run of
the TDTS equations (as described in the appendix); the lines
represent semiempirical fits to these points as described by (A1)–
(A9). Note that this value of g corresponds to g � 0.82 after
delta-Eddington scaling.

FIG. A2. As Fig. A1, but for 
̃ � 0.95 and g � 0.
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to derive the following fits to the points in Figs. A1
and A2:

�0 � F1�1 � �1� � �Fa � Ft��1	2 � L� � LdC0,

�A5�

�1 � �Fa � F1��1 � L�	2 � LdC1, �A6�

�2 � �1Ft � �Fa � Ft�L � LdC0 	2, �A7�

�3 � �5 � �Fa � Ft�L	4 � LdC1	2, �A8�

�4 � LdC0 	2, �A9�

where the empirical terms scaling the diffusive trans-
port are

C0 � exp
�3.7�lt 	�r�3	4�, �A10�

C1 � exp
�3.7�lt 	�r��. �A11�

These two terms simply correct for the fact that at low
optical depths (lt K �r), diffusion theory (expressed by
Ld) predicts excessively high transport.

The nondiffusive transport terms (those involving Fa,
Ft, and L) may be understood physically. For example,
consider �2, which describes the transport from one
gate to the next in the same direction. The first term on
the right-hand side of (A7) expresses the fact that in
one time step, some fraction Ft of the photons are not
scattered or absorbed, so they travel a further fraction
�1 of a range gate. The second term states that an ad-
ditional fraction Fa � Ft of the photons are scattered
after traveling a fraction L of a range gate, on average.
Similar arguments may be used to understand the other
nondiffusive transport terms.

An alternative approach to the above would be to
employ the Langevin equation [used in the derivation
of Eq. (19)] to provide a more physical basis for the
transport in the transition between ballistic and diffu-
sive behavior.
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