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Verification of cloud-fraction forecasts
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ABSTRACT: Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting
the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non-
Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures
and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a
new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large
samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use
data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system,
to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal
scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least
skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds,
although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill
decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When
considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright
c© 2009 Royal Meteorological Society
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1. Introduction

A combination of better representation of physical pro-
cesses, improved data assimilation and higher resolution
has led to a notable increase in the skill of weather
forecasts over the last few decades. A compelling demon-
stration of the improvement of the model of the European
Centre for Medium Range Weather Forecasts (ECMWF)
was presented by Simmons and Hollingsworth (2002),
who examined the correlation of anomalies from climatol-
ogy between analysed and forecast 500 hPa geopotential
height for a number of forecast lead times. From their
Northern Hemisphere 7-day anomaly correlations of 0.45
in 1980 and 0.58 in 2000, an assumed inverse-exponential
decay results in a forecast ‘half-life’ (the lead time at
which the anomaly correlation falls to 0.5) of around
6 days in 1980 and around 9 days in 2000. However, the
predictability of quantities that are important to the gen-
eral public (rainfall, surface temperature and cloud cover)
is likely to be less, given the faster error growth of the
small scales at which these phenomena exhibit structure
(Lorenz, 1969; Mass et al., 2002; Roberts, 2008).

In this paper we investigate objective ways in which
the skill of vertically resolved cloud forecasts can be
assessed using cloud radar and lidar observations, and
ultimately how the forecast half-life can be estimated.
We focus specifically on cloud fraction, defined as
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the volume-fraction of a forecast model grid-box that
contains cloud, which is prognostic in some models
(Tiedtke, 1993; Wilson et al., 2008). Radar and lidar have
received growing attention for evaluating clouds fraction
in forecast models. Hogan et al. (2001) evaluated the
cloud-fraction climatology of the ECMWF model using
ground-based observations from a single site, which was
extended to seven models and three sites by Illingworth
et al. (2007).

In terms of verification of specific cloud forecasts,
rather than evaluating just the model cloud climatology,
cloud fraction presents an interesting challenge because
its distribution is U-shaped rather than Gaussian (e.g.
Hogan et al., 2001). This means that traditional measures
of error, such as the root-mean-squared difference from
observations, can be misleading. Mace et al. (1998) were
the first to use skill scores to evaluate the skill of the
model in predicting cloud to occur at the right time. This
methodology has recently been applied to spaceborne
lidar data to evaluate the skill of global cloud forecasts
(Miller et al., 1999; Palm et al., 2005; Wilkinson et al.,
2008). The approach has been essentially to build a
contingency table, as shown in Table I, and then to define
a skill score as a function of the four elements a–d .

However, there are a plethora of verification scores in
the literature, most of which quantify the skill of a set of
forecasts by a single number, which is difficult to interpret
for a single model. Usually one would only use them in
a relative sense, i.e. to compare the skill of two or more
models (or the same model but with different forecast lead
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Table I. Simple 2 × 2 contingency table expressing the joint
occurrence of cloud fraction f greater than or less than some
threshold value ft in the observations and in a model forecast.
The variables a–d represent the number of ‘hits’, ‘false alarms’,

‘misses’ and ‘correct negatives’, respectively.

Observed fo > ft Observed fo ≤ ft

Forecast fm > ft a b

Forecast fm ≤ ft c d

times, time of year, height, etc.), but a number of them
have undesirable properties that make them unsuitable or
misleading for use with cloud-fraction forecasts.

An alternative approach proposed by Jakob et al.
(2004) is to treat cloud fraction in a model as a proba-
bilistic forecast of cloud occurring at a particular instant
in a model gridbox, which is then compared to the
instantaneous cloud occurrence from radar and lidar.
This has the advantage of not making the uncertain step
(the ‘ergodic assumption’) of inferring cloud fraction in
a three-dimensional volume from the time series of cloud
occurrence derived from radar and lidar above a single
site. However, it is necessary for different verification
metrics to be used that are appropriate for probabilistic
rather than categorical forecasts, which increases the
complexity of the interpretation of the results for model
development. In this paper we assume that cloud fraction
can be estimated from observations with sufficient reli-
ability, and therefore that retrieved cloud fraction may
be used to evaluate the corresponding modelled values
directly via the use of skill scores; this is supported by
the results of Henderson and Pincus (2009).

The remainder of this paper is organized as follows.
Section 2 describes the data used and the processing
that has been applied to derive joint histograms of cloud
fraction between the observations and each model. In
section 3, we discuss the desirable attributes of a good
verification score, with emphasis on the issues relevant to
cloud fraction. Section 4 then uses these criteria to present
an analysis of the merits and weaknesses of various skill
scores that can be used for cloud fraction. Several new
scores are also introduced. Section 5 then uses the best
skill scores to examine the skill of cloud-fraction forecasts
from a number of forecast models, including an estimate
of the half-life of a cloud forecast.

2. Method

2.1. Cloudnet processing

We use ground-based radar and lidar data from a number
of sites in Europe. The three sites used in the ‘Cloud-
net’ project by Illingworth et al. (2007) (Chilbolton in the
UK, Cabauw in the Netherlands and Palaiseau in France),
are supplemented by data from Lindenberg in Germany.
We also use data from the ARM (Atmospheric Radiation
Measurement) Mobile Facility (AMF; Miller and Slingo,
2007), during its deployment at Murgtal in the Black For-
est region of Germany during the Convective Orographic

Precipitation Study (COPS) in 2007 (Wulfmeyer et al.,
2008).

The model data consist of hourly snapshots of cloud
fraction in each model level above each site. For the
2003–2004 period, the seven models are as described
by Illingworth et al. (2007). These are

(1) the global ECMWF model, which had a horizontal
resolution of 39 km in this period,

(2) the Regional Atmospheric Climate Model
(RACMO) of the Dutch Meteorological Insti-
tute (KNMI) which used the ECMWF physics
package but ran with a horizontal resolution of
18 km,

(3) the global version of the Met Office Unified Model
with a 60 km resolution,

(4) the mesoscale version of the same model with
12 km resolution,

(5) the global Météo-France ‘ARPEGE’ model with
24 km resolution over Europe,

(6) the German Weather Service (DWD) ‘Lokal’ model
with 7 km resolution, and

(7) the Swedish Meteorological and Hydrological Insti-
tute (SMHI) Rossby-Centre Regional Atmospheric
Model (RCA) with 44 km resolution.

For the 2007 data, the models used are the 12 km
resolution North-Atlantic/European (NAE) version of the
Met Office Unified Model, and the 7 km DWD ‘COSMO-
EU’ model (the European-domain version of the model
of the Consortium for Small-Scale Modelling). The Met
Office and DWD models are of particular interest as they
reported cloud fraction for different forecast lead times,
and therefore the degradation of skill with lead time can
be quantified.

The observational data were processed to obtain cloud
fraction on the grid of each of the models using the Cloud-
net processing system, exactly as described by Illingworth
et al. (2007). Firstly, a ‘target categorization’ was per-
formed, in which the radar and lidar data were used to
classify the targets in each radar-lidar pixel (typically 30 s
in time and 60 m in height) into a number of different
categories (liquid cloud, ice cloud and snow, melting ice,
rain, insects, aerosols and combinations thereof). Cloud
was deemed to occur if the pixel contained liquid cloud,
ice cloud or snow, noting that observationally there is
a continuum between ice cloud and snow (e.g. Hogan
et al., 2001). Then the grid of each model was super-
imposed on the observed time–height sections of cloud
occurrence, and observed cloud fraction was defined sim-
ply as the fraction of each gridbox containing cloud.
The dimensions of the gridboxes in height were deter-
mined by the vertical model levels, while we used the
model wind speed to calculate a height-dependent sam-
pling time that would correspond to the horizontal resolu-
tion of the model. It is acknowledged that this provides an
imperfect estimate of the true cloud fraction of the three-
dimensional volume, but in practice other approaches
(e.g. sampling for a fixed time) are found to produce
very similar skill scores.

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1494–1511 (2009)
DOI: 10.1002/qj



1496 R. J. HOGAN ET AL.

When rain is present at the ground, significant radar
attenuation can occur, particularly at higher radar fre-
quencies (Hogan et al., 2003). Therefore, when a rain rate
is measured that is greater than 8 mm h−1 for a 35 GHz
radar, and greater than 2 mm h−1 for a 94 GHz radar, that
period is excluded from the comparison. During the peri-
ods studied in this paper, Cabauw and Lindenberg had
35 GHz radars, Chilbolton had a 94 GHz radar in 2004
and a 35 GHz radar in 2007, and all other all other sites
used a 94 GHz radar.

For each model and site, the known sensitivity of the
radar was then used to remove ice clouds in the model
too tenuous to be detected. This was done as described
by Illingworth et al. (2007) in a way that recognized
the horizontal variability of ice water content within a
gridbox. An example of one month of cloud fraction
from the observations and two of the models is shown
in Figure 1.

2.2. Joint histograms and contingency tables

Both modelled and observed cloud fraction were then
averaged to a uniform 1 km vertical grid. The reason for
this is that, in comparing the skill of one model to another,
there is the danger that a model with a higher vertical
resolution will perform worse simply because it is being
tested more stringently than a lower-resolution model.
The same argument applies to models with different
horizontal resolutions, but this is addressed in the analysis
when we calculate skill for different horizontal scales by
averaging the cloud fraction in time.

For each model and site, we have more than a year
of co-located observed and modelled cloud fraction ver-
sus height. To ease the subsequent processing, joint his-
tograms were computed at each height, with a resolution
of 0.05 in cloud fraction. Figure 2 shows an example
of a joint histogram for the DWD model at Murgtal in
2007 (at a lower resolution of 0.1 for clarity). Note that
the joint histograms from the lowest 11 km of the atmos-
phere have been summed, the cloud fraction above 11 km
being insignificant in the observations. Also shown are
the histograms from the observations and model sepa-
rately, which (at least in the observations) exhibit the
characteristic U-shaped distribution. The model shows a
tendency to underestimate the occurrence of completely
overcast skies. The joint histogram shows most of the
data lying around the edge, suggesting a rather poor asso-
ciation between the two datasets. However, the lower
frequency events in the centre of the panel (in light grey)
appear to show a better correlation.

In addition to calculating joint histograms for the 1-
hourly model snapshots, the modelled and observed cloud
fractions have been averaged in time to 2, 3, 4, 6, 8, 12
and 24 hours, in order to investigate the improvement in
forecasts that results from the consideration of larger hor-
izontal scales. The joint histogram for 6-hour averaging
is shown in Figure 3. It is striking how much better the
visual degree of association is between the two variables,
reflecting the fact that larger-scale cloud structures are
easier to forecast than individual clouds.

Joint histograms can be used to calculate almost any
skill score. For those that depend on the value of the
difference between the observed and modelled cloud
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Figure 1. Comparison of (a) cloud fraction derived from the observations at Chilbolton during May 2004 on the grid of the DWD model, (b)
the corresponding 6–11-hour forecasts of the Met Office mesoscale model, and (c) the corresponding 6–17-hour forecasts of the DWD model.
Note that high clouds that would be undetectable in the observations have been removed from the models. The white regions in (b) indicate

missing data not used in the analysis.

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1494–1511 (2009)
DOI: 10.1002/qj



VERIFICATION OF CLOUD-FRACTION FORECASTS 1497

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Observed cloud fraction

F
or

ec
as

t c
lo

ud
 fr

ac
tio

n

41062

482

Frequency

×10

F
or

ec
as

t c
lo

ud
 fr

ac
tio

n

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy
Observed cloud fraction

×10

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

N
um

be
r 

of
oc

cu
rr

en
ce

s

50
70

100
140
200
300
500

Figure 2. The main (lower left) panel shows the joint histogram of cloud
fraction from the radar and lidar observations at Murgtal in 2007, and
the cloud fraction modelled by the DWD model (with a 0–2-hour lead
time) for the same period and location. Cloud fraction at 1 km intervals
between 0 and 11 km above the ground have been included. The white
numbers in the top-right and bottom-left intervals show the number of
events in these bins. The corresponding (logarithmic) scale is shown at
the top right. The panels to the top and the right show the probability
distribution of observed and modelled cloud fraction, respectively; note
that the magnitude of the lowest bar is shown at a tenth of its true value.
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Figure 3. As Figure 2, but after averaging the observed and modelled
cloud fraction into 6-hour periods.

fraction, fo − fm (where fo and fm are individual values
of cloud fraction from the observations and model,
respectively), this information is available from the
histogram with a precision of 0.05. For binary skill scores,
we convert the joint histogram into a contingency table
simply by dividing it into four quadrants for a particular
value of the cloud-fraction threshold, ft, and summing

the values in each quadrant to yield the elements a–d .
For the case shown in Figure 2, the contingency table for
ft = 0.1 is

(
a b

c d

)
=

(
7194 4098

4502 41062

)
. (1)

This will be used to demonstrate the calculation of skill
scores in section 4.

As will be described in detail in section 3, equitable
skill scores are defined such that a random forecast would
yield an expected score of zero (or some other constant
value). It is therefore necessary to define the elements of
the joint histogram that would be expected for a forecast
that had the same probability distribution as the actual
forecast, but was perfectly random. It is convenient to
define two column vectors, po and pm, which contain
the number of occurrences of cloud fraction in each
0.05 interval between 0 and 1, for the observations and
the model separately. If the random joint histogram is
represented as a matrix, Pr, then

Pr = 1

n
pmpT

o , (2)

where n is the total number of elements in either of the
vectors, and T represents the transpose.

The random binary contingency table can then be
constructed either by dividing Pr into quadrants as before,
or using the elements of the actual contingency table a–d .
In the latter case, the random contingency table would
have the following elements

ar = (a + b)(a + c)/n; (3)

br = (a + b)(b + d)/n; (4)

cr = (c + d)(a + c)/n; (5)

dr = (c + d)(b + d)/n, (6)

where n = a + b + c + d is the total number of elements.
An important point to note is that the quantities ar to dr
are the expected values in the contingency table, for a
random forecast with the same probability of forecasting
occurrence as the actual forecast system. (Likewise, the
elements of Pr are the expected values for a random
forecast.) A particular sample of n random forecasts may
yield a different distribution of values of a–d , particularly
for small n, and so a skill score calculated from this
sample may imply the random forecasts to have positive
or even negative skill (i.e. worse than random) for that
sample. It is only if the skill score is some kind of linear
function of a–d that the expected value of the skill score
will be the baseline value assigned to a random forecast
(Gandin and Murphy, 1992). For the remainder of this
paper we use the term ‘random forecast’ to mean one for
which the elements of the contingency table or the joint
histogram are the expected values for a random forecast,
given by (2)–(6). This will be true as n → ∞, and hence
is a good approximation for the large samples (n ∼ 105)
considered here.
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If a single skill score is to be calculated for clouds at
any height, then an important aspect to generating both
the random joint histogram and the random contingency
table is that they should be calculated separately at each
height, and then summed. In this way the skill score
will be referenced to a random forecast that has some
knowledge of the climatological probability of cloud
fraction as a function of height (such as from a free-
running climate model, or a weather forecast from a
different year). In the case of the joint histogram shown
in Figure 2 (which corresponds to heights between 0
and 11 km), the elements of the corresponding random
contingency table are (noting that they will not in general
be integers)

(
ar br

cr dr

)
=

(
2581.0 8711.0

9115.0 36449.0

)
. (7)

This issue is discussed further in section 4.2. Other
climatological variations in cloud fraction, such as the
seasonal or diurnal cycle, could be accounted for in the
same way, although for the midlatitude sites considered
here this is a lesser effect than the variation with height
and so is not included.

3. Desirable properties of verification scores

We now review the properties on which the various scores
will be judged in section 4. Although the focus is on cloud
fraction, almost all of these properties are desirable in the
verification of any variable.

1. Equitability. An ‘equitable’ skill score awards all
random forecasts an equal expected score (zero in
the case of all such scores in this paper), even
if they have the correct probability distribution
(Gandin and Murphy, 1992). Also, a forecast sys-
tem that always predicts the same value would be
awarded zero. In section 4.1, some of the non-
equitable scores that have been used for verifying
clouds in the literature are listed. A complication
is that the cloud-fraction climatology varies sig-
nificantly with height, and a model with no skill
at predicting clouds at the right time, but which
nonetheless predicts clouds with about the right fre-
quency versus height (e.g. randomly selected fore-
casts from a different year) could achieve a positive
score by the normal definition of many equitable
skill scores. An aim of this paper is to charac-
terize the skill versus forecast lead time, assum-
ing an approximately inverse-exponential decay
towards a no-skill baseline (corresponding to ran-
domly selected forecasts from the same model), and
so it is necessary for this baseline to correspond to
a score of zero. In section 4 we show how this can
be achieved for a number of skill scores, by making
use of the random joint histogram and the random
contingency table presented in section 2. A further
subtlety is that it turns out many scores are only

strictly equitable in the limit of large n (a property
which may be termed ‘asymptotic equitability’; I.
T. Jolliffe, personal communication). Full consid-
eration of the consequences of this property will be
given in a future paper, but in this paper we refer
to such scores as ‘equitable (for large samples)’.

2. Difficulty to ‘hedge’ and transpose symmetry. A
score can be hedged if it encourages a forecaster
to ‘play the score’ by issuing a forecast that differs
from his or her true belief in order to yield a higher
value (e.g. Jolliffe, 2008). It practice it is difficult
to design a score that is completely impossible
to hedge. Scores most easy to hedge are those
that reward over-prediction of occurrence while
penalizing under-prediction (or vice versa), since
forecasts that predict cloud more often will tend to
receive a higher score. We therefore favour scores
that are transpose symmetric, which means that
swapping the observations and the forecast does not
change the score (Stephenson, 2000). For the scores
considered in this paper, transpose asymmetry is a
reliable indicator of the ones that are the easiest to
hedge. It should be noted that transpose asymmetry
can be justified if the economic or human cost of
a ‘miss’ is much worse than a ‘false alarm’ (e.g.
for a tornado forecast), but for clouds this argument
does not apply.

3. Independence of the frequency of occurrence. Often
a binary skill score is used to evaluate a contin-
uous variable (such as rain rate or cloud fraction)
by applying a threshold ft as shown in Table I.
For example, Illingworth et al. (2007) calculated
skill scores using a low threshold of ft = 0.05. A
higher ft leads to a lower ‘observed frequency of
occurrence’ p = (a + c)/n, which is termed the
‘base rate’ in the general verification literature.
Likewise, the ‘modelled frequency of occurrence’
pm = (a + b)/n decreases with increasing ft. The
variation of the score with ft should then indicate
whether the model is better or worse at predict-
ing more intense events. However, it was shown
by Stephenson et al. (2008) that this is usually not
possible because virtually all scores have an intrin-
sic dependence on p, and tend to a meaningless
limit (usually zero) for vanishingly rare events. In
section 4.5, we present a modified version of the
score introduced by Stephenson et al. (2008) that
does not have this dependence, yet is also equitable
(for large samples) and transpose symmetric.

4. Dependence on exact value of the prediction. For
radiative transfer the difference between a cloud
fraction of 0.5 and 1 is as important as the
difference between 0 and 0.5, but for a binary
skill score using a single value of ft, only one
of these differences can be distinguished. One can
calculate the skill as a function of ft, but it is more
convenient if a single score can be reported that is
dependent on the full range of cloud-fraction values
forecast. Such a score is presented in section 4.6.
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5. Linearity. One of the aims of this paper is to
determine the ‘half-life’ of a cloud forecast, which
assumes we can define a score that has an inverse-
exponential decrease with forecast lead time. How-
ever, the relationship between one score and
another is often nonlinear, which means that the
calculated half-life will depend on which score
is chosen. Therefore the linearity of the score is
important, something that has not been considered
in the literature in this context before. The other
advantage of linearity is that it can ensure that a
score is truly equitable (discussion in section 2.2
of Gandin and Murphy, 1992). Linearity can be
defined with respect to several things, for example
to a change in one or more elements of the contin-
gency table or to some measure of the probability
of making the forecast by chance. This property is
examined further in section 4.3.

There are two further properties of a score that ought to
be considered in their design, but for which the optimum
property depends on the application:

6. Complement symmetry. A skill score calculated
from a binary contingency table is complement sym-
metric if swapping occurrence for non-occurrence
does not change the score (Stephenson et al., 2008).
For clouds there is no compelling reason to regard
this as an important property.

7. Dependence on forecast bias. Suppose a particular
forecast has a bias such that it under-predicts the
occurrence of cloud, but whenever it does predict
a cloud, a cloud is always observed, i.e. b = 0
and c > 0. Such a forecast is the best it can be,
given its bias. The same is true of a forecast that
over-predicts the occurrence of cloud, but has no
‘misses’. Some skill scores (e.g. the Odds Ratio)
would give such forecasts top marks, while others
would penalize them to different degrees due to the
non-zero value of either b or c. This is an important
factor to consider when trying to assess whether one
forecast is more skilful than another, since some
scores are more tolerant of bias than others. In
the verification of a completely continuous variable
(e.g. temperature), it is a simple matter to remove
the bias by recalibrating the forecast distribution
to match the observed distribution before applying
the threshold. This is not generally possible in the
case of cloud fraction since it is only partially
continuous, having ‘mass points’ at zero and one.
In section 4.3, we present a new score that is the
same as the Heidke Skill Score, except that it is
tolerant of biases.

4. Skill scores for cloud fraction

4.1. Non-equitable scores

We first briefly mention some of the non-equitable scores
that have been used for verifying clouds in the literature,

although do not pursue their use in this paper. Mace
et al. (1998) and Miller et al. (1999) quantified the skill
of cloud occurrence in the ECMWF model using ground-
based radar and spaceborne lidar, respectively. The scores
they used were not equitable and in some cases were
relatively easy to hedge: they were Proportion Correct
(a + d)/n, Hit Rate H = a/(a + c), False Alarm Ratio
b/(a + b) and Threat Score a/(a + b + c) (although note
that they used the term ‘Hit Rate’ for what we call
‘Proportion Correct’, and ‘Probability of Detection’ for
what we call ‘Hit Rate’). The properties of H are shown
in Table II, and are the same for False Alarm Ratio. Most
of the other scores discussed in this paper are also shown
in Table II.

Another strictly non-equitable score that has been used
for rainfall verification is the ‘Fractions Skill Score’ of
Roberts (2008). This was designed not to go to zero for
a random forecast, but rather to go to zero for the worst
possible forecast.

4.2. Generalized skill scores and the Heidke skill score

Several of the equitable scores considered in this paper
fall into the category of a ‘generalized’ skill score S,
defined by

S = x − xr

xp − xr
, (8)

where x is some function of the elements of the contin-
gency table or the joint histogram, xr is the value of x

that would be obtained by a random forecast while xp
is the value of x that would be obtained by a perfect
forecast. Thus it can be seen that S will vary between 0
for a random forecast and 1 for a perfect forecast, there-
fore being equitable (for large samples) and bounded. The
other desirable properties described in section 3 depend
on what is chosen for x.

The simplest example of such a score is the Heidke
Skill Score (HSS; Heidke, 1926), which is obtained by
setting x = a + d . In this case a perfect forecast would
have xp = n and a random forecast would have

xr = ar + dr. (9)

It turns out that the same score is obtained by setting
x = b + c, and indeed many other linear combinations of
the elements in the contingency table. HSS is therefore
both transpose- and complement-symmetric. The ‘tradi-
tional’ definition of HSS involves substitution of (3) and
(6) into (9), followed by rearrangement of (8) to obtain

HSStrad = 2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
. (10)

In the appendix it is shown how the standard error
on HSS may be estimated. Using the values in (1) yields
HSStrad = 0.531 ± 0.005. However, this does not account
for the fact that a forecast may have no skill in terms of
simulating weather systems at the right time, but may
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Table II. Summary of the properties of the various skill scores considered in section 4, where the numbers of the properties
correspond to those discussed in section 3.

Property H HSS ETS OSS ln θ Q EDS SEDS MAESS

Desirable properties for cloud fraction verification
1. Equitable (for large samples) No Yes Yes Yes Yes Yes No Yes N/A
2. Transpose symmetric No Yes Yes Yes Yes Yes No Yes Yes
3. Uses full range of cloud fraction No No No No No No No No Yes
4. Meaningful as p → 0 No No No No Nearly No Yes Yes No
5. Linear Yes Yes No Yes Nearly No Nearly Nearly Yes
Other properties
6. Complement symmetric No Yes No Yes Yes Yes No No Yes
7. Biased forecast can get perfect score Yes No No Yes Yes Yes Yes No No

Note that (i) the two transpose-asymmetric scores (H and EDS) can be easily hedged by predicting cloud all the time, and (ii) the ‘equitability’
property is not applicable to MAESS since it is not a categorical score of the type considered by Gandin and Murphy (1992) in the original
definition of equitability.

still have the correct climatology with regard to the
distribution of clouds as a function of height. Indeed,
substitution of the values in (7) into (10) yields HSSr =
0.028. This is overcome simply by ensuring that ar and
dr in (9) are calculated by summing the values at all
heights, as described in the paragraph preceeding (7). The
resulting value for HSS in this case is then 0.518.

The conceptual simplicity of HSS makes it suitable as
a reference against which other categorical skill scores
can be compared. For example, Figure 4(a) shows the
theoretical variation of Hit Rate with HSS for four
configurations of the overall frequency that the event is
observed and modelled (p, pm), which are (0.1, 0.1), (0.2,
0.2), (0.1, 0.2) and (0.2, 0.1). These have been calculated
by considering a population of n = 1000 individual
forecasts, and simulating every possible combination of
a–d that is consistent with the values of p and pm. Note
that HSS can take on negative values corresponding to
forecasts that are worse than random, but this is not
shown.

The non-equitability of the Hit Rate is evident by the
fact that it does not have a constant value for a random
forecast indicated by HSS = 0. Its transpose asymmetry
is evident from the difference between the dotted and dot-
dashed lines, which means that forecasts that over-predict
the occurrence of cloud will typically perform better than
forecasts that under-predict cloud. It is this property that
makes Hit Rate easy to hedge: simply by changing a
random selection of forecasts of clear-sky to forecasts of
cloud is guaranteed to improve the score awarded. The
limit of this behaviour is to predict cloud all the time
(resulting in c = d = 0), leading to a perfect score of
H = 1. HSS also takes bias into account, but penalizes
under- and over-prediction equally: the maximum score
with a factor-of-two bias in its prediction of cloud is
0.615, regardless of the sign of this bias.

The Heidke skill score is uniquely related to the
widely-used Equitable Threat Score (Gilbert, 1884;
Doswell et al., 1990), given by ETS = (a − ar)/(a + b +
c − ar). This relationship is shown by the solid line in
Figure 4(b). ETS can be seen to be simply a nonlinear
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Figure 4. Comparison of various skill scores against the Heidke Skill
Score (HSS), calculated numerically for various values of the frequency
of occurrence in the observations (p) and the model (pm): (a) Hit Rate,
(b) Equitable Threat Score and Overlap Skill Score, (c) Log of Odds
Ratio, (d) Yule’s Q, (e) Extreme Dependency Score, and (f) Symmetric
Extreme Dependency Score. Note that when p is twice or half pm, the

maximum HSS attained is 0.615.
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version of HSS, and since linearity is desirable for cal-
culating half-life, ETS is not considered further in this
paper. Another related score is the Peirce Skill Score
(e.g. Stephenson et al., 2008); this is identical to HSS
for unbiased forecasts, but for biased forecasts it is trans-
pose asymmetric so is also not considered further in this
paper.

4.3. Linearity and the Overlap Skill Score

To examine the concept of linearity in more detail, con-
sider the verification of a model that predicts cloud
pm = 1/3 of the time, but cloud is observed p = 1/5 of
the time. If we reorder each forecast into ‘misses’, ‘hits’,
‘false alarms’ and ‘correct negatives’ then the result can
be shown schematically in Figure 5. The skill of the
model can be changed simply by sliding the forecast
cloud events left and right. Figure 5(a) depicts the sce-
nario for a perfectly random forecast and Figure 5(c) the
scenario for the best forecast that is possible given the
bias of the model. The scenario in Figure 5(b) can be
seen to lie half way between the other two, and we may
define a linear score as one that would award the sce-
nario in Figure 5(b) a value half-way between the scores
it would award for the other two scenarios. More gen-
erally, for p and pm held constant, we define a linear
score as one for which changing a ‘miss’ to a ‘hit’ (i.e.
adding one to a and d and subtracting one from b and
c) increases the score by the same amount no matter the
current values of a–d . The values of several scores are
shown beneath each scenario in Figure 5, and it can be
seen that HSS is linear by this definition, while ETS is
not.

The dependence of HSS on bias is evident from the
fact that the maximum score of 1 is not awarded for
the scenario in Figure 5(c), yet it is for the scores Q
and EDS discussed in the following sections. For some
applications, we may wish to define a linear score that
does award 1 for the scenario in Figure 5(c). This may
be achieved by considering the analogy with the cloud
‘overlap parameter’ defined by Hogan and Illingworth
(2000), which quantifies the degree of vertical overlap of
clouds in different layers in the atmosphere (which could
be illustrated by the grey regions in Figure 5). Within
the framework of the generalized skill score defined by
(8), the metric we consider is the number of times that
cloud is forecast or observed (or both), such that x =
a + b + c. Clearly a random forecast would result in xr =
ar + br + cr, but the best possible forecast given that the
forecast system may be biased is xp = max(a + b, a + c).
The result we refer to as the Overlap Skill Score, OSS.
Figures 4(b) and 5 show that OSS varies linearly from
0 (random) to 1 (best possible) even when the model
is biased; for unbiased forecasts it is equal to HSS. In
general, the OSS for cloud fraction is not as satisfactory
as for some of the other skill scores, so its use is not
pursued further in this paper.

4.4. Log of Odds Ratio and Yule’s Q

Stephenson (2000) advocated the use of the Odds Ratio,
defined simply as θtrad = ad/bc (where the subscript
refers to the ‘traditional’ definition to contrast with our
slightly modified definition below). It can vary over
many orders of magnitude, so the ‘Log of Odds Ratio’,
ln θtrad, is more convenient. ln θtrad is equitable (for large
samples) with a random forecast scoring zero, although
it is unbounded and so a perfect forecast would score
infinity. The standard error of the Log of Odds Ratio,
σln θ , is given by

σ 2
ln θ = 1

a
+ 1

b
+ 1

c
+ 1

d

(Agresti, 1996).
In the case of the contingency table represented by (1),

the Log of Odds Ratio is ln θtrad = 2.77 ± 0.03. However,
the corresponding random contingency table given in
(7) yields a non-zero score of ln θr = 0.17, representing
the residual skill of a random forecast that has some
representation of the vertical cloud fraction climatology.
We are therefore motivated to redefine the score to ensure
that such a forecast yields a score of zero, as follows

ln θ = ln

(
ad

bc

brcr

ardr

)
= ln θtrad − ln θr. (11)

Thus the Log of Odds Ratio would be be reduced to 2.60.
Figure 4(c) compares ln θ to HSS for four different

combinations of p and pm. Being unbounded, it cannot
be perfectly linear, but for the typical range of 1–3 found
in this paper, it is close enough to linear to be useful
for calculating forecast half-life in section 5.5. A simple
method to overcome the unboundedness of ln θ is to use
the related skill score, ‘Yule’s Q’ (Yule, 1900), referred
to as the ‘Odds Ratio Skill Score’ by Stephenson (2000).
This is defined as

Q = (θ − 1)

(θ + 1)
,

and is zero for a random forecast and unity for a perfect
forecast. However, it is clear from Figure 4(d) that this is
at the expense of strong nonlinearity, tending to ‘saturate’
at the high-skill end of its range, and hence it is unsuitable
for estimating half-life. We therefore do not use it further
in this paper.

4.5. Symmetric Extreme Dependency Score

As the threshold, ft, is increased, the frequency of
occurrence, p, naturally decreases, but a problem with all
the scores considered so far is that they have an intrinsic
dependence on p, and in the limit p → 0 they asymptote
to zero (except for ln θ , which tends to infinity, and Yule’s
Q, which tends to one). Thus it is often not possible to
use them to determine whether a model is better or worse
at forecasting more extreme events.
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Obs

Model

(a) c=2, a=1, b=4, d=8

H=0.33, OSS=0, HSS=0
ETS=0, lnθ=0, Q=0
EDS=0.19, SEDS=0

(b) c=1, a=2, b=3, d=9

H=0.67, OSS=0.5, HSS=0.33
ETS=0.2, lnθ=1.79, Q=0.71
EDS=0.6, SEDS=0.34

(c) c=0, a=3, b=2, d=10

H=1, OSS=1, HSS=0.67
ETS=0.5, lnθ=∞, Q=1
EDS=1, SEDS=0.68

Figure 5. Schematic to illustrate the concept of a ‘linear’ skill score. The results of 15 forecasts are compared to observations, where a grey
rectangle indicates that cloud occurred in either. (a) corresponds to a model that produces perfectly random forecasts, (c) to the best possible
forecast given the bias of the forecasting system, and (b) to forecasts that lie half-way between the two by the definition of linearity given in

section 4.3. The corresponding values of various skill scores are also provided for each scenario.

A potential solution was presented by Stephenson
et al. (2008), who proposed the ‘Extreme Dependency
Score’ (from a statistic introduced by Coles et al., 1999),
defined as

EDS = 2 ln{(a + c)/n}
ln(a/n)

− 1. (12)

Stephenson et al. (2008) demonstrated that this score
tends to a useful value for rare events, by first expressing
it in terms of Hit Rate H = a/(a + c) and frequency of
occurrence p = (a + c)/n:

EDS = 2 ln p

ln(Hp)
− 1, (13)

and then making the assumption that H has a power-
law dependence on p for small p, i.e. H � κpδ . Here,
δ = 1 corresponds to H converging to zero at the same
rate as a random forecast, while δ = 0 corresponds to H

not converging at all, i.e. a perfect forecast. From this,
it may be easily shown that in the limit p → 0, EDS
� (1 − δ)/(1 + δ). This therefore indicates a measure of
skill, typically lying between 0 for a random forecast and
1 for a perfect forecast.

Figure 4(e) shows that for p = pm, EDS is equitable
and is quite similar to HSS. However, for p �= pm,
it is not equitable as it does not have a constant
value for random forecasts. This may be demonstrated
mathematically by setting a in the denominator of (12) to
the random value given by (3) such that the denominator
becomes ln(Bp2), where B = (a + b)/(a + c) is the
frequency bias of the forecast. Further rearrangement
yields

EDS = − ln B

2 ln p + ln B
. (14)

Thus it can be seen that when B �= 1, EDS is not zero
and depends on the bias.

It is also clear that EDS is not transpose symmetric,
since c appears in its definition but not b. It is this
property that makes it easy to hedge: predicting cloud
all the time would result in c = d = 0, and hence a
perfect score of EDS = 1 (the same problem is true of
Hit Rate, which also does not depend on b). Stephenson
et al. (2008) avoided this problem in their analysis of 6-
hour rainfall accumulations by recalibrating the forecast
before evaluating it, thereby forcing B = 1. It would

clearly be desirable not to have to do this, particularly
for cloud fraction which is continuous over only a small
part of probability space (around 80% of the time, cloud
fraction is zero in the troposphere).

We therefore propose a transpose-symmetric modifica-
tion of the EDS that we shall refer to as the Symmetric
Extreme Dependency Score:

SEDS = ln{(a + b)/n} + ln{(a + c)/n}
ln(a/n)

− 1 (15)

= ln(ar/a)

ln(a/n)
. (16)

This may be expressed in terms of B, p and H as

SEDS = ln(Bp2)

ln(Hp)
− 1. (17)

If it is assumed that the frequency bias B remains constant
as p is decreased, then it can be easily shown that SEDS
has the same behaviour for rare events as EDS, tending to
SEDS � (1 − δ)/(1 + δ) in the limit p → 0. However,
this score is equitable (for large samples), as may be
demonstrated by replacing a in (16) by ar, resulting in
SEDS = 0.

The meaning of this score may be explained in a
different way, by considering the fraction of the time
that an event is correctly forecast, a/n. For random
forecasts, it can be seen from (3) that ar/n = ppm.
For perfect forecasts, ap/n = p. Perfect forecasts are
also unbiased (p = pm), and so this may be written as
ap/n = (ppm)1/2. Therefore the power of (ppm) is an
index of skill, and for forecasts of arbitrary skill we may
manipulate (16) to obtain a/n = (ppm)1/(SEDS+1).

Figure 4(f) depicts SEDS versus the Heidke Skill Score
for four different combinations of p and pm. It is identical
to EDS for p = pm, but for p �= pm it remains close to
HSS, and penalizes equally under- and over-prediction by
a factor of two. It is therefore no longer easily hedged
by simply over-predicting occurrence, as was the case
for EDS. The slight curvature of the relationship in
Figure 4(f) shows that it is not perfectly linear, yet it is
precisely this nonlinearity that makes it useful as p → 0.
We conclude that SEDS is a very useful general purpose
skill score, as well as providing robust verification for
rare events. This will be demonstrated in section 5.2.

The standard error in SEDS may be estimated by
following a similar approach to Stephenson et al. (2008)

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1494–1511 (2009)
DOI: 10.1002/qj



VERIFICATION OF CLOUD-FRACTION FORECASTS 1503

for the EDS: by assuming p and B are constant and
assuming σSEDS � σH∂ SEDS/∂H yields

σSEDS =
√

H(1 − H)

np
× − ln(Bp2)

H(ln Hp)2

=
√

1

a
− 1

a + c
× − ln(ar/n)

ln(a/n)2
. (18)

To account for the fact that a random forecast with the
correct height-dependent climatology of cloud fraction
would be awarded a positive score, we use the definition
given by (16), but ensure that ar is calculated by summing
the values at all heights, as described in the paragraph
preceeding (7).

4.6. Mean Absolute Error Skill Score

All the skill scores considered so far require the cloud
fraction forecast varying continuously between 0 and
1 to be discretized into a binary ‘cloud’ or ‘no-cloud’
forecast before being evaluated. As discussed in property
4 of section 3, it is desirable if a score can take full
account of the range of values forecast. The obvious
candidate is the Mean Squared Error Skill Score, MSESS
(Murphy, 1988), obtained by setting x = 〈(fo − fm)2〉 in
(8). This may be calculated straightforwardly from the
joint histogram discussed in section 2.2. The equivalent
random value, xr, may be calculated using the same
method but applied to the random joint histogram. The
equivalent value for a perfect forecast is simply xp = 0.

As with the Heidke skill score, MSESS is transpose
symmetric. In terms of equitability, note that this property
is usually only defined for categorical skill scores, but it
can be seen from its definition that MSESS is equitable to
the extent that a random forecast with the same probability
distribution as the actual forecast will (by design) score
zero, although a constant forecast will not necessarily
score zero. The dependence of MSESS on the square
of the error deserves some consideration. In terms of the
effect of clouds on the instantaneous radiation budget, we
could argue that, all else being equal, a model forecasting
cloud fraction incorrectly by 0.2 on one occasion is
equivalent to it forecasting cloud fraction incorrectly
by 0.1 on two occasions. However, the definition of
MSESS would penalize the first case twice as much
as the second. We are therefore motivated to introduce
the Mean Absolute Error Skill Score (MAESS) using the
generalized skill score definition as before, but setting
x = 〈|fo − fm|〉 in (8). Changing the forecast cloud
fraction on a particular event by 0.1 would have the same
effect on MAESS, regardless of how close that particular
forecast was to the observations. This behaviour is more
in keeping with the preference for scores to behave
linearly, discussed in sections 3 and 4.3.

To estimate error bounds for MAESS, we use a Monte
Carlo technique similar to that proposed by Déqué (2003)
for MSESS. Since MAESS is calculated by comparing
Mean Absolute Error (MAE) to the equivalent value for
a random forecast (MAEr), we assume the main source of

error to be due to estimating MAEr from a finite number
of samples. We first generate over 100 sets of random
forecasts, each set containing n values of cloud fraction
drawn randomly from the actual distribution of forecast
values. MAE is calculated for each set by comparing with
the observed values of cloud fraction, and the standard
deviation of the resulting values of MAE is deemed to
be the standard error of MAEr. The standard error of
MAESS is calculated from this.

5. Results

5.1. Climatology

Before examining the skill of the models in predicting
cloud at the right time, we assess their ability to reproduce
the observed climatology of cloud fraction f . The most
complete way to do this is by comparing the full prob-
ability distribution, as was done by Hogan et al. (2001)
in three height ranges. Here we attempt to present this
information as a continuous function of height. Figure 6
compares the frequency of occurrence of f > ft for four
different thresholds ft between seven models and the cor-
responding observations for 2003–2004 averaged over
the three original Cloudnet sites (Illingworth et al., 2007),
which are Chilbolton, Palaiseau and Cabauw. This is
equivalent to the complement of a cumulative probability
distribution.

The strengths and weaknesses of each individual model
are different. Figure 6(a) shows that the ECMWF model
has about the right occurrence of f > 0.05, but tends
to underestimate the cloud fraction between 1 and 5 km
when f > 0.05. The RACMO model (Figure 6(b)) tends
to predict larger cloud fraction than ECMWF, and over-
predicts the occurrence of f > 0.05. The Met Office
models (Figures 6(c) and (d)) both appear to overestimate
the occurrence of high cloud, even though all model
fields have been modified in an attempt to remove
clouds too tenuous to be detected. They also both
significantly underestimate the occurrence of completely
cloudy gridboxes (those with f > 0.95). The Météo-
France and DWD models (Figures 6(e) and (f)) both
appear to have a rather good cloud fraction distribution
at all heights, while the SMHI-RCA model (Figure 6(g))
overestimates cloud occurrence at all heights except
between 2 and 4 km. Further figures for each of the
models used in the Cloudnet project can be found at
www.cloud-net.org.

5.2. Dependence of skill on cloud fraction threshold

We now consider the skill of the model cloud fraction
forecasts for the same dataset, i.e. their ability to place
clouds at the right time and height, rather than just to
have the correct distribution, which was assessed in the
previous section. Firstly, the sensitivity of the scores
to cloud fraction threshold, ft, is assessed. Naturally,
this can only be applied to the categorical scores, not
continuous scores such as MAESS. Figure 7 shows the
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Figure 6. Frequency of occurrence of cloud fraction f greater than four
thresholds (ft = 0.05, 0.35, 0.65 and 0.95) for seven models (thin lines
and shading), versus height, over Chilbolton, Cabauw and Palaiseau in
2003 and 2004. The corresponding frequencies of occurrence for the
observations on the grid of each of these models are shown by the thick
lines (the observations differ slightly due to the different grids of each

model).

dependence of HSS, ln θ , EDS and SEDS on ft for the
seven models used during Cloudnet (for forecast lead
times shown in Table I of Illingworth et al., 2007),
together with the frequency of occurrence.

In section 4, we described how the standard error on
each score may be calculated, but this assumed that each
forecast was independent, yet in reality forecast errors
are correlated in both time and height. To approximately
account for this, we have calculated ‘transition proba-
bilities’ from the observed cloud occurrence distribution
(using a threshold cloud fraction of ft = 0.1), i.e. the
probability of ‘cloud’ transitioning to ‘clear’, or vice
versa, as a function of temporal and vertical separation. It
is found that the e-folding decorrelation height is around
2 km and the e-folding decorrelation time is around
6 hours. Under the assumption that the autocorrelation
of the forecast errors is the same as the autocorrelation
of the cloud occurrence, and given that the resolution of

the comparison is 1 km in height and 1 hour in time, we
estimate that only 1 in 12 of the comparison points are
independent. This may be approximately represented by
multiplying the standard errors assuming independence
by a factor of

√
12. A further factor of 1.96 is then applied

to yield approximate 95% confidence intervals, which are
shown in Figure 7.

Before examining the relative performance of each
model, the information provided by each score must be
reconciled. HSS exhibits an apparent decrease in skill
with increased ft, while ln θ shows a slight but steady
increase. Since the scores go in opposite directions, this
must be due to the intrinsic dependence of these scores
on frequency of occurrence p, examined in detail by
Stephenson et al. (2008). By contrast, the SEDS remains
close to constant with ft for all but the Met Office models,
confirming that it has little intrinsic dependence on p,
in accordance with section 4.5. Therefore the underlying
skill of most models appears to be approximately the
same for low and high cloud fractions. SEDS could hence
be extremely useful for other applications (particularly
rainfall verification) where both the normal range of
values and the extremes need to be assessed accurately. It
should be noted that for p > 0.05, the Log of Odds Ratio
is only weakly dependent on p, so previous evaluation of
cloud-fraction forecasts using this metric (e.g. Wilkinson
et al., 2008) is not invalidated.

Figure 7(d) depicts the non-equitable EDS for these
data and appears to show a very different picture; the
ordering of the models is different with the SMHI-RCA
model now performing much better, and the two Met
Office models exhibiting an apparent strong decrease
in skill with ft. This can be explained by the fact
that EDS rewards over-prediction and penalizes under-
prediction of cloud occurrence: the Met Office models
increasingly under-predict occurrence as ft is increased,
while the SMHI-RCA model over-predicts occurrence for
ft < 0.5. Therefore we conclude that EDS can only be
used with confidence if it is possible to first ‘calibrate’
the observations to remove the bias, as was done by
Stephenson et al. (2008).

The three other scores in Figure 7 are transpose
symmetric, so treat over- and under-prediction equally,
but they still differ in the extent to which they penalize the
magnitude of any bias. From Table II, we see that ln θ can
award a perfect score to a biased forecast, whereas HSS
and SEDS cannot. Figure 7(a) shows that the two versions
of the Met Office model can significantly underestimate
the occurrence of cloud for thresholds greater than 0.5,
and the subsequent panels indeed show that HSS and
SEDS award them a progressively lower score relative to
the other models as ft is increased, HSS doing this most
strongly. By contrast, ln θ appears to show the Met Office
models remaining competitive with respect to the other
models for large ft.

Given these arguments and considering the size of
the confidence intervals, we conclude that for ft < 0.5,
the ECMWF, RACMO and Met Office models perform
similarly well in terms of forecast skill, with the DWD
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Figure 7. (a) The frequency of occurrence of cloud fraction greater
than a threshold ft in a gridbox, versus ft, for observations (p) and
seven models (pm) at Chilbolton, Cabauw and Palaiseau in 2003 and
2004. Clouds above 11 km are discounted, and the spread of observed
values (indicated by the width of the grey band) indicates the range
of cloud fractions obtained when the observations are averaged to the
grids of the various models. (b)–(e) The corresponding dependence of
four categorical skill scores on ft: HSS, ln θ , EDS and SEDS. The error
bars on ECMWF scores indicate approximate 95% confidence intervals,
the calculation of which is described in section 5.2; the intervals are

approximately the same for the other models.

and Météo-France models performing a little poorer and
the SMHI-RCA model a little poorer still.

5.3. Dependence of skill on height

Figure 8 depicts the skill scores as a function of height
in the atmosphere; in addition to the four categorical
scores used in Figure 7 (now applied with a threshold
of ft = 0.1), we also show the MAESS, which is applied
to the entire range of cloud fraction values at a precision
of 0.05, as outlined in section 2. Confidence intervals are
calculated as in section 5.2, but since scores are calculated
as a function of height, we need only consider correlation
of errors in time rather than height, so every sixth point
is considered as independent rather than every twelfth.

As discussed in the previous section, we need to take
account of the dependence of each score on p (shown in
Figure 7(a)), particularly above 7 km where p decreases
significantly with height. In this region, MAESS and HSS
decrease significantly, ln θ increases slightly and SEDS
decreases slightly for most models. For the arguments
given in sections 4.5 and 5.2, we are inclined to believe
SEDS over the other scores, indicating that skill does
indeed decrease slightly for high-altitude clouds.
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Figure 8. (a) Frequency of occurrence of cloud fraction greater than
ft = 0.1 versus height for the observations and the seven models shown
in Figure 7 over the same period. Note that cirrus clouds too tenuous
to be detected by the radar have been removed from the models,
as described in section 2. (b)–(f) Mean Absolute Error Skill Score
(MAESS), HSS, ln θ , EDS and SEDS as a function of height for the
seven models, where all but MAESS were calculated using ft = 0.1.

Error bars indicate 95% confidence intervals.

A much less consistent picture is evident for EDS in
Figure 7(e), with the Met Office models appearing to
perform much better at high altitudes and the RACMO
model better at low levels. This is again simply due to
the differing biases of the various models with height
and the dependence of EDS on the sign of the bias, as
found in section 5.2. We therefore do not use EDS in the
remaining parts of the paper.

All other scores in Figure 7 report a minimum skill
between 1 and 2 km, presumably due to the well-known
difficulty in forecasting stratocumulus and cumulus (e.g.
Randall et al., 1985; Martin et al., 2000). Interestingly,
all models show a maximum skill at mid-levels, between
4 and 6 km, where the frequency of cloud occurrence
is at a minimum. This is possibly because such clouds
are associated with large-scale synoptic systems that
are easier to predict than smaller-scale clouds, and for
which the amplitude of the vertical velocity variations
is largest in the mid-troposphere. This appears to run
counter to the prevailing perception that mid-level clouds
are poorly simulated by current models (e.g. Ryan et al.,
2000; Bodas-Salcedo et al., 2008). However, these studies
concerned only the bias in models, whereas here we
are evaluating the skill of the model in predicting
clouds at the correct time, and indeed the Cloudnet data
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analyzed here also reveal this systematic underestimate
in mid-level cloud fraction in all models except DWD
(Illingworth et al., 2007). This bias is not so evident in
the frequency of occurrence of f > 0.1 in Figure 7(a);
rather its origin is due to the tendency to underestimate
f when f > 0.1. Thus we conclude that the models have
good skill at predicting when mid-level clouds occur, but
they almost all underestimate mean cloud fraction when
some cloud is present.

According to HSS, ln θ and SEDS, the two versions
of the Met Office model have the highest skill at
mid-levels. Two aspects to the microphysics of mid-
level clouds in the Met Office model are unique or
nearly unique amongst the models considered here.
Firstly, no distinction is made between ice cloud and
ice precipitation (i.e. snow) in the model, an assumption
shared by the retrievals. Secondly, ice and liquid water
mixing ratios are treated as separate prognostic variables
(Wilson and Ballard, 1999), the DWD model being the
only other to take this approach. Conceivably either of
these properties could result in better behaviour at mid-
levels. It should be noted from Figure 7(b), however, that
the MAESS of the Met Office is no higher than that of
ECMWF and RACMO at this altitude. This is likely to
be because MAESS penalizes the Met Office model for
its substantial underestimate of cloud fraction when some
cloud is present, even if it does predict cloud occurrence
at the right time.

5.4. Dependence of skill on spatial scale

As discussed in section 2, the raw model data are
available as hourly snapshots in the model column closest
to each site, while the observed cloud fractions are
calculated from radar and lidar data in periods centred
on each hour by sampling for a time equivalent to that
necessary to advect a gridbox of cloud over the site.
By averaging both observed and modelled cloud fraction
temporally over 2, 3, 4, 6, 8, 12 and 24 hours before
calculating skill scores, the models’ ability to simulate
increasingly larger scales is assessed. Note that these
are not continuous averages, but averages of the hourly
snapshots. Figure 9 depicts MAESS, ln θ and SEDS as a
function of the number of hours averaged. The first point
on the abscissa corresponds to no averaging. In the case
of ln θ and SEDS, a cloud-fraction threshold of ft = 0.1
has been used, as before. It can be seen that all scores
tend to increase with temporal averaging, in agreement
with the increase in association apparent visually between
Figures 2 and 3.

5.5. Dependence of skill on lead time

Lastly in this paper, the performance of the regional UK
Met Office and German DWD models versus forecast
lead time is characterized; these are the only models that
provided forecasts at different lead times for the same
verification time. Figure 10 depicts the performance of
the 12-km-resolution Met Office mesoscale and 7-km-
resolution DWD ‘Lokal’ models in 2004. The domains of
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Figure 9. Three cloud-fraction skill scores for the same period as shown
in Figure 7, as a function of the number of hours of temporal averaging
that has been performed on the modelled and observed values. Note that
the Met Office global model has been omitted because it provides only
3-hourly snapshots of cloud fraction, which is insufficiently frequent
to show reliably in this figure. Error bars indicate 95% confidence

intervals.
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Figure 10. Three cloud fraction skill scores versus forecast lead time
for the Met Office mesoscale model and DWD ‘Lokal’ models in 2004

over various European sites.

both models covered the three original ‘Cloudnet’ sites
used by Illingworth et al. (2007), while the DWD model
also included Lindenberg within its domain, which lay
outside the domain of the Met Office mesoscale model.
All scores indicate a decrease of skill with lead time
for all models and all sites. At Chilbolton (UK) the Met
Office model performed better than the DWD model, pre-
sumably due to more UK data (particularly from weather
radar) being assimilated. At Cabauw (Netherlands), and
Palaiseau (France), the Met Office model appears to per-
form better but by a narrower margin. The DWD model
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performance is unsurprisingly best at Lindenberg (Ger-
many), where it is as good as or slightly better than the
Met Office model over Chilbolton.

The same analysis has been performed at three sites
in 2007: Chilbolton and Lindenberg as before, but now
including Murgtal in the Black Forest of southwest
Germany. In the intervening time, the regional versions
of both the Met Office and DWD models increased the
size of their domains: the Met Office NAE model now
extending west and east, and encompassing Lindenberg
within its domain. The DWD ‘COSMO-EU’ model
recorded forecasts out to a lead time of around 60 hours.
The same scores are shown in Figure 11. The Met Office
model again performs best over Chilbolton, while over
Germany we see the DWD model performing better over
Lindenberg but worse over Murgtal. It is interesting to
note that the overall skill of both models appears to have
improved notably in 2007 compared to 2004.

To estimate the ‘half-life’ of these forecasts requires
fitting an inverse exponential to the curves, but for
individual sites they are too noisy. We therefore combine
the data for the sites shown in Figures 10 and 11
(excluding Lindenberg in 2004) for each of the two one-
year periods. The resulting smoother curves for the three
skill scores are shown by the thick lines in Figure 12. To
fit the inverse-exponential, linear regressions have been
performed to the natural logarithm of the score versus
the lead time, yielding an equation for the best-fit of the
score S as a function of time t :

S(t) = S0 exp(−t/τ ), (19)

where S0 is the score at t = 0 and τ is the e-folding
decay time. These are then converted to the 1-day score
S1 = S0 exp(−1/τ) (where τ is in days) and the half-life
τ1/2 = τ ln 2, which satisfy

S(t) = S1 × 2(1−t)/τ1/2 . (20)
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Figure 11. Three cloud fraction forecast skill scores versus forecast lead
time for the Met Office ‘North-Atlantic/European’ and DWD ‘COSMO-

EU’ models in 2007 over various European sites.
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Figure 12. (a) As Figure 10, but combining the data from Chilbolton,
Cabauw and Palaiseau in 2004 to obtain better statistics. (b) As
Figure 11, but combining the data from Chilbolton, Lindenberg and
Murgtal in 2007. In each case the dotted lines show inverse-exponential
fits to the data with parameters given in Tables III and IV. Note that

ln θ is shown at a quarter of its true value.

The best-fit lines are shown by the dotted lines in
Figure 12. In the case of the DWD model in 2007, all
three skill scores indicate a slower rate of decline of skill
after around 1.5 days. Therefore two fits are performed in
this case, one for the 0–31-hour forecasts and the other
for the 31–61-hour forecasts. In the other cases only one
fit is performed. There is a slight shallowing of the slope
evident between 18 and 24 hours for the Met Office model
in Figure 12(a), although it is not different enough from
the likely noise that two fits are justified.

The 1-day scores for the two models, two years and
four of the skill scores, are shown in Table III. The
standard errors were calculated by summing in quadrature
the intrinsic error in the score (the calculation of which
was discussed for each score in section 4, but multiplying
by

√
12 to approximately account for the fact that only

every sixth point in time and second point in height are
independent), and the error arising from the errors in the
coefficients of the least-squares fit, which is an indication
of how well the points in Figure 12 are fitted by an
inverse-exponential. Both models improve significantly
(well in excess of the error estimates) between 2004
and 2007, with the Met Office maintaining its lead over
DWD, despite two of the sites in 2007 being located in
Germany.

Table IV shows the corresponding values of half-life.
In comparing the three scores applied to binary contin-
gency tables (HSS, ln θ and SEDS), we typically find the
shortest half-life estimated from ln θ and the longest from
SEDS or HSS. This difference can largely be attributed to
the differences in the linearity between each score: Fig-
ure 4(c) shows a slightly concave relationship between
ln θ and HSS for the range of ln θ considered here, while
Figure 4(f) shows a slightly convex relationship between
SEDS and HSS. The half-life calculated from Yule’s Q
is around 6 days in each case, demonstrating that this
strongly convex score (illustrated in Figure 4(d)) yields a
misleadingly long half-life, and verifying that linearity is
an important property to consider.
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Table III. Values of the Mean Absolute Error Skill Score
(MAESS), the Log of Odds Ratio (ln θ ), the Heidke Skill Score
(HSS) and the Symmetric Extreme Dependency Score (SEDS),
for a lead time of 24 hours, i.e. the value S1 in (20) for the

best-fit lines shown in Figure 12 (except HSS).

Score Met Office DWD

2004: Chilbolton, Cabauw and Palaiseau
MAESS 0.330 ± 0.041 0.308 ± 0.045
ln θ 1.97 ± 0.06 1.77 ± 0.05
HSS 0.404 ± 0.012 0.380 ± 0.011
SEDS 0.390 ± 0.012 0.346 ± 0.011

2007: Chilbolton, Lindenberg and Murgtal
MAESS 0.383 ± 0.027 0.361 ± 0.022
ln θ 2.24 ± 0.07 2.04 ± 0.07
HSS 0.461 ± 0.016 0.425 ± 0.015
SEDS 0.442 ± 0.016 0.407 ± 0.016

Standard error calculation is discussed in the text.
Table IV shows the corresponding forecast half-lives.

Table IV. Forecast half-life τ1/2 (days) for the fits shown in
Figure 12. The Met Office values were calculated from 0–31-
hour forecasts, while the DWD values were calculated from
the range of lead times shown at the top of the corresponding

column.

2004: Chilbolton, Cabauw and Palaiseau

Score Met Office DWD 0–42 h

MAESS 2.85 ± 0.15 2.67 ± 0.08
ln θ 2.61 ± 0.08 2.74 ± 0.05
HSS 2.81 ± 0.06 2.97 ± 0.04
SEDS 2.94 ± 0.09 2.90 ± 0.07

2007: Chilbolton, Lindenberg and Murgtal

Score Met Office DWD 0–31 h DWD 31–61 h

MAESS 2.43 ± 0.09 3.09 ± 0.11 4.31 ± 0.16
ln θ 2.67 ± 0.14 3.05 ± 0.15 4.00 ± 0.22
HSS 2.88 ± 0.15 3.73 ± 0.24 4.51 ± 0.20
SEDS 3.09 ± 0.15 3.05 ± 0.21 4.30 ± 0.22

The standard errors are calculated from the error in the coefficients of
the least-squares fit.
Table III shows the corresponding 1-day scores.

In terms of actual values of forecast half-life, the
values for the Met Office in 2004 range between 2.61
and 2.94 days, and do not change significantly com-
pared to the error estimates by 2007. The DWD val-
ues of 2.67–2.97 days in 2004 do appear to increase
significantly by 2007 (calculated for the first 1.5 days
of the forecast). Interestingly, the characteristic half-
life for DWD 1.5–2.5-day forecasts is in the range
4.00–4.51 days, around 1 day greater than the corre-
sponding 0–1.5-day forecasts. The same behaviour was
found for Met Office rainfall forecasts over the UK by
Roberts (2008), which he attributed to the skill at short
lead times being dominated by the assimilation of radar
data and the predictability of convective-scale events with
intrinsically short time-scales, whereas after around a day

the skill is determined by the predictability of larger-scale
weather systems that have longer time-scales.

Another demonstration of this phenomenon is in Fig-
ure 13, which shows the half-life as a function of hours
averaged for the 2004 data. A threshold of ft = 0.2
has been used for ln θ and SEDS, rather than 0.1 as
previously. This is because, as the averaging period
is increased, the frequency of occurrence p will tend
towards the long-term average cloud fraction, which is
around 0.2 in this dataset in the troposphere. It can
be seen in Figure 7(a) that for no averaging, ft = 0.2
results in p ∼ 0.2, and therefore we expect p to remain
approximately constant with averaging time. Hence any
dependence of score on p will not have an effect on the
calculation. Figure 13 shows that up to 6-hour averaging
there is little increase in predictability, but for larger time-
scales, associated with larger-scale cloud systems, there
appears to be a strong increase in predictability. This
is associated with the corresponding increase in abso-
lute skill that was demonstrated in Figure 9. It should
be noted, however, that as the number of hours aver-
aged increases, the number of independent data points
decreases, resulting in an increase in the error in any
particular skill score estimate. This leads to even larger
errors in fitting the inverse exponential, and explains the
poorer agreement between the half-lives estimated by the
three different skill scores for 24-hour averaging.

6. Conclusions

In this paper we have demonstrated how cloud forecasts
may be verified using continuous cloud radar and lidar
observations, utilizing suitable skill scores. The properties
of a number of new and existing scores have been evalu-
ated, with particular attention being paid to their linearity,
a property important for estimating forecast ‘half-life’ that
has not been considered in this context before. The find-
ings are summarized in Table II. Of particular general
interest for verification of binary forecasts is our new
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score, the Symmetric Extreme Dependency Score (SEDS),
a simple modification of the one proposed by Stephenson
et al. (2008) that has the advantage of being equitable (for
large samples), transpose symmetric (and therefore not
easily hedged), while retaining the the ability to reliably
verify forecasts of rare events.

The skill of single-site cloud-fraction forecasts from
seven European models has been estimated as a func-
tion of cloud-fraction threshold, height, spatial scale and
(for two of the models) forecast lead time. Using SEDS,
it has been found that skill is essentially constant with
cloud-fraction threshold, while the other scores consid-
ered yielded misleading results due to their intrinsic
dependence on the frequency of cloud occurrence, p

(except Log of Odds Ratio for p greater than around
0.05).

Models are found to be least skilful at predicting the
occurrence of boundary-layer clouds and most skilful
at predicting mid-level clouds. We stress that this is a
statement about the ability to get clouds correct at the
right time rather than with the right amount on aver-
age; indeed, almost all models tend to underestimate
mean mid-level cloud fraction when cloud is present
(Illingworth et al., 2007). From what has been learned
in this paper, we are now in a better position to inter-
pret the results of Wilkinson et al. (2008), who cal-
culated the Equitable Threat Score (ETS) and Log of
Odds Ratio (ln θ ) for ECMWF forecasts under the track
of a spaceborne lidar. Considering ETS to be unreli-
able due to its dependence on frequency of occurrence
p, and ignoring ln θ when p < 0.05, we see that of
all cloud types globally, tropical boundary-layer clouds
were the least skilfully predicted and midlatitude clouds
between 5 and 10 km altitude were the most skilfully
predicted.

Forecasts with a lead time from 0 to 2.5 days have
been used to estimate forecast ‘half-life’, i.e. the time
over which the skill of a forecast would be expected
to be halved. Values in the range 2.5–3.5 days are
typically found when calculated from the first 1.5 days
of the forecast, increasing to greater than 4 days for
forecast lead times of 1.5–2.5 days. It is interesting
that these values are considerably less than the half-
life of 9 days estimated in section 1 for 500 hPa
geopotential height. There are two main reasons for
this difference. Firstly, we do not have cloud forecasts
out to ∼5 days to confirm the lead time at which the
scores actually reach half of their initial value; rather,
the ‘half-lives’ calculated in this paper are a measure
of the rate of decay of skill in around the first two
days of a forecast. The results for the DWD model in
Figure 12(b) do show predictability time-scales tending
to increase for larger lead times, so it would be interesting
to apply this analysis to much longer forecasts. Secondly,
very different variables are being evaluated: clouds are
intrinsically of smaller scale and therefore more difficult
to predict than larger-scale variables such as geopotential
height. Temporal averaging of the data before verification
indeed demonstrates that larger-scale features are more
reliably predicted. We would expect clouds to have a

similar predictability to a variable such as vertical wind,
which has intrinsically much more small-scale structure
than geopotential height.

We conclude that, for the ongoing development of
mesoscale models, whose pressure fields are largely deter-
mined by the global model used to provide the boundary
conditions, it is important that routine verification makes
use of high-resolution observations of clouds, which are
now becoming available in near-real time. It is also pos-
sible to apply many of the scores discussed in this paper
to other cloud variables such as water content.
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Appendix

Confidence intervals in the Heidke Skill Score

Estimation of confidence intervals on categorical skill
scores is not as common in the literature as it should
be (Stephenson, 2000), partly because it is not obvious
how to model the correlation between the errors in the
elements of the contingency table. We assume that the
base rate, p, is fixed, and therefore that the elements of
the contingency table satisfy

a + c = pn and b + d = (1 − p)n.

This means that errors in a are perfectly anti-correlated
with errors in c, and likewise for b and d , but errors in a

and c are uncorrelated with errors in b and d . In order to
work out an analytic formula for the error in a skill score,
it is convenient to first redefine it in terms of constants
(e.g. p and n) and uncorrelated variables (e.g. a and d).
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Doing this for the Heidke Skill Score yields

HSS = 2(1 − p)a + 2pd + 2p(p − 1)n

(1 − 2p)(a − d) + (1 − 2p + 2p2)n

= X

Y
. (A.1)

It may be assumed (e.g. Mason, 2003) that a is a
binomially distributed random variable drawn from a
sequence of pn independent events each with probability
H = a/(a + c), i.e. a ∼ B(pn, H), and therefore its
error variance (and hence also the variance in c) is given
by

σ 2
a = σ 2

c = pnH(1 − H) = ac

(a + c)
.

Likewise,

σ 2
b = σ 2

d = bd

(b + d)
.

The standard error of HSS, σHSS, may be given by

(σHSS

HSS

)2 =
(σX

X

)2 +
(σY

Y

)2 + 2
εXεY

XY
, (A.2)

where εX and εY are the instantaneous errors in X and Y .
The final covariance term may be calculated by writing
X and Y as functions of a and d , i.e. X = X(a, d), and
hence

εX = X(a + εa, d + εd) − X(a, d),

and similarly for εY . Substituting these into εXεY , and

noting that ε2
a = σ 2

a , ε2
d = σ 2

d and εaεd = 0, we obtain

(σHSS

HSS

)2 = 4
(1 − p)2σ 2

a + p2σ 2
d

X2

+ (1 − 2p)2(σ 2
a + σ 2

d )

Y 2
(A.3)

+ 4(1 − 2p)
(1 − p)σ 2

a − pσ 2
d

XY
.
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