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Abstract
As computer power increases, there is a need to investigate the potential gains
of using more than two streams in the radiative transfer calculations of weather
and climate models. In this article, seven quadrature schemes for selecting the
zenith angles and weights of these streams are evaluated rigorously in terms of
the accuracy of thermal-infrared radiative transfer calculations. In addition, a
new method is presented for generating “optimized” angles and weights that
minimize the thermal-infrared irradiance and heating-rate errors for a set of
clear-sky training profiles. It is found that the standard approach of apply-
ing Gauss–Legendre quadrature in each hemisphere is the least accurate of all
those tested for two and four streams. For clear-sky irradiance calculations,
“optimized” quadrature is between one and two orders of magnitude more accu-
rate than Gauss–Legendre for any number of streams. For all-sky calculations
in which scattering becomes important, a form of Gauss–Jacobi quadrature
is found to be most accurate for between four and eight streams, but with
Gauss–Legendre being the most accurate for 10 or more streams. No single
quadrature scheme performs best in all situations, because computing irradi-
ances involves two different integrals over angle and the relative importance
of each integral depends on the amount of scattering taking place. Additional
optimized quadratures for clear-sky and all-sky calculations with four to eight
streams are presented that constrain the relationships between angles in a way
that reduces the number of exponentials that need to be computed in a radiative
transfer solver.
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1 INTRODUCTION

The discrete ordinate method (Chandrasekhar, 1960) is
widely used for 1D plane-parallel radiative transfer prob-
lems, and involves discretizing the diffuse radiation field
into 2N zenith angles. The simplest two-stream (N = 1)

version was originally proposed by Schuster (1905), and
over a century later the two-stream approach still under-
pins almost all weather and climate models worldwide.
At the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the radiation scheme accounts for only
3.5% of the computational cost of the 9-km resolution
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model (Hogan & Bozzo, 2018), and this is likely to decrease
with the planned upgrade of gas optical properties (Hogan
& Matricardi, 2022). It is therefore important to investigate
the additional accuracy, and possibly reduction in regional
temperature biases, that could be obtained by increasing
the number of streams from two to four or maybe more. In
the thermal infrared (hereafter “longwave”), this could be
facilitated by the finding of Fu et al. (1997) that, by approx-
imating the treatment of scattering, the additional cost of
the radiative transfer solver in moving from two to four
streams can be reduced from a factor of 9.0 to a factor of 1.8.

This article is concerned with determining the optimal
discrete angles to use for the modest number of streams
that could be afforded in the longwave part of the radi-
ation scheme in a weather or climate model. One might
think that this matter would be settled: the undisputed
standard for performing reference plane-parallel radia-
tion calculations in the shortwave and longwave is the
Discrete Ordinate Radiative Transfer package (DISORT:
Stamnes et al., 1988), which only offers “double-Gauss”
quadrature (Sykes, 1951), whereby the cosine of the
zenith angle, 𝜇, is discretized separately in each hemi-
sphere using Gauss–Legendre quadrature. However, in the
two-stream case this results in the single quadrature point
𝜇1 = 1∕2, corresponding to a discrete zenith angle of
𝜃1 = 60◦. Despite having been used in two-stream schemes
for thermal radiative transfer problems (e.g., Hogan, 2019;
Schuster, 1905; Toon et al., 1989), it has been found
(e.g., Rodgers & Walshaw, 1966) that much more accu-
rate irradiances and heating rates are achieved using the
Elsasser (1942) value of𝜇1 = 1∕1.66, corresponding to 𝜃1 =
53◦, and indeed this value is used in most weather and
climate models worldwide. If Gauss–Legendre quadrature
is suboptimal for two-stream longwave radiative transfer,
it is legitimate to question its use for larger numbers of
streams.

Li (2000) made an important contribution in his
investigation of alternative longwave Gaussian quadrature
schemes, and tested them with up to six streams using
a single atmospheric profile in the absence of scattering.
This is a springboard for the present study. In Section 2
we show how the two angular integrals in longwave radia-
tive transfer (one to represent scattering and the other to
convert the radiance distribution to an irradiance) lead
to conflicting requirements on the “optimal” choice of
quadrature angles. We give a physical explanation of why
Li’s “Gaussian quadrature with different moment powers”
leads to better performance than Gauss–Legendre.

An alternative to Gaussian quadrature was proposed by
Lacis and Oinas (1991), who used three values per hemi-
sphere of 𝜇1 = 0.1, 𝜇2 = 0.5, and 𝜇3 = 1, with hand-tuned
weights. In a no-scattering longwave solver, the trans-
mittance of a layer of optical depth 𝜏 for stream i is

Ti = exp(−𝜏∕𝜇i). The computational advantage of using
𝜇 values that are multiples of each other is that the N
exponentials may then be replaced by one exponential plus
a few multiplications (in this case four: Ttmp = T1 × T1,
T2 = Ttmp × Ttmp × T1 and T3 = T2 × T2). This quadrature
is still used in the no-scattering longwave solver of the
NASA Goddard Institute for Space Studies (GISS) climate
model.

In Section 3 we demonstrate a new method, in which
angles and weights are chosen that formally minimize the
mean-squared error in irradiances and heating rates for a
set of 50 training profiles. A variant of this method is to
constrain the 𝜇 values to be in a certain ratio, enabling
the Lacis and Oinas (1991) optimization to be applied.
In Section 4, seven quadrature schemes are evaluated on
50 independent clear-sky (i.e., no-scattering) evaluation
profiles for up to 32 streams. Then in Section 5 a global
model snapshot is used to evaluate the schemes in cloudy
(scattering) situations, which involved modifying DISORT
to use user-supplied quadrature angles. The conclusions
in Section 6 provide recommendations for the appropri-
ate quadrature depending on the number of streams and
whether or not scattering is to be represented.

2 THEORETICAL BASIS

2.1 Scattering and irradiance integrals

The azimuthally averaged longwave radiative transfer
equation for a plane-parallel (i.e., horizontally homoge-
neous) atmosphere may be written as (e.g., Fu et al., 1997)

𝜇
dI𝜈(𝜏𝜈, 𝜇)

d𝜏𝜈
= I𝜈(𝜏𝜈, 𝜇) − (1 − 𝜔𝜈)B𝜈

− 𝜔𝜈

2 ∫
1

−1
p𝜈(𝜇′, 𝜇)I𝜈(𝜏, 𝜇′)d𝜇′, (1)

where I𝜈 is the radiance at frequency 𝜈, 𝜏𝜈 is the optical
depth of the atmosphere measured downwards from the
top of the atmosphere (TOA) and acting as our vertical
coordinate, 𝜇 is the cosine of the zenith angle of the beam
and is positive for upward-propagating radiation and neg-
ative for downward, 𝜔𝜈 is the single-scattering albedo of
the medium, B𝜈 is the Planck function, and p𝜈(𝜇′, 𝜇) is
the azimuthally averaged scattering phase function repre-
senting the probability of light travelling in direction 𝜇

′

being scattered into direction 𝜇. Thus the three terms on
the right-hand side represent respectively loss of radiation
by extinction out of the beam, gain of radiation by emis-
sion into the beam, and gain of radiation by scattering into
the beam. For the remainder of the article we drop the 𝜈

subscript for brevity.
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The discrete ordinate method for approximating and
efficiently solving Equation 1 involves discretizing the
radiation field into 2N discrete directions 𝜇1 to 𝜇2N , such
that

𝜇i
dI(𝜏, 𝜇i)

d𝜏
= I(𝜏, 𝜇i) − (1 − 𝜔)B

− 𝜔

2

2N∑

𝑗=1
w′
𝑗
p(𝜇𝑗, 𝜇i)I(𝜏, 𝜇𝑗), (2)

where w′
𝑗

is the weight to be applied to direction 𝜇𝑗 in the
numerical quadrature scheme. So how should we choose
the optimum quadrature angles and weights? The scatter-
ing integral in Equation 1 is unweighted by 𝜇

′, suggesting
that if the integrand can be approximated by a polyno-
mial in 𝜇

′, Gauss–Legendre would be optimal. Indeed,
Chandrasekhar (1960) proposed Gauss–Legendre quadra-
ture across the full range −1 ≤ 𝜇

′ ≤ 1, which in the case
of N = 1 results in quadrature angles of 𝜇1,2 = ±3−1∕2. One
problem with this choice is that there is invariably a dis-
continuity in the radiance field at the horizon that is poorly
sampled by Gauss–Legendre quadrature because it places
angles more densely at the ends of the range than in the
middle. This led Sykes (1951) to propose “double-Gauss”
quadrature, whereby the two 𝜇

′ ranges of −1 to 0 and 0 to
1 are discretized separately using Gauss–Legendre quadra-
ture. This is the approach taken in DISORT (Stamnes
et al., 1988).

It is important to recognise that the scattering integral
in Equation 1 is not the only consideration when discretiz-
ing 𝜇 space, especially for longwave radiative transfer,
where scattering tends not to be the dominant process, and
in clear skies it is not important at all. In a weather or cli-
mate model we are concerned with irradiances, that is, the
power passing through a horizontal plane at a particular
height, which for upwelling irradiance may be written in
continuous form as

F(𝜏) = 2𝜋∫
1

0
𝜇I(𝜏, 𝜇)d𝜇, (3)

and similarly for the downwelling irradiance. We see
immediately that the integral weights the radiance by the
cosine of the zenith angle 𝜇; indeed, this equation is a form
of Lambert’s cosine law. The Sykes (1951) approach to dis-
cretizing Equation 3 is to use the same Gauss–Legendre
angles and weights as previously, resulting in

F(𝜏) ≃ 2𝜋
N∑

𝑗=1
w′
𝑗
𝜇𝑗I(𝜏, 𝜇𝑗), (4)

where the indices 𝑗 = 1 to N correspond to the
upward-propagating radiances at different angles.

However, the Gauss–Legendre placement of 𝜇 values
symmetrically in the 0–1 interval is not likely to be opti-
mal for computing longwave irradiances; the weighting
by 𝜇 in Equation 3 means that the optimal angles should
be weighted more towards the zenith (𝜇 = 1) and nadir
(𝜇 = −1) than the horizon (𝜇 = 0). This goes some way to
explaining why, in the two-stream case, the Elsasser (1942)
value of 𝜇1 = 1∕1.66 = 0.602 performs better than the
Gauss–Legendre value of 0.5 (see Section 1).

Effectively, the Sykes (1951) approach treats Equation 3
as an unweighted integral of the function 𝜇I(𝜏, 𝜇). If we
treat it as the integral of I(𝜏, 𝜇) weighted by 𝜇, then this
suggests we should use alternative quadratures designed
for weighted integrals, leading to a discretization of the
form

F(𝜏) ≃ 𝜋

N∑

𝑗=1
w𝑗I(𝜏, 𝜇𝑗). (5)

The angles 𝜇𝑗 must be the same as used for discretizing the
scattering integral in Equation 2, even if calculated using
an alternative method to Gauss–Legendre, but the weights
are different, since w𝑗 folds in the 𝜇 dependence, yet like
w′
𝑗

must be normalized to satisfy

N∑

𝑗=1
w𝑗 = 1. (6)

From this point until the end of Section 4 we consider only
clear-sky atmospheres in which Equation 3 is the only inte-
gral to be discretized; then in Section 5 we consider more
realistic profiles containing clouds in which the scatter-
ing integral becomes important as well. At that point the
relationship between the weights w′

𝑗
and w𝑗 is provided.

2.2 Optimizing transmittance

In order to establish a theoretical basis for alternative
quadrature schemes optimized for longwave irradiance
calculations, consider the transmittance of a slab of opti-
cal thickness 𝜏 illuminated from one side by isotropic
radiation:

T(𝜏) = 2∫
1

0
exp

(
− 𝜏

𝜇

)
𝜇d𝜇, (7)

which is the exponential integral of the third kind. The
black solid line in Figure 1a depicts T(𝜏) computed numer-
ically with extremely fine resolution in 𝜇. In the absence
of scattering and emission, the transmittance of a slab
is equivalent to the ratio of irradiances at the far and
near ends of the slab. Therefore, optimizing for transmit-
tance is similar to optimizing for irradiances in the full
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(a) (b)

F I G U R E 1 (a) Transmittance T of a slab of varying optical depth 𝜏 to isotropic radiation, and two approximations of the form
T = exp(−D𝜏). (b) Root-mean-squared error (RMSE) in transmittance versus D for this approximation, along with specific values of D
discussed in the text (where “Legendre”, “Laguerre”, and “Jacobi” refer to Gauss–Legendre, Gauss–Laguerre, and Gauss–Jacobi quadrature)
and the corresponding effective zenith angle is 𝜃1 = cos−1(1∕D).

longwave radiative transfer problem. In the two-stream
approximation, Equation 7 reduces to

TTS(𝜏,D) = exp(−𝜏∕𝜇1) = exp(−D𝜏), (8)

where all radiation is treated as propagating with zenith
angle 𝜃1 = cos−1

𝜇1. This angle is usually expressed in
terms of a diffusivity factor D = 1∕𝜇1. In Figure 1a we see
that the Gauss–Legendre value of D = 2 underestimates
transmittance for all optical depths, although it is correct
in the limit of very small optical depth. Elsasser’s value
of 1.66 performs much better; indeed, he derived it sim-
ply by fitting these two curves by eye. Nonetheless, it does
tend to overestimate transmittance at low optical depth
and underestimate it at high optical depth.

We can be more systematic than Elsasser by comput-
ing the root-mean-squared error (RMSE) in transmittance
for different values of D. To do this requires a distribution
of optical depths to be specified. We do this by assuming
a uniform distribution of transmittances, leading to the
RMSE being given by

RMSE(D)2 = ∫
∞

0
[TTS(𝜏,D) − T(𝜏)]2 dT(𝜏)

d𝜏
d𝜏, (9)

which is shown versus D [and equivalently
𝜃1 = cos−1(1∕D)] in Figure 1b. Also shown are values of D

associated with specific schemes discussed in this article.
We see that the Gauss–Legendre value of D = 2 is very
far from optimal: the minimum error in fact occurs for
D = 1.6145, although Elsasser’s value is close to the min-
imum. As will be demonstrated in later sections of this
article, there is no single “correct” value for D, because one
value does not perfectly reproduce the transmittance for
all optical depths in Figure 1a, and the optical depth of the
atmosphere varies strongly with wavelength and absorber
amount. Even at a single wavelength, the spectral heating
rate at a particular altitude depends on the transmittance
to all other layers as well as to the surface and TOA. This
has not prevented proposals for parametrizing D as a func-
tion of optical depth (DeSouza-Machado et al., 2020; Zhao
& Shi, 2013) or using a different value for different parts
of the spectrum (Feng & Huang, 2019).

2.3 Gaussian quadrature schemes

Finally, in this section we present the theoretical basis
for alternative Gaussian quadrature schemes for long-
wave radiative transfer. While the schemes proposed are
similar to those examined by Li (2000), some impor-
tant additional insights are presented on why they
should work better than Gauss–Legendre quadrature. An
introduction to alternative Gaussian quadrature schems
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(a) (b) (c)

F I G U R E 2 (a) Transmittance T of a slab of optical depth 𝜏 to a beam propagating with a zenith-angle cosine of 𝜇; the shading [red in
the online version] indicates the weighting when integrating over 𝜇 to compute the transmittance to isotropic incident radiation (see
Equation 7). (b) The same but after a change of variables s = 𝜇

1∕3 to make the transmittance T(s) more amenable to numerical quadrature;
the resulting weighting by w = 6s5 leads to the Gauss–Jacobi-5 quadrature rule. (c) As (a) but with an alternative change of variables, the
exponential weight function of which leads to the Gauss–Laguerre quadrature rule.

is provided by Press et al. (2007); the corresponding
nodes and weights can be derived from the values in
tables 25.8 and 25.9 of Abramowicz and Stegun (1972),
although we compute them using a free-software pack-
age implementing the algorithm described by Kautsky and
Elhay (1982).

The choice of Gaussian quadrature scheme depends
firstly on the functional form of the weight term, which in
Equations 5 and 7 is simply w(𝜇) = 2𝜇 for integration in
the interval 0 ≤ 𝜇 ≤ 1 and is illustrated by the shaded area
in Figure 2a. Gauss–Jacobi quadrature deals with weights
of general form w(x) = (1 − x)𝛼(1 + x)𝛽 for integration in
the interval −1 ≤ x ≤ 1, so is appropriate for our problem
with the substitutions 𝜇 = (x + 1)∕2, 𝛼 = 0, and 𝛽 = 1. For
the two-stream problem (i.e., a single angle in the 𝜇 inter-
val from 0 to 1), this quadrature proposes 𝜇1 = 2∕3. This is
shown as “Jacobi 1” (because 𝛽 = 1) in Figure 1b where,
despite being better than unweighted Gauss–Legendre
quadrature, it is still clearly not the best choice, and indeed
for more than two streams the same is found when applied
to real atmospheric profiles. The problem is that, to be
well approximated by a Gaussian quadrature rule, the inte-
grand should be well approximated by a polynomial, with
N-point Gaussian quadrature being exact for polynomials
up to degree 2N − 1. Figure 2a shows the transmittance of
a single beam of radiation, that is, the function exp(−𝜏∕𝜇),
for four different optical depths, and it would clearly not
be well fitted by a low-order polynomial, especially at low
optical depths.

The situation is improved with a change of variables.
For example, if we use a variable of integration s = 𝜇

1∕𝛾

then Equation 7 becomes

T(𝜏) = 2𝛾∫
1

0
s2𝛾−1 exp

(
− 𝜏

s𝛾
)

ds. (10)

Figure 2b shows that the integrand exp(−𝜏∕s𝛾 ), here
for the case of 𝛾 = 3, varies somewhat more smoothly
with s and therefore we should expect the quadrature
scheme to be more accurate. The weight function now
has the form w(s) = 2𝛾s2𝛾−1, which integrates to unity in
the s interval 0–1 and is shown by the shaded area in
Figure 2b. Gauss–Jacobi quadrature may still be used but
with 𝛽 = 2𝛾 − 1, leading to the weight function taking the
form w(s) = (𝛽 + 1)s𝛽 . Table 25.8 of Abramowicz and Ste-
gun (1972) provides the nodes and weights for 𝛽 up to 5 and
N up to 8, or an off-the-shelf software package for comput-
ing Gauss–Jacobi quadrature can be used for any value of 𝛽
and N. The resulting set of nodes s1 to sN needs to be trans-
formed back to 𝜇-space with 𝜇i = s𝛾i . Figure 1b shows the
two-stream performance of Gauss–Jacobi quadrature for a
change of variables with 𝛾 = 2 (“Jacobi 3”) and 𝛾 = 3 (“Ja-
cobi 5”), both of which are significantly nearer the mini-
mum in the error curve. Li (2000) also explored the use of
various Gauss–Jacobi quadrature schemes, although what
we refer to as “Gauss–Jacobi–𝛽” quadrature he referred to
as “Gaussian quadrature with moment power 𝛽” (but note
that he used the symbol m in place of 𝛽). Li (2000) did not
explain why values of 𝛽 larger than 1 should perform bet-
ter, so hopefully the explanation here in terms of a change
of variables resulting in the integrand being closer to a
polynomial, for which Gaussian quadrature is designed, is
valuable.
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6 HOGAN

An alternative change of variables involves the use of
a logarithmic scale for 𝜇, that is, t = −2 ln𝜇, resulting in
Equation 7 becoming

T(𝜏) = ∫
∞

0
exp(−t) exp

[
− 𝜏

𝜇(t)

]
dt. (11)

It is apparent from Figure 2c that this makes the integrands
even better behaved, although it does increase the domain
of integration from 0–1 to 0–∞, which will be shown
later in the article to be a disadvantage for large orders
of quadrature N. The appropriate quadrature scheme for
a weight function of w(t) = exp(−t) is Gauss–Laguerre,
the nodes of which need to be transformed back to
𝜇-space with 𝜇i = exp(−ti∕2). For N = 1, Gauss–Laguerre
produces D = 1∕𝜇1 = 1.6487 = e1∕2, which can be seen in
Figure 1b to be very close to the Elsasser value but a little
closer to the minimum of the error curve.

Table 1 presents the angles and weights of the
Gauss–Laguerre and Gauss–Jacobi-5 quadratures for N up
to 4. We show Gauss–Jacobi only in the 𝛽 = 5 case, because
in Section 4 it is found to be superior to all other values
of 𝛽.

Li (2000) extended Gauss–Jacobi quadrature up to a
moment power of 𝛽 = ∞, in which limit off-the-shelf
numerical schemes for computing nodes and weights no
longer work. Nonetheless, he was able to compute the
nodes and weights analytically up to N = 3. Intriguingly,
his values (see his equations A7, A9, and A13) exactly
match those computed from Gauss–Laguerre quadrature,
so we conclude that the latter is equivalent to Gauss–Jacobi
quadrature with 𝛽 = ∞ and the appropriate changes of
variables. It is beyond the scope of this article to prove
this equivalence mathematically, but it is convenient for
those who might want to try the 𝛽 = ∞ quadrature pro-
posed by Li (2000) for N > 3 to know that it can be

T A B L E 1 The cosine-angles 𝜇 and weights w for five quadrature schemes: Gauss–Laguerre, Gauss–Jacobi with 𝛽 = 5, and three
“optimized” schemes, where the number of angles per hemisphere N ranges from 1–4.

N Variable Gauss–Laguerre Gauss–Jacobi-5 Optimized Optimized-IR Optimized-IRJP

1 𝜇 0.6065306597 0.6297376093 0.6096748751

w 1.0000000000 1.0000000000 1.0000000000

2 𝜇 0.1813898346 0.2509907356 0.1976969570 0.1828926897 0.2669139064

0.7461018061 0.7908473988 0.7419416274 0.7315707589 (×4) 0.8007417192 (×3)

w 0.1464466094 0.2300253764 0.1520985621 0.1352478522 0.2509036055

0.8535533906 0.7699746236 0.8479014379 0.8647521478 0.7490963945

3 𝜇 0.0430681066 0.1024922169 0.0661385934 0.0675169363 0.1073702810

0.3175435896 0.4417960320 0.3440369508 0.3375846814 (×5) 0.4294811240 (×4)

0.8122985952 0.8633751621 0.8156973793 0.8102032354 (×12) 0.8589622480 (×8)

w 0.0103892565 0.0437820218 0.0197413567 0.0197437659 0.0445786516

0.2785177336 0.3875796738 0.2857816420 0.2746853796 0.3679447208

0.7110930099 0.5686383044 0.6944770013 0.7055708545 0.5874766276

4 𝜇 0.0091177205 0.0454586727 0.0259142819 0.0263733596 0.0468366244

0.1034869099 0.2322334416 0.1420093170 0.1318667980 (×5) 0.2341831222 (×5)

0.4177464746 0.5740198775 0.4312455503 0.4219737537 (×16) 0.6088761177 (×13)

0.8510589811 0.9030775973 0.8441789463 0.8439475074 (×32) 0.9367324887 (×20)

w 0.0005392947 0.0092068785 0.0030584329 0.0028332575 0.0093955477

0.0388879085 0.1285704278 0.0539378694 0.0476214091 0.1353113093

0.3574186924 0.4323381850 0.3332755640 0.3349230090 0.5081423593

0.6031541043 0.4298845087 0.6097281337 0.6146223244 0.3471507838

Note: The suffix “IR” indicates that a prescribed “integer ratio” applies between each 𝜇 value and the first (indicated in brackets), enabling the number
of exponentials in downstream calculations to be be reduced. The suffix “JP” indicates that an additional “Jacobi prior” has been added to the cost
function, penalizing the difference between optimized 𝜇 and w values and their Gauss–Jacobi-5 equivalents, making Optimized-IRJP well suited for
scattering atmospheres.
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HOGAN 7

computed easily using an off-the-shelf Gauss–Laguerre
algorithm, or taken from table 12.9 of Abramowicz and
Stegun (1972).

Li (2000) argued that the most accurate quadrature
schemes for longwave radiative transfer arise from using
the highest moment power, that is, the largest value of
𝛽; the logic of this paragraph would suggest that this is
Gauss–Laguerre quadrature. This was partially based on
how close its two-stream diffusivity was to Elsasser’s value
of 1.66, although since the latter was fitted to the transmit-
tance curve by eye we would argue that there is nothing
particularly special about it, and we can see from Figure 1b
that, in terms of transmittance at least, values of D in the
range 1.57–1.66 are at least as accurate as Elsasser’s value
and there is little to choose between them. Ultimately, the
test of a quadrature scheme should be in its performance
on real atmospheric profiles in both clear-sky and cloudy
conditions, and this is pursued rigorously in Sections 4
and 5.

3 OPTIMIZED QUADRATURE
FOR CLEAR-SKY RADIATIVE
TRANSFER

Figure 1b demonstrated that, in the N = 1 case, Gaus-
sian quadrature is not the only basis on which to select
angles and weights: we can instead seek the value or val-
ues that minimize some scalar measure of overall error
with respect to a reference calculation. In this section
we extend this idea to more than one angle and use
real atmospheric profiles. Hogan and Matricardi (2022)
showed that the gas-optics part of a radiative trans-
fer scheme could be improved significantly by optimiz-
ing the absorption coefficients of the look-up tables in
order to improve the agreement with line-by-line calcu-
lations for a set of reference profiles. Here we take a
similar approach but optimize the angles and weights
of a quadrature scheme. We use the 50 present-day pro-
files of the “Evaluation-1” dataset from the Correlated
K-Distribution Model Intercomparison Project (CKD-
MIP; Hogan and Matricardi 2020), which are defined on
54 atmospheric layers that extend up to a pressure of
0.01 hPa and cover a wide range of temperature, humid-
ity, and ozone concentrations. The well-mixed gases are
N2, O2, CO2, CH4, N2O, CFC-11, and CFC-12, and nei-
ther clouds nor aerosols are represented. The gas-optics
model used is “FSCK-32” described by Hogan and Matri-
cardi (2022), which divides the entire longwave spec-
trum into 32 noncontiguous spectral intervals. Here and
throughout this article we neglect the effects of Earth
curvature.

Following Hogan and Matricardi (2022), we minimize
a cost function of the form

J =
n∑

k=1

{ m∑

𝑗=1
h𝑗

(
Hquad

𝑗
−Href

𝑗

)2

+f
[(

Fquad
↑TOA − Fref

↑TOA

)2
+
(

Fquad
↓surf − Fref

↓surf

)2
]}

,

(12)

where the outer summation is over the n profiles, the inner
summation is over the m layers, H𝑗 denotes the heating
rate of layer 𝑗 in K⋅d−1, F↑TOA denotes upwelling irradiance
at TOA in W⋅m−2, F↓surf denotes downwelling irradiance at
the surface, the superscript “quad” represents values com-
puted using the quadrature scheme, and the superscript
“ref” represents reference values. Following Hogan (2010),
we define the layer weights as proportional to the differ-
ence in the square-root of pressure across them, such that
the contribution of the troposphere and stratosphere is
approximately equal: h𝑗 = (p1∕2

𝑗+1∕2 − p1∕2
𝑗−1∕2)∕p1∕2

m+1∕2, where
p𝑗+1∕2 is the pressure of the interface between layers 𝑗

and 𝑗 + 1 (increasing from TOA towards the surface) and
pm+1∕2 is the surface pressure. The user-specified value f
balances the irradiance and heating-rate errors, and we
have found that f = 0.02 (K⋅d−1)2∕(W⋅m−2)2 provides a sat-
isfactory balance between the two in resulting radiative
transfer calculations.

Since scattering can be neglected, the radiative transfer
consists of projecting N beams of radiation up and down
through the atmosphere, and for simplicity we set the sur-
face emissivity to unity. Thus the initial radiance of each
upward-propagating beam at the surface is equal to the
Planck function at the surface, Bm+1∕2, while the initial
radiance of each downward-propagating beam at TOA is
zero. Assuming the Planck function varies linearly with
optical depth across a layer, the solution to Equation 2 for
the downwelling radiance at angle 𝜇i at the base of layer 𝑗
is (e.g., Clough et al., 1992)

Ii,𝑗+1∕2 = Ii,𝑗−1∕2 exp
(
−
𝜏𝑗

𝜇i

)

+
[

1 − exp
(
−
𝜏𝑗

𝜇i

)](
B𝑗−1∕2 −

𝜇iΔB𝑗

𝜏𝑗

)
+ ΔB𝑗 ,

(13)

where 𝜏𝑗 is the zenith optical depth of the layer and ΔB𝑗 =
B𝑗+1∕2 − B𝑗−1∕2 is the difference in Planck function across
the layer. This may be applied recursively from TOA down
to the surface, and similarly for the upward-propagating
beams. The irradiances may then be computed by applying
Equation 5 to the radiances at the interface between each
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8 HOGAN

layer. The reference calculations are performed with many
hundreds of evenly spaced angles.

We define the “state vector”, x, containing variables to
be optimized as the N angles 𝜇1 to 𝜇N and all but one
of the corresponding “normalized” weights W1 to WN−1,
where Wi = wi∕2𝜇i. The use of normalized weights in the
minimization makes each element of the state vector more
similar in magnitude. The final normalized weight is com-
puted from the others to ensure that Equation 6 holds:

WN =
1
𝜇N

(
1 −

N−1∑

𝑗=1
W𝑗𝜇𝑗

)
. (14)

The initial values of the state vector are such that the
angles are evenly spread in 𝜇-space and have equal nor-
malized weight. The cost function is minimized by coding
the radiative transfer (primarily Equation 13) in C++,
and using the automatic differentiation and optimization
library “Adept” (Hogan, 2014) to compute the gradient of
the cost function with respect to all elements of the state
vector, 𝜕J∕𝜕x. The “L-BFGS” minimization algorithm of
Liu and Nocedal (1989) calls the radiative transfer repeat-
edly with different values for x, using 𝜕J∕𝜕x to find the x
that minimizes J.1 The resulting “optimized” angles and
weights are shown in Table 1 for N up to 4, and are eval-
uated against the Gaussian quadrature schemes using real
atmospheric profiles in the next section.

Lacis and Oinas (1991) proposed an N = 3 quadrature
in which the second and third 𝜇 values were multiples of
the first, which meant that three exponentials could be
replaced by one, thereby substantially speeding up radia-
tive transfer calculations, the computational cost of which
is often dominated by the exponential function. We imple-
ment this idea by choosing the integer ratios closest to
those between the𝜇 values emerging from the “optimized”
quadrature in Table 1, and then repeating the optimization
but retrieving only the smallest 𝜇 value and computing
the others by applying these integer ratios. The result-
ing quadrature schemes up to N = 4 are shown in the
penultimate “Optimized-IR” column of Table 1.

We may also find the closest integer-ratio quadrature
scheme to an existing Gaussian scheme by adding a term
to the cost function of the form

Jp = fp

[ N∑

𝑗=1
(𝜇𝑗 − 𝜇

p
𝑗
)2 +

(
W𝑗 −Wp

𝑗

)2
]
, (15)

where 𝜇
p
𝑗

and Wp
𝑗

are the “prior” nodes and normalized
weights of an existing Gaussian quadrature scheme, and

1The software is freely available at https://github.com/rjhogan/
optimize-angles.

fp is the weight applied to the term. We find that a value
of 0.001 provides the most accurate scheme. The final
column of Table 1 shows the resulting “optimized-IRJP”
quadrature scheme obtained using the Gauss–Jacobi-5
scheme as a prior. The motivation to remain close to
Gauss–Jacobi-5 is that this scheme is found to be most
accurate when scattering is introduced in Section 5.

4 CLEAR-SKY EVALUATION OF
QUADRATURE SCHEMES

In this section we evaluate various quadrature schemes in
terms of their ability to predict clear-sky irradiances and
heating rates. We use the 50 present-day profiles of the
“Evaluation-2” dataset from CKDMIP (Hogan & Matri-
cardi, 2020), which comprise a different set of profiles
from the Evaluation-1 dataset used in Section 3. Again we
use the “FSCK-32” gas-optics model described by Hogan
and Matricardi (2022), and the same clear-sky radiative
transfer algorithm.

Figure 3a depicts the RMSE in surface downwelling
and TOA upwelling irradiance versus the number of
streams from 2 to 32, for seven different quadrature
schemes. The least accurate is Gauss–Legendre quadra-
ture, also known as double-Gauss (Sykes, 1951), followed
by Gauss–Laguerre, which is typically 5–8 times more
accurate for a given number of streams. Both exhibit
approximately fourth-order convergence, that is, when the
number of streams is increased by a factor of f , RMSE
reduces by around a factor of f 4.

As explained in Section 2, Gauss–Jacobi quadratures
may be constructed via a change of variables s = 𝜇

1∕𝛾 ,
resulting in the integration being weighted by s𝛽 where
𝛽 = 2𝛾 − 1. We have tested a range of integer values of
𝛾 , and while the performance of values of 2, 3, and 4 is
quite similar, we find that 𝛾 = 3 (i.e., 𝛽 = 5) is superior,
and this is shown as “Gauss–Jacobi-5” in Figure 3a and
the remaining plots in this article. This quadrature scheme
is superior to Gauss–Laguerre for all numbers of streams
except 2; for 32 streams it is more than 40 times more
accurate than Gauss–Laguerre and 400 times more accu-
rate than Gauss–Legendre. Recall that Gauss–Laguerre
quadrature is the same as Gauss–Jacobi in the limit of
𝛾 →∞. The “optimized” quadrature scheme generated
using the method described in Section 3 performs a lit-
tle better than Gauss–Jacobi-5 up to 24 streams, while the
“optimized-IR” scheme (enforcing integer ratios between
the retrieved𝜇 values) for N between 2 and 4 performs only
very slightly worse.

The reason that Gauss–Laguerre performs worse than
the Gauss–Jacobi-5 and optimized quadratures for larger
numbers of streams can be explained by the change of
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HOGAN 9

(a) (b) (c)

F I G U R E 3 Root-mean-squared error (RMSE) in clear-sky (a) surface downwelling and TOA upwelling longwave irradiances, (b)
heating rate for pressure, p, greater than 100 hPa, and (c) heating rate for p less than 100 hPa, for the 50 CKDMIP “Evaluation-2” profiles, as a
function of the number of angular streams (equal to 2N) using seven different quadrature schemes. The reference calculations use
Gauss–Jacobi-5 quadrature (with 64 streams), since this is the most accurate of the Gaussian schemes.

variables of t = −2 ln𝜇 described in Section 2, which trans-
forms an integral in the range 0–1 to one in the range 0–∞.
For large N, Gauss–Laguerre quadrature places many
quadrature points at large values of t but with vanishingly
small weights. In angular space this wastes quadrature
points on zenith angles very close to 90◦, so the perfor-
mance of the scheme in terms of RMSE is as if it had fewer
quadrature points overall. This can already be seen for
N = 4 in Table 1: Gauss–Laguerre has a node with a zenith
angle of 89.5◦ but only 0.05% of the energy.

Figure 3a also shows the performance of Elsasser’s
value for N = 1, and the Lacis and Oinas (1991) coeffi-
cients for N = 3 (𝜇1 = 0.1, 𝜇2 = 0.5, 𝜇3 = 1, w1 = 0.0432,
w2 = 0.5742, and w3 = 0.3826). The latter is better than
Gauss–Legendre but worse than all the other quadrature
schemes.

We next evaluate the heating rates computed by the
various quadrature schemes. Figure 3b,c depicts the RMSE
in tropospheric and stratospheric/mesospheric heating
rates, respectively, according to whether the pressure is
greater than or less than 100 hPa. In each case we fol-
low Section 3 and weight each layer by the difference
in the square root of pressure between the bottom and
top of the layer. This time, the order of convergence of
Gauss–Legendre quadrature with increasing N is closer
to 2.8. Again, Gauss–Laguerre is more accurate than
Gauss–Legendre, with Gauss–Jacobi-5 and then the opti-
mized quadrature even more accurate, especially for larger
numbers of streams. The exception is for stratospher-
ic/mesospheric heating rates, where for four streams we
find that Gauss–Laguerre is clearly the most accurate.

This again highlights that one set of quadrature points is
not necessarily optimum for both irradiances and heating
rates.

Figure 4 reveals that stratospheric/mesospheric
heating-rate errors are largely associated with biases cen-
tred on the stratopause at around 1 hPa, and scale with the
shape of the CO2-dominated cooling-rate profile (e.g., fig.
5 of Hogan & Matricardi, 2022). Gauss–Legendre quadra-
ture overpredicts the cooling rate in all cases (negative
heating-rate bias), while Gauss–Jacobi-5 tends to under-
predict the cooling but with an amplitude somewhat
smaller. For the two-stream (N = 1) case, very similar
performance is found for Gauss–Laguerre, optimized
quadrature, and Elsasser’s D = 1.66. This is because, as
shown in Figure 1b, these schemes all have very similar
values of D. For four streams (N = 2), Gauss–Laguerre
quadrature is clearly the best, with virtually no bias
in stratospheric heating rates, followed by optimized
and optimized-IR. For six streams, these three schemes
perform similarly well.

5 ALL-SKY EVALUATION OF
QUADRATURE SCHEMES

In this section we extend the evaluation to cloudy skies
in which scattering becomes important. A modified ver-
sion of the offline ecRad radiation scheme (Hogan &
Bozzo, 2018) has been used in which DISORT (Stamnes
et al., 1988) has been embedded as a solver. This way
we take advantage of ecRad’s treatment of the optical
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10 HOGAN

(a) (b) (c)

F I G U R E 4 Solid lines: atmospheric heating rate biases for various quadrature schemes with (a) 2, (b) 4, and (c) 6 angular streams,
using the 50 CKDMIP “Evaluation-2” clear-sky profiles. The shaded areas for Gauss–Legendre and Gauss–Jacobi-5 quadrature encompass
95% of the profiles (estimated as 1.96 times the standard deviation). Note that Elsasser is only for two streams, Lacis only for six streams and
optimized-IR only for 4–6 streams.

properties of gases and clouds, and again use the fast
FSCK-32 longwave gas-optics scheme. We have confirmed
that the results presented in this section are insensitive to
the gas-optics scheme used, having performed sensitivity
tests (not shown) with the slower Rapid Radiative Trans-
fer Model for Global Circulation Models (RRTMG: Mlawer
et al. (1997) scheme also available in ecRad. We use Mie
theory to generate phase functions for liquid droplets and
the Baum et al. (2014) “general habit mixture” phase func-
tions for ice particles. We run this ecRad-DISORT model
on a 3D global snapshot of the latest ECMWF reanalysis
(ERA5) at 1200 UTC on July 11, 2019 with 137 vertical
levels and 1◦ resolution. Meyer et al. (2022) extracted a
2D slice from this exact scene to demonstrate features
of ecRad, although here we neglect aerosols. Since DIS-
ORT cannot handle horizontal subgrid cloud heterogene-
ity, we compute the total cloud cover assuming the same
exponential-random overlap as in the operational ECMWF
model, and assume clouds fill the cloudy fraction of each
column homogeneously. The gridbox-mean irradiances
are then computed as the weighted average of a clear-sky
and a cloudy column. While this would not be suitable for
an operational radiation scheme because it neglects sub-
grid heterogeneity of cloud optical depth, it is adequate
for estimating the relative accuracy of different quadrature
schemes in all-sky conditions.

DISORT solves the coupled differential equations
represented by Equation 2, now with the summation
term representing scattering processes that was neglected
in Section 4. DISORT has been modified so that the
angles and weights may be configured by the user,
rather than always being computed using Gauss–Legendre

quadrature. The weights w′
𝑗

in Equation 2 and w𝑗 in
Equation 5 both satisfy the normalization given by
Equation 6. In the case of Gauss–Legendre quadrature,
the symmetry in the placement of 𝜇 values in the inter-
val 0–1 means that we can simply equate Equations 4 and
5 to obtain w′

𝑗
= w𝑗∕(2𝜇𝑗), which is assumed implicitly by

the DISORT code. For the other quadratures considered
here, we have made a modification to DISORT so that the
weights used in the scattering summation in Equation 2
satisfy

w′
𝑗
=

w𝑗∕𝜇𝑗

∑N
i=1wi∕𝜇𝑗

. (16)

While it may seem unsatisfactory that a different scaling is
required for the quadrature weights when used to approx-
imate two different integrals, it is simply a consequence of
one of the integrals being weighted by 𝜇 and the other not.
The fact that quadratures symmetric in the range 0–1 (such
as Gauss–Legendre) can use the same set of weights for
both integrals by applying Equation 4 instead of Equation 5
is not a strong argument for them, since energy can be
conserved without this symmetry. Indeed, the widespread
use of Elsasser’s value demonstrates this in the two-stream
case. Fu et al. (1997) stated that the two-stream relation-
ship between irradiance and radiance is F = 2𝜋𝜇1I1(𝜇1),
but that for choices of 𝜇1 other than 1∕2 this should be
replaced by F = 𝜋I1(𝜇1). Essentially the replacement of
Equation 4 with Equation 5 is the 2N-stream generaliza-
tion of the Fu et al. statement.

Figure 5 depicts the RMSE in irradiances and heat-
ing rates for the ERA5 scene, but this time for all-sky
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HOGAN 11

(a) (b) (c)

F I G U R E 5 As Figure 3, but computed using ERA5 fields at 1200 UTC on July 11, 2019, for all-sky conditions with atmospheric
scattering. The reference calculations use the most accurate Gaussian scheme with 32 streams: in (a) and (b) this is Gauss–Legendre
quadrature and in (c) it is Gauss–Jacobi-5 quadrature.

conditions with scattering. The results for irradiances
and tropospheric heating rates are very different from
the clear-sky results in Figure 3a,b. As before, the
Gauss–Laguerre, Gauss–Jacobi-5, and optimized quadra-
ture schemes all outperform Gauss–Legendre with two
and four streams, but for larger N they tend to approach
an asymptotic RMSE regardless of N. By contrast,
Gauss–Legendre quadrature continues to converge with N
at much the same rate as for clear skies, and is the most
accurate all-sky scheme for 16 streams. Gauss–Jacobi-5 is
clearly better than Gauss–Laguerre and optimized quadra-
ture, still outperforming Gauss–Legendre quadrature up
to and including the eight-stream case. Optimized-IRJP
quadrature is intended to provide the closest quadra-
ture to Gauss–Jacobi-5 but with 𝜇 values in fixed integer
ratios, and indeed it is only a little less accurate than
Gauss–Jacobi-5. The heating-rate errors in the cloud-free
stratosphere/mesosphere are, by contrast, virtually identi-
cal between Figures 3c and 5c.

The explanation for the all-sky behaviour in
Figure 5a,b is as follows. The optimum quadrature
schemes for the scattering integral in Equation 1 and the
irradiance integral in Equation 3 are clearly different, due
to only one being weighted by 𝜇. In the longwave, gaseous
absorption and emission are fundamental, while scatter-
ing is of secondary importance. This means that errors in
calculations of irradiances and heating rates using a small
number of streams are dominated by errors in vertical
transmission. Using a quadrature scheme optimized for
the transmission problem means that errors reduce rapidly
with increasing N, until errors due to scattering begin to
dominate, for which such a quadrature scheme is less well

suited. One might expect convergence to continue, albeit
at a slower rate, but this is not observed in Figure 5a. The
reason is believed to be the fact that the phase function
of clouds has a strong peak in the forward direction that
cannot be resolved by discrete-ordinate radiative transfer
calculations unless they have a much larger number of
streams than considered here. DISORT addresses this with
“delta-M” scaling of the phase function (Wiscombe, 1977):
the number of streams is used to determine what scale of
angular structures in the phase function can be resolved
adequately, and the part of the forward-scattering peak
that cannot be resolved is treated as if it was not scattered
at all. This works well for Gauss–Legendre quadrature,
because its more even spacing of quadrature points in
𝜇-space ensures that the part of the forward-scattering
peak deemed to be ‘resolvable’ by the delta-M method
is indeed adequately resolved. This is less the case for
the other quadrature schemes. It is beyond the scope of
this article to see whether modifying the delta-M method
would be advantageous for other quadrature schemes.

We stress that the primary purpose of this article is
to explore the appropriate quadrature scheme to use in
weather and climate models if four or even six streams
could be afforded, and it is clear from Figure 5a that
Gauss–Jacobi-5 incurs longwave irradiance errors around
four times less than Gauss–Legendre, even when clouds
are present. However, for using DISORT to perform ref-
erence calculations, for which 128 streams is common,
Gauss–Legendre quadrature should still be used.

Finally, we investigate the spatial pattern of irradiance
errors and their dependence on column water vapour, for
various quadrature schemes. Figures 6 and 7 show the
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12 HOGAN

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

F I G U R E 6 Errors in computed top-of-atmosphere upwelling irradiance using ERA5 fields at 1200 UTC on July 11, 2019, for (rows)
four different quadrature schemes, using (columns) 2, 4, and 6 streams, in units of W⋅m−2. The numbers of the form B ± E above each panel
indicate the global-mean bias (B) and standard deviation of the error (E). Note the different colour scale for each column, and also the much
wider colour scale for (a).

instantaneous errors in TOA upwelling and surface down-
welling irradiance, respectively, for the ERA5 scene con-
sidered in this section. The quadrature schemes shown are
Gauss–Legendre, Gauss–Laguerre, Gauss–Jacobi-5, and
optimized for 2–6 streams, except that Elsasser’s D = 1.66
scheme has been used in place of Gauss–Laguerre for the
two-stream case because it is far more widely used and
is actually very similar to Gauss–Laguerre (which uses
D = 1.6487). In the two-stream case, Gauss–Legendre
(D = 2) performs very poorly, with irradiance biases of
around 6 W⋅m−2. The other three are much better; opti-
mized quadrature (D = 1.6402) is a little better than
Elsasser, although the errors in different parts of the
world tend to be larger than the global-mean bias.
The most striking contrast in these figures is between
cloud-free subtropical Africa and the rest of the world. The
cloud-free regions are represented particularly poorly by
Gauss–Legendre quadrature, but these tend to be the most

accurate regions for the other quadrature schemes in the
six-stream case.

The bias (B) and error standard deviation (E) are shown
above each panel of Figures 6 and 7. To put these values in
perspective, when longwave scattering is turned off in the
standard ECMWF longwave scheme for this scene, at TOA
we have B = 1.3 W⋅m−2, very similar to the value reported
by Hogan and Bozzo (2016), and E = 1.0 W⋅m−2, while at
the surface we have B = −0.4 and E = 0.3 W⋅m−2. These
values are of similar magnitude to the two-stream errors
for D = 1.66 shown above Figures 6d and 7d. Many climate
models still neglect longwave scattering, so these results
suggest that there would be little point in increasing the
number of streams without also turning on longwave scat-
tering. Note that Lacis and Oinas (1991) used a six-stream
scheme yet neglected longwave scattering.

Figure 8 depicts the dependence of clear-sky TOA
upwelling and surface downwelling irradiances on column
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

F I G U R E 7 As Figure 6 but for surface downwelling irradiance.

water vapour for the same quadrature schemes. While it
is again clear that Gauss–Legendre quadrature performs
worst up to six streams, the surface irradiance errors of
all schemes have a dependence on water vapour that
could be important for estimating the impact of changed
water vapour on surface temperature. For example,
Figure 8d suggests that, as water vapour is increased
above 20 kg⋅m−2, Elsasser’s scheme predicts that the rate
at which surface downwelling irradiance increases will be
too large by around 0.1 W⋅m−2 (kg⋅m−2)−1. Figure 8e shows
that this is reduced to around −0.01 W⋅m−2 (kg⋅m−2)−1

for the Gauss–Jacobi-5 and optimized quadratures in the
four-stream case.

6 CONCLUSIONS

The two-stream equations have been the mainstay of atmo-
spheric radiative transfer for many decades but, with ever
more resources being found to increase model resolution
(e.g. Satoh et al. 2019), now is the time to investigate the

potential benefits of increasing the number of streams
in weather and climate models. The radiative transfer
problem involves two integrals over the cosine of zenith
angle, 𝜇, but the integral to obtain irradiances from radi-
ances is weighted by 𝜇, whereas the integral representing
scattering from one stream to another is not. This means
that no single set of 𝜇 values and corresponding weights
(i.e., the quadrature scheme) is optimal for both integrals;
in fact, the best-performing scheme depends on how much
scattering is present.

By far the most widely used quadrature scheme,
and indeed the only one available in DISORT, is
Gauss–Legendre applied separately in each hemisphere
(also known as “double-Gauss”; Sykes 1951); this is opti-
mal for the scattering integral and so is well suited for
shortwave problems. In this article the accuracy and con-
vergence rate of longwave radiative transfer calculations
have been rigorously evaluated for a range of quadra-
ture schemes and numbers of streams, making use of
our modified version of DISORT that supports alternative
quadratures. Because of the much weaker scattering in
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(a) (b) (c)

(d) (e) (f)

F I G U R E 8 Errors in clear-sky (top row) top-of-atmosphere upwelling irradiance and (bottom row) surface downwelling irradiance for
the ERA5 scene, as a function of column water vapour, for different quadrature schemes with 2, 4, and 6 streams.

the longwave, we find that Gauss–Legendre is the least
accurate of all quadratures tested for two- and four-stream
radiative transfer. In addition to testing several Gaussian
quadrature schemes, we have developed three “optimized”
schemes, whereby the angles and weights are chosen to
minimize the irradiance and heating-rate errors in a set of
clear-sky training profiles. The results are summarized as
follows.

• In the two-stream case, the Elsasser (1942) diffusiv-
ity of D = 1.66 (corresponding to a zenith angle of
𝜃1 = 52.96◦) is close to optimal, although the “opti-
mized” value in this article of D = 1.6402 (𝜃1 = 52.43◦)
is a little better for all-sky irradiances, reducing RMSE
by around 20% and the magnitude of global-mean biases
by 0.3–0.4 W⋅m−2. By contrast, the Gauss–Legendre
value of D = 2 (𝜃1 = 60◦) leads to an RMSE six times
larger.

• The Elsasser and optimized two-stream schemes
incur a stratospheric/mesospheric heating-rate bias
of 0.25–0.3 K⋅d−1, peaking at the stratopause. This is
half the magnitude and of the opposite sign to the
bias resulting from D = 2. Unfortunately, selecting a D
to minimize the upper-atmosphere heating-rate bias

would introduce a significant bias in irradiances, a
limitation of the two-stream approach.

• For clear-sky calculations in which scattering can be
neglected, optimized quadrature out-performs all oth-
ers examined in this article for any number of streams,
and is between one and two orders of magnitude
more accurate than Gauss–Legendre. “Gauss–Jacobi-5”
quadrature comes a close second.

• For all-sky calculations with 4–8 streams, Gauss–
Jacobi-5 quadrature performs best and is recommended
for a weather or climate model looking to increase the
number of streams it uses to more than two. For 10
or more streams, Gauss–Legendre quadrature is most
accurate, except in the stratosphere and mesosphere.

• Following the idea of Lacis and Oinas (1991), we
have proposed quadrature schemes for 4–8 streams
that are more efficient via the use of 𝜇 values that
are integer multiples of each other, reducing the
number of exponentials that need to be computed.
Thus, “optimized-IR” is a more efficient but slightly
less accurate version of “optimized” quadrature and
“optimized-IRJP” is the same but for Gauss–Jacobi-5.

• We have demonstrated empirically that the quadrature
scheme advocated by Li (2000) and which he referred to
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as Gaussian quadrature with a moment power of infin-
ity (Gauss–Jacobi–∞ in our nomenclature) produces
identical angles and weights to Gauss–Laguerre quadra-
ture, although in terms of accuracy this is generally
inferior to Gauss–Jacobi-5.

The next step will be to implement some of the quadra-
ture schemes proposed here in an atmospheric model and
test the impact on weather forecasts and model climate.
Two optimizations will be particularly valuable: first, the
method of Fu et al. (1997), in which a fast two-stream
calculation is used to get an initial estimate of the irra-
diance profile, followed by the projection of N radiances
through the atmosphere using the two-stream fluxes as the
scattering source function, yielding more accurate irradi-
ances. Second, the number of exponential calculations can
be reduced via use of the optimized-IR and optimized-IRJP
quadrature schemes, the 𝜇 values of which are integer
multiples of each other. Preliminary simulations with the
ECMWF model suggest that improved longwave quadra-
ture reduces mean stratospheric temperatures by up to
2 K, as well as changing temperature patterns in the tropo-
sphere.

This article has also presented evidence that
two-stream schemes may not capture the dependence of
surface fluxes on column water vapour correctly, but the
magnitude of the effect is reduced by around a factor of 10
when moving to four streams. Further simulations would
be required to determine the impact on estimates of the
water-vapour feedback.
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