
Q U A R T E R L Y J O U R N A L
O F T H E

R O Y A L M E T E O R O L O G I C A L S O C I E T Y

Vol. 131 OCTOBER 2005 Part A No. 611

Q. J. R. Meteorol. Soc. (2005), 131, pp. 2585–2608 doi: 10.1256/qj.04.144

A 3D stochastic cloud model for investigating the radiative properties of
inhomogeneous cirrus clouds

By ROBIN J. HOGAN∗ and SARAH F. KEW
Department of Meteorology, The University of Reading, UK

(Received 29 September 2004; revised 22 April 2005)

SUMMARY

The three-dimensional structure of clouds is known to be important for determining their radiative effects,
but it is difficult to obtain this structure directly from observations. In this paper a stochastic model is described
that is capable of simulating the structural properties unique to cirrus: fallstreak geometry and shear-induced
mixing. We first present an analysis of time–height cloud radar sections from southern England to extract the cirrus
parameters of interest. It is found that horizontal power spectra of the logarithm of ice-water content (estimated
from radar reflectivity factor and temperature) typically exhibit a spectral slope of around −5/3 near cloud top
that decreases with depth into the cloud, to values as low as −3.5 in some cases. This decrease can be explained
by wind shear coupled with a spread of particle fall speeds leading to a homogenization that acts preferentially at
smaller scales. The power spectra exhibit a distinct scale break, becoming flat at scales larger than around 50 km
(the ‘outer scale’). The orientation of the fallstreaks may be predicted from the profile of mean wind and mean ice
fall speed. We then describe the stochastic model, which takes as input profiles of the mean and fractional standard
deviation of ice-water content, spectral slope, outer scale and wind speed. It first generates an isotropic 3-D fractal
field by performing an inverse 3-D Fourier transform on a matrix of simulated Fourier coefficients with amplitudes
consistent with the observed 1-D spectra. Random phases for the coefficients allow multiple realizations of a cloud
with the same statistical properties to be generated. Then horizontal slices from the domain are manipulated in
turn to simulate horizontal displacement and changes to the spectra with height. Finally the field is scaled to
produce the observed mean and fractional standard deviation of ice-water content. Vertical 2-D slices extracted
from the domain are very similar in appearance to cloud radar observations. Radiative-transfer calculations using
the independent column approximation are used to show that the different fallstreak orientation resulting from
different wind shears can change mean top-of-atmosphere radiative fluxes by in excess of 45 W m−2 in the short-
wave and 15 W m−2 in the long-wave. The effect of wind shear to induce horizontal mixing causes an additional
but smaller radiative effect. We also investigate the biases that would be expected from the assumptions made in
the radiation schemes of general-circulation models (GCMs). It is found that there is some compensation between
the errors arising from the assumptions of horizontal homogeneity and maximum-random overlap; if a GCM were
to improve the overlap assumption but still assume clouds to be horizontally homogeneous then the total error in
cloud radiative effect would be likely to increase.

KEYWORDS: Cirrus uncinus Cloud heterogeneity Cloud overlap Fractal

1. INTRODUCTION

The importance of ice clouds on the earth’s radiation budget is well recognized
(e.g. Liou 1986), and studies have shown that ice-cloud inhomogeneity can have a strong
effect on mean fluxes in both the long-wave (Pomroy and Illingworth 2000; Fu et al.
2000) and short-wave (Carlin et al. 2002; Buschmann et al. 2002). Observations that
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have quantified ice-cloud inhomogeneity have tended to be essentially either one- or
two-dimensional, such as from satellite (Kuo et al. 1988), aircraft (Smith and DelGenio
2001) and cloud radar (Hogan and Illingworth 2003), but the three-dimensional structure
is required for comprehensive radiative-transfer calculations. Cloud-resolving model
simulations have yet to demonstrate the ability to simulate realistic cirrus fallstreak
structures, and are also very expensive to run in large 3-D domains.

Stochastic models capable of simulating realistic 3-D cloud structures are very use-
ful for quantifying cloud radiative effects, and several such models exist for boundary-
layer clouds, such as that of DiGiuseppe and Tompkins (2003) for stratocumulus,
and Evans and Wiscombe (2004) for cumulus (numerous other 2-D models exist).
In this paper we present the first stochastic model capable of representing the important
structural properties unique to cirrus: fallstreak geometry and shear-induced mixing.
The model essentially takes the characteristic slope and scale break from 1-D power
spectra of ice-water content obtained from cloud radar, and performs a 3-D inverse
Fourier transform on a matrix of simulated Fourier amplitudes with random phases to
obtain an isotropic 3-D fractal field with the same spectral properties as the original
data. Each vertical layer of the field is then manipulated in various ways to generate
a realistic cirrus cloud. A simpler approach in two dimensions was taken by Hogan
and Illingworth (1999) to estimate the error to be expected for two active cloud remote
sensors (e.g. radar and lidar) on different satellite platforms, due to mismatched sample
volumes.

In section 2 we analyse cloud radar data to extract the parameters describing the
3-D structure of cirrus, and in section 3 the formulation of the model is described.
In section 4, three cirrus cases are used to demonstrate the performance of the model,
and in section 5, radiation calculations are performed to investigate the effect of cloud
structure on mean fluxes and heating rates.

2. ANALYSIS OF CLOUD RADAR DATA

We use data recorded by the vertically pointing 94 GHz Galileo radar located at
Chilbolton in southern England to extract the parameters required by the stochastic
model. The radar was calibrated to an accuracy of around 1.5 dB by comparison with
the weather radar at Chilbolton, as described by Hogan et al. (2003). An additional
2 dB was added to the reflectivity field to account approximately for the attenuation by
atmospheric gases to cirrus altitudes. The radar has a vertical resolution of 60 m and
the data were averaged to 30 s in time. We initially study a cirrus cloud observed on
27 December 1999. Other cases are considered in section 4.

(a) Probability density function
The reflectivity field Z (dBZ) is converted to ice-water content IWC (g m−3), using

the formula appropriate for estimating the ‘unbiased variance and probability density
function’ given by Hogan et al. (2005):

log10 IWC = 0.085Z − 0.0189T − 1.19, (1)

where T is temperature (◦C). Figure 1 shows a time–height cross-section of derived
IWC for the cloud on 27 December 1999. From the same case Hogan and Illingworth
(2003) found that the probability density function (PDF) of IWC could usually be well
represented by a log-normal distribution. They characterized the horizontal variability
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Figure 1. Ice-water content derived from the 94 GHz radar at Chilbolton on 27 December 1999. The box between
10 and 12 UTC indicates the period analysed to extract parameters from which the stochastic cloud model could be
run. The black-and-white dashed lines indicate the trajectories of fallstreaks predicted from the radiosonde wind

profile assuming a generating level of 9.1 km and a constant fall speed of 0.8 m s−1 (see section 3(b)).

in terms of the fractional variance of IWC, which may be regarded as the variance of
ln IWC. We therefore constrain the stochastic model to produce at each height log-
normal IWC distributions with mean and fractional standard deviation (ln IWC and
σln IWC) derived from the radar data. Where there are gaps in the radar data due to
reflectivities below the instrument sensitivity threshold (or indeed due to cloud-free air),
the data are analysed in such a way as to obtain the parameters of an ‘underlying’ log-
normal distribution which best fits the observed PDF in the upper part of its range.
This procedure is described in appendix A.

The stochastic model generates clouds that are periodic in both the x and y
directions, so is unable to represent systematic changes in cloud depth from one side
of the domain to the other. It is therefore best to restrict analysis of radar data to periods
over which cloud evolution is weak. Due to the descent of cloud base over the four hours
shown in Fig. 1, we restrict our analysis to the period 10–12 UTC, indicated by the box.
Figure 2(a) shows cloud fraction (denoted f in appendix A) versus height from this
box, at the radar vertical resolution of 60 m. Figures 2(c) and (d) depict the parameters
describing the PDF, with the solid lines showing ln IWC and σln IWC for the cloudy
pixels, and the dashed lines the same but for the underlying distribution after applying
vertical smoothing to reduce sampling noise. As cloud fraction decreases, ln IWC of the
underlying distribution must decrease and the corresponding σln IWC increase relative to
the in-cloud values in order that the measured distribution is reproduced. Care needs to
be taken near cloud top and base because the method for deriving the parameters of the
underlying distribution can produce rather noisy results when cloud fraction is small.
In this case we choose to restrict the simulation only to the height range for which
f > 0.2. Additionally, the horizontal PDF can deviate from log-normal close to cloud
base due to a combination of descending cloud-base height with time and small-scale
convective overturning (Hogan and Illingworth 2003). As the model is currently not
formulated to represent PDFs other than log-normal, we impose the additional constraint
that σln IWC should not exceed 1.5 within 1 km of cloud base. As will be seen in section 4,
this prevents some of the detailed features of cloud base from being simulated, but they
are not believed to be radiatively significant so this is not a serious shortcoming.

(b) Vertical structure
A striking feature of radar images of ice clouds, not least Fig. 1, is the fallstreak

structure, whereby horizontal inhomogeneities caused by convective overturning at
cloud top (the ‘generating level’) are carried down with the falling ice, but displaced
horizontally with respect to cloud top due to the presence of vertical wind shear.
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Figure 2. Parameters, derived from the 27 December 1999 radar data between 10 and 12 UTC, as a function of
height: (a) cloud fraction, (b) power spectral slope for scales smaller than 50 km, where the solid line indicates
the values calculated from the spectra at each height and the dashed line indicates the smoothed values used by
the stochastic model, (c) mean of ln IWC for the cloudy pixels (solid line) and the inferred (and smoothed) mean
of the ‘underlying’ log-normal distribution, and (d) standard deviation of ln IWC for both the cloudy pixels and

the underlying distribution.

We may predict the 3-D trajectories of fallstreaks by consideration of the horizontal
wind profile (u, v), the profile of mean ice fall speed w and the height of the generating
level zgen following Marshall (1953). In time dt an ice particle at height z is advected
in the x direction a distance u(z) dt , while the generating cell above it (from which
particles are still falling) moves a distance u(zgen) dt . Thus the change in distance from
the generating level is dx = (u(z) − u(zgen)) dt . Noting that the ice fall speed is given
by w = dz/dt , the orientation of the fallstreak in the x direction is therefore given by

dx/dz = (u(z) − u(zgen))/w(z). (2)

The equation for dy/dz follows in the same way. Marshall (1953) then showed that
the assumption of constant vertical wind shear and constant particle fall speed led
to parabolic fallstreaks, i.e. the horizontal distance from the generating cell being
proportional to the square of the distance fallen. Recently, Mittermaier et al. (2004) used
this approach to predict the horizontal distribution of surface rainfall given a horizontal
weather radar scan at the height of the ice fallstreaks.

In this paper a more realistic horizontal displacement profile (x, y) is calculated
using the finite difference equivalent of (2), starting at the generating level and working
downwards. Thus the x displacement at level i is given as a function of the displacement
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at the level above i + 1, by

xi = xi+1 + (ui + ui+1 − 2u(zgen))(zi − zi+1)/(wi + wi+1), (3)

and similarly for yi . Note that u and w have been represented as the average of the
values at levels i and i + 1. This model may be tested on the case from 27 December
1999, for which the wind shear vector was almost parallel to the wind vector at the
height of the generating level resulting in entire fallstreaks being within the plane of
the time–height sections from a single location. The dashed lines in Fig. 1 show the
predicted fallstreak trajectories from the wind profile measured by radiosonde launched
at 11 UTC from Herstmonceux, 125 km from Chilbolton, and assuming a generating
level of zgen = 9.1 km (with zero horizontal displacement above) and a constant fall
speed of 0.8 m s−1. The predicted horizontal displacement has been converted to an
equivalent time using the wind velocity at zgen of 56 m s−1. These subjectively chosen
values of zgen and w result in the trajectories of the observed fallstreaks in the IWC
field being predicted very well. In principle the velocity measured by a Doppler radar
could be used for w, but the success of a constant value suggests that it would not be a
significant advantage.

(c) Horizontal structure
The horizontal structure is characterized by taking power spectra of ln IWC at each

height. The radar data are first transformed from time to horizontal distance using the
wind at the height of the generating level. Gaps in the data are replaced by a constant
value below the radar sensitivity threshold.

The results for the cloud in Fig. 1 are shown in Fig. 3, calculated using the full four
hours of data. It can be seen that near cloud top a spectral slope of −5/3 is evident.
This indicates that here IWC is acting as a tracer of a turbulent field, presumably
originating from convective overturning in the generating region. The fact that this
behaviour is seen up to scales of 50–100 km indicates a 2-D upscale cascade of energy
(e.g. Lilly 1983) rather than 3-D turbulence in the inertial subrange, although interaction
with gravity waves could play a part. The reason for a scale break at 50–100 km is not
certain, although it was clearly also evident in the fractional variance results of Hogan
and Illingworth (2003), obtained from 18 months of data. For this to occur there has to
be a process acting to prevent very high IWC values. A possible mechanism is simply
that high IWC will correspond to faster falling particles, resulting in more rapid loss of
ice by sedimentation.

Below cloud top there is a distinct steepening of the power spectra, indicating the
suppression of structure preferentially at small scales. An explanation for this is variable
particle fall speeds in the presence of vertical wind shear leading to different horizontal
displacements (as predicted by (3)) and hence a horizontal homogenization. This also
has the effect of reducing the fractional variance towards the interior of the cloud, as
seen in Fig. 2(d) and reported by Hogan and Illingworth (2003).

The parameters of the spectrum provided to the stochastic model are simply the
slope of the power spectrum at each height and the position of the scale break, which is
assumed constant with height. It will be seen in the next section that it is easy to simulate
the smooth roll-off towards a flat spectrum at scales larger than the scale break. It should
be noted that the absolute value of spectral energy does not need to be recorded, as this
is implicitly provided by the fractional variance σ 2

ln IWC which, by Parseval’s Theorem,
is simply the area under the power spectrum. The slope of the power spectrum is shown
in Fig. 2(b), this time calculated for the same 10–12 UTC period as used for the other
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Figure 3. Power spectra of ln IWC as a function of height for the data shown in Fig. 1. The raw spectra have been
averaged such that there are around four points per decade of wave number. Note that wave number is defined

here as the reciprocal of wavelength.

parameters, resulting in a somewhat noisier profile. The dashed line shows the smoothed
profile provided to the stochastic model. At cloud top the spectra are unreliable due to
the low cloud fraction, so here the slope is relaxed to a value of −5/3. At cloud base,
where the PDF can deviate from log-normal, the spectrum is also unreliable, so here
slope is forced to a constant value corresponding to the value at 6 km.

3. FORMULATION OF THE STOCHASTIC CLOUD MODEL

The stochastic model takes as input profiles of the following parameters derived
from radar observations: the mean and standard deviation of the underlying ln IWC
distribution, the horizontal wind components, the ice fall speed and the slope of the
ln IWC power spectrum. In addition, the scalar parameters it requires are the outer scale,
the generating-level height (chosen subjectively) and the threshold IWC for defining
cloud boundaries.

(a) Generation of an isotropic fractal field
The first step is to generate a 3-D isotropic field g(x, y, z) with a Gaussian PDF

and a spectral slope to reflect the observations at a particular height. Suppose that we
wish the 1-D power spectrum E1(k) through this field to have a single slope −μ at all
scales:

E1(k) = ̂E1k
−μ, (4)

where k is wave number in any direction and ̂E1 is the spectral energy density at
k = 1 m−1. Note that throughout this paper we adopt the convention that k = 1/λ (where
λ is wavelength) rather than k = 2π/λ. Now, for the 3-D field we are to generate, there
exists a 3-D spectral energy density matrix E3(kx, ky, kz), which is found by taking the
3-D discrete Fourier transform of g and multiplying each resulting Fourier amplitude by
its complex conjugate (i.e. taking the square of the amplitude and discarding the phase
information). Our approach is to reverse this process: if we can somehow generate E3
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then, by assuming random phases for each of the Fourier amplitudes, a 3-D inverse
Fourier transform will yield the required fractal field. The Fourier amplitudes are
generated by multiplying the square root of each element of E3 by a complex number
with random real and imaginary parts drawn from a Gaussian distribution with a mean of
zero and a standard deviation of unity. A different set of random numbers will produce
a different realization of the cloud field, but with the same statistical properties.

So how can E3 be derived from E1? Physically, E3(kx, ky, kz) dkx dky dkz is the
spectral energy of a wave directed in a particular direction in 3-D space. If a one-
dimensional sample were taken through this single wave in, say, the x direction, then
a spectral energy E1 would be measured at wave number kx such that E1(kx) dkx =
E3(kx, ky, kz) dkx dky dkz. Since all 3-D wave components with an x-wave number of
kx will contribute to E1(kx), and the energies (or equivalently the variances) of waves
with uncorrelated phases should sum linearly, we obtain a general expression for a
1-D power spectrum through g in the x direction:

E1(kx) =
∫ ∞

−∞

∫ ∞

−∞
E3(kx, ky, kz) dky dkz, (5)

and similarly in the y and z directions. For g to be isotropic, E3 must be a function
of absolute wave number k = (k2

x + k2
y + k2

z )
1/2 only. In the idealized case that g is

continuous at small scales and infinite in extent, (4) and (5) have the solution

E3(k) =
̂E1μ

2π
k−μ−2, (6)

i.e. the 3-D power spectrum is a simple power law and is steeper than E1 by two powers
of k. Equation (6) may be applied satisfactorily to discrete fields of finite horizontal
extent, provided that both the domain size and grid spacing are the same in each
direction. However, in simulations of cirrus we require a much larger domain in the
horizontal than the vertical (at least as large as the outer scale) and a high resolution
in the vertical to resolve the fallstreaks. In this case, when (5) is reduced to a discrete
summation, there is no longer a simple analytical solution for E3. Instead we find an
approximate solution by dividing absolute wave-number space into a number of separate
regions each with a separate power law. This also allows the scale break found in the
observations to be incorporated into the solution.

The domain of the cloud field is defined to measure Lx , Ly and Lz and have
resolutions of �x, �y and �z in the x, y and z directions respectively. Typically the
values of these parameters would be chosen to ensure that the number of grid points
in each direction is an integer power of two, to maximize the efficiency of the fast
Fourier transform. The resulting wave-number domain for E3 ranges from −Kx to +Kx

with a resolution of �kx in the kx direction, where Kx = (2�x)−1 and �kx = L−1
x ,

and similarly for the ky and kz directions. From here on we use the same resolution
and domain size in the x and y directions, i.e. Lx = Ly , Kx = Ky , etc. The outer scale
observed in the radar power spectra is characterized by its wave number kouter. The result
is that E3 may be well represented by four regions of k space as follows:

E3 =
̂E1

�kz

√
π

� {(μ + 1)/2}
�(μ/2)

k
−μ−1
outer , k ≤ kI (Region I), (7)

E3 =
̂E1

�kz

√
π

� {(μ + 1)/2}
�(μ/2)

k−μ−1, kI < k ≤ kII (Region II), (8)
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E3 =
̂E1μ

2π
k−μ−2, kII < k ≤ kIII (Region III), (9)

E3 =
̂E1

4KxKy

k−μ, kIII < k (Region IV), (10)

where the boundaries between the regions are defined as

kI = kouter, (11)

kII = μ

2
√

π

�(μ/2)

� {(μ + 1)/2} �kz, (12)

kIII = √

2μ/π Kx, (13)

and � denotes the gamma function. These expressions are derived in appendix B. We set
E3 = 0 for k = 0 in order that the resulting field has a mean of zero.

Figure 4 illustrates the generation of a 3-D fractal field in ‘quasi-schematic’ form,
i.e. the full method has been used to generate these plots, but the parameters such
as resolution and domain size have been chosen to best illustrate the procedure and
are not relevant to the discussion. The locations of the four regions in wave-number
space are shown in Fig. 4(a), where the dots represent individual points on the discrete
wave-number grid and are a distance �kx = �ky apart in the x and y directions and
�kz apart in the z direction. Figure 4(b) depicts E3 versus absolute wave number k
in log-log space, as defined in (7)–(13). The corresponding E1 spectrum is shown in
Fig. 4(c), with the grey line representing the ‘requested’ 1-D spectrum while the black
lines show the 1-D spectra of the simulation in the x and z directions as calculated
by simple integration using (5). Note that the latter should be regarded as long-term
averaged power spectra from many realizations of the field; individual power spectra
from particular realizations exhibit significant point-to-point variability. It can be seen
that the agreement is good, validating the approximation of dividing E3 into four regions
with constant slopes. The use of a constant value for E3 in Region I results in a smooth
roll-off of the slope when the outer scale is reached, very similar to the observed power
spectra in Fig. 3. A realization of the fractal field is shown in Fig. 4(d). It should be
noted that Fig. 4 was calculated for μ = 2, and the agreement evident in Fig. 4(c) is
better for larger values of μ but poorer for lower values.

(b) Conversion to a realistic cloud field
The 3-D fractal field is manipulated in various ways to simulate a realistic cirrus

cloud. The first two steps, horizontal displacement (to simulate fallstreaks) and
adjustment of the slope of the power spectrum (to simulate shear-induced mixing) are
performed in the wave-number domain. Layers are analysed in turn, with a 2-D Fourier
transform performed at each height resulting in a 2-D plane of Fourier amplitudes. In this
context, absolute wave number is a function of the wave-number components in the
x and y directions: k = (k2

x + k2
y)

1/2.
Horizontal translation is straightforward to implement. If the fallstreak model of

(3) predicts a horizontal translation of (δx, δy) relative to the generating level, then
we simply multiply each Fourier amplitude by exp(iφ), where φ = 2π(kxδx + kyδy).
No horizontal translation is performed above the generating layer. The model is there-
fore unable to represent the hook structure of cirrus generating cells as described by
Heymsfield (1975).

In simulating mixing it is assumed that the 1-D power spectrum changes slope only
at scales smaller than the outer scale, i.e. the power spectrum pivots from the point at
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Figure 4. Schematic illustrating the generation of an isotropic fractal field on a non-uniform grid: (a) the discrete
grid points in 3-D wave-number space, with the four spectral-slope regions I–IV indicated, (b) E3 versus absolute
wave number in each of the four regions, where −μ is the slope of the 1-D power spectrum, (c) average 1-D
power spectra in the x and z directions over many realizations of the fractal field, together with the ‘requested’

1-D spectrum E1, and (d) realization of an isotropic fractal field generated from E3. See text for explanation.

k = kouter in Fig. 4(c). To change the slope from −μ1 to −μ2, the Fourier amplitudes
with k > kouter are multiplied by (k/kouter)

(μ1−μ2)/2, whilst those with k ≤ kouter are
left unchanged. Note that the power of one half is present because the operations are
performed on the Fourier amplitudes, the square-roots of the power spectral densities.
The mixing achieved by this operation is illustrated in Figs. 5(a) and 5(b).

It could be argued that this mixing model is not very realistic as it is isotropic,
whereas in reality the homogenization might be expected to occur preferentially in
the direction parallel to the wind shear vector. To simulate anisotropic mixing in the
direction θ (measured anti-clockwise from the x axis), we define the wave number in
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Figure 5. Illustration of the simulation of mixing by changing the spectral slope: (a) a 2-D field with a 1-D
spectral slope of −5/3 and an outer scale equal to half the size of the domain, (b) the same field after reducing
the Fourier amplitudes to obtain a spectral slope of −3, and (c) simulation of anisotropic mixing by changing the

spectral slope to −3 only in one direction.
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Figure 6. (a) Ice-water content derived from radar observations on 24 June 1999 versus both time and equivalent
horizontal distance, and (b) a slice through a 3-D simulation of the same case at an angle parallel to the wind at

the generating-level height.

this direction as kθ = kx cos θ + ky sin θ . The Fourier amplitudes with kθ > kouter are
then multiplied by (|kθ |/kouter)

(μ1−μ2)/2. The result is shown in Fig. 5(c) for θ = 45◦.
However, it has yet to be demonstrated from observations that cirrus fallstreaks act to
mix anisotropically in this way, so isotropic mixing is used for the simulations in this
paper.

After horizontal translation and mixing have been simulated in the wave-number
domain, an inverse 2-D Fourier transform is performed to recover the modified field.
At this stage the field has an approximately Gaussian distribution with a mean of zero
and an arbitrary variance. The final step is to scale it and apply a threshold. We scale
each 2-D slice of the field in order that it has the standard deviation σln IWC obtained
from observations. It should be noted that this scaling means that there is no need to
ensure that the value of ̂E1 in (7)–(10) is correct. The resulting field is exponentiated
to yield a log-normal distribution, and scaled again to obtain the required profile of
ln IWC (or IWC) with height. Finally, values below a certain threshold may be set to
zero to represent gaps in the cloud.

4. COMPARISON OF SIMULATIONS WITH ORIGINAL RADAR DATA

The model has been applied to three radar-observed cirrus clouds, including the
27 December 1999 case analysed previously. The radar-derived IWC fields are shown
in Figs. 6(a), 7(a) and 8(a), with time converted to horizontal distance using the wind
at the (subjectively determined) generating-level height. The clouds have progressively
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TABLE 1. SUMMARY OF THE PROPERTIES OF THE CLOUDS SIMULATED IN SECTION 4 AND PLOTTED IN
FIGS. 6–8. WIND SHEAR HAS BEEN CALCULATED OVER THE HEIGHT RANGE CORRESPONDING TO THE
25TH AND 75TH PERCENTILES OF HORIZONTAL-MEAN IWC. NOTE THAT μ WAS FOUND TO BE CLOSE
TO 5/3 AT CLOUD TOP IN ALL THREE CASES. DOMAIN-MEAN OPTICAL DEPTH (INCLUDING CLEAR-SKY
REGIONS) WAS CALCULATED FROM δ = 3IWP/2ρire , WHERE ρi IS THE DENSITY OF SOLID ICE AND IWP

IS ICE-WATER PATH, THE VERTICAL INTEGRAL OF IWC, AND re IS EFFECTIVE RADIUS.

Case 24 June 1999 27 Aug 1999 27 Dec 1999
Radar analysis period 12–18 UTC 06–11 UTC 10–12 UTC

Wind shear (m s−1km−1) 3.5 5.0 15.1
Generating-level height (km) 9.0 9.2 9.1
Generating-level wind (m s−1) 15 25 56
Outer scale (km) 30 50 50
Spectral slope coefficient (μ) at cloud base 2.4 2.8 3.4
Max. cloud fraction (IWC > 10−3 g m−3) at any height 0.51 1.00 1.00
Domain-mean visible optical depth for re = 50 μm 1.2 5.7 21.9

See text for further explanation.

increasing mean IWC, and are used in the next section to investigate the impact of cloud
structure on radiative transfer over a range of conditions. The properties of the clouds
were derived as described in section 2, and are summarized in Table 1. As was found
with the 27 December 1999 case, the other two cases both exhibited a power spectral
slope of close to −5/3 near cloud top that decreased further into the cloud. However,
due to the reduced wind shear and hence reduced mixing, the slopes at cloud base were
shallower, reaching −2.4 on 24 June 1999 and −2.8 on 27 August 1999.

Each simulation by the model was performed on a domain measuring 200 km ×
200 km × 7 km, with a resolution of 256 × 256 × 64 pixels. A constant fall speed
of 0.8 m s−1 was assumed, with a threshold IWC of 10−3 g m−3. Figures 6(b), 7(b)
and 8(b) show slices through the 3-D simulations, extracted at an angle parallel to the
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generating-level wind to represent what would be observed from a single point on the
ground. The fact that slices were taken at an angle to the x- and y-axes means that
they are non-repeating, even though the domain is periodic and they are longer than the
200 km domain size.

It can be seen that the dominant structures are captured well, in particular the
orientation and typical spacing of fallstreaks. The first case from 24 June 2004 consisted
of broken cirrus uncinus, and due to the low cloud fraction, parameters were derived
from the observations for all layers with f > 0.05, rather than the 0.2 used for the other
two cases (see section 2). The simulation is realistic despite the fact that the time series
from which horizontal power spectra were derived consisted predominantly of constant
‘fill values’ below the radar sensitivity threshold. In the second case, from 27 August
1999, the cloud fraction appears to be greater in the simulation than in the observations.
This is because the 10−3 g m−3 threshold is less than half the minimum detectable value
by the radar at 10 km, so in fitting a log-normal distribution as described in appendix A,
the simulation has essentially extrapolated the PDF to clouds that it assumes the radar
is unable to detect. We find that this does not significantly affect the radiative-transfer
calculations in the next section, as these low values are radiatively insignificant.

Power spectra through the simulated ln IWC fields confirm that they are very similar
to those through the original data, although this is hardly a surprise as it is one of the
intrinsic properties of the model. However, there are differences in the morphology
apparent to the eye but beyond those that can be revealed by power spectra. This includes
systematic changes to particular cloud properties over the radar observation period,
such as cloud-base height (Fig. 6(a)), fallstreak homogeneity (Fig. 7(a)) and fallstreak
orientation (Fig. 8(a)). This non-stationary behaviour cannot be easily represented using
a Fourier approach, which is intrinsically both periodic and statistically homogeneous
in the horizontal plane. There is an additional difference in the ‘texture’ of the images,
which can be attributed to the fact that rather different looking fields can yield the same
power spectrum (Davis et al. 1996). The stochastic model of this paper has essentially
produced a ‘monofractal’ realization of the observed cirrus cloud that lacks some of the
‘multifractal’ properties such as intermittency and non-stationarity. While parameters
such as structure functions may be calculated from the observations to characterize
aspects of multifractal behaviour (Marshak et al. 1997), we are left with the problem
that rather different looking fields may also have the same multifractal properties.
For example, the stochastic ‘bounded cascade’ model of Cahalan et al. (1994) can
reproduce structure functions similar to those of geophysical fields, but the intermittency
produced tends to be regularly spaced such that the discontinuities occur in the form of
perfect squares, which is uncharacteristic of real clouds. A stochastic model has yet to be
formulated that can pass the ‘Turing test’ of generating clouds that are indistinguishable
from the real thing, but the important question is really whether such details have a
significant effect on radiative properties. We contend that the larger-scale structures
of cirrus, likely to dominate radiative transfer, are sufficiently well represented by a
monofractal approach that a more complicated (and much less computationally efficient)
multifractal model is not required.

Figure 9 shows a 3-D visualization of the simulation of the 27 December case, and
the structure of individual fallstreaks is clearly evident. Near cloud top it can be seen
that the field is horizontally isotropic, while in real cirrus gravity waves and shear can
lead to roll-like structures in this region. The model does not currently represent these
anisotropic effects as they are difficult to discern from ground-based radar, but the results
of Hinkelman (2003) suggest that manipulation of E3 could enable them to be simulated
in an analogous way to the anisotropic mixing method discussed in section 3(b).
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Figure 9. 3-D visualization of the 0.2 g m−3 ice-water content isosurface, for a simulation of the 27 December
1999 case.

5. RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

(a) Overview of radiation calculations performed
In this section the Edwards and Slingo (1996) radiation code is used to explore

the radiative properties of the three cirrus cases introduced in the previous section.
While three cases is clearly not sufficient to encompass the behaviour of all cirrus
globally, the properties highlighted will be common to many other cirrus clouds.

The independent column approximation (ICA) is assumed, i.e. the model is run
separately for each profile of the simulated cloud with no horizontal transport of
photons. DiGiuseppe and Tompkins (2003) found that for boundary-layer clouds ICA
performed well compared to full 3-D radiation calculations in terms of calculating
domain-averaged fluxes, except for broken clouds with a dominant scale of less than
10 km. As cirrus clouds have a dominant scale of around 50 km, ICA is likely to be
adequate, although the longer mean free photon path length in cirrus means that this
assertion will need to be tested in a future study.

For all the runs we use a solar zenith angle of 60◦ (leading to a top-of-atmosphere
downwelling solar irradiance of 685 W m−2), a surface albedo of 0.2 and no low cloud
present. The long-wave calculations employed 9 spectral bands and used the Slingo and
Schrecker (1982) parametrization for the ice-particle properties (with inclusion of long-
wave scattering), while the short-wave used 24 bands together with the Kristjánsson
et al. (2000) scheme. To increase the speed of the radiation computations, the cirrus
clouds were generated on a smaller grid than before of 64 × 64 × 64 pixels, measuring
100 km in each horizontal direction and extending vertically just over the height range
containing cloud. This yields a horizontal resolution of 1.56 km and between 45 and
110 m in the vertical (depending on the case), encompassing the important range of hori-
zontal scales from the 2–5 km width of the smallest fallstreak to the 50 km outer scale.
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TABLE 2. MEAN TOP-OF-ATMOSPHERE REFLECTED SHORT-WAVE RADIATION MINUS CLEAR-SKY VALUE
(�RSR) AND MEAN OUTGOING LONG-WAVE RADIATION MINUS CLEAR-SKY VALUE (�OLR) IN UNITS
OF W m−2 FOR THE THREE CIRRUS CASES CONSIDERED IN THE TEXT. THE CLEAR-SKY VALUES ARE
RSRcs = 135.6 W m−2 AND OLRcs = 274.1 W m−2. THE RESULTS ARE SHOWN FOR SEVERAL SEPARATE
CALCULATIONS, ONE USING THE 2-D IWC FIELD OBSERVED BY THE RADAR, FOUR USING SIMULATED
3-D CLOUD FIELDS, AND TWO USING EQUIVALENT PLANE-PARALLEL CLOUDS WITH DIFFERENT OVERLAP

ASSUMPTIONS.

Case 24 June 1999 27 Aug 1999 27 Dec 1999

�RSR �OLR �RSR �OLR �RSR �OLR

Observed 2-D cloud field, independent column approximation
+43.6 −24.3 +181.7 −84.2 +292.8 −104.0

Simulated 3-D cloud fields, independent column approximation
Control simulation: observed shear +39.0 −20.9 +177.6 −78.9 +291.5 −103.4
Observed shear, no mixing +26.4 −14.3 +165.5 −74.1 +288.7 −102.6
No shear +31.8 −17.1 +157.6 −71.8 +271.0 −102.3
No shear, no mixing +20.1 −11.0 +133.3 −61.7 +258.4 −99.9

GCM-type plane-parallel radiation schemes
Maximum-random overlap +46.5 −30.0 +232.9 −98.3 +303.8 −112.7
Exact overlap +89.2 −51.5 +235.8 −98.7 +305.3 −113.4

See text for further explanation.

The cloud profiles were embedded in the McClatchey et al. (1972) standard US atmos-
phere. The pseudo-random number generator used by the model was seeded with the
same value for each run in order that the same initial 3-D fractal field was used to obtain
the realistic cloud as described in section 3(a). This ensured that the experiments were
sensitive to the subtle effects of wind shear and mixing without being overwhelmed by
statistical noise.

We assume a constant effective radius re of 50 μm throughout the cloud, which
corresponds to a mean maximum dimension (the size parameter used by the Kristjánsson
et al. (2000) scheme) of 225 μm. Although the stochastic model does have the capability
to simulate varying effective radius with a prescribed PDF and correlation with IWC
(following the method of Evans and Wiscombe 2004), the purpose of this study is
to examine the effect of cloud macrophysical rather than microphysical properties.
The resulting domain-mean visible optical depths are given in Table 1. In all the
calculations that follow the total ice content of the domain, and hence the mean optical
depth, are held fixed for each case. In this way we may test the effect on mean fluxes
and heating rates of the distribution of ice rather than the total amount.

We first compare ICA calculations performed directly on the retrieved 2-D IWC
fields with those from the corresponding 3-D model simulations. In each case the mean
top-of-atmosphere (TOA) reflected short-wave radiation (RSR) and mean TOA outgoing
long-wave radiation (OLR) are computed. The clear-sky values are then subtracted to
yield the cloud ‘effect’ or ‘forcing’ in the short-wave and long-wave, which we denote
�RSR and �OLR. The first two lines of Table 2 show that the simulations agree with
the observations to around 5 W m−2, which is of the same order as the difference
between two simulations using the same set of input statistics but a different set of
random numbers for the phases of the Fourier amplitudes.

(b) The effect of wind shear on mean fluxes via fallstreak orientation
We next investigate the effect of wind shear on mean TOA fluxes, via its effect on

fallstreak orientation. Table 1 shows the wind shear calculated over the height range
corresponding to the 25th and 75th percentiles of horizontal-mean IWC, which may be
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Figure 10. (a) Mean top-of-atmosphere reflected short-wave radiation and (b) outgoing long-wave radiation,
minus the clear-sky values, as functions of wind shear between the 25th and 75th percentiles of horizontal-mean
ice-water content for the three simulated cases (solid, dashed and dot-dashed lines). The circles indicate the actual
wind shear for each case. Also shown are the results when the mixing effect of cirrus is removed (crosses) and for
the equivalent plane-parallel clouds (triangles and squares), with the vertical dotted lines indicating which of the

three cases they refer to. The numerical values are given in Table 2.

regarded as the region where the orientation of the fallstreaks will have the most effect
on radiative transfer. For each case a sequence of runs of the model was performed in
which the wind profile was scaled such that the wind shear over this height range varied
between 0 and 30 m s−1km−1.

The results are plotted versus wind shear in Fig. 10, with the circles indicating the
results for the control experiment with an unmodified wind profile. It can be seen that
the greatest effect in both the short-wave and long-wave is for the 27 August 1999 case,
in which increasing the shear from 0 to 15 m s−1km−1 results in a decrease in �OLR
of 17 W m−2 and an increase in �RSR of 48 W m−2 (or equivalently an increase of
mean short-wave albedo from 0.43 to 0.50). These may be expressed as an increase in
the cloud radiative effect by 30% in the short-wave and 24% in the long-wave.

Figures 11(a) and (b) show the TOA albedo for these two values of wind shear, and
can be considered to be similar to what would be observed by a high-resolution satellite-
borne broadband imager. Figures 11(c) and (d) show slices through the domain parallel
to the generating-layer wind vector, simulating what would be seen from a ground-based
radar. It can be seen that the effect of wind shear and the associated extended fallstreaks
is essentially to fill in the gaps where the local optical depth was very low, such that
average albedo is increased despite the domain-mean optical depth remaining constant.
This may equivalently be explained by the fact that wind shear tends to narrow the PDF
of optical depth, coupled to the curvature in the optical depth to albedo relationship
(Harshvardhan and Randall 1985; Carlin et al. 2002). The dependence of the long-wave
fluxes on wind shear is for essentially the same reason, but the curvature is between
optical depth and emissivity (Pomroy and Illingworth 2000). It should be noted that,
in contrast to cirrus, the effect of stratocumulus inhomogeneity on long-wave fluxes is
insignificant as the higher optical depth leads to the clouds behaving as black bodies,
and the emission temperature is much more similar to that of the surface beneath.

The 24 June 1999 case showed a lower absolute effect of wind shear, although the
relative effect was greater in both the short-wave and long-wave, increasing by around
75% in response to an increase in shear from 0 to 15 m s−1km−1 due to the associated
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Figure 11. (a) Top-of-atmosphere short-wave albedo for a simulation of the 27 August 1999 case but with no
wind shear, (b) albedo for the same case but with a wind shear of 15 m s−1km−1, (c) time–height slice of ice-
water content (IWC) taken diagonally through the domain for the no-shear simulation, and (d) the IWC slice
for the sheared simulation. This figure has been produced using a higher resolution (256 × 256 pixels in the
horizontal) and a larger domain than in the ICA calculations (see text), and albedo α has been calculated from
visible optical depth δ, using α = 0.2 + 0.525δ/(δ + 3.5), which reproduces the albedo predicted by the Edwards

and Slingo (1996) code in this configuration to within 0.02.

increase in cloud cover. In the case of 27 December 1999, the mean optical depth
was much higher and in the long-wave was behaving very much as a black body, with
only a 1 W m−2 difference between shears of 0 and 15 m s−1km−1. The corresponding
change in the short-wave was 21 W m−2, less than the effect on 27 August 1999 because
the albedo response to increasing optical depth was beginning to saturate.

In summary, wind shear can have a very substantial effect on the effect of a cirrus
cloud on mean fluxes in both the long-wave and the short-wave. In this experiment we
have kept the properties at each layer constant and simply moved layers horizontally
with respect to one another, but it should be noted that in reality wind shear will be
likely to affect the properties of the cloud at each layer via shear-induced instability,
and the change in the radiation itself will feed back on the cloud properties (Dobbie and
Jonas 2001).

(c) The effect of horizontal mixing on mean fluxes
One of the effects of wind shear not investigated in the previous section was its

promotion of horizontal mixing. Mixing exhibits itself in two ways, a steepening of
the slope of the power spectrum (see Figs. 2(b) and 3) and a corresponding reduction
in fractional standard deviation (Fig. 2(d); Hogan and Illingworth 2003). Here we
investigate the role of mixing by attempting to remove its effects from the cirrus
simulations. This is done by forcing the slope of the power spectra to be −5/3 at all
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heights, but keeping E1 the same for k < kouter; essentially the spectra are pivoted from
the point where they intercept the scale break marked in Figs. 3 and 4(c). Associated
with this is an increase in σln IWC which may be calculated directly from the new spectra.
The value of ln IWC is adjusted to ensure that the mean IWC at each level remains
constant, using the property of log-normal distributions that

IWC = exp(ln IWC + σ 2
ln IWC/2). (14)

Two experiments were performed for each case, one in which mixing was removed
from a simulation in which the observed wind shear was still used to orient the
fallstreaks, and the other with mixing removed from a simulation with no shear and
hence vertically oriented fallstreaks. The effects on �RSR and �OLR are shown by
the crosses in Fig. 10 (which are joined by vertical dotted lines to the corresponding
simulations with mixing). It can be seen that removing the effects of mixing causes a
decrease in the radiative effect of a cloud, due to the associated increase in variance
of optical depth across the domain. The effect was strongest for the 27 August 1999
case with no wind shear, in which the short-wave effect was reduced by 24 W m−2 and
the long-wave effect by 10 W m−2, i.e. around half as large as the effect of changing
fallstreak orientation found in the previous section.

(d) Comparison with the representation of clouds in general-circulation models
Next we investigate the fluxes that would be diagnosed by a general-circulation

model (GCM), assuming it to correctly predict grid-box-mean IWC, cloud fraction
(i.e. the fraction of pixels at each level with IWC > 0.001 g m−3) and effective radius,
but to represent IWC as horizontally homogeneous within the cloudy fraction of the
box. In the first experiment we follow the radiation schemes in most current GCMs and
apply the ‘maximum-random’ overlap assumption (Geleyn and Hollingsworth 1979)
whereby the clouds in adjacent layers are maximally overlapped, but if a layer of
clear sky separates two layers of cloud then these layers are randomly overlapped.
In the second experiment the IWC within cloud is still horizontally homogeneous,
but the exact overlap configuration in the control simulation of the stochastic model
is used, representing a GCM with an accurate cloud overlap scheme. The experiments
are performed at the same vertical resolution as before; this is much better than the
resolution of current GCMs, but when it is degraded by a factor of four the fluxes are
the same to within 0.5 W m−2 in the short-wave and 0.2 W m−2 in the long-wave.

The results for maximum-random overlap and ‘exact overlap’ are given in Table 2
and shown in Fig. 10 by the triangles and squares, respectively. For clarity they
are shown as points immediately above or below the circle indicating the control
experiment, but note that the ‘maximum-random’ simulation is actually independent
of wind shear. In all three cases the GCM schemes tend to overestimate the radiative
effect of the cloud, but to varying degrees. In the 27 August and 27 December 1999
cases the two GCM schemes perform equally poorly. This is because, as can be seen in
Fig. 7(b), cloud fraction is very close to unity at all heights so the overlap configuration
is virtually irrelevant and both schemes have the same errors stemming from the failure
to represent horizontal inhomogeneity.

In the 24 June 1999 case, the maximum-random overlap assumption performs
reasonably well with errors of less than 10 W m−2 in both the long-wave and the
short-wave. By contrast, the more realistic ‘exact overlap’ calculation results in a worse
performance, with the short-wave and long-wave effects of the cloud being more than
a factor of two too large. The reason is that the maximum-random overlap assumption
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Figure 12. Domain-averaged (a) short-wave and (b) long-wave heating rates for the 24 June 1999 case.
The grey-shaded area indicates the height range in which some cloud is present. The thick lines correspond to
the full radiation calculations on simulations with three different values of shear, while the thin lines correspond
to GCM-type calculations with two different assumptions regarding the subgrid distribution. Note that the clear-
sky ‘notches’ of around 1 K day−1 in the long-wave heating rate at 6.5 and 9.5 km are artifacts of the change to a

much higher vertical resolution in the radiation calculation over this height range.

has two partially compensating errors: an overestimation of the radiative effect due to its
inability to represent horizontal cloud inhomogeneity, and an underestimation due to the
clouds being too vertically aligned (i.e. the overlap should be more random; see Hogan
and Illingworth 2000). In the cases shown the former effect is dominant. This leads to the
conclusion that implementation of an improved overlap scheme along the lines of Hogan
and Illingworth (2000) might actually result in the radiative biases being worsened, as
it would correct one of the errors but not the other. Hence, only with the representation
of both subgrid-scale fluctuations in water content and their overlap (e.g. Hogan and
Illingworth 2003; Pincus et al. 2003; Räisänen et al. 2004) are accurate fluxes likely to
be predicted by GCMs when inhomogeneous cirrus is present.

(e) Heating rates
Figures 12–14 show the mean short-wave and long-wave heating-rate profiles

calculated from the full 3-D cloud fields and the two GCM representations. In the
first two cases the distribution of ice within the domain has a substantial effect; the
absence of shear and the associated absence of mixing results in a notable reduction
in the magnitude of the heating or cooling rate compared to the control simulation.
On the other hand, the elongation of fallstreaks associated with increased shear generally
results in an increase in the heating or cooling rate at any given height. In the third case
(Fig. 14), wind shear has a much more modest effect, as at the altitude of the fallstreaks,
the radiative dependence on the cloud distribution has almost saturated.

Figure 12 indicates that the short-wave heating rate for the maximum-random
assumption on 24 June 1999 is not dissimilar to the corresponding profile for a shear
of 30 m s−1km−1, due to the compensating errors discussed in section 5(d). The exact
overlap simulation, however, results in a gross overestimate, as only one of the two
compensating errors has been corrected.

In Figs. 13 and 14 the two GCM representations perform very similarly, with both
overestimating the magnitude of the heating or cooling by up to a factor of two. This is
despite the fact that, in the 27 December 1999 case, the effect of the cloud on mean
TOA fluxes was overestimated by less than 10% (see Fig. 10). The reason is that
in this case neither of the GCM schemes have come close to representing the strong
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Figure 13. As Fig. 12 but for the 27 August 1999 case. Note that the maximum-random and exact overlap curves
are almost coincident. The notches in the long-wave profile at 5 and 10 km are again due to resolution changes.
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Figure 14. As Fig. 12 but for the 27 December 1999 case.

cloud-top inhomogeneities evident in Figs. 1, 2(d) and 8, but rather have smoothed out
IWC uniformly across the domain. This has prevented incoming solar radiation from
penetrating as far into the cloud from above, and similarly has reabsorbed long-wave
radiation emitted lower in the domain. When the net (i.e. short-wave plus long-wave)
heating rates are considered, the control simulation results in the mean short-wave and
long-wave heating rates cancelling out to within 2.5 K d−1 at all heights above 7 km.
By contrast, the maximum-random overlap assumption predicts a net cooling of 6 K d−1

at 9.5 km but a warming of 4 K d−1 one kilometre lower in the profile. This would be
likely to lead to erroneous generation of instability near cloud top. Of course, the exact
values stated here are a function of the solar zenith angle assumed, but for all solar
zenith angles the net heating rate predicted by a GCM would be very different from a
simulation with the inhomogeneities represented.

6. CONCLUSIONS

In this paper a stochastic model has been described for generating realistic 3-D
cirrus cloud fields from radar time–height cross-sections using efficient Fourier trans-
form techniques. Unique to the model is its ability to represent 3-D fallstreak structure,
variable grid resolution in the horizontal and vertical direction via manipulation of the
spectral energy matrix, and its reproduction of the characteristic features of observed
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power spectra in cirrus. Horizontal power spectra from three radar events revealed some
intriguing characteristics. A steepening of the slope of the power spectrum from close
to −5/3 at cloud top (indicative of turbulence) to values as low as −3.5 near cloud base
was attributed to variable particle fall speeds in the presence of wind shear leading to
horizontal mixing preferentially at smaller scales. A scale break was observed at around
50 km, with the spectra becoming flat at larger scales.

Radiative-transfer calculations on simulated clouds based on real events have
demonstrated the strong effect of wind shear on both short-wave and long-wave fluxes,
via its effect on fallstreak orientation and horizontal mixing. This highlights the im-
portance of cirrus inhomogeneity for climate and the need to represent it adequately in
large-scale models. Even for optically thick clouds for which top-of-atmosphere fluxes
might be predicted relatively well by GCM radiation schemes, the failure to represent
the strong inhomogeneities at cloud top could lead to the heating-rate profile being very
poorly predicted. We find that using accurate cloud overlap information but retaining the
plane-parallel assumption could result in a worse representation of the radiative effects
of cirrus in GCMs, highlighting the need to represent cloud inhomogeneity as well as
overlap. In contrast to cirrus, the effect of stratocumulus inhomogeneity on long-wave
fluxes is virtually insignificant as the emission temperature is much more similar to that
of the surface beneath, and the higher optical depth leads to the clouds behaving as black
bodies.

Some of the simplifications made in this study could easily be relaxed. Variable
effective radius is possible by applying a method similar to Evans and Wiscombe (2004)
and generating two isotropic 3-D fractals with a specified correlation between them,
then manipulating one to yield IWC and the other to yield effective radius. Similarly
it is possible to generate distributions other than log-normal by interpreting the final
Gaussian field as the index to a look-up table. Three-dimensional radiative-transfer
calculations are planned to investigate the role of horizontal photon transport in cirrus.
There is also a need to extend this study from midlatitude cirrus to tropical anvils, for
which Buschmann et al. (2002) reported considerably more horizontal inhomogeneity.
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APPENDIX A

Treatment of incomplete datasets
The stochastic model produces log-normal distributions of ice-water content and

represents broken clouds by simply setting values lower than a certain threshold to zero.
It requires as input the mean and standard deviation of this hypothetical underlying (and
unbroken) distribution of ln IWC. In this appendix we show how these parameters may
be estimated from a dataset in broken cloud.
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The problem is considered in general terms: we have a series of measurements x
(which could represent ln IWC or radar reflectivity in dBZ), for which we would like to
estimate the mean and standard deviation of the underlying distribution, x and σx . In a
broken cloud field (or due to the sensitivity of the instrument), only a fraction f of the
data series contains valid values; for x less than the minimum detectable or ‘threshold’
value, xc, no value is recorded. If we suppose that the underlying probability density
function P (x) is a normal:

P (x) = 1

σx

√
2π

exp

{

−1

2

(

x − x

σx

)2}

, (A.1)

then from f , xc and the mean of the detected values x′, we can estimate x and σx .
The detected fraction f is given by

f =
∫ ∞

xc

P (x) dx = �

(

x − xc

σx

)

, (A.2)

where �(x) is the standard integral of a normal distribution, defined as

�(x) = 1√
2π

∫ x

−∞
exp

(

− t2

2

)

dt. (A.3)

The mean of the detected values of x is

x ′ =
∫ ∞
xc

xP (x) dx
∫ ∞
xc

P (x) dx
= 1

f σx

√
2π

∫ ∞

xc

x exp

{

−1

2

(

x − x

σx

)2}

dx. (A.4)

With a change of variables we obtain

x′ = x + σx

f
√

2π
exp

{

−1

2

(

xc − x

σx

)2}

. (A.5)

Thus we have two equations (A.2) and (A.5) and two unknowns. We use the inverse
function of (A.3), �−1, to transform (A.2), and denote the result A:

A = x − xc

σx

= �−1(f ) = √
2 erf−1(2f − 1). (A.6)

Note that we have also expressed the result in terms of the inverse error function,
erf−1, as routines for computing it tend to be more widely available than for �−1.
Substituting (A.5) we obtain

B = x′ − x

σx

= 1

f
√

2π
exp

(

−A2

2

)

. (A.7)

Rearranging (A.6) and (A.7) yields the solution for x and σx :

x = xc + x′ − xc

1 + B/A
, σx = x′ − xc

A + B
. (A.8)

As f approaches unity this method is not the best way of estimating x and σx

because f becomes more an indicator of the lower tail of the distribution, rather
than a good indicator of the width of the distribution σx , which is what is required.
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An alternative approach that we implement when f > 0.8 is to assume that the median
of the underlying distribution is equal to the mean x. Since we have more than half
the values, the median is easy to determine. The width of the underlying distribution
σx may be estimated by first calculating the mean of the data greater than x, which we
denote x′

1/2:

x′
1/2 =

∫ ∞
x

xP (x) dx
∫ ∞
x

P (x) dx
. (A.9)

From (A.5) it is easy to show that x′
1/2 = x + σx

√
2/π . Hence σx may be estimated

from x and x ′
1/2.

APPENDIX B

Formulation of the 3-D power spectrum
Here we derive the expressions for E3 given in (7)–(13), by considering how (5)

changes when it is converted to discrete form in different ranges of k. Each region of
wave-number space depicted in Fig. 4(b) is considered in turn.

(i) Region III: 3-D behaviour. We first consider Region III, corresponding approx-
imately to scales between 2�x and the vertical domain size Lz. In this region the
behaviour is fully three-dimensional, so we may use (6). This equation is therefore
repeated in (9).

(ii) Region IV: Quasi-1-D behaviour (z direction). This region consists of scales
smaller than twice the horizontal grid size, 2�x, so here the only variations are in the
z direction where the resolution is higher, and the behaviour may be regarded as quasi-
one-dimensional. This can be seen in Fig. 4(a), by the edge of the wave-number domain
at ±Kx , indicating that no fluctuations with absolute wave number in the x direction
larger than Kx are possible, and similarly in the y direction.

We consider the limit k 	 Kx (i.e. towards the top and bottom of the wave-number
domain in Fig. 4(a)) and seek a solution of the form E3 = ̂E3k

−ν . The kz form of (5) is
taken, replacing the infinite limits appropriately as follows:

E1(kz) =
∫ Kx

−Kx

∫ Ky

−Ky

̂E3k
−ν dky dkx. (B.1)

Since k 
 kz in this region and k is almost independent of the much smaller kx and ky ,
(B.1) becomes

E1(k) = 4KxKy
̂E3k

−ν . (B.2)

Thus from (4) we have ν = μ and ̂E3 = ̂E1(4KxKy)
−1, and hence E3 has the form given

by (10). In reality E3 should vary smoothly between the limits of full 3-D behaviour
given by (9) and the quasi-1-D behaviour of (10). However, for simplicity we assume
that there is a sharp transition from one regime to the other at wave number kIII.
Equating the two expressions for E3 at this wave number:

̂E1μ

2π
k
−μ−2
III =

̂E1

4KxKy

k
−μ
III , (B.3)

leads to kIII = √
2μ/π Kx , as given by (13). Typically in cirrus μ is close to 2, for which

kIII = 1.13Kx . The sharp transition of two powers of k between Regions III and IV is
apparent in Fig. 4(b) and has the result that the 1-D power spectrum in the z direction
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(indicated in Fig. 4(c)) is somewhat underestimated in the vicinity of kIII. However, this
is not of great concern as the vertical power spectrum in the frame of reference of a
fallstreak has never been measured in cirrus clouds.

(iii) Region II: Quasi-2-D behaviour (x–y plane). At scales larger than Lz, fluctua-
tions are only possible in the x and y directions, so the behaviour becomes quasi-two-
dimensional. As illustrated in Fig. 4(a), in wave-number space this is manifested as
spheres of radius k < �kz only encompassing a single plane of discrete points (lying on
the kz = 0 surface). We again seek a solution of the form E3 = ̂E3k

−ν , and in the limit
of k � �kz, (5) reduces to

E1(kx) = �kz

∫ ∞

−∞
̂E3k

−ν dky, (B.4)

and similarly for E1(ky). Note that, because the energy E3 is so much less for points in
the adjacent planes kz = ±�kz than in the kz = 0 plane, we have been able to replace
the integral in the kz direction with the effective width of this plane in discrete wave-
number space, �kz. Because kz = 0 we have k = (k2

x + k2
y)

1/2, which when substituted
into (B.4) yields the solution given by (8). As above, a sharp transition is assumed
between the quasi-2-D behaviour described by (8) and the full 3-D behaviour of (9).
Equating E3 at wave number kII:

̂E1μ

2π
k
−μ−2
II =

̂E1

�kz

√
π

�{(μ + 1)/2}
�(μ/2)

k
−μ−1
II , (B.5)

yields the expression for kII given by (12). For the case of μ = 2, this reduces to
kII = 2�kz/π = 0.64�kz. As is apparent in Figs. 4(b) and (c), the fact that the change in
slope between the two regions is only one power of k has led to the resulting 1-D power
spectrum in the x (or y) direction more closely approximating the ‘requested’ spectrum
in the vicinity of kII than was the case of the z spectrum in the vicinity of kIII.

(iv) Region I: Outer scale. In the observed cirrus power spectra presented in sec-
tion 2(c), the outer scale was present as smooth transition from a slope of −μ to E1
being independent of k, over less than a decade of k. Rather than attempting to charac-
terize the shape of this transition exactly, we note that simply setting E3 to a constant
for k < kouter results in the simulated 1-D spectrum having a form very close to that
observed, as shown in Fig. 4(c). For Region I we therefore set the transition wave num-
ber to kI = kouter and for wave numbers less than this adopt a constant value of E3 that
matches the Region II value at kouter, as given by (7).
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Räisänen, P., Barker, H. W.,
Khairoutdinov, M. F., Li, J. N.
and Randall, D. A.

2004 Stochastic generation of subgrid-scale cloudy columns for large-
scale models. Q. J. R. Meteorol. Soc., 130, 2047–2068

Slingo, A. and Schrecker, H. M. 1982 On the shortwave radiative properties of stratiform water clouds.
Q. J. R. Meteorol. Soc., 108, 407–426

Smith, S. A. and DelGenio, A. D. 2001 Analysis of aircraft, radiosonde, and radar observations in cirrus
clouds observed during FIRE II: The interactions between
environmental structure, turbulence, and cloud microphysi-
cal properties. J. Atmos. Sci., 58, 451–461

http://www.ingentaconnect.com/content/external-references?article=0035-9009()122L.689[aid=1968510]
http://www.ingentaconnect.com/content/external-references?article=0035-9009()122L.689[aid=1968510]
http://www.ingentaconnect.com/content/external-references?article=0169-8095()72L.263[aid=6984797]
http://www.ingentaconnect.com/content/external-references?article=0094-8276()27L.3341[aid=6057342]
http://www.ingentaconnect.com/content/external-references?article=0094-8276()27L.3341[aid=6057342]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()113L.1832[aid=6984796]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()113L.1832[aid=6984796]
http://www.ingentaconnect.com/content/external-references?article=0739-0572()16L.518[aid=5112071]
http://www.ingentaconnect.com/content/external-references?article=0739-0572()16L.518[aid=5112071]
http://www.ingentaconnect.com/content/external-references?article=0035-9009()126L.2903[aid=2645202]
http://www.ingentaconnect.com/content/external-references?article=0035-9009()126L.2903[aid=2645202]
http://www.ingentaconnect.com/content/external-references?article=0022-4928()60L.756[aid=6218179]
http://www.ingentaconnect.com/content/external-references?article=0022-4928()60L.756[aid=6218179]
http://www.ingentaconnect.com/content/external-references?article=0739-0572()20L.572[aid=5112247]
http://www.ingentaconnect.com/content/external-references?article=0739-0572()20L.572[aid=5112247]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()105L.10063[aid=5263005]
http://www.ingentaconnect.com/content/external-references?article=0894-8763()27L.1242[aid=6984794]
http://www.ingentaconnect.com/content/external-references?article=0894-8763()27L.1242[aid=6984794]
http://www.ingentaconnect.com/content/external-references?article=0022-4928()40L.749[aid=6984793]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()114L.1167[aid=657261]
http://www.ingentaconnect.com/content/external-references?article=0022-4928()54L.1423[aid=6711611]
http://www.ingentaconnect.com/content/external-references?article=0094-8276()27L.2101[aid=6984791]
http://www.ingentaconnect.com/content/external-references?article=0035-9009()130L.2047[aid=6218182]
http://www.ingentaconnect.com/content/external-references?article=0035-9009()108L.407[aid=656498]
http://www.ingentaconnect.com/content/external-references?article=0022-4928()58L.451[aid=3488642]
http://dx.doi.org/10.1209/2002JD003322
http://dx.doi.org/10.1209/2002JD003322

