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ABSTRACT

This paper presents a new method for representing the important effects of horizontal radiation transport

through cloud sides in two-stream radiation schemes. Ordinarily, the radiative transfer equations are dis-

cretized separately for the clear and cloudy regions within each model level, but here terms are introduced

that represent the exchange of radiation laterally between regions and the resulting coupled equations are

solved for each layer. This approachmay be taken with both the direct incoming shortwave radiation, which is

governed by Beer’s law, and the diffuse shortwave and longwave radiation, governed by the two-stream

equations. The rate of lateral exchange is determined by the area of cloud ‘‘edge.’’ The validity of the method

is demonstrated by comparing with rigorous 3D radiative transfer calculations in the literature for two cloud

types in which the 3D effect is strong, specifically cumulus and aircraft contrails. The 3D effect on shortwave

cloud radiative forcing varies between around 225% and around 1100%, depending on solar zenith angle.

Even with an otherwise very simplistic representation of the cloud, the new scheme exhibits good agreement

with the rigorous calculations in the shortwave, opening the way for efficient yet accurate representation of

this important effect in climate models.

1. Introduction

Clouds are a key component of the climate system

on account of their strong interaction with radiation

(Randall et al. 2007). Numerous studies have high-

lighted the radiative flux bias in climate models resulting

from neglect of subgrid cloud inhomogeneity (e.g.,

Cahalan et al. 1994; Barker et al. 1999; Pomroy and

Illingworth 2000). Several methods to represent subgrid

inhomogeneity have been proposed that are efficient

enough to be included in climate models (Barker 1996;

Pincus et al. 2003; Shonk and Hogan 2008). Some stud-

ies have examined cloud structure in observational data

(Oreopoulos and Cahalan 2005), while others have quan-

tified the impact of cloud horizontal structure and vertical

overlap on the global radiation budget using reanalysis

data (Shonk and Hogan 2010) and model simulation

(Morcrette and Jakob 2000; Pincus et al. 2006; Shonk

et al. 2012).

A related piece of missing physics in the treatment of

clouds and radiation in climate models is transport of

radiation through cloud sides. In current climatemodels,

radiation is allowed to enter or leave a cloud in a model

level only through its base or top. Full 3D radiative transfer

calculations have demonstrated that this can lead to sub-

stantial errors in cloud radiative forcing, particularly for

cumulus clouds (e.g., Pincus et al. 2005), deep convec-

tion (DiGiuseppe and Tompkins 2003), aircraft contrails

(Gounou and Hogan 2007), and cirrus uncinus (Zhong

et al. 2008). The magnitude of the 3D effect (the dif-

ference in radiative fluxes between radiation calcula-

tions including and neglecting 3D transport) is dependent

on the ratio of the area of cloud side to the total cloud

cover. Therefore, cumulus clouds are of particular im-

portance when considering 3D radiative effects: although

when present they have a cloud cover of only around 0.25,

cumulus regimes cover huge stretches of the tropical

oceans.

The myriad of ways that radiation can interact with

a complex cloud field makes it very difficult to devise an

accurate way to represent 3D effects that is efficient

enough to use in a general circulation model (GCM).

Therefore, despite the numerous detailed studies on in-

dividual cloud fields, no global-scale calculations have
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been performed to estimate the impact of 3D effects

on the radiation budget in both the shortwave and

longwave and the possible feedback on cloud proper-

ties and other atmospheric variables. It is sometimes

suggested that 3D effects must be quite modest on a

global scale, but we cannot assume this until a scheme to

represent 3D effects comprehensively in a radiation

scheme is applied in a GCM and climate simulations are

performed.

One approach is to apply stochastic theory to the ra-

diative transfer problem by defining probability density

functions that determine whether a photon is in cloud or

clear sky (Titov 1990). Photon transport through cloud

sides can then be represented by adding two extra terms

to the basic radiative transfer equations weighted by the

probability density function of the photon arriving at

a cloud boundary (Malvagi et al. 1993). A 3D stochastic

radiative transfer code was described and tested by Lane-

Veron and Somerville (2004). While its results were

promising, it was found to be inappropriate for certain

cloud scenarios and has yet to be implemented in a

GCM.Another approach was used by Várnai andDavies

(1999) to show the radiative effects of allowing radiative

transfer through cloud sides. Their tilted independent

column approximation (TICA) calculated fluxes along

profiles of cloud aligned with the direction of the sun,

therefore allowing direct radiation to pass between cloud

and clear-sky regions. Unfortunately, the expense of an

ICA-type calculation makes this approach much too ex-

pensive for GCM use.

The only method that has been implemented in a

GCM to date is the so-called exponential–solar zenith

angle–random (EXP-SZA-RAN) approach of Tompkins

and DiGiuseppe (2007), which makes the overlap of

clouds in different layers more random with increasing

solar zenith angle. The resulting increase in total cloud

cover is intended to approximately represent the fact

that when the sun is near the horizon, incoming solar

radiation is more likely to intercept a cloud than when it

is overhead. When included in a GCM, they found local

changes in top-of-atmosphere net shortwave flux of up

to 200 W m22. Although this method has the advantage

of being conceptually simple and easy to implement in

existing radiation schemes, it has several shortcomings.

Firstly, it only treats 3D effects associated with direct

incoming shortwave radiation, not the effects associated

with diffuse transport of shortwave and longwave radi-

ation, which are not dependent on solar zenith angle. It

was shown by Heidinger and Cox (1996) that there is

a significant 3D longwave effect for cumulus clouds, and

in the next section it will be shown that diffuse transport

of shortwave radiation is also important via a mecha-

nism we refer to as shortwave side escape.

In this paper we present a newmethod for representing

the interaction of radiation with clouds in GCMs that is

able to overcome these difficulties. It uses the familiar

division of amodel grid box into clear and cloudy regions,

or in the case of the ‘‘Tripleclouds’’ method of Shonk and

Hogan (2008) a split into three regions: two cloudy and

one clear. Extra terms are introduced into the equations

of radiative transfer that represent the lateral exchange of

radiation between regions.

In section 2, a conceptual model of 3D radiative

transfer is presented that summarizes the effect of 3D

transport by three mechanisms: two in the shortwave

and one in both the shortwave and longwave. Results of

shortwave 3D radiative transfer calculations from the

literature are then presented, which are explained in

terms of the first two effects. In sections 3 and 4 we de-

scribe how the various parts of a 1D radiative transfer

calculation may be modified to include 3D effects. Then

in section 5, a simple implementation of the new scheme

is used to reproduce the results from the literature shown

in section 2.

2. Conceptual model

To aid the formulation of the new radiative transfer

scheme, it is necessary to present a conceptual model for

the ways that 3D effects in the presence of clouds change

net fluxes in the longwave and shortwave. This will then

be used to explain qualitatively some full 3D radiative

transfer calculations in the literature. Figure 1 presents

what we consider to be the three dominant mechanisms

of 3D radiative transport, adapted from Gounou and

Hogan (2007). Várnai andDavies (1999) proposed amore

complex model with four separate mechanisms for the

shortwave alone, but for the purposes of this paper three

mechanisms are sufficient.

The first mechanism—shortwave side illumination—

is the most widely studied. It increases with solar zenith

angle and results in a larger fraction of incoming solar

radiation being reflected back to space than in the

equivalent 1D calculation in which no horizontal trans-

port between regions is permitted. The example in Fig.

1a shows a case when all of the incoming solar radiation

intercepts a cloud, even though the cloud cover is only

one-third. In the equivalent 1D calculation, two-thirds

of the incoming radiation would reach the surface with-

out intercepting the cloud (neglecting gaseous scattering

and absorption for simplicity).

Figure 2 shows the percentage change to top-of-

atmosphere (TOA) shortwave cloud radiative forcing,

as a function of solar zenith angle, calculated using full

3D radiative transfer and reported in the literature for

several different cloud types.Here, cloud radiative forcing
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(CRF) is defined as the difference between the clear-sky

and cloudy-sky upwelling shortwave radiation at TOA;

that is,

CRF5F1
clear,TOA 2F1

cloudy,TOA . (1)

Thus, shortwave CRF is negative except over very re-

flective snow-covered surfaces. The quantity shown in

Fig. 2 is given by 100 3 (CRF3D 2 CRF1D)/CRF1D,

where CRF3D is the CRF calculated using a full 3D ra-

diative transfer model, while CRF1D is the CRF calcu-

lated using a standard 1D radiative transfer model.

It can be seen in Fig. 2 that, for cumulus with a solar

zenith angle greater than around 458, the magnitude of

the CRF is increased significantly because of the mech-

anism of shortwave side illumination. For solar zenith

angles greater than around 808, the calculations of Pincus
et al. (2005) for cumulus clouds predict that the magni-

tude of CRF can be doubled. The results of Gounou and

Hogan (2007) for aircraft contrails confirm that side il-

lumination is responsible: when they orientated their

contrails perpendicular to the sun (the solid gray line in

Fig. 2), thereby maximizing the solar illumination of the

side of the contrail, the 3D effect was maximized, but

orientating their contrails parallel to the sun (the dashed

gray line in Fig. 2), thereby removing any illumination of

the side of the contrail, the CRF enhancement at high

solar zenith angles was removed.

It is clear from Fig. 2 that side illumination is not the

only shortwave 3D effect, since for solar zenith angles

less than 458, the magnitude of the CRF for cumulus and

contrails is reduced when 3D transport is included, by

up to 27% in the study of Pincus et al. (2005). This we

explain in Fig. 1b by the mechanism of shortwave side

escape, referred to as ‘‘downward escape’’ by Várnai and

Davies (1999). Shortwave radiation from an overhead

sun that enters a cloud through its top may escape from

the sides of a cloud, where in a 1D calculation it may

not and is more likely to be reflected back to space.

Since cloud particles are typically larger than the wave-

length of the radiation, the scattering is predominantly

in the forward direction, and so radiation escaping from

the side of a cloud is more likely to be directed toward

the surface than back to space. Therefore, this mechanism

reduces CRF relative to a 1D calculation.

In the longwave, inclusion of 3D transport tends to

increase the CRF owing to the presence of cloud sides,

making the cloud a more effective emitter and absorber,

as illustrated in Fig. 1c and which we refer to as longwave

side exchange. Essentially the same mechanism was iden-

tified by Killen and Ellingson (1994). It was estimated by

Heidinger and Cox (1996) that 3D transport in cumulus

FIG. 1. Schematic explaining how 3D radiative transfer affects

CRF, with the lighter colors outside clouds indicating more intense

radiation and the darker colors less intense radiation. (a) Short-

wave side illumination: at high solar zenith angles, a greater frac-

tion of incoming solar radiation is intercepted by cloud than in

standard 1D radiative transfer, increasing the CRF. (b) Shortwave

side escape: at low solar zenith angles, the radiation that escapes

out of cloud sides tends to be forward scattered toward the ground,

decreasing the CRF. (c) Shortwave and longwave side exchange:

above a field of clouds, the clouds subtend a greater fraction of the

downward-looking hemisphere [accounting for cos(u) dependence

of their contribution to the upwelling irradiance] than the areal

cloud coverage. Hence, the longwave CRF is larger than in the

ICA. In the shortwave, less reflected radiation from the surface is

able to escape back to space.

FIG. 2. The effect of 3D radiative transfer on shortwave TOA

CRF, vs solar zenith angle, for cumulus clouds and contrails, cal-

culated rigorously using full 3D radiative transfer codes. The

‘‘small cumulus’’ results are fromBenner and Evans (2001) and the

large cumulus from Pincus et al. (2005), both of whom used Monte

Carlo models. The contrail results are from Gounou and Hogan

(2007), who used the spherical harmonics discrete ordinatemethod

(SHDOM) of Evans (1998).
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clouds increases the surface longwave cloud forcing

by as much as 30%. Gounou and Hogan (2007) reported

that 3D transport typically increases the TOA longwave

forcing of contrails by around 10%. There is a large

degree of cancellation between the shortwave and long-

waveCRFs of contrails (Stuber et al. 2006), and therefore

it turns out that the modest effects of 3D transport in the

shortwave and longwave individually add up to very

substantial effect on net CRF, leading to a doubling or a

reversal of the sign depending on solar zenith angle

(Gounou and Hogan 2007). It should be noted that the

mechanism in Fig. 1c can also modulate the fraction of

reflected shortwave radiation from the surface that es-

capes to space, but the other two mechanisms appear to

dominate in the shortwave.

The results reviewed in this section so far have been

for clouds with a large area of cloud side relative to their

cloud cover, particularly convective clouds such as cu-

mulus. For stratiform clouds the 3D effect is smaller

because of the reduced area of cloud side. For example,

Zuidema and Evans (1998) reported only around a 2%

effect for the interaction of shortwave radiation with

stratocumulus clouds. Zhong et al. (2008) found that op-

tically thin cirrus had up to a 15% effect in the shortwave

and 10% in the longwave, but reducing for optically thicker

ice clouds.

3. Method

Figures 3a–c present a schematic of the three steps in

a standard 1D radiation scheme. Figures 3d–i present

the equivalent steps in our new scheme that incorporates

the effects of 3D transport, which involves modifications

to the three existing steps and three additional steps.

Although this schematic shows cloud in only a single

layer, the new method is designed to be applied with

the multilayer representation of the atmosphere used in

GCMs, with clouds in an arbitrary number of the layers.

Thus, the shadowing of one cloud by another is treated

by standard cloud overlap methods that define the de-

gree of overlap at layer edges.

These procedures represented in Fig. 3 are described

in full in the following subsections. Section 3a describes

how the treatment of the direct incoming shortwave

beam may be modified to include radiation exchange

between regions. In the shortwave, scattering from the

direct beam then acts as a source for the calculation of

the diffuse radiation field, while in the longwave, the

source for the diffuse radiation field is thermal emission.

Section 3b describes how the distribution of sources

with height in a single atmospheric layer can be used to

calculate the exitant fluxes at the top and bottom of

the layer; transport through cloud sides is represented

via a two-stage process illustrated by Figs. 3e,f. Finally,

section 3c describes how the sources at layer edges, to-

gether with the reflectance and transmittance of each

layer, may be used with a discretized version of the two-

stream equations to calculate the vertical distribution of

upwelling and downwelling diffuse fluxes in the atmo-

sphere. Again, to represent transport through cloud

sides, a three-stage process is employed as illustrated in

Figs. 3g–i.

FIG. 3. Schematic showing the various steps in a 1D radiation scheme. (top) The three steps in a standard 1D scheme: (a) calculation of

the penetration of the direct solar beam to various levels in the atmosphere, (b) the use of this to calculate the upwelling and downwelling

radiation sources at layer edges, and (c) the use of surface and edge sources to calculate the profile of diffuse upwelling and downwelling

fluxes. In each case, radiation within a particular region (clear or cloudy) is not permitted to travel laterally to the other region; rather, the

regions are treated as periodic and the implicit transport from one side of a region to the other is illustrated by the dashed horizontal lines.

(bottom) The equivalent steps in our new scheme, including three additional steps, as described in detail in section 3. The open circles are

used to denote radiation originating from a previous step in the sequence, or in the case of (b) and (e) in the longwave, thermal emission.

The symbols F, G, H, I, H0, and I0 refer to how the different components of the flux are denoted in section 3.
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The equations presented in this section are all mono-

chromatic in the sense that they are valid over a part of

the spectrum narrow enough that the scattering and ab-

sorption properties of the atmosphere can be considered

constant. For simplicity, however, the dependence of

each term on wavelength has not been written.

a. Direct solar beam

The first step of a 1D radiation calculation in the

shortwave part of the spectrum is to determine how

much of the direct (i.e., unscattered) beam penetrates

down to any point in the atmosphere. In the case where

the atmosphere is divided into discrete layers, we have to

solve

dF

dz
52

be

m0

F (2)

in each layer, where F(z) is the direct solar irradiance at

a particular point in the layer, z is physical depth from

the top of the layer down to that point,m0 is the cosine of

the solar zenith angle, and be is the volume extinction

coefficient. The solution of (2) is Beer’s law, given by

F(z)5F0 exp

�
2
bez

m0

�
, (3)

where F0 is the incoming solar irradiance into a plane

that is parallel to the surface of the earth at the wave-

length under consideration. In each layer, Beer’s law is

applied separately to each region within it and, if there

are multiple regions in each layer (e.g., clear and cloudy),

overlap rules are used to determine how the exitant ir-

radiances at the base of that layer are combined to obtain

the input irradiances at the top of the regions of the next

layer. At the surface, a Lambertian reflector would be

represented by treating all of the direct beam that is re-

flected by the surface as a boundary source term for the

diffuse radiation calculation using the two-stream equa-

tions (see section 3c). Note that the optical depth and

other single-scattering properties refer to delta-Eddington-

scaled quantities (Joseph et al. 1976).

So how can we account for the direct beam of the sun

passing through the sides of clouds? We need to modify

(2) for each region to account for lateral exchange of

radiation between regions.We use the same approach as

Malvagi et al. (1993): add two extra terms to (2)—one to

account for loss of radiation from the region, the other to

account for gain of radiation from the other region.

Since the optical depth of each region will be different, it

is necessary to define a common vertical coordinate. We

use height coordinate z that increases with depth down-

ward into the layer from zero at the top to z1 at the base.

Thus, for two regions a and b, we require the corresponding

irradiances Fa(z) and Fb(z) to satisfy

dFa

dz
52

ba
e

m0

Fa 2 f abdirF
a1 f badirF

b ,

dFb

dz
52

bb
e

m0

Fb 2 f badirF
b 1 f abdirF

a , (4)

where ba
e and bb

e are the volume extinction coefficients

of the two regions of the layer, f abdir represents the rate at

which radiation is laterally transported from region a to

region b, and conversely for f badir.

To avoid breaking the flow of the discussion, we post-

pone the description of the derivation of these rates until

section 4. It is important to define Fa and Fb (which have

units of watts per square meter) as the radiative power in

a particular region dividedby the area of the entire grid box

(all regions). This ensures that energy is conserved when

the same rate f abdirF
a is used for the power leaving region

a as the power entering region b. It also means that the

mean irradiance of the entire grid box is simply F 5 Fa 1
Fb. In writing (4) we are assuming that, at any height in the

layer, the radiation in a particular region is evenly distrib-

uted across it, so that the rate of escape to another region is

simply proportional to the mean irradiance in the region.

Equation 4 may be solved as a pair of coupled ordi-

nary differential equations (ODEs) assuming that the

incoming irradiances at the top of the layer, Fa(0) and

Fb(0), are known. The solution is

Fa(z)5
(q1 a2 b)Fa(0)2 2f badirF

b(0)

2q
exp(k1z)

1
(q2 a1 b)Fa(0)1 2f badirF

b(0)

2q
exp(k2z) ,

Fb(z)5
(q2 a1 b)Fb(0)2 2f abdirF

a(0)

2q
exp(k1z)

1
(q1 a2b)Fb(0)1 2f abdirF

a(0)

2q
exp(k2z) , (5)

where

a5ba
e /m01 f abdir , (6)

b5bb
e /m0 1 f badir , (7)

q5 (a21 b22 2ab1 4f abdirf
ba
dir)

1/2 , (8)

k152(a1 b1 q)/2, and (9)

k252(a1 b2q)/2. (10)
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It can be shown by substitution that in the case of zero

lateral transport between regions (f abdir 5 f badir 5 0), the

solutions given by (5) reduce to Beer’s law for the two

regions separately.

Figure 4 compares the profile of direct fluxes in clear

and cloudy regions for a case with a cloud cover of 1/3 and

a solar zenith angle of 808. The dashed lines correspond

to a standard 1D radiation scheme in which transport

between regions is neglected and it can be seen that al-

most all of the radiation incident at the top of the clear-

sky region reaches the bottom, while virtually none

reaches the bottom of the cloudy region. In contrast, the

solid lines include the effect of transport between re-

gions described by (5). Here it can be seen that more

than half of the radiation that enters the top of the clear-

sky region passes through the side of the cloud before

reaching the base of the clear-sky region, resulting in a

nonnegligible amount of direct-beam radiation in the

cloudy region at all heights.

To determine the irradiances at the base of regions

a and b of the layer, we substitute z 5 z1 into (5). As be-

fore, overlap rules are then used to determine how the

irradiances are combined to find the inputs at the top of

the next layer down in the atmosphere. It can be seen in

Fig. 4 that there is a considerable reduction of order 40%

in the total direct flux reaching the base of the layer, as

would be expected from the conceptual model of short-

wave side illumination presented in Fig. 1a.

This may be extended to treat more than two regions,

such as the Tripleclouds scheme of Shonk and Hogan

(2008), where horizontally inhomogeneous clouds are

treated as two internally homogeneous regions (in ad-

dition to the clear-sky region) with different optical

depths. In this case, (4) would be extended to include an

extra equation for the irradiance in the third region

Fc(z), and additional terms would be added to each of

the three equations to represent the gain to or loss from

region c. In this case the solution for two regions pre-

sented in (5)–(10) would be replaced by the solution for

three regions.

b. Diffuse edge sources

To describe the transport of the diffuse component of

the radiation field, the two-stream equations are employed.

They treat the radiation into the upward and downward

hemispheres as a pair of irradiancesG1 andG2 that are

assumed to travel in discrete directions 1m1 and 2m1,

respectively. Values for m1 vary between radiation

schemes, but a typical value is 0.6 (Fu et al. 1997), cor-

responding to a zenith angle u1 of 538. The first part is

applied independently in each layer to work out how

much of the source in the interior of the layer emerges

from the top and bottom of that layer. These ‘‘edge

sources’’ are then used in the second two-stream step

described in section 3c.

In the familiar 1D case with lateral transport between

regions, the two-stream equations form a pair of coupled

ODEs thatmay be applied separately within each region

of a given layer of the atmosphere. To represent 3D ef-

fects, we may apply the same procedure as for the direct

beam, and add lateral transport terms, such that the two-

stream equations become

dGa2

dz
5ba

e(2ga1G
a2 1ga2G

a1 1Sa2F )

2 f abdiffG
a2 1 f badiffG

b2 ,

2
dGa1

dz
5ba

e(2ga1G
a1 1ga2G

a2 1Sa1F )

2 f abdiffG
a1 1 f badiffG

b1 , (11)

and similarly for region b. Other regions may be added

by including further terms for the exchange between

FIG. 4. Simulation of the effect of lateral transport on the

direct downwelling shortwave irradiance F in a layer vs the

depth into the layer z. The layer contains two regions: a cloud

with cloud fraction 1/3, optical depth 5 (before delta-Eddington

scaling), asymmetry factor 0.85, and vertical-to-horizontal as-

pect ratio unity, and a clear-sky region with an optical depth of

0.01. The solar zenith angle is 808, and the irradiances entering

the top of the clear and cloudy regions are in proportion to their

areal coverage. The dashed lines show the profiles for the clear

and cloudy regions in the independent column approximation,

each obeying Beer’s law. The solid lines show the same but with

lateral transport modeled by (5). The dotted line shows the

single-exponential fit to the two-exponential solution, required in

section 3b.
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them.Within the parentheses on the right-hand side, the

three terms are as in the standard two-stream equations,

representing respectively the loss by scattering and ab-

sorption (except for radiation that is scattered but re-

mains within the same hemisphere), gain by scattering

from the other direction, and internal sources (i.e.,

scattering from the direct beam in the shortwave and

thermal emission in the longwave). Scattering and ab-

sorption are governed by the coefficients g1 and g2,

given by

g15
1

m1

�
12

v(11 g)

2

�
and (12)

g25
1

m1

�
v(12 g)

2

�
, (13)

where v and g are the single-scattering albedo and

asymmetry factor of the medium. Note that other for-

mulations for these terms have been proposed in the

literature (Meador andWeaver 1980). The final two terms

in (11) represent lateral transport between regions, gov-

erned by transfer coefficients f abdiff and f
ba
diff, whichwe define

in section 4.

We now discuss the source terms S6F (z). In the case of

longwave radiation, thermal emission is isotropic and so

S1F 5 S2F 5B[T(z)], where B is the Planck function at

temperature T in the wavelength interval being simu-

lated. In the case of shortwave radiation, S6F represents

scattering from the direct solar beam. The rate of ex-

tinction of the direct beam in (4) is (be/m0)F, a fraction v

of which is scattered rather than being absorbed. There-

fore, the source terms are given by

S1F 5
vg3
m0

F, and (14)

S2F 5
v(12 g3)

m0

F , (15)

where g3 represents the fraction of scattered direct solar

radiation that enters the upward hemisphere, and is

given by

g35
12 3gm0m1

2
, (16)

according to Liou (1980).

In principle, the solution obtained for the direct solar

irradiances F in (5) could be converted to sources via

(14) and (15) and substituted directly into (11), and

similarly for region b. However, the fact that (5) describes

F in terms of two exponentials means that the formal

solution to this system has an excessively large number of

terms. Therefore, we first fit a single exponential to the

two exponentials using the technique given in the ap-

pendix, thus assuming that the source terms S6F can be

represented as varying exponentially with z as

Sa1F 5 Sa10 exp(sa1z) , (17)

and similarly for the other source terms. The coefficients

Sa10 and sa1 are the result of the fitting procedure. The

dotted lines in Fig. 4 demonstrate the fact that this pa-

rameterization is usually a reasonable approximation. In

the longwave it is common to assume that the Planck

function varies exponentially within a layer (e.g., Fu et al.

1997), so (17) is also applicable in the longwave.

Thus (11) represents four coupled linear ODEs for

Ga1, Ga2, Gb1, and Gb2. This is analogous to the four-

stream discrete ordinate method for radiative transfer

(e.g., Thomas and Stamnes 1999), except that rather

than the four streams corresponding to irradiances in

four different directions, our four streams correspond to

irradiances in two directions and in two adjacent regions.

However, we cannot simply apply an existing four-stream

solution to the two-stream–two-region problem, because

the latter lacks some of the symmetries of the former. For

example, in a four-stream scheme, the rate at which ra-

diation is scattered from stream 1 to stream 2 is equal to

the rate at which radiation is scattered from stream 2 to

stream1. This symmetry does not apply if the two streams

are in different regions and the regions are of different

size (i.e., the cloud fraction is not equal to one-half), be-

cause then the rate at which radiation in the upwelling

stream of the smaller region is transported into the up-

welling stream of the larger region is greater than the rate

of migration back into the smaller region. According to

Thomas and Stamnes (1999), this symmetry breaking

would result in a factor of 8 increase in computational

time.

A useful consideration is that, in practice, the two

regions are only weakly coupled. An individual photon

may be scattered between the upwelling and down-

welling hemispheres several times before exiting a layer,

but it is much less likely to be exchanged laterally be-

tween regions more than once before exiting the layer

through the base or the top. If we make the assumption

that the diffuse radiation passes laterally through a cloud

edge at most once, then the four coupled equations re-

presented by (11) (and the equivalent equations for

Gb6) can be replaced by two pairs of coupled equations

that are solved independently in a two-step process il-

lustrated by Figs. 3e and 3f. In principle, this assumption

may be relaxed by using more than two steps, in which

each subsequent step accounts for the probability of ra-

diation passing laterally through a cloud edge one more
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time, but in practice two steps are sufficient to capture

the leading-order 3D effects. In the first step, the source

terms in (11) representing transport from the other re-

gion are removed while the sink term that is due to

lateral transport out of the region is retained, yielding

dGa2

dz
5ba

e(2ĝa1G
a21 ga2G

a1 1 Sa2F ) ,

2
dGa1

dz
5ba

e(2ĝa1G
a1 1 ga2G

a2 1 Sa1F ) , (18)

where we have incorporated this sink into an ‘‘effective

g1’’ of the form

ĝa15 ga11 f abdiff/b
a
e . (19)

A similar pair of equations may be written for region b.

In this step we are treating radiation that escapes

through cloud sides to be lost to the system, to be picked

up only in the second step.

The equations in (18) are in the same two-stream form

as considered by Thomas and Stamnes (1999) and Fu

et al. (1997). Therefore, we may apply the same solution

to obtain the exitant fluxes at the top and bottom of

the layer that are due to the sources Sa6F . Neglecting the

superscript a for brevity, the solution for G6 has the

form

G1(z)5 g1t exp(kz)1 g2r exp(2kz)1Z1(z) ,

G2(z)5 g1rt exp(kz)1 g2 exp(2kz)1Z2(z) , (20)

where the first two terms on the right-hand side repre-

sent the solution to the homogeneous part of (18) (i.e.,

with the sources set to zero), where

k5be(ĝ
2
12 g22)

1/2 , (21)

r5
beĝ12 k

beg2
5

beg2
beĝ11 k

, and (22)

t5 exp(2kz1) , (23)

while Z6 is the particular solution, related to the in-

homogeneous part of (18) (the source terms), and is

given by

Z1(z)5be

2
4s11beĝ1

k2 2 s21
S1F (z)1

beg2
k22 s22

S2F (z)

3
5 ,

Z2(z)5be

2
4beĝ12 s2

k22 s22
S2F (z)1

beg2
k22 s21

S1F (z)

3
5 , (24)

and the s6 terms describe the height distribution of the

upwelling and downwelling source following (17). The

coefficients g1 and g2 may be determined from boundary

conditions—that is, by substituting zero for the down-

welling irradiance at the top of the layer G2(0) and the

upwelling irradiance at the base of the layerG1(z1). This

yields

g15
Z1(z1)2 rtZ2(0)

r2t22 1
,

g25
Z2(0)2 rtZ1(z1)

r2t22 1
, (25)

where the Z6(0) and Z6(z1) terms are found by sub-

stituting the known source terms given by (17) into (24)

at the top and bottom of the layer, respectively.

Thus, we derive the exitant irradiance at the top and

base of region a and layer i, due solely to the sources

within that region, as

Sa1G 5Ga1(0)5Z1(0)

1
Z1(z1)(12 r2)t1Z2(0)(12 t2)r

r2t22 1
,

Sa2G 5Ga2(z1)5Z2(z1)

1
Z1(z1)(12 t2)r1Z2(0)(12 r2)t

r2t22 1
. (26)

We use the notation S for the edge sources to avoid

confusion with the continuous source distribution S de-

scribed previously. The arrows reaching the top of the

cloudy region in Fig. 3e display schematically the com-

ponent of the radiation field represented by Sa1
G above.

The extra step to represent 3D transport, depicted in

Fig. 3f, is to calculate what happens to the radiation that

escaped through the cloud sides. We perform a second

diffuse source calculation, but this time using the radi-

ation entering region b from region a as the source

function and setting the lateral radiation transfer rates

to zero, as no further lateral transfer is allowed in this

second step. As the distribution of diffuse radiation

through each region is different in this second step, we

use the notation H6 in place of G6. This gives

dHa2

dz
5ba

e(2ga1H
a2 1 ga2H

a1 1 Sa2G ) ,

2
dHa1

dz
5ba

e(2ga1H
a1 1 ga2H

a2 1 Sa1G ) , (27)

where the sources are
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Sa2G (z)5
f badiff
ba
e

Gb2(z) ,

Sa1G (z)5
f badiff
ba
e

Gb1(z) . (28)

Similar equations can be written to account for the Sb6G
sources.

Note that the form of (27) is the same as (18), but is the

equivalent 1D calculation (depicted in Fig. 3b). The

difference is the application of g1 in place of ĝ1. When

(24) is substituted into (20), we find thatGa1,Ga2,Gb1,

and Gb2 are each represented by the sum of four ex-

ponentials. The method in the appendix is used again to

approximate them by a single exponential. We can then

solve (27) using exactly the same method as in the first

step, but with g1 substituted in place of ĝ1 to give flux

distributions Ha1, Ha2, Hb1, and Hb2. This gives a sec-

ond set of edge sources (Sa1
H , Sa2

H , Sb1
H , and Sb2

H ), which

can be added respectively to the first set (Sa1
G , Sa2

G , Sb1
G ,

and Sb2
G ) from (26) to give the total edge sources.

c. Diffuse radiation profile

The final step in the radiative transfer calculation is to

use the edge sources calculated in section 3b in a multi-

layer implementation of the two-stream equations. The

standard approach is to define reflection and transmission

functions for each layer and region as follows (Meador

and Weaver 1980):

R5
beg2(12 t2)

k1beg11 (k2beg1)t
2

and (29)

T5
2kt

k1beg11 (k2beg1)t
2
, (30)

where the termswere defined in (12)–(13) and (21)–(23).

Defining the indices of the layers to increase downward,

the upwelling radiative flux at the top of region a of layer

i, Ia1i11/2, is the sum of transmitted flux through the layer,

the fraction of the downwelling flux that is reflected

back, and the upwelling source from the layer:

Ia1i21/25Ta
i I

a1
i11/2 1Ra

i I
a2
i21/21Sa1i , (31)

and similarly for region b. Likewise, the downwelling

flux at the base of region a of layer i is given by

Ia2i11/25Ta
i I

a2
i21/2 1Ra

i I
a1
i11/21Sa2i , (32)

and similarly for regionb.At the surface (midleveln2 1/2),

the upwelling flux is given by

Ia1n21/25as(I
a2
n21/21Fa

n21/2)1 (12as)B(Ts) , (33)

where as is the surface albedo, Fa
n21/2 is the direct

downwelling solar radiation at the surface (zero in the

longwave), and B(Ts) is the Planck function at the sur-

face temperature (assumed to be zero in the shortwave).

In the case of a horizontally homogeneous atmosphere,

we have only one region a, and the equations for the

upwelling and downwelling fluxes at each layer interface

may be combined into a tridiagonal system of linear

equations that is efficiently solved. When each layer of

the atmosphere is divided into two or more regions, with

arbitrary overlap between regions in different layers, the

system becomes more complicated to solve. It was shown

by Shonk and Hogan (2008) that the most obvious ap-

proach of writing the equations out as a linear system

of equations and solving the matrix problem results in

anomalous horizontal radiation transport below cloud

base from the sunlit to the shadowed part of the grid box.

This is clearly a serious drawback when we are trying to

devise a method to calculate horizontal transport accu-

rately. Shonk and Hogan (2008) presented an efficient

method to solve the system of equations that overcomes

this problem, which we use as a basis for the extension to

include 3D transport.

So how may we modify (31) and (32) to include

transport between regions? One approach would be to

add extra terms representing gain from and loss to the

adjacent region, although this turns out to be excessively

complicated, and impossible to incorporate within the

Shonk and Hogan (2008) solver. Instead we take a sim-

ilar approach to section 3b, and assume that in the life-

time of a photon as treated by the multilayer two-stream

equations, it never travels through more than one cloud

side. This enables the diffuse calculation to be split into

two parts. In the first part, illustrated by Fig. 3g, we use

the Shonk and Hogan (2008) solver, but with an addi-

tional sink of radiation representing loss of radiation

through cloud sides. This is achieved by using ĝ1 as de-

fined in (19) in place of g1 in (29) and (30) to calculate

modified reflection and transmission functions, R̂ and T̂.

Applying R̂ and T̂ to the multilayer two-stream equa-

tions allows the calculation of the profile of upwelling

and downwelling fluxes Ia6 and Ib6 due to radiation that

has not passed through the side of a cloud (at least, not

since its first interception of a layer boundary as dis-

cussed in section 3b). The edge source terms in (31) and

(32) are defined to be the sum of the edge sources output

from the previous two steps; that is, Sa6 5Sa6
G 1Sa6

H .

In the second part, we account for the laterally trans-

ported radiation that was lost to the system in the compu-

tation of the Ia6 and Ib6 profiles. This is done by computing

the profile of radiation that was lost and using it as the
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source function in two-step computation to find out

where it goes. The first step is to compute how much

reaches a layer edge and is depicted in Fig. 3h. This

procedure is identical to the previous edge-source cal-

culation depicted in Fig. 3f and described toward the end

of section 3b. The second step uses the resulting edge

sources as input to a multilayer two-stream calcula-

tion depicted in Fig. 3i. This procedure is the same as

that depicted in Fig. 3g. Note that in neither of these

two steps is further lateral transport between regions

permitted.

We now describe the second part mathematically. The

profiles of Ia6 and Ib6 interior to a single layer may be

described as the sum of two exponentials:

Ia1(z)5Aa1 exp(ka1z)1Ba1 exp(2ka1z) ,

Ia2(z)5Aa2 exp(ka2z)1Ba2 exp(2ka2z) , (34)

where ka6 is as defined in (21) and as before z is the

depth down into the layer from its top boundary. Similar

equations can be written for region b. The coefficientsA

and B are determined from the boundary conditions,

which are the fluxes at the layer boundaries obtained by

solving the system of equations represented by (31) and

(32). However, the presence of internal sources at layer

boundaries in (31) and (32) means that Ia6 and Ib6 are

actually discontinuous at layer boundaries and the bound-

ary conditions we need to apply are

Ia1(0)5 Ia1i21/22Sa1 ,

Ia1(z1)5 Ia1i11/2 ,

Ia2(0)5 Ia2i21/2 ,

Ia2(z1)5 Ia2i11/22Sa2 . (35)

The variable Ia6(z) describes the diffuse flux within a

layer that originated fromother layers, whileGa61Ha6

describes the diffuse flux within a layer that originated

fromwithin the same layer (either by scattering from the

direct beam or thermal emission). It is only the sum of

the two that is continuous across layer boundaries. Since

lateral transport has already been treated for the latter,

it is only the lateral transport of the former that we need

consider now.

The radiation that is lost to Ia6 by lateral transport is

denoted H0a6, and within a layer obeys the single-layer

two-stream equations:

dH0a2

dz
5ba

e(2ga1H
0a2 1 ga2H

0a1 1 Sa2I ) ,

2
dH0a1

dz
5ba

e(2ga1H
0a1 1 ga2H

0a2 1 Sa1I ) , (36)

where the source terms Sa6I represent transport from the

other region and are given by

Sa2I (z)5
f badiff
ba
e

Ib2(z) and (37)

Sa1I (z)5
f badiff
ba
e

Ib1(z) . (38)

Clearly this has the same mathematical form as (27) and

(28), and so we may follow the procedure in the second

step of section 3b to calculate a new set of boundary

sources S6
H0 in regions a and b (depicted in Fig. 3h).

These are then used as the sources in a second call of the

Shonk and Hogan (2008) solver, except that this time, R

and T are calculated exactly as in (29) and (30), thereby

permitting no further transport between cloud sides.

This generates a second profile of upwelling and down-

welling fluxes I0a6 (depicted in Fig. 3i), which can then be

added to the first profile Ia6 to obtain the full set of

diffuse fluxes including 3D radiative transfer. (Note that

since here we are using the values of Ia6 and I0a6 only at

layer boundaries we do not need to worry about fact that

these variables may be strictly discontinuous interior to

individual layers, as discussed above.) In the shortwave,

the direct incoming beam versus height would be added

to the downwelling diffuse component to obtain the

total downwelling flux profile.

4. Lateral radiation transfer rates

The lateral exchange of direct radiation between re-

gions in a given layer is governed by coefficients f abdir and

f badir in (4), while the exchange of diffuse radiation is

governed by f abdiff and f badiff in (11). In this section, we de-

rive expressions for these coefficients. To achieve this,

we assume that the clouds are vertically uniform within

a model level, and hence that the cloud edges are per-

fectly vertical surfaces. The extent to which this is a valid

assumption was explored by Brooks et al. (2005).

a. Direct radiation: General considerations

We first estimate the rate at which direct radiation

from the sun with solar zenith angle u0 will enter through

the side of a cloud. Consider an infinitesimally thin layer

of depth dzwithin a grid box that has a horizontal area of

A. The grid box contains a clear-sky region of area Aa

and a cloudy region of area Ab such that A 5 Aa 1 Ab.

Figure 5a shows a plan view of the distribution of cloud

in the grid box, where the area dA indicates the region of

clear sky where sunlight entering at the top of dz (with

the sun to the right of the scene in this case) would enter

the cloud edge before reaching the bottom of this layer.
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As we assume incident radiation into the top of the layer

to be uniformly distributed over each separate region,

the change in direct flux in region a due to lateral trans-

port to region b, dFa, is governed by

dFa

Fa
52

dA

Aa

. (39)

The negative sign is because Fa is reduced with increasing

depth into the layer by this transport. To calculate dAwe

consider the geometry of what happens at the cloud edge,

depicted in plan and side views in Figs. 5d and 5e. From

Fig. 5d, we can see that dA may be given by

dA5dx

ð
L
dy , (40)

where dx is the width of infinitesimal area dA in the

direction of the sun, and from Fig. 5e we have dx 5
tan(u0)dz. The integration is performed over the entire

length of cloud edge L in the grid box, and dy is the

length projected toward the sun by a small piece of cloud

edge of length dL. FromFig. 5d we see that dy5H(p/22
jfj) cos(f)dL, wheref is the angle that the normal to the

cloud edge makes to the sun. Here,H(x) is the Heaviside

function (equal to 1 for x . 0 and 0 otherwise) and en-

sures that we only consider cloud edges that are sunlit—

that is, those for which jfj,p/2. The integral will depend

on the particular cloud geometry in question and will

shortly be evaluated for particular cloud configurations,

but we expect that, on average, the length of cloud edge

for a given type of scene will increase in proportion to the

gridbox area. Therefore it makes sense to define the

length of cloud edge projected toward the sun per unit

area as a resolution-independent property of any cloud

distribution, given by

Lab
dir5

1

A

ð
L
dy

5
1

A

ð
L
H(p/22 jfj) cos(f) dL

5
L

A

ðp
2p

p(f)H(p/22 jfj) cos(f) df . (41)

The final form in (41) replaces the integration along the

total length of cloud edge in the gridbox L with an in-

tegration overf, where p(f) is the probability density of

f. Substitution of (39) and (40) into the first form of (41)

and rearranging gives

FIG. 5. Schematic illustrating how the rate at which direct-beam solar radiation enters the sides of clouds is calculated.

(a) A plan view of a general cloud field in which there is no preferred orientation of the cloud edge with respect to the

sun. The area dA indicates where solar radiation (from above and to the right as indicated by the thick arrows) incident

on a thin layer of thickness dz would enter the cloud from the side. (b),(c) Particular cloud distributions—one with

circular clouds and the other with a linear contrail. (d),(e) Magnified views of the cloud edge from above and the side,

respectively, from which dA may be calculated.
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2
1

Fa

dFa

dz

����
ab

5
ALab

dir tan(u0)

Aa

, (42)

where we have clarified that the derivative is only the

part of the total derivative that is due to loss by transport

from region a to region b. It can be seen from (4) that the

left-hand side of (42) is simply the definition f abdir. By

defining the clear-sky fraction as ca 5 Aa/A, we obtain

f abdir 5Lab
dir tan(u0)/ca . (43)

The same procedure may be used to derive the rate of

transport between regions b and a as f badir 5Lba
dir tan(u0)/cb,

but on average for plausible cloud fields the length of

cloud edge orientated toward the sun is equal to the

length of cloud edge orientated away from the sun (the

latter being associated with direct radiation escaping

from region b to region a), so we have the result that

Lba
dir 5Lab

dir.

b. Direct radiation: Specific cases

We now have the task of defining Lab
dir for particular

cloud types and geometries. We first consider the situ-

ation in most natural cloud fields where there is no

preferred orientation of the sun with respect to the cloud

edge, which means that f in Fig. 5d is uniformly dis-

tributed between 2p and 1p; that is, p(f) 5 1/(2p) in

(41). Hence, (41) becomes

Lab
dir5

L

2pA

ðp/2
2p/2

cos(f) df5
L

pA
. (44)

If we have a particular 3D cloud field for which we wish

to perform a radiation calculation including 3D trans-

port using the technique developed in this paper, then it

is straightforward to compute L at each height and,

hence, Lab
dir and f abdir.

In a general circulation model, however,L will need to

be parameterized. It is convenient to consider the ideal-

ized case of cumulus-like clouds with a circular cross

section as illustrated in Fig. 5b. If a grid box contains n

clouds of mean diameterD then the length of cloud edge

projected toward the sun per unit area is Lab
dir5 nD/A

while the cloud fraction is cb 5 (1/A)�n
i p(Di/2)

2 5
npD2/(4A). Eliminating n/A, we obtain

Lab
dir5

4

p

cb
Deff

, (45)

where the ‘‘effective cloud diameter’’ is Deff 5D2/D.

Combining (44) and (45) we obtain Deff 5 4cbA/L,

which indicates thatDeff may be derived as a convenient

length scale from any cloud field without imposing the

assumption of circular clouds. In fact, this is exactly the

same definition of effective cloud diameter considered

by Jensen et al. (2008) in their analysis of satellite data,

so statistics on the values ofDeff are already available for

different cloud fields. A similar quantity has also been

derived from cloud-resolving models (Neggers et al.

2003). Some convection schemes (e.g., Bechtold et al.

2001) make an explicit assumption about updraft di-

ameter, although evaluation against observations would

be needed to test whether this is sufficiently similar to

the cloud diameter to be used in the radiation scheme.

Linear contrails constitute another specific cloud con-

figuration to be considered; Fig. 5c depicts a contrail with

widthW whose normal makes an angle f with the sun. If

a model grid box contains a length X of contrail then the

cloud fraction will be cb 5 XW/A and the total length of

cloud edgewill beL5 2X. In this case, the integral in (41)

simplifies to (½)cos(f) (where now f is the angle that the

normal to the contrail makes to the sun) and

Lab
dir5

2X

A

cos(f)

2
5

cb cos(f)

W
. (46)

c. Diffuse radiation

The lateral transfer rates of diffuse radiation f abdiff and

f badiff can be calculated using the same method as for di-

rect radiation. The differences are that in a typical two-

stream scheme the radiation is assumed to be traveling

with a fixed zenith angle of 6u1 (e.g., u1 5 538; Fu et al.

1997) and that the radiation is no longer entering the

cloud from a single azimuth angle, but from all azi-

muthal directions. As a result, the equivalent of (43) for

the diffuse case is

f abdiff 5Lab
diff tan(u1)/ca , (47)

where Lab
diff is the length of cloud edge projected toward

the diffuse radiation field. We may use (41) but redefine

f as the angle between the normal to the cloud edge and

the direction of incidence of a particular ray of light.

Since diffuse radiation by definition has a random azi-

muthal orientation, f will be uniformly distributed even

if the cloud field has a preferred orientation with respect

to some fixed coordinate system. This is mathematically

equivalent to the case of direct radiation incident on

a cloud edge with no preferred orientation described by

(44), and so we have

Lab
diff 5L/pA , (48)

and in the case where the cloud edges are randomly

orientated with respect to the sunwe haveLab
diff 5Lab

dir. In
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the case of linear contrails we had (46) for Lab
dir, but to

obtain the diffuse version we substituteL5 2X into (48)

to get

Lab
diff 5

2X

pA
5

2cb
pW

. (49)

The fact that the radiation has no preferred direction

also means that the efficiency with which radiation

travels from a to b is the same as from b to a, and so

Lba
diff 5Lab

diff .

5. Results

A simple radiation code has been created that calcu-

lates both direct and diffuse shortwave transfer based on

the equations of section 3 by following the steps in Fig. 3.

It performs calculations using a single shortwave wave-

length band with spectrally averaged optical properties

and includes both 1D and 3D versions. In this section,

the ‘‘3D effect’’ computed by the new scheme (i.e., the

difference in fluxes between the 3D and 1D versions) is

compared to the results of full 3D radiation calculations

reported in the literature. We then further investigate

the behavior of the new scheme by computing the full

flux profiles at two solar zenith angles. As will be shown,

this is sufficient to demonstrate the potential of the

technique, so we leave it to a future paper to apply this

scheme in a full radiation code incorporating spectral

bands.

We begin by performing simulations of the full radi-

ative transfer calculations reported in the studies in

Table 1. We use a three-layer domain with the cloud

contained in the middle layer; the top and bottom layers

of the domain are cloud free. All clear-sky regions have

an optical depth of 0.01, an asymmetry factor of 1025,

and single-scatter albedo of 0.999 99. The physical depth

of the cloud-free layers does not enter the calculation;

the cloudy layer has a physical depth of z15 400 m. The

cloud fractions and optical properties allotted to the

cloudy region in the middle layer are taken from the

values reported in the studies, again listed in Table 1.

For the cumulus cases, we take the clouds to be circular.

The effective cloud diameter can be expressed in terms

of aspect ratio r via

r5
z1
Deff

. (50)

Combining this equation with (45) yields equations for

Lab
dir and Lab

diff . For linear contrails, we can express the

contrail width in terms of aspect ratio using

r5
z1
W

. (51)

Similarly, this can be combined with (46) and (49) to

determine Lab
dir and Lab

diff . The coefficients f abdir, f
ba
dir, f

ab
diff ,

and f badiff can then be found using (43) and (47). For each

case, we perform three radiative transfer calculations:

one using our new 3D method, one performing a tradi-

tional 1D two-stream calculation, and a clear-sky cal-

culation to enable CRF to be determined and, hence, the

percentage shift to be found as in Fig. 2.

The CRF for the 1D and 3D are compared with the

reported values in Fig. 6. The markers in this figure are

exactly the same as in Fig. 2, indicating the percentage

effects on CRF of introducing 3D transport; the lines

now show the CRF effects calculated using our code

over all solar zenith angles. The general features are the

same and, in all cases, the compensating effects of

TABLE 1. Values of cloud fraction cb, vertical-to-horizontal as-

pect ratio r, optical depth d, and single-scatter albedo v from the

studies simulated in Figs. 2 and 6.

Reference Cloud type cb r d v

Benner and Evans

(2001)

Small cumulus 0.10 0.4 4.4 0.999

Pincus et al.

(2005)

Large cumulus 0.22 0.7 15 0.999

Gounou and Hogan

(2007)

Contrails

perpendicular to sun

0.05 0.5 0.4 0.999

Gounou and Hogan

(2007)

Contrails parallel

to sun

0.05 0.5 0.4 0.999

FIG. 6. The effect of 3D radiative transfer on shortwave TOA

CRF vs solar zenith angle for cumulus clouds and contrails. The

symbols are as in Fig. 2 and show the results from full 3D calcu-

lations in the literature. The lines are calculations using our mod-

ified two-stream scheme with cloud properties as close as possible

to the corresponding simulations from the literature, as outlined in

Table 1.
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shortwave side illumination and shortwave side escape

can be clearly identified. For both types of cumulus

cloud and the perpendicular contrails, at high solar ze-

nith angles, inclusion of 3D effects reduces the CRF

magnitude, which is consistent with the description of

shortwave side escape in section 2. Conversely, for higher

solar zenith angles, the shift is of opposite sign, with the

inclusion of 3D effects increasing the magnitude of the

CRF, agreeing with the sign of the change brought about

by shortwave edge escape.

In comparison with the literature values on Fig. 2, we

see that, while agreement is not exact, the trends in 3D

CRF shift with solar zenith angle are the same. It is per-

haps unrealistic to expect exact agreement between full

3D calculations and those made by our simple, one-band

code. However, it is promising that the behavior of the

CRF shift with solar zenith angle is similar, with the

switch of sign between high and low solar zenith angles. It

should also be borne in mind that there is currently no

representation of subgrid cloud inhomogeneity, as we

have yet to incorporate Tripleclouds (Shonk and Hogan

2008) in our two-stream scheme.

Figure 7 shows the profile of fluxes through each of the

three layers for the ‘‘large cumulus’’ case described by

the parameters in Table 1. Again, the cloud is situated

in the middle layer, with clear-sky layers above and be-

low.The properties of the clear sky are the same as above.

Figures 7a–c show the fluxes for high sun (u0 5 308),
while Figures 7d–f show the same for low sun (u05 708).
For each layer, we extract the exponential coefficients

FIG. 7. Domain-mean (i.e., clear sky plus cloudy) profiles of upward and downward direct and diffuse fluxes from the 1D and 3D

components of our simple radiation code. The fluxes are for a three-layer model, with cloud situated in the central layer; the properties of

the cloud are the same as the large cumulus case in Table 1. (a),(d) Comparison of the direct flux profiles. (b),(e) Comparison of the

upward and downward diffuse flux profiles. (c),(f) Comparison of the sum of the direct and downward diffuse fluxes. All panels also

contain a profile of clear-sky flux for calculation of cloud radiative forcing.
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describing the distribution of downward direct, down-

ward diffuse, and upward diffuse flux within that layer,

allowing us to reproduce and compare the profiles of

fluxes through the clear and cloudy layers exactly as

they appear in the 1D and 3D two-stream calculations.

Within the cloudy layers, the flux profiles depicted are

the sum of fluxes in the clear-sky and cloudy regions.

The panels show the ‘‘3D effect’’ on profiles of direct

(Figs. 7a,d), upward and downward diffuse (Figs. 7b,e),

and total downward (Figs. 7c,f) fluxes when lateral trans-

port is permitted.

The effect of shortwave side illumination is clearly

evident in Figs. 7a,d. When the sun is low in the sky, the

direct flux through the cloudy layer is attenuated much

more rapidly when 3D transfer is permitted as the direct

beam is intercepted by cloud side. The effects of short-

wave side escape are trickier to identify in the flux pro-

files, as the combined effects of both shortwave side

illumination and escape affect the diffuse flux profiles.

Nevertheless, consideration of the total fluxes at the

surface and the top of the atmosphere at the two chosen

solar zenith angles indicate that the two shortwave ef-

fects are both occurring: at u0 5 708, we find a 54.3%

increase in top-of-atmosphere cloud radiative forcing,

which switches sign to227.1% at u0 5 308 as shortwave
side escape becomes the dominant effect. The 3D effects

on surface CRF yield similar results: the two numbers

being 55.5% and 223.3%, respectively.

6. Summary and conclusions

In this paper we have described a novel method to

account for the effects of 3D radiative transfer within

a two-stream radiation code. First, extra terms are added

to the equations describing the vertical distribution of

direct radiation in each layer to represent the lateral

exchange of radiation between clear and cloudy regions.

These are solved to obtain a modified version of Beer’s

law. The effect of 3D transport on the diffuse radiation

field is likewise tackled by introducing new terms into

the two-stream equations, the solution of which requires

several extra stages of computation as depicted graphi-

cally in Fig. 3.

To test this idea, a simple single-band radiation scheme

has been implemented that can model shortwave radia-

tive transfer through a column of partially cloudy layers.

The difference between this and a traditional 1D calcu-

lation enables the fractional change to the cloud radiative

forcing (CRF) due to 3D effects to be quantified. This has

been compared with the results of full 3D calculations

reported in the literature for cumulus clouds and aircraft

contrails. Using the same cloud optical properties and

cloud fraction as reported in these studies, we calculated

the ‘‘3D effect’’ for a range of solar zenith angles. It was

found that, while agreement between our results and

their results was not exact, the dependence on solar ze-

nith angle was similar. At low solar zenith angles, the

effect of shortwave side escape was seen to dominate,

leading to a reduction in top-of-atmosphere CRF; at high

solar zenith angles, the effect of shortwave side illumi-

nation was seen to dominate, leading to an increase in

top-of-atmosphereCRF. For the caseswe considered, the

3D effects varied from about 230% up to over 1100%.

These results confirm the importance of the first two

mechanismswe identified inFig. 1. It should be noted that

the only other fast method for 3D radiative transfer

suitable for general circulation models (GCM), the EXP-

SZA-RANmethod of Tompkins and DiGiuseppe (2007),

cannot represent the second effect, shortwave side es-

cape, and so would not be able to reproduce the negative

3D effect at low solar zenith angles.

Our scheme for incorporating 3D transport is esti-

mated to be around twice the computational expense of

the equivalent 1D scheme. This is adequate for imple-

mentation in a GCM for research purposes but, for

operational weather forecasting or climate simula-

tion, further work may be required to improve the

efficiency. A few further developments are required

before the scheme would be ready for implementation

in a GCM, or to be used offline on reanalysis cloud

fields to estimate the global impact of 3D radiative

transfer:

(i) Ourmethodneeds tobe implementedwithin amulti-

band scheme for representing the spectral variation

of gaseous absorption. The current lack of a spec-

trally varying gaseous absorption might explain the

differences in Fig. 6.

(ii) It would be ideal if the new 3D capability could be

combined with a scheme for representing subgrid

cloud inhomogeneity. Since our method explicitly

calculates the lateral flux between clear and cloudy

regions, it would be applicable to the Tripleclouds

method of Shonk and Hogan (2008) and to also

compute the lateral flux between the optically thin

and optically thick cloudy regions in each layer

with a slight increase in mathematical complexity.

Our 3D scheme is unfortunately not directly com-

patible with theMonte Carlo Independent Column

Approximation (McICA) of Pincus et al. (2003),

since the independence of each column enables

a different spectral band to be used in each column,

making lateral transport between columns impos-

sible. Some hybrid of our 3D scheme and the ideas

behind McICA and is conceivable, but consider-

able further work would be required.

722 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



(iii) The lateral radiation transfer needs to be extended

to treat longwave radiation. This can be achieved

simply by replacing the solar source term in (18) by

the Planck function, which will allow the mecha-

nism of longwave side exchange to be represented,

depicted in Fig. 1c.

(iv) Finally, section 4 showed how our method requires

one number in each grid box to specify the length of

cloud edge projected toward the sun per unit area

Lab
diff, which for natural clouds can be assumed to

be the same for direct and diffuse radiation. The

challenge is then to estimate suitable values to use

for this quantity within a GCM for particular cloud

scenarios. As discussed in section 4, this informa-

tion could be derived from observations (e.g.,

Jensen et al. 2008) or in some cases the model itself

(e.g., Bechtold et al. 2001).

Once these developments are implemented, a more

detailed evaluation of the new scheme will be possible

comparing against full 3D radiation calculations in a

wide variety of cumulus and other broken-cloud scenes.
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APPENDIX

Approximating the Sum of Exponentials by One
Exponential

In this appendix we show how a sum of n exponentials

of the form

F(z)5 �
n

i51

Ai exp(aiz) (A1)

may be approximated by a single exponential of the

form

F̂(z)5B exp(bz) , (A2)

in the range 0 # z # z1. This is necessary since (5)

provides the vertical distribution of direct solar radia-

tion as the sum of two exponentials, whereas in section

3b, it is required in the form of (17) [i.e., (A2)].

We specify that the single exponential should con-

serve both the zeroth and first moments of (A1)—that is,

the total radiative energy E between z5 0 and z5 z1—

and the mean photon position z. The total energy is

given by

E5

ðz
1

0
F(z) dz5 �

n

i51

Ai(e
a
i
z
1 2 1)/ai (A3)

and

z5
1

E

ðz
1

0
F(z)z dz5

1

E
�
n

i51

Ai[e
a
i
z
1 (aiz12 1)1 1]/a2i .

(A4)

The energy may be conserved exactly and the mean

position reproduced closely by (A2) if its coefficients are

given by

b5
p

z1
[tan(pẑ)2p(ẑ32 ẑ/4)] and (A5)

B5Eb/(ebz1 2 1), (A6)

where ẑ5 z/z1 2 1/2.
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