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ABSTRACT

The correlated-k-distribution (CKD) method is widely used in the radiative transfer schemes of atmo-

spheric models; it involves dividing the spectrum into a number of bands and then reordering the gaseous

absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by

discretizing the reordered spectrum into O(10) quadrature points per major gas and performing a pseudo-

monochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave

calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering

may be performed on the entire longwave spectrum. The resulting full-spectrum correlated-k (FSCK) method

requires significantly fewer pseudomonochromatic calculations than standard CKD to achieve a given ac-

curacy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere

containing only water vapor, in which it is shown that the accuracy of heating rate calculations improves

approximately in proportion to the square of the number of quadrature points. For more than around 20

points, the root-mean-square error flattens out at around 0.015 K day21 due to the imperfect rank correlation

of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated

by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one

of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single

quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number

that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature

point are optimized such that they minimize a cost function expressing the deviation of the heating rates and

fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This

approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found

that in the troposphere and most of the stratosphere, heating rate errors of less than 0.2 K day21 can be

achieved using a total of 23 quadrature points, decreasing to less than 0.1 K day21 for 32 quadrature points. It

would be relatively straightforward to extend the method to include other gases.

1. Introduction

A prerequisite for reliable modeling of the climate sys-

tem is the ability to calculate accurate heating rate profiles

and surface fluxes, including the effects of small changes

to the concentrations of greenhouse gases. However, the

longwave gaseous absorption spectrum exhibits signifi-

cant structure over spectral intervals a millionth of the

range over which terrestrial emission is significant, im-

plying that O(106) monochromatic calculations are re-

quired. Ambartzumian (1936) was the first to propose that,

for vertically homogeneous atmospheres, the gaseous mass

absorption coefficients k can be ‘‘sorted’’ into a mono-

tonic function that is much more conducive to efficient

numerical integration. This was extended to vertically in-

homogeneous atmospheres by Lacis et al. (1979), and the

resulting ‘‘correlated-k distribution’’ (CKD) method now

forms the basis of most radiative transfer schemes in

general circulation models (GCMs). It takes advantage

of the fact that in the terrestrial atmosphere the ordering

of the spectrum is highly correlated in the vertical, de-

spite large changes in absorber abundance and the ef-

fect of changes to the spectral lines through pressure and

Doppler broadening.

Even though CKD methods are so much more effi-

cient than line-by-line calculations, they can still con-

stitute a significant fraction of the computational cost

of a GCM. High spectral accuracy is therefore usually

achieved at the expense of poor temporal resolution, with
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the radiation scheme often called only every 3 h, which

can lead to errors in the diurnal cycle (Yang and Slingo

2001) and can change the climate sensitivity of the model

(Morcrette 2000). The computational time spent resolving

the spectrum is also not matched by the time spent re-

solving the spatial structure of clouds within a grid box,

leading to substantial radiative biases (Cahalan et al. 1994;

Shonk and Hogan 2008). Moreover, while it is necessary to

represent trace gases individually for climate forecasts and

reanalysis projects, the accuracy of day-to-day numerical

weather forecasts is largely insensitive to errors in their

representation; Curry et al. (2006) showed that assuming

trace gases to be vertically well mixed led to a temperature

error of less than 0.2 K below 30 km, rising to 1 K above

50 km. It is therefore highly desirable to explore ways to

treat gaseous absorption more efficiently.

Most current longwave CKD models divide the spec-

trum into bands and then reorder the spectrum within

each band. The number of bands can vary considerably.

The model presented by Lacis and Oinas (1991) used

narrow 10 cm21 spectral intervals and 36 quadrature

points within each, resulting in a total of around 104

quadrature points. The Rapid Radiative Transfer Model

(RRTM) of Mlawer et al. (1997) employs 16 bands in

the longwave with a total of 256 quadrature points [re-

duced to 140 in its implementation in the model of the

European Centre for Medium-Range Weather Fore-

casts, Morcrette et al. (2008)], while Fu and Liou (1992)

demonstrated that sufficient accuracy could be achieved

with 67 points in 12 bands. Fomin (2004) reported a

CKD model employing only 23 points in 4 bands, al-

though the heating rate errors up to 0.9 K day21 in the

stratosphere are probably too large for this model to be

considered for operational use.

So what determines the number of bands into which

it is necessary to divide the spectrum? The following

considerations have been cited previously:

1) The need for the band to be narrow enough that the

Planck function does not vary significantly across it

(Fu and Liou 1992).

2) The need to minimize the number of active gases

within each band owing to the computational ex-

pense of treating overlapping gases (Mlawer et al.

1997). Moreover, some techniques for treating gas-

eous overlap, such as fast exponential sum fitting of

transmissivities (FESFT) (Ritter and Geleyn 1992;

Edwards 1996), assume that the overlap is random,

which is not valid over very wide spectral intervals.

3) The need to resolve the spectral variation of cloud

and aerosol absorption and scattering, which varies

much more slowly than gaseous absorption (Ritter

and Geleyn 1992).

A recent proposal for the rapid computation of radiative

transfer within combusting gases is the full-spectrum

correlated-k (FSCK) method in which the entire spec-

trum is reordered as a single band (Modest and Zhang

2002) and the continuous distribution of gaseous ab-

sorption is discretized into a smaller total number of

quadrature points than is required with bands. They

tackled the first consideration above by weighting each

of the quadrature points by the integral of the Planck

function at some reference temperature of each part of

the spectrum contributing to that point. Other temper-

atures were treated using lookup tables to relate the

absorption between different temperatures. FSCK has

been applied to the shortwave by Pawlak et al. (2004).

With the absence of internal emission, Pawlak et al.

were able simply to weight each quadrature point by the

intensity of solar radiation contributing to it (although

this is also done in many CKD models using narrower

bands; e.g., Fu and Liou 1992). For representing clouds,

they found it necessary to divide the shortwave region

into two bands on either side of a wavelength of 0.68 mm;

at shorter wavelengths than this clouds have virtually zero

absorption, while at longer wavelengths absorption be-

comes significant.

In the longwave, a method essentially the same as

FSCK has been applied in the Goddard Institute for

Space Studies (GISS) GCM (A. Lacis 2009, personal

communication) for many years. The original version was

the one used by Hansen et al. (1983) and Lacis and Oinas

(1991) and employed 25 quadrature points. The current

GISS radiation scheme uses a total of 33 quadrature points

(13 for H2O, 12 for CO2, and 8 for O3), and its first re-

ported use was by Oinas et al. (2001). The cloud opti-

cal properties are merged with the gaseous correlated-k

distributions. However, none of these papers discuss in

any detail how optimal selection of these bands is per-

formed or how the tricky problem of the spectral overlap

of gases is tackled across the full spectrum. Furthermore,

it is the author’s experience that many radiation experts

are unaware that it is possible to apply the CKD method

to the full spectrum.

The purpose of this paper is to demonstrate the ap-

plication of the FSCK method to atmospheric longwave

radiative transfer, focusing particularly on how to opti-

mize the selection of quadrature points and the treat-

ment of the spectral overlap of multiple gases. To treat

consideration 1 above, we take a simpler approach than

in Modest and Zhang (2002) and replace occurrences of

the Planck function in the equations of radiative transfer

by an effective Planck function, which represents the in-

tegral of the Planck function over those parts of the

spectrum contributing to a particular quadrature point

(which may be from opposite ends of the spectrum). In
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section 2 we outline mathematically the origin of the

FSCK approach and demonstrate that the use of an ef-

fective Planck function is exact, subject to the ordering

of absorption spectra being perfectly correlated along

a path. In section 3, the numerical convergence of the

method is tested by comparison with line-by-line cal-

culations for an atmosphere containing only a single gas

(H2O, CO2, or O3), quantifying the effect of imperfect

correlation in the vertical due to broadening of the

spectral lines. In section 4, a method to treat the spectral

overlap of many gases across the spectrum is presented,

which is then tested on atmospheres containing H2O,

CO2, and O3 in section 5. It should be stressed that the

purpose of this paper is not to present a finalized radi-

ative transfer model, ready to be implemented in climate

models, but rather to demonstrate the promise of the

technique; in section 6, we discuss the remaining work to

be done before such a model could be written.

2. Theoretical background

To facilitate the discussion of the correlated-k method

and its full-spectrum counterpart, it is convenient to

simplify the equations of longwave radiative transfer. If

the atmosphere is discretized vertically into nz layers,

then the heating rate of layer i may be written as

_T
i
5

ðhmax

hmin

�
n

z

j50
W

ji
(h)B

j
(h) dh, (1)

where Bj(h) is the Planck function [W m22 (cm21)21] at

wavenumber h for the temperature of layer j: Wji(h) is a

weighting matrix (K m2 J21) that accounts for all aspects

of the transmission between layer j and layer i at

wavenumber h, integrated over angle, but multiplied

by additional factors to convert from irradiance to

heating rate. In the case that j 5 0, the factor W0i(h)

should be thought of as the transmission from the surface

[with blackbody emission B0(h)] to layer i, whereas in the

case of j 5 i, the factor Wii(h) represents the ability of the

layer to lose thermal energy by emission.

In the appendix it is shown how Wji may be calculated

explicitly, including how to include the effects of scat-

tering from other layers in the transit of radiation from

layer j to layer i. Thus, the �nz

j50Wji(h)Bj(h) term simply

represents a monochromatic radiative transfer calcula-

tion using the two-stream or other appropriate method.

The key point to note from (1) is that, even when scat-

tering is present, the longwave heating rate of a layer

can still be considered as the linear sum of the Planck

function of all layers of the atmosphere, weighted ap-

propriately. Equation (1) is similar to the formulation of

longwave radiative transfer in terms of net exchange ma-

trices (Green 1967; Eymet et al. 2004). However, it is more

general in the sense that we could write equations for the

fluxes at any point in the atmosphere in exactly the same

form: the linear sum of weighted contributions from the

Planck function at every point in the atmosphere.

The integral in (1) is performed over the wavenumber

range of the entire longwave spectrum from hmin ;

100 cm21 to hmax ; 2500 cm21. Throughout this section

we use summations to indicate when fewer than around

100 elements are being summed but employ integrals

when more than around 104 quadrature points would be

required for a numerical integration.

a. The correlated-k method

The rapid spectral variation of gaseous absorption,

and hence the rapid variation of Wji with h, means that

of O(106) monochromatic radiative transfer calculations

would be required to evaluate the integral in (1). Such

‘‘line-by-line’’ calculations are essential to provide ac-

curate benchmarks, but are too expensive for use in a

GCM. The correlated-k distribution method is a widely

used approximation to make the spectral integration

more efficient. The spectrum is split up into n
h

bands

within which the Planck function may be assumed con-

stant with wavenumber, although many CKD models do

account for the variation of the Planck function within

a band. Within each band, the spectrum is reordered in

terms of the mass absorption coefficient k such that a

rapidly varying function of h is replaced with a mono-

tonically increasing function of the ‘‘normalized rank’’ g,

which varies from 0 for the least absorbing part of the

band to 1 for the most absorbing part. Therefore, within

each band a summation is performed in g space, and (1)

becomes

_T
i
5 �

n
h

m51
�
n

g

l51
�
n

z

j50
W

ji
(g

lm
)B

j
(h)Dg

lm
Dh

m
, (2)

where ng separate pseudomonochromatic calculations

are performed in each band, each weighted by their

width in g space, Dglm. Since the absorption varies slowly

with g, far fewer points need to be used in the integration

(typically between 2 and 16).

b. The full-spectrum correlated-k (FSCK) method

We now consider the basis behind the full-spectrum

correlated-k method. Rather than splitting the spec-

trum up into bands, we order the entire longwave spec-

trum by absorption coefficient such that the value of g

now indicates the rank with respect to all other values in

the spectrum. Thus g(h) represents a nondifferentiable

function relating wavenumber to normalized rank, and
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h(g) is its inverse. The first step is a change of variables

in the integration from h to g such that (1) becomes

_T
i
5

ð1

0

�
nz

j50
W

ji
(g)B

j
[h(g)] dg. (3)

The main difference is that in (1) Wji is a rapidly varying

function of the variable of integration h, while Bj is a

smooth function of h. Conversely, in (3) Wji is a smoothly

varying function of the variable of integration g whereas

Bj varies rapidly with g. The integral over g presents a

small conceptual problem since one could argue that

there are many wavenumbers corresponding to a given g.

However, if the integral is thought of as a discrete sum-

mation of arbitrarily fine resolution, then each g in the

summation corresponds to a unique wavenumber and the

conceptual problem is overcome. We retain the integral

sign in (3) to stress that a very high resolution summation

would be required to evaluate it.

We now discretize the g distribution into ng intervals

(where ng is again O(10) such that interval l is bounded

by the values gl21/2 and gl11/2 and within the interval the

weighting factor Wji(gl) is constant. Thus (3) becomes

_T
i
5�

n
g

l51

ðgl11/2

g
l�1/2

�
n

z

j50
W

ji
(g

l
)B

j
[h(g)] dg. (4)

We are still left with the problem that a particular narrow

range of g now includes disparate parts of the spectrum,

and therefore it is not valid to choose a representative

wavenumber h for calculating the Planck function, as

was the case within a band in the formulation of (2). The

approach taken by Modest and Zhang (2002) was indeed

to use an integrated Planck function for the entire wave-

number range hmin–hmax in the pseudomonochromatic

radiative transfer calculations but to weight the trans-

mittances (Wji in our terminology) by the Planck function

at the parts of the spectrum that contribute to the range of

g under consideration at an arbitrary reference temper-

ature. Lookup tables were then required to try to account

for variations of the weighting at different temperatures

along the path. However, a simpler approach is possible.

c. FSCK with an effective Planck function

In (4) it can be seen that Wji(gl) is constant over the range

of g represented in the integration, and hence the integral

can be applied directly to the Planck function as follows:

_T
i
5�

n
g

l51
�
n

z

j50
W

ij
(g

l
)

ðg
l11/2

g
l�1/2

B
j
[h(g)] dg

5�
n

g

l51
�
n

z

j50
W

ij
(g

l
)B9

j
(g

l
). (5)

In (5), we have introduced an effective Planck function

B9j(gl), which is simply the integral of the Planck function

over the wavenumbers that contribute to absorption in

a particular range of g. Comparing (5) to (1), we see that

integration over g is identical to integration over h ex-

cept that we have only ng pseudomonochromatic radi-

ative transfer calculations to perform (where ng is far

smaller than the ;106 required to resolve the spectrum):

we must use the effective Planck function in place of

the conventional Planck function wherever it appears in

the radiative transfer calculation. The effective Planck

function is straightforward to implement as a lookup

table versus temperature for each of the ng quadrature

points.

To summarize, what has been shown in this section

is that different parts of the spectrum with similar ab-

sorption properties may be treated together in a single

radiative transfer calculation, provided that occurrences

of the Planck function in the calculation are replaced by

the integral of the Planck function over those parts of

the spectrum being considered. This approach is already

taken over limited parts of the spectrum in some CKD

models (e.g., RRTM), but it has been shown here to be

equally valid over the entire longwave spectrum.

3. Results for a single absorbing gas

We first test the validity of (5) using the standard mid-

latitude summer (MLS) atmosphere of McClatchey et al.

(1972) but containing only a single absorbing gas. Ab-

sorption spectra of water vapor, carbon dioxide, and ozone

have been calculated at a resolution of 0.0025 cm21 using

the High-Resolution Transmission Molecular Absorp-

tion (HITRAN) database (Rothman et al. 2004) coupled

to the line-by-line model of Mitsel et al. (1995) assuming

Voigt line shapes. The MT-CKD water vapor continuum

of Clough et al. (2005) is included. Spectra have been

calculated at reference pressures of 0.01, 0.1, 1, 10, 30,

100, 500, and 1013 hPa for temperature and humidity

conditions similar to the MLS atmosphere.

A benchmark radiative transfer calculation with a

spectral resolution of 0.0025 cm21 is first performed for

the case in which water vapor is the only absorbing gas.

The atmosphere is represented with a resolution of 1 km

below 25 km and 5 km above, up to the highest model

level at 100 km. Mass absorption coefficients are in-

terpolated logarithmically in logarithmic pressure space

from the reference spectra. The two-stream approxi-

mation in the absence of scattering is employed, in which

for each wavenumber interval a single upwelling and a

single downwelling path is followed through the atmo-

sphere at zenith angles of 6528 (e.g., Fu et al. 1997), and

emission and absorption are treated within each layer,
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assuming the Planck function to vary linearly with op-

tical depth. The surface emissivity is taken to be unity.

Although the accuracy of the two-stream approximation

is not commensurate with the spectral accuracy of a line-

by-line calculation, the FSCK parameterization that will

be developed would invariably be used with a two-stream

radiation scheme and, therefore, should be compared

against a benchmark that uses the same approximation.

The benchmark heating rate profile is shown by the thick

gray line in Fig. 1 and covers the longwave spectral range

100–2500 cm21 (4–100 mm).

We next describe the derivation of the parameters of

the FSCK model. The first task is to reorder the entire

water vapor spectrum by k. The best way to do this is

not immediately obvious since the optimum sorting is a

function of pressure (and to a lesser extent tempera-

ture), and it is found that sorting just by k at one pressure

can lead to significant heating rate errors at other pres-

sures. For example, sorting by the zenith optical depth

weights the lower troposphere too much and results in

large errors in the stratosphere. This problem is likely to

be more severe for FSCK than CKD since a wider range

of absorptions are being sorted simultaneously. To solve

this problem, we perform a high-spectral-resolution ra-

diative transfer calculation for an atmosphere with gas

concentration from the MLS atmosphere but with a lin-

early decreasing temperature from the surface to an

altitude of 100 km. The spectrum is then sorted by the

height at which the peak cooling rate occurs. This has the

advantage that it provides optimal sorting at the pres-

sure where each part of the spectrum is most important.

Using a linearly decreasing temperature ensures that

this method is not affected by the location of changes in

the sign of the temperature gradient that are present in

the real atmosphere. The method fails for optically thin

parts of the spectrum, so, when the zenith optical depth d

is less than unity, the sorting is simply performed by d

instead. Thus we arrive at a normalized rank g(h) for

the entire spectrum. The black line in Fig. 2a displays

this function for water vapor (the other two gases will be

discussed shortly).

The second task in deriving the FSCK model param-

eters is to choose optimal intervals in g space such that

each interval is associated with approximately the same

heating rate error. This is achieved by choosing the re-

quired error tolerance smax (e.g., 0.05 K day21) and

then proceeding up through g space. To calculate the

parameters for interval 1, we set the lower boundary to

g1/2 5 0 and test a particular value for the upper bound-

ary g3/2. Those parts of the high-resolution water vapor

spectrum that lie in the range g1/2 , g # g3/2 are selected,

and at each height (plus the surface) the effective Planck

function is calculated following (5). A first guess is then

made of the best k to use at each of the reference pres-

sures listed above, by calculating the Planck-function-

weighted mean of lnk for the same range of g. These

are then used to calculate a profile of absorption co-

efficient for the MLS atmosphere. Radiative transfer

calculations are then performed using the same two-

stream approximation as the benchmark calculations,

for not only this first guess of the absorption profile

but also for the absorption profiles scaled by several

hundred different factors between 0.1 and 10. The re-

sulting heating-rate profiles _TFSCK and fluxes are then

compared to the benchmark heating rate profile _Tbench

and fluxes for the g interval under consideration, and a

root-mean-square error s is calculated for each scaling

factor.

At this point it is worth discussing how the error is

weighted since this can have significant consequences

for the resulting model parameters. If each layer of the

atmosphere is weighted by the pressure difference across

it (i.e., its mass), then the troposphere will be weighted

around four times more than the rest of the atmosphere,

resulting in large errors being tolerated in the strato-

sphere. If each layer is weighted by its physical depth,

then the stratosphere will be weighted around four times

more than the troposphere, resulting in large tropo-

spheric errors. Therefore, we weight each layer by the

difference in the square root of the pressure p at the

boundaries of the layer, which results in the troposphere

FIG. 1. Heating rate in the midlatitude summer atmosphere in

which water vapor is the only absorbing gas. Results are shown for

a benchmark calculation using a spectral resolution of 0.0025 cm21

(thick gray line) and using the full-spectrum correlated-k method

(FSCK) with three different numbers of quadrature points ng (thin

black lines). The ng values of 10, 13, and 17 were generated by

assigning error tolerances smax for each g interval of 0.05, 0.03, and

0.02 K day21, respectively.
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and stratosphere being weighted approximately equally.

An additional term is added to penalize errors in the net

fluxes at the top of the atmosphere (TOA), FTOA, and at

the surface, Fsurf. Thus, the error variance (which can be

thought of as a cost function) is defined as

s2 5

�
n9

z

i51

_T
FSCK

i � _Tbench
i

� �2
p0.5

i�1/2 � p0.5
i11/2

� �

p0.5
1/2 � p0.5

n9
z
11/2

1 f FFSCK
TOA � Fbench

TOA

� �2
1 FFSCK

surf � Fbench
surf

� �2� �
, (6)

where n9z is the index of the highest level that contributes

to the error. In this study we use a threshold pressure of

0.1 hPa (67 km in the MLS atmosphere), which is the

typical pressure of the highest model level in a GCM

(e.g., Météo-France has its highest level centered at

0.1 hPa, the ECMWF at 0.01 hPa, and the UK Met

Office at 40 km). Furthermore, at pressures lower than

0.1 hPa the assumption of local thermodynamic equilib-

rium starts to become questionable. Of course, if me-

sospheric heating rates were of interest then n9z could be

increased. The factor f weights the importance of the

fluxes with respect to the heating rates. It is found that

a value of f 5 0.02 (K day21 W21 m2)2 provides the best

balance of ensuring the flux errors are close to zero at the

boundaries without compromising the need to match the

heating rate profile.

Thus we acquire an error for each value of scaling

factor between 0.1 and 10. The optimum absorption pro-

file is then simply the one with the lowest error, which in

practice almost always lies between 0.5 and 2: hence, the

arbitrary bounds chosen for the range to search do not

have an impact on the result. This error is then compared

to the tolerance: if s . smax, then a lower value of g3/2 is

tried and the process is repeated, while, if s , 0.8smax,

then a larger value of g3/2 is tried. If 0.8smax # s # smax,

then g3/2 is accepted, and the optimum values of k at the

set of reference pressures are stored. The process is re-

peated to find the next g interval, and so on until the g

space is fully partitioned. Figure 2b illustrates how the

contributions to a particular g interval are often from a

wide range of locations in the spectrum.

The resulting longwave heating rate profiles for three

different tolerances are shown by the thin black lines in

Fig. 1. There appears to be rapid convergence with in-

creasing numbers of intervals ng. To quantify this more

rigorously, the solid black line in Fig. 3 shows the root-

mean-square error [calculated using Eq. (6) but this time

on the total heating rate rather than for just one range

of g, and neglecting the second term on the right-hand

side for fluxes] versus ng. Between ng 5 2 and ng 5 20,

approximately second-order convergence is achieved;

FIG. 2. (a) The normalized ranks of the spectra of water vapor, carbon dioxide, and ozone (gH2O, gCO2 and gO3 ).

Note that the scale for ozone is shown on the right, and the absorption coefficient of ozone outside the range

500–1295 cm21 has been set to zero because of the dominance of the other two gases at other wavenumbers; hence,

gO3 is only shown above 0.68. (b) The gray vertical lines indicate the parts of the water vapor spectrum for which

the normalized rank lies in the fourth interval in Table 1 (i.e., 0.461 , gH2O # 0.534). The black line shows the

corresponding cumulative frequency.
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that is, the error is approximately proportional to n�2
g . For

ng . 20, the error flattens out at around 0.015 K day21.

This is believed to be due to imperfect rank correlation of

the k values at one pressure with those at another.

The procedure is now repeated but with the only ab-

sorbing gas being carbon dioxide or ozone. Ozone ab-

sorption outside the wavenumber range 500–1295 cm21

is negligible compared to absorption by water vapor

and carbon dioxide; therefore, its absorption here is set

to zero so that g intervals are selected only in the im-

portant region. Then the ozone absorption in regions

with gO3 , 0.9 is set to zero for the same reason. Note

that, when mixtures of different gases are tested, they

are compared against high-spectral-resolution calcula-

tions in which the full ozone spectrum has been in-

cluded. A well-mixed carbon dioxide profile is assumed

with a concentration of 350 ppmv, while the ozone pro-

file is taken from the MLS standard atmosphere. The

results are shown in Fig. 3, where it can be seen that

these two gases achieve a comparable order of conver-

gence to water vapor, but flattening out at a larger error

of around 0.03 K day21. This is believed to be due to the

fact that the peak heating rates of carbon dioxide and

ozone occur in the stratosphere and here they span a

wider range of pressures than for water vapor. Thus, the

error due to imperfect rank correlations at different

pressures is larger. Ozone requires a smaller number of

quadrature points than the other two gases to achieve

the same accuracy simply because it is important over a

much narrower range of the spectrum and over a smaller

height range. Table 1 lists the boundaries of the g inter-

vals for each of the three gases in the case when the

tolerance is set as smax 5 0.03 K day21.

4. Results for more than one absorbing gas

Figure 3 confirms that the FSCK method with an ef-

fective Planck function works well in the case of a single

absorbing gas, but in the real atmosphere we must con-

tend with the problem of spectrally overlapping gases.

The issue is easiest to visualize by plotting the normal-

ized rank of one gas versus that of another, as shown for

water vapor and carbon dioxide in Fig. 4. The ‘‘brute

force’’ approach would be to use the intervals of g ob-

tained for each gas in the previous spectrum, divide

the space up into nH2O
g 3 nCO2

g rectangles, and perform a

pseudomonochromatic radiative transfer calculation for

each. Clearly with any more than two gases, the number

of pseudomonochromatic calculations becomes many

more than would be required in an ordinary CKD cal-

culation and the potential efficiency gains of FSCK would

be lost.

Several techniques for reducing the number of pseu-

domonochromatic calculations have been proposed for

overlapping gases. For example, FESFT (Ritter and

Geleyn 1992; Edwards 1996) assumes that the spectra of

the various gases are randomly overlapped, enabling each

gas to be treated separately (akin to the one-gas calcu-

lations in the previous section), followed by the trans-

missivities of each gas being multiplied together. The

number of pseudomonochromatic calculations required

is then one plus the sum of the number required for each

individual gas. However, this method is very inaccurate

in an FSCK context because over the full spectrum the

FIG. 3. Rms heating-rate error [weighted by the square root of

pressure; i.e., the first term on the rhs of (6) for the FSCK method

applied to the midlatitude summer standard atmosphere] vs the

number of quadrature points used in the integration in g space. The

error is shown for an atmosphere containing H2O only, CO2 only,

and O3 only (where for O3 only the absorption spectrum between

wavenumbers of 500 and 1295 cm21 is considered).

TABLE 1. Optimum boundaries in g space to achieve an error

of less than smax 5 0.03 K day21 in each interval. The resulting

32-point model is discussed in the text.

g boundary H2O CO2 O3

0.5 0 0 0

1.5 0.300 0.784 0.905

2.5 0.405 0.871 0.982

3.5 0.461 0.888 0.995

4.5 0.534 0.913 0.9986

5.5 0.622 0.936 0.999 78

6.5 0.721 0.964 1

7.5 0.844 0.986

8.5 0.925 0.9931

9.5 0.974 0.9955

10.5 0.9939 0.9966

11.5 0.9983 0.9976

12.5 0.999 43 0.9984

13.5 1 0.9989

14.5 0.999 47

15.5 1
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spectral overlap is not perfectly random, and also be-

cause of the significant variation of the Planck function.

We therefore take a different approach. Examination

of Fig. 4 reveals that the regions of highest water vapor

absorption correspond to low carbon dioxide absorption;

in particular, the bottom right of the figure is a combina-

tion of the vibration–rotation water vapor band centered

at 6.7 mm and the pure rotation band at wavelengths

longer than around 20 mm. Similarly, regions of highest

carbon dioxide absorption correspond to low or medium

water vapor absorption; in particular, the concentration

of points at the top left and top center of the figure cor-

respond to the carbon dioxide bands at 4.3 and 15 mm,

respectively. In these regions there is no need to resolve

the variation in absorption of the weaker of the two ab-

sorbers since the fluxes and heating rates will be domi-

nated by the stronger absorber.

Our procedure to partition g space is as follows, con-

sidering first the case of two gases. The intention is gen-

erally to select regions in order of the height at which they

are most important for the heating rate. The first region

is defined to contain normalized ranks for the two gases

(gH2O and gCO2 ) such that 0 , gH2O # g
H2O

3/2 and 0 ,

gCO2 # g
CO2

3/2 . This is shown as the rectangle in the lower

left of Fig. 4 (note that the rectangle boundaries in this

figure correspond to a tolerance of smax 5 0.03 K day21,

resulting in n
H2O
g 5 13 and n

CO2
g 5 15). To define the

boundaries of the second region, the water vapor rank is

advanced such that the second region lies just to the right

of the first in Fig. 4, bounded by g
H2O

3/2 , gH2O # g
H2O

5/2 and

0 , gCO2 # g
CO2

3/2 . Next the carbon dioxide rank is in-

creased, resulting in a third region above the other two.

This is continued until the entire two-dimensional space

is allocated. At each step, the gas chosen for advance-

ment is the one that results in the lowest-altitude peak

cooling rate in the next region. In this way the regions

are in order of the height at which they have their peak

cooling.

A possible concern about the way g space is allocated

here is that it is based on the abundance of two gases in

one particular atmosphere and, when applied to a profile

in which the relative abundances are changed, the allo-

cation would not necessarily still be appropriate. There

are several points to make here. First, the g intervals for

each individual gas typically represent a difference of a

factor 5 in k. Hence, the relative abundance of gases has

to be very substantially changed to result in a significant

difference in the optimum order in which regions are

allocated. Second, in the case of water vapor and carbon

dioxide, a change in the order in which the ranks of the

two gases are incremented would mainly change the

regions to which parts of the spectrum are allocated in

the upper right of Fig. 4, where very little of the spec-

trum actually lies. Note that the first region in the lower

left of this figure always has the same configuration, be-

ing bounded by 0 , gH2O # g
H2O

3/2 and 0 , gCO2 # g
CO2

3/2 .

Third, it would be a simple matter to split one or two

of these regions into two or more subregions if they turned

out to be particularly critical to the accuracy of the result

when relative abundance was changed over a realistic

range. In practice for present-day terrestrial atmospheres

and under doubled CO2, this turns out not to be necessary.

This procedure outlined above is straightforward to

implement for more than two gases; if we have m gases,

then at each step we have a choice of m different ways

in which the advancement can take place. This may be

done by testing the altitude of the peak cooling rate in

the new region in the case of advancement of each gas

separately and choosing the one with the lowest altitude,

or by some other method. Figure 5 illustrates the allo-

cation of three-dimensional g space for the overlapping

of water vapor, carbon dioxide, and ozone. In the case

of ozone, the number of g intervals necessary to achieve

a tolerance of smax 5 0.03 K day21 was n
O3
g 5 6 (see

Table 1). Thus, it can be seen that for the total number of

regions required for m gases is

n
g

5 1�m 1�
m

i51
ni

g, (7)

FIG. 4. Scatterplot of the entire longwave spectrum (100–

2500 cm21) where each point corresponds to a 0.0025 cm21 inter-

val, plotted as the normalized rank of the carbon dioxide absorption

spectrum at that point gCO2 vs the normalized rank of the water

vapor spectrum gH2O. The rectangles show the regions of the

spectrum that are treated together in the 32-point model discussed

in the text.
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where ng
i is the number of g intervals required for the ith

gas in isolation. For the remainder of this paper we use

the term ‘‘g interval’’ to indicate an interval for one par-

ticular gas (as shown in Table 1) but ‘‘g region’’ for a cu-

boid in three-dimensional g space (as shown in Fig. 5).

After all regions have been allocated, the most rep-

resentative k value must be selected for each active

gas within each region, as a function of pressure. As in

section 3, a first guess of the appropriate k value for each

region, gas, and reference pressure is calculated as the

Planck-function-weighted mean of the high-resolution

values of ln k within that region. The Planck function

used is from the MLS standard atmosphere. We then use

the framework of optimal estimation theory and define

a ‘‘state vector’’ x containing the natural logarithm of

m 3 ng scaling factors, that is, one for each gas and re-

gion, which will scale the k values at all pressures. The

objective is to find the vector x that minimizes the dif-

ference in broadband heating rates and fluxes between

the FSCK calculations and benchmark line-by-line cal-

culations for np ‘‘training’’ profiles, in a least squares

sense. This is achieved by minimizing the following cost

function:

J 5 hxTx 1 �
n

p

i51
s2

i , (8)

where si
2 is the error variance of training profile i, as

defined in (6) but for broadband variables, and quantifies

the error in both the broadband heating rate profile and

the broadband fluxes at the surface and the top of the

atmosphere. The first term in (8) is present to ensure a

stable and unique solution. It represents the squared

deviation of the logarithm of the scaling factors away

from zero and penalizes large deviations in the scaled

k values from the first guesses derived above. A small

value for the weight h, somewhere between 1026 and

1025, leads to the best fit to the training profiles. The cost

function is minimized using the Levenberg–Marquardt

algorithm, a modification of the Gauss–Newton algo-

rithm; both are described in detail by Rodgers (2000).

This procedure requires calculation of the Jacobian ma-

trix, which represents the partial derivative of all the

heating rates and fluxes required to calculate s2 with re-

spect to all the elements of x. This is done numerically—

that is, by perturbing in turn each of the m 3 ng values of x

by a small amount, calculating the perturbed k profile for

that particular region, and running a pseudomonochro-

matic radiative transfer calculation for each of the np

profiles. For ng 5 32, m 5 3, and np 5 4, this whole

minimization process can be computed in much less than

a minute on a typical workstation, even when many it-

erations are required.

The extension to other gases such as methane and

nitrous oxide should be straightforward using a similar

method: by adding further dimensions to the cube shown

in Fig. 5 and partitioning the resulting ‘‘hypercube’’ in

the same way. Further work will be needed to confirm

that the sensitivity to trace-gas concentrations can be

calculated accurately. Note that for weather forecasting

it is generally not necessary to represent changes to trace

gases during the simulation, so one may combine all well-

mixed gases with carbon dioxide into a ‘‘composite’’ gas

(e.g., Ritter and Geleyn 1992). Curry et al. (2006) showed

that the global-mean temperature error resulting from

assuming methane and nitrous oxide to be well mixed is

less than 0.2 K below 30 km, rising to 1 K above 50 km,

while the error due to treating CFC11 and CFC12 as well

mixed is less than 0.1 K everywhere below 50 km. These

small errors will have no detectable impact on the accu-

racy of weather forecasts. For the comparisons in the re-

mainder of this paper we therefore use primarily the

three-gas model described in this section, which utilizes

the g intervals listed in Table 1 and requires a total of 32

quadrature points. Comparisons are also performed with

a faster but less accurate model consisting of 23 quadra-

ture points, obtained by using a heating rate tolerance for

the individual gases of smax 5 0.05 K day21, which re-

sults in n
H2O
g 5 10, n

CO2
g 5 10 and n

O3
g 5 5.

The range of applicability of an FSCK radiation scheme

(and indeed most CKD schemes) is entirely dependent

on the range of temperature and gas concentrations in the

FIG. 5. Illustration of how three-dimensional g space (for the

gases H2O, CO2, and O3) is divided up in the case of the 32-point

model discussed in the text. Note that the upper surface shows the

same divisions between H2O and CO2 as were shown in Fig. 4,

except that here the axes have been scaled to reveal the regions

confined to g values very near 1.
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training profiles. Therefore, for paleoclimate simula-

tions or the atmospheres of other planets, a different set

of training profiles would need to be used. In general, the

wider the intended applicability of the scheme, the more

regions into which it is likely to be necessary to partition

g space to achieve the same accuracy. Conversely, for

short-term terrestrial weather forecasts where carbon

dioxide and trace gas concentrations may be held fixed,

there is no need to bear the extra computational cost

of using a climate-quality scheme that allocates many g

points to ensure the correct climate sensitivity to changes

in each gas.

5. Evaluation using different atmospheres

In this section the 23-point and 32-point FSCK models

developed in the previous section are evaluated by

comparing them to line-by-line calculations. The opti-

mum settings for these models are derived using four

training profiles and then tested on four other profiles.

Clearly for an operational radiation scheme one would

need to use a wider range of training profiles. For sim-

plicity, we use the same mass absorption spectra for the

set of reference pressures discussed in section 3, with the

assumption that in an operational version of the model

the additional dependence of k on temperature and water

vapor mixing ratio could be represented accurately either

parametrically (e.g., Fu and Liou 1992) or as a multidi-

mensional lookup table (e.g., Mlawer et al. 1997).

Figures 6a and 6d show the benchmark heating rate

and net upward flux profile for the four training profiles,

as calculated using a line-by-line model with a spec-

tral resolution of 0.0025 cm21. Corresponding values of

outgoing longwave radiation are given in Table 2. The

benchmark heating rate and net flux profiles are very

similar to those shown in other studies, although com-

paring to the line-by-line model of Mlawer et al. (1997)

it can be seen that our TOA net flux is less by around

1.5 W m22. This is likely to be related to the absence

of other absorbing gases (particularly methane) in our

simulations, and the fact that Mlawer et al. (1997) per-

formed calculations in the range 10–3000 cm21 whereas

FIG. 6. Evaluation of the 23- and 32-point FSCK models described in the text on four different McClatchey et al. (1972) standard

atmospheres containing only H2O, CO2, and O3. These profiles were used as the training dataset to derive the two FSCK models. (a)

Longwave heating rate calculated at full spectral resolution, (b) the error in heating rate of the 23-point FSCK model, (c) the error in

heating rate of the 32-point FSCK model. (d)–(f) As in (a)–(c) but for net longwave flux (upwelling minus downwelling). [Standard

atmospheres are indicated by the legend in (d) where MLS is the midlatitude summer atmosphere and SAW is the subarctic winter

atmosphere.]
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we limited our calculations to the range 100–2500 cm21.

They also used a different absorption database.

Figures 6b and 6e depict the heating-rate and net-flux

errors for the 23-point FSCK model. The root-mean-

square heating-rate error of this model over all four

profiles is 0.1 K day21 when weighted by the square root

of pressure as in (6). Figure 6b shows that this is made up

of a smaller error in the troposphere and lower strato-

sphere but an error up to 0.4 K day21 at the stratopause

for two of the profiles. Of course, the magnitude of the

heating rate is substantially larger here; in percentage

terms this error is only 4%. The corresponding errors in

outgoing longwave radiation are listed in Table 2. These

errors are considerably less than the 23-point CKD model

of Fomin (2004).

Figures 6c and 6f show the errors for the 32-point

model. This time the root-mean-square heating-rate error

is only 0.04 K day21, and Fig. 6f shows that the net flux is

accurate to better than 1 W m21 at all heights. The errors

are generally a little smaller than those of the 256-point

RRTM model (Mlawer et al. 1997).

A fairer test of the two FSCK models is given in Fig. 7,

which uses four profiles not among the set of four training

profiles. This time the heating rate errors below 50 km

are largely unchanged, although the errors at 60 km are

larger for both models. Errors in the flux profiles are also

increased, but still less than around 1 W m22 at all

heights for the 32-point model and with errors in out-

going longwave radiation less than 0.5 W m22. The er-

rors in outgoing longwave radiation for the two new

profiles with twentieth-century CO2 levels are given in

bold in Table 2. The ability of the 32-point model to

reliably simulate profiles with very different gas abun-

dances indicates that the order in which the three dif-

ferent gases were selected in the partitioning of g space

in section 4 is not critical for the performance.

Finally we consider an important scenario for climate

change forecasts in which the mixing ratio of carbon

dioxide is doubled to 700 ppmv. Figures 7b and 7c reveal

that the profiles with doubled CO2 tend to have larger

heating rate errors at the stratopause. Table 3 shows the

reduction in outgoing longwave radiation due to dou-

bled CO2 calculated using the highest spectral resolution

for three of the profiles, together with the percentage

error in the two FSCK models. In the case of the mid-

latitude summer atmosphere, both the standard and

double CO2 profiles were part of the training set, and the

32-point model is able to capture the change with only

an 8% error. This rises by a few percent for the subarctic

winter and tropical profiles, which represent a more ob-

jective test of the model since only the standard CO2

concentrations were used in the training datasets. The

errors are considerably larger for the 23-point model,

suggesting that, without further refinement at least, the

lower-resolution model would not be reliable for use in

a climate model although it would be satisfactory for

weather forecasts.

6. Conclusions

This paper has investigated the possibility of sub-

stantially increasing the speed of the longwave part of

radiation schemes used in GCMs by abandoning the

practice of splitting the spectrum up into bands and,

rather, performing the correlated-k method across the

full spectrum. In section 1, three reasons were cited as

to why the longwave spectrum ought to be divided up

into bands. The first of these—that the Planck function

should vary little across a band—was overcome in sec-

tion 2c by the use of an effective Planck function, and

demonstrated in practice in section 3. In an operational

radiation code, the effective Planck function would be

precomputed versus temperature for each of the ng

quadrature points, and then implemented efficiently as

a temperature-dependent lookup table.

The second motivation for bands concerned the need

to minimize the number of active gases per band and

(for some schemes) to assume random overlap of the

different spectra. In sections 4 and 5 it was shown that

TABLE 2. Benchmark calculations of the outgoing longwave

radiation and the associated error in the equivalent calculation of

the 23- and 32-point FSCK models (W m22) for a CO2 concen-

tration of 350 ppmv. Five McClatchey et al. (1972) standard at-

mospheres have been used: midlatitude summer (MLS), subarctic

winter (SAW), tropics, midlatitude winter (MLW), and subarctic

summer (SAS). The last two were not part of the training dataset:

the results of the FSCK models for these are shown in bold.

Profile Benchmark 23-pt error 32-pt error

MLS 281.75 20.18 20.03

SAW 196.69 10.41 10.19

Tropics 291.89 10.09 10.04

MLW 228.21 10.17 10.08

SAS 262.43 20.48 20.16

TABLE 3. Benchmark calculations of the change to the outgoing

longwave radiation associated with doubling CO2 concentrations

for three of the atmospheres used in Table 2, together with the

percentage error in the 23- and 32-point FSCK calculations of this

change. In the case of the subarctic winter (SAW) and tropical

profiles, the doubled CO2 benchmarks were not used as training

profiles: these percentages are shown in bold to indicate that they

are a less constrained test of the method.

Profile Benchmark 23-pt error 32-pt error

MLS 2.87 W m22 217% 28%

SAW 1.82 W m22 229% 212%
Tropics 3.31 W m22 220% 210%
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this obstacle could be overcome without a large com-

putational cost by partitioning multidimensional g space

as illustrated in Fig. 5. It has been shown that a total of

;32 quadrature points is sufficiently accurate for most

applications (in clear-sky conditions with the three dom-

inant absorbing gases).

The third consideration was the need to represent

the spectrally varying properties of clouds and aerosols.

This issue has not been tackled in this paper, yet is a po-

tential concern since each pseudomonochromatic radia-

tion calculation can represent widely spaced parts of the

spectrum and therefore be unable to resolve the slow

but significant spectral variation of the optical properties

of atmospheric particles. For low clouds, the impact of

the clouds on fluxes and heating rates is concentrated

almost exclusively in the atmospheric infrared window

(8–13 mm), so only the modest spectral variation across

this range will play a role. Moreover, preliminary cal-

culations with layers of optically thick cloud indicate

that fewer than half of the 32 individual g regions are

sensitive to clouds and, in almost all of those, the heating

rate is dominated by the contribution from less than

250 cm21 of the spectrum. Therefore, for each region it

may be possible to calculate the effective particulate

scattering properties by averaging them over the parts of

the spectrum that contribute to that region but weighting

each by the expected contribution to the heating rate in

a selection of representative cloudy profiles. Clearly, fur-

ther work is required to verify this. For improved effi-

ciency in a GCM, these ideas could be coupled to the

method of Manners et al. (2009), in which those bands that

are insensitive to clouds are computed much less fre-

quently than the fewer number of cloud-sensitive bands.

It should be stressed that the analysis performed in this

paper is very much in the form of a ‘‘proof of concept’’: to

build an operational FSCK longwave radiation scheme,

the following further work would be necessary:

d Use high-resolution absorption spectra over a wide

range of pressure, temperature, and water vapor mix-

ing ratio to parameterize correctly the dependence of

the representative k value in each g region on these

parameters, including the contribution of the water

vapor continuum.
d Add the contributions of the other active trace gases,

particularly methane, nitrous oxide, CFC11, and CFC12.

For weather forecasting these gases can be considered

vertically well mixed, so it is valid to combine them with

FIG. 7. As in Fig. 6 but for four profiles not used to train the two models: the McClatchey et al. (1972) subarctic summer (SAS) and

midlatitude winter (MLW) atmospheres and two of the profiles from Fig. 6 but with doubled CO2 concentrations.
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carbon dioxide into a single composite gas (e.g., Ritter

and Geleyn 1992). However, for climate applications

and decade-long reanalysis integrations they need to be

represented explicitly.
d Implement FSCK in a fully scattering radiation code

with lookup tables for the effective Planck function

and the appropriately averaged cloud and aerosol op-

tical properties in each g region. It may be necessary to

split a few of the regions into two if particulate scat-

tering properties vary too much within a region.

Application of FSCK with an effective Planck func-

tion is not limited to one-dimensional radiation schemes

used in GCMs. The formulation presented in section 2

applies equally well in three dimensions, with the j index

in the various equations now indicating the summation

over all points in 3D space. The method is also appli-

cable to radiative transfer in other fields.
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APPENDIX

Formulation of the Weighting Matrix Wji

In this appendix it is shown how we may calculate the

elements of the weighting matrix Wji used in (1). Note

that the use of a weighting matrix in section 2 is simply

to facilitate the demonstration that the full-spectrum

correlated-k (FSCK) method is mathematically valid; it

does not mean that subsequent application of FSCK

need include explicit calculation of Wji. Since section 2

deals with the spectral integration, here we consider

only a narrow part of the spectrum, but for brevity the

dependence of all the terms on wavenumber h is not

written.

The spectral heating rate [K s21 (cm21)21] at height z

may be written in terms of the vertical divergence of the

net upward spectral flux F 5 F[ 2 FY [W m22 (cm21)21] as

_T(z) 5� 1

r(z)C
p

dF

dz
, (A1)

where r(z) is the density of the air at height z and Cp

is the specific heat capacity at constant pressure. If we

discretize the atmosphere into nz layers, each thin

enough that the Planck function can be considered to be

vertically constant within them, then the heating rate of

layer i with thickness Dzi may be rewritten as

_T
i
5

F[
i�1/2 � F[

i11/2 1 FY
i11/2 � FY

i�1/2

r
i
C

p
Dz

i

. (A2)

The upwelling flux leaving the top of the layer is the sum

of the flux emitted from the layer and the transmitted

fraction of the upwelling flux entering the base of the

layer, and similarly for the downwelling flux leaving the

base of the layer:

F[
i11/2 5 B

i
«

i
1 t

i
F[

i�1/2,

FY
i�1/2 5 B

i
«

i
1 t

i
FY

i11/2, (A3)

where Bi is the Planck function of layer i [W m22 (cm21)21],

«i is the emissivity of the layer, and ti 5 1 2 «i is its

transmissivity. It was shown by Elsasser (1942) and veri-

fied by Rodgers and Walshaw (1966), among others, that

in the longwave part of the spectrum the emissivity may

be approximated as «i 5 1 2 exp(2Ddi), where D 5 1.66

is known as the diffusivity factor and di is the absorption

optical depth of the layer. Substitution of (A3) into (A2)

yields

riCp
Dzi

_Ti 5 «i(F[
i�1/2 1 FY

i11/2 � 2Bi). (A4)

In a nonscattering atmosphere, the downwelling flux at

the layer top may be expressed as the sum of the emis-

sion from all layers above:

FY
i11/2 5 �

n
z

j5i11
«

j
B

j
t

ij
, (A5)

where tij is the combined transmissivity of atmospheric

layers between i and j (but not including layers i and j

themselves), equal to the product of the individual layer

transmissivities; that is,

t
ij

5 P
j�1

k5i11
t

k
.

Likewise, the upwelling flux at the base of the layer may

be expressed in terms of the emission from all layers

below it and the emission from the surface:

F[
i�1/2 5 «

0
B

0
t

0i
1�

i�1

j51
«

j
B

j
t

ji
, (A6)

where «0B0 is the flux emitted from the surface, and for

the moment scattering from the surface is neglected. We

are now in a position to derive Wji in (1). It is defined for

source layers j 2 f0, 1, . . . , nzg (including the surface at
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j 5 0) and target layers i 2 f1, 2, . . . , nzg. Equating (1)

with (A4)–(A6) requires that

r
i
C

p
Dz

i
W

ji
5

«
j
«

i
t

ji
, j , i

�2«
i
, j 5 i

«
j
«

i
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ij
, j . i.

8><
>: (A7)

This formulation for longwave radiative transfer may

be extended to scattering atmospheres, although it is

a little more cumbersome. Defining the albedo of layer

i as ai and redefining the transmissivity as ti 5 1 2 «i 2 ai,

the effect of allowing a single scattering event between

emission at j and absorption at layer i may be calculated

by summing over all possible scattering layers k (with

k 5 0 corresponding to scattering from the surface). In

the case of j , i we may have scattering from layers

above layer i and below layer j (forward scattering by

a layer lying between i and j would be included in the

definition of the transmissivity). Thus, the first condition

of (A7) is redefined as
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(A8)

and similarly for the other two conditions of (A7). The

two transmissivities in each summation represent the

transmissivity between the emission event and the scat-

tering event, and between the scattering event and the

absorption event. Higher-order scattering can be repre-

sented by multiple summations.
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