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ABSTRACT

Many studies have been made of the water vapor feedback, in both satellite data and climate model simulations.
Most infer the magnitude of the feedback from the variability present in geographical distributions of the key
variables, or from their seasonal variations, often using data only over the oceans. It is argued that a more direct
measure of the feedback should come from the interannual variability of global mean quantities, because this
timescale and space scale is more appropriate for such a global phenomenon. To investigate this suggestion, the
feedback derived from the simulations of clear-sky longwave fluxes (CLERA), which used data from the 15-yr
reanalysis project of the European Centre for Medium-Range Weather Forecasts, is compared with simulations
by the latest version of the Hadley Centre climate model. Results are taken from an integration of the atmosphere-
only version of the climate model with prescribed sea surface temperatures, as well as from a control and a
global warming simulation by the coupled ocean–atmosphere version. There is broad consistency between the
results from CLERA and the climate model as to the strength of the feedback, although there is considerable
scatter in the CLERA results. The signal of changes in the well-mixed greenhouse gases is weak in CLERA
but is dominant in the global warming simulation and has to be removed in order to diagnose the water vapor
feedback. This result has implications for the exploitation of long time series of satellite and other data to study
this and other feedbacks.

1. Introduction

The water vapor feedback has long been recognized
to be one of the most important factors that contribute
to the greenhouse effect of the earth (Arrhenius 1896;
Manabe and Wetherald 1967). Observational studies of
the feedback have been stimulated by the availability
of satellite data, in particular radiation budget measure-
ments from the Earth Radiation Budget Experiment
(ERBE) and retrievals of column water vapor (CWV)
from microwave radiometers. Raval and Ramanathan
(1989) and Stephens and Greenwald (1991) studied the
geographical distributions of these data over the oceans
and showed that the clear-sky greenhouse effect was an
increasing function of both the CWV and sea surface
temperature (SST), as expected from a positive water
vapor feedback. The relationship between the clear-sky
greenhouse effect and SST found by Raval and Ra-
manathan (1989) is also consistent with that obtained
in an intercomparison of general circulation models
(Cess et al. 1990), from which Cess (1989) concluded
that the water vapor feedback operates in a broadly sim-
ilar way in the models and in reality.
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Many subsequent papers have continued to use the
geographical distributions of the clear-sky greenhouse
effect, water vapor, and SST to infer the characteristics
of the water vapor feedback, either from the distribu-
tions themselves or from their seasonal or interannual
variability (e.g., Duvel and Bréon 1991). Attempts have
also been made to derive the feedback from the changes
associated with El Niño. However, there are potential
drawbacks to all of these studies, which may weaken
the applicability of the results to the global warming
problem. First, the geographical distributions are strong-
ly influenced by the atmospheric circulation, especially
in the Tropics (Bony et al. 1997), so the spatial rela-
tionships between the key variables at a given time may
not provide a reliable indication of the temporal rela-
tionships that are more relevant on the timescale of glob-
al warming. For example, El Niño is associated with
large-scale changes in the tropical circulation which re-
distribute water vapor both in the vertical and horizon-
tal. The effect of such changes must be removed if the
signal of the water vapor feedback is to be recovered
from data for limited geographical regions (Lau et al.
1996; Soden 1997). Second, all of these studies used data
over the oceans only and so they are not directly com-
parable with the analysis of Cess et al. (1990), which
inferred the feedback from changes in the global means.

Recognizing these issues, Inamdar and Ramanathan
(1998) employed several datasets to extend the analysis
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of the water vapor feedback to the global domain. They
illustrated the importance of the dynamical redistribu-
tion of water vapor in determining the spatial pattern
of the feedback. They compared the magnitude of the
feedback derived from both the geographical distribu-
tions and seasonal variations and showed that they were
consistent with each other and with previous estimates
from both observations and climate models. The im-
portant differences between the behavior of the feedback
in the Tropics compared with the whole globe, as well
as between the oceans and continents, were also studied.

An alternative strategy for establishing the realism of
the water vapor feedback in climate models would be
to use the natural variability of the climate system on
the annual and longer timescales to derive the relation-
ships between the global means of the key variables and
to compare these with estimates from observations. Cess
et al. (1990) showed that climate feedbacks can be most
succinctly defined in terms of global mean quantities,
which therefore provide the most direct test of the sen-
sitivity of climate models to radiative forcing. A further
advantage of using global means is that they average
over the geographical detail shown for example by In-
amdar and Ramanathan (1998). It is of course important
to study this detail in order to come to a better under-
standing of how changes in the atmospheric circulation
control the geographical distributions of water vapor and
the greenhouse effect. Indeed, such studies are a vital
part of the process of understanding the internal work-
ings of the climate system. However, for a feedback to
contribute to the overall sensitivity of the system to an
external forcing, on timescales relevant to global warm-
ing, it must be discernable in global mean quantities,
whatever the geographical detail. In this study, we there-
fore deliberately avoid looking at geographical distri-
butions and concentrate instead on global mean quan-
tities. Some reasons why this approach has not been
followed is that the satellite retrievals of CWV are only
available over the oceans and that observational esti-
mates of land surface temperatures are less reliable than
those of SSTs (Slingo et al. 1998; Inamdar and Ra-
manathan 1998). There are also substantial areas of
missing data in the ERBE clear-sky fluxes over land. In
addition, most satellite datasets are only available for a
few years and so provide only limited information on
the variability of global mean quantities on timescales
of a year or longer. Given the limitations of individual
satellite datasets, it is worth investigating whether the
products from recent reanalysis projects can be used in
such an investigation. This was one of the motivations
for performing global simulations of the clear-sky long-
wave fluxes using data for 1979–93 from the European
Centre for Medium-Range Weather Forecasts
(ECMWF) reanalyses (ERA) in the ‘‘clear-sky long-
wave from ERA’’ project (CLERA) (Slingo et al. 1998).
The CLERA simulations provide a consistent database
with which to study the clear-sky greenhouse effect and
to evaluate models.

In this paper, we use results from CLERA as a sur-
rogate for the global observations required to implement
the above strategy. We are mindful of the fact that both
the Re-Analyses and CLERA are based not only on
observations but also on substantial modeling, but one
purpose of this study is to demonstrate what might be
achieved in the future if global observing systems were
able to provide the same information with a minimum
of modeling. The water vapor feedback is inferred from
the monthly and interannual variability of the global
means over the 15-yr period, an approach that is close
to that used by Cess et al. (1990). The results are com-
pared with simulations by the latest version of the Had-
ley Centre Climate Model, firstly from simulations by
the atmosphere-only version (forced by the observed
SSTs for the same period as in CLERA) and secondly
from climate-prediction experiments with the coupled
ocean–atmosphere version. By comparing results from
these two versions with CLERA we are able to compare
directly the global water vapor feedback operating in
the coupled model with that in the atmosphere-only in-
tegrations.

It is important to recognize that our analysis, in com-
mon with all other studies that use observations, cannot
measure the water vapor feedback directly, because to
do that would require a controlled experiment in which
one and only one variable was allowed to change at a
time, thus isolating the individual partial derivatives.
We can only observe the effect of the feedback indi-
rectly, through its influence on the variables that are
studied. In that case, many other interactions are taking
place, so that only total derivatives can be derived. How-
ever, the feedback is sufficiently strong that the total
derivatives provide compelling evidence for the exis-
tence of a strong, positive water vapor feedback. Nev-
ertheless, it is important to recognize the semantic dis-
tinction between a direct measure of the feedback, de-
rived from a controlled experiment, and the indirect
measure obtained from the data analyzed in this work.

2. CLERA and climate model simulations

In the CLERA project, simulations of the clear-sky
longwave radiative fluxes and heating rates were per-
formed using data from the ECMWF reanalysis project.
This provided a consistent, global dataset every 6 h for
the 15 yr of the ERA period (1979–93). Details and
results are discussed by Slingo et al. (1998).

An important issue with regard to the ERA data is
the extent to which the signal of the water vapor feed-
back is due to the observations, as opposed to the model
used in the assimilation. This is particularly important
in the present study, since the signal is extracted from
the small interannual variability of global mean quan-
tities, as opposed to the much larger geographical var-
iability used in most previous studies. The moisture data
in ERA come primarily from radiosondes and from the
one-dimensional variational assimilation (1DVAR) of
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Television and Infrared Observation Satellite (TIROS)
Operational Vertical Sounder (TOVS) radiances.
McNally and Vesperini (1996) showed that 1DVAR pro-
duced significant improvements in the quality of the
moisture analysis, compared both with radiosonde data
and with independent estimates of the total column wa-
ter vapor derived from the special sensor microwave/
imager (SSM/I) instrument. These improvements large-
ly removed the systematic errors in the tropical humidity
distribution produced by the model. The extensive sta-
tistics shown by Uppala (1997) also demonstrate the
improved fit to the moisture data in the analyses com-
pared with the first guess from the model. While by no
means definitive, these results suggest that the analyses
are at least of sufficient quality to merit their use in the
present study, with the caveat that comparisons with
other independent sources of moisture data are needed,
in particular to assess the vertical distribution of mois-
ture in ERA and its temporal and spatial variability.

Results are also taken from the latest version of the
Hadley Centre Climate Model. The atmospheric com-
ponent used in integrations with prescribed SSTs is
known as the Hadley Centre Atmospheric Model, ver-
sion 3 (HadAM3) and the coupled model used in climate
prediction experiments is known as the Hadley Centre
Coupled Model, version 3 (HadCM3). Many features of
the model are the same as those of an earlier version
described by Johns et al. (1997), with the major excep-
tions that the atmospheric model now includes the Ed-
wards and Slingo (1996) radiation code, there is a new
land surface scheme (Cox et al. 1999) and the effects
of convective momentum transport are included (Greg-
ory et al. 1997). Pope et al. (2000) describe HadAM3
and the impact of the new physical parametrizations on
its performance. Gordon et al. (2000) provide a descrip-
tion of HadCM3. The coupled model is run without flux
adjustments and the control integration is extremely sta-
ble (the global average annual mean near-surface air
temperature drifts by only 20.011 kelvin per century
during 1000 yr of integration).

For HadAM3, results are shown from an Atmospheric
Model Intercomparison Project (AMIP) integration of
the model, forced by the observed SSTs for 1979–88
(Gates 1992). For HadCM3, we use results for 1950–
2050 from both a control integration (Gordon et al.
2000) and from an integration with increasing concen-
trations of greenhouse gases, referred to henceforth as
GHG (Mitchell et al. 1998). This used initial conditions
appropriate for 1860 and historical concentrations of
greenhouse gases up to 1990, after which the Intergov-
ernmental Panel on Climate Change (IPCC) IS95a sce-
nario was followed up to 2100. This integration provides
valuable insights into the long-term changes in the ra-
diation budget during global warming.

3. Results
We first compare the relationships between the CWV,

clear-sky greenhouse effect, and surface temperature,

derived from their geographical distributions, with pre-
vious work. The normalized clear-sky greenhouse effect
g is calculated as the difference between the emission
from the surface and that leaving the top of the atmo-
sphere, divided by the emission from the surface. This
normalization removes the strong dependence on tem-
perature that would otherwise dominate the correlations
and mask the signal of the water vapor feedback (Raval
and Ramanathan 1989). Figures 1 and 2 show the results
from CLERA and HadAM3, respectively, using data
over the ice-free oceans only. Each point represents the
average values in a grid box for April 1985. The char-
acter of these plots is very similar to those shown by
Raval and Ramanathan (1989), Stephens and Greenwald
(1991), and Duvel and Bréon (1991). The positive
slopes on such figures were interpreted by these authors
as evidence of a positive water vapor feedback. The
slopes of the regressions provide a quantitative measure
of the strength of this feedback and the values of the
slopes from CLERA and HadAM3 are similar to those
found in the earlier studies (Table 1).

As noted in the introduction, it is not obvious that
the nature of the feedback derived from such figures is
directly relevant to the case of global warming, since
the latter involves the temporal behavior of the key var-
iables as opposed to the geographical behavior shown
in Figs. 1 and 2. There is also clear evidence of the
effect of the atmospheric circulation, particularly at the
higher SSTs. For example, the normalized greenhouse
effect increases dramatically as the SSTs exceed about
300 K, as one moves from the subtropics where the
troposphere is dried by subsidence to the Intertropical
Convergence Zone where the upper troposphere is
moistened by deep convection (Soden and Fu 1995).
The slopes in this region are thus controlled mainly by
the atmospheric circulation and cannot be projected to
infer the change in the greenhouse effect that would
occur as SSTs increase with global warming (Duvel and
Bréon 1991).

A more reliable indication of the feedbacks on longer
timescales should be provided by the interannual vari-
ability of global mean quantities. The rationale is that
such a timescale is long compared with that over which
atmospheric water vapor equilibrates with surface tem-
peratures (estimated to be 10–30 days), but short com-
pared with the timescale over which the radiative forcing
changes due to increases in greenhouse gases. In es-
sence, we use the natural variations in global mean sur-
face temperature to explore a small distance along the
trajectory that we believe is being followed during glob-
al warming. Unfortunately, the ERBE data cannot be
used for this purpose since they were obtained for only
5 yr and contain significant regions of missing data over
land areas. Instead, the CLERA simulations are used,
bearing in mind the limitations in the ERA data iden-
tified by Slingo et al. (1998) and others. As will be seen,
the interannual variations are extremely noisy, but some
coherent signals do emerge.
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FIG. 1. Scatterplots and regression lines from the geographical distributions of CLERA data
over the ice-free oceans for Apr 1985. (a) Natural logarithm of column water vapor (kg m22)
against sea surface temperature (K). (b) Normalized greenhouse effect against natural logarithm
of column water vapor (kg m22). (c) Normalized greenhouse effect against sea surface temperature
(K).

We consider the results from the AMIP integration
of HadAM3 initially, in order to illustrate the method.
Figure 3 shows the relationships between the annual
means of the column water vapor, normalized green-
house effect, clear-sky outgoing longwave radiation
(OLR) and surface temperature. The interannual vari-
ability of these quantities is very small (e.g., for surface
temperature it is less than 0.4 K) and for this reason the

column water vapor is shown on a linear scale on this
and subsequent figures. Nevertheless, there are clear re-
lationships between the quantities, which are discussed
below. The correlation coefficients are given in Table
2, together with their level of significance. Throughout
this paper, the significance levels take account of the
statistical uncertainty in the correlations but not the
physical uncertainty in the variables. Linear regression



3084 VOLUME 13J O U R N A L O F C L I M A T E

FIG. 2. As Fig. 1 but for data from an AMIP integration of HadAM3.

TABLE 1. Geographical regressions over ice-free oceans only.

Linear least squares regression fit

Source

lnW 5 a 1 b(SST)

a b

g 5 a 1 b(SST)

a b

g 5 a 1 b(lnW)

a b

Raval and Ramanathan
Duval and Bréon
CLERA
HadAM3

213.0
215.4
214.6
214.8

0.0553
0.064
0.0614
0.0613

0.658
—

20.854
20.709

0.00342
0.004
0.00410
0.00364

0.155
0.045
0.140
0.172

0.0576
0.0868
0.0644
0.0581
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FIG. 3. Scatterplots and regression lines from the global, annual means of data from an AMIP integration of HadAM3 for 1979–88. The
solid line shows the least squares regression. (a) Column water vapor (kg m22) against surface temperature (K). (b) Normalized clear-sky
greenhouse effect against column water vapor (kg m22). (c) Normalized clear-sky greenhouse effect against surface temperature (K). (d)
Clear-sky outgoing longwave radiation (W m22) against surface temperature (K).

TABLE 2. Global annual mean statistics. The ranges of uncertainty
in the regression gradients define the 95% confidence intervals. The
correlation coefficients (r) are given together with their level of sig-
nificance.

Data source/model
Regression
variables

Linear least
squares gradient

(y on x) r

Signifi-
cance
(%)

CLERA CWV, T*
g, CWV
g, T*
OLRc, T*

3.23 6 1.91
0.0011 6 0.0012
0.0031 6 0.0059

2.37 6 2.51

0.71
0.50
0.30
0.49

99
90
60
90

HadAM3 CWV, T*
g, CWV
g, T*
OLRc, T*

1.36 6 1.16
0.0011 6 0.0017
0.0040 6 0.0019

2.20 6 0.71

0.69
0.47
0.85
0.93

95
80
99
99

HadCM3 (control) CWV, T*
g, CWV
g, T*
OLRc, T*

1.81 6 0.20
0.0019 6 0.0003
0.0044 6 0.0004

1.94 6 0.16

0.89
0.82
0.91
0.93

99
99
99
99

HadCM3 (GHG) CWV, T*
g, CWV
g,T*
OLRc, T*

1.78 6 0.05
0.0048 6 0.0002
0.0088 6 0.0002

0.18 6 0.09

0.99
0.97
0.99
0.39

99
99
99
99

fits to the data were calculated using the method of least
squares and the gradients and 95% confidence intervals
are also shown in Table 2. Standard application of this
method assumes that the values of the independent (x)
variable are known precisely and that any uncertainty
in the data is confined to the dependent (y) variable, so
the regression is of y on x (Chatfield 1981). In this study,
all the data are based on values extracted from reanal-
yses or GCM simulations, so it cannot be assumed that
uncertainty exists only in one variable. In such circum-
stances it is usual to calculate two regression lines, those
of y on x and x on y, with the difference providing a
measure of the uncertainty in the regression (Chatfield
1981). In practice, we found that the x on y regressions
added little to the uncertainty measure provided by the
confidence intervals shown in Table 2, so for clarity
they have been omitted.

To identify a water vapor feedback, we follow the
method of Raval and Ramanathan (1989). Fundamental
to the feedback is a clear positive dependence of CWV
on surface temperature. Figure 3a shows a significant
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FIG. 4. Same as Fig. 3 but for CLERA data for 1979–93.

positive correlation between these variables, although
there is considerable scatter about the regression line.
The effect of the variations in CWV on the normalized
clear-sky greenhouse effect is shown in Fig. 3b. Here
the scatter is larger and the results less significant, al-
though a positive dependence of g on CWV is never-
theless consistent with the expected feedback. However,
it must be noted that changes in temperature lapse rate
also influence g. Lapse rate changes may therefore po-
tentially modify the inferred dependence of g on CWV.
A further point relates to the scatter present in this figure.
The global mean CWV is determined mainly by the
water vapor amount at lower altitudes, particularly in
the Tropics. Variations in g that are related to water
vapor fluctuations at higher altitudes and higher latitudes
may therefore not be accounted for by using CWV, de-
spite their influence on g. These points will be revisited
in section 4.

Evidence of a positive radiative feedback is provided
by Fig. 3c, which shows a statistically significant in-
crease of g with surface temperature at the rate of 4.0
3 1023 K21, consistent with the values in Table 1. Fi-
nally, Fig. 3d shows a positive dependence of the clear-
sky OLR on surface temperature. The regression gra-

dient is calculated to be 2.20 W m22 K21 (Table 2), in
good agreement with the values of 2.31 W m22 K21

from Raval and Ramanathan (1989) and 2.34 W m22

K21 from Cess et al. (1990). The blackbody dependence
of the clear-sky OLR (OLRc) on T* may be approxi-
mated by (e.g., Cess 1989),

]OLRc 35 e4sT , (1)*]T*

where the earth’s effective clear-sky emissivity is given
by e 5 OLRc/ . For the HadAM3 global annual mean4sT*

OLRc of 260 W m22 and mean surface temperature of
287.6 K, the blackbody ]OLRc/]T* response equals 3.6
W m22 K21. The regression gradient is significantly less
than the blackbody response, indicating a positive clear-
sky feedback consistent with the other correlations. The
positive correlations between CWV, g, and surface tem-
perature, and the slope of the relationship between the
clear-sky OLR and surface temperature are character-
istic of a positive water vapor feedback.

For the CLERA simulations, Fig. 4 shows more scat-
ter than for HadAM3, although positive relationships
do emerge from the regressions (Table 2). These show
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FIG. 5. Same as Fig. 3 but for data from the control integration of HadCM3.

a stronger dependence of the CWV on surface temper-
ature than in HadAM3, though with considerable un-
certainty. The regressions are also very noisy for the
other variables, although the gradients are consistent
with those from HadAM3. This observationally based
estimate (albeit from an analysis in which the obser-
vations have been assimilated into a numerical model)
thus supports the finding of a positive water vapor feed-
back in the HadAM3 results. Further analysis of the
CLERA results is presented later.

Additional support for the value of dCWV/dT* given
by ERA was sought by comparing with data from the
National Aeronautics and Space Administration Water
Vapour project (NVAP) (Randel et al. 1996). NVAP
provides an independent estimate of the column water
vapor, through a blend of observations from the global
radiosonde network, the SSM/I, and the TOVS. There
are two major differences between the datasets. First,
ERA assimilates the observations into the ECMWF
weather forecast model, whereas NVAP uses a much
simpler blending procedure. Second, NVAP includes the
SSM/I data that are not used in ERA. There are only 6
complete years for which the datasets overlap (1988–
93), so the comparison is unfortunately very noisy. In

addition, no surface temperature information is available
from NVAP, so the values from ERA were used. For
this period, the global/annual means from ERA yield a
value of dCWV/dT* of 2.6 6 2.6 kg m22 K21, compared
with 1.7 6 2.7 kg m22 K21 from NVAP. The results are
at least consistent, with the NVAP value being closer
to that from the climate model, although the uncertainty
in the slopes is very large.

For HadCM3 (Fig. 5), the use of a 100-yr record
enables more of the natural variability of the model to
be sampled, with the result that very clear correlations
are apparent between these variables (Table 2). The scat-
ter in the HadAM3 results means that it is difficult to
make a definitive comparison between the atmosphere-
only version (HadAM3) and the coupled model
(HadCM3), although there seems to be fair agreement.
It is worth noting that the slope of the regression of the
clear-sky OLR on surface temperature in HadCM3 (1.94
W m22 K21) is slightly lower than that from HadAM3
and the earlier work discussed above. At face value, this
indicates a slightly stronger water vapor feedback in the
coupled model. However, the difference is less than 10%
and is not significant.

Last, Fig. 6 shows the corresponding results from the
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FIG. 6. Same as Fig. 3 but for data from the GHG integration of HadCM3 for 1950–2050.

GHG integration of HadCM3. The dependence of CWV
on surface temperature is very similar to that in the
control experiment (Table 2), suggesting that at least
this element of the water vapor feedback operates in the
same way in the GHG simulations as in the control,
despite the much larger (and progressive) change in the
SSTs in the GHG experiment. However, the slopes cal-
culated for Fig. 6b–d are significantly different to those
in the previous figures (see Table 2), because the ra-
diative fluxes in the GHG experiment are influenced by
the change in radiative forcing imposed during the 100-
yr integration and the subsequent global warming. For
example, the clear-sky OLR is almost independent of
surface temperature (0.18 W m22 K21). We show in
section 4 that this behavior is due to the changes in
greenhouse gases imposed through the integration. In-
creasing greenhouse gases acts to reduce the clear-sky
OLR, which reduces the cooling to space and so leads
to global warming (note that the temperature range in
Fig. 6d is 3 K). The warming acts to increase the clear-
sky OLR as the climate system tries to restore balance.
In the GHG integration, these opposing factors almost
cancel, so the clear-sky OLR hardly changes despite the
3 K global warming. This illustrates the futility of trying

to observe the effects of global warming from space
using only broadband radiation budget sensors; the
roughly 0.5 W m22 increase in the global mean clear-
sky OLR through 100 yr of the GHG integration is
several times lower than the errors associated with any
feasible satellite monitoring system. Virtually all of the
change in g evident in Fig. 6c comes about through the
increase in surface temperature, rather than in the ra-
diation budget at the top of the atmosphere. In order to
diagnose the strength of the water vapor feedback in
this integration it is therefore necessary to remove the
signal from the greenhouse gases. This is discussed in
the next section.

Given the HadAM3 and HadCM3 control integrations
and the CLERA simulation, the broad agreement be-
tween the regressions suggests a consistent represen-
tation of the water vapor feedback. However, the con-
fidence in this result is necessarily low, given the scatter
in the regressions that use the CLERA annual means.
We therefore investigated the possibility that more ro-
bust correlations for the CLERA results might be found
by using all 180 monthly means from 1979 to 1993, as
opposed to only the annual means. The seasonal signal
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FIG. 7. Same as Fig. 3 but for interannual monthly anomalies of the data from CLERA for 1979–93.

TABLE 3. The calculated timescale, t0 (months), over which statis-
tical independence is attained for interannual monthly anomalies of
clear-sky OLR, column water vapor, and normalized greenhouse trap-
ping. The degrees of freedom (d.f.) and required correlation coeffi-
cient to attain significant correlation at the 95% confidence level, r95,
are calculated from t0.

t0 d.f. r95

OLRc

CWV
g

10
12

7

19
15
26

0.43
0.48
0.38

was removed by calculating an interannual monthly
anomaly (X9),

N1
X9 5 X 2 (X ), (2)Oij ij ijN j51

where X is a generic monthly mean variable (e.g.,
CWV), i is the month, j is the year, and N 5 15 is the
number of years of data. Relationships between the col-
umn water vapor, normalized greenhouse effect, clear-
sky OLR, and surface temperature are shown in Fig. 7.

As with the annual means, the variations are small and
there is considerable scatter, although significant posi-
tive relationships between the variables are still apparent
and it will be shown below that these are in reasonable
agreement with the global mean analysis.

Correlations between the monthly interannual anom-
alies may overstate the statistical significance using the
t test, due to autocorrelation of the independent variable
(e.g., Yang and Tung 1998). To alleviate this problem,
the timescale (t0) over which statistical independence is
attained may be estimated by

1 1 r1t 5 , (3)0 1 2 r1

where r1 is the correlation coefficient between the de-
pendent variable and values time-lagged by one month.
Due to the strong persistence of the variables studied,
the number of degrees of freedom drops significantly
from the maximum possible value of 178 (Table 3). The
autocorrelation is largest for CWV, with the number of
degrees of freedom only slightly larger than annual av-
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TABLE 4. Regression gradient, correlation coefficient, and signifi-
cance level for CLERA global mean monthly interannual anomalies
of column water vapor (CWV), surface temperature (T*), normalized
greenhouse trapping (g), and clear-sky OLR (OLRc).

Least squares linear regression

Correla-
tion coef-
ficient (r)

Signifi-
cance

level (%)

dCWV/dT*
dg/dCWV

dg/dT*
dOLRc/dT*

5
5
5
5

2.40 6 0.55 kg m22 K21

0.001 6 0.0003 (kg m22)21

0.004 6 0.001 K21

2.13 6 0.56 W m22 K21

0.54
0.43
0.40
0.49

95
95
95
95

erage values. This raises questions as to the usefulness
of using all 180 monthly means in regression analyses.
However, applying the autocorrelation tests on annual
mean values also reduces the effective sample size due
to autocorrelation between years. The timescale for sta-
tistical independence of the monthly global means (t0)
is greater than the value of 4 months calculated by Yang
and Tung (1998), who analysed tropical mean upper-
tropospheric column water vapor from the NVAP da-
taset.

The regression gradients and correlation coefficients
for the 180 monthly interannual anomalies using
CLERA are displayed in Table 4. Considering the au-
tocorrelation between dependent variables shown in Ta-
ble 3, all regressions are significant at the 95% confi-
dence level. The sensitivity of the normalized green-
house trapping to column water vapor is consistent with
the HadAM3 and CLERA annual mean regressions in
Table 2. The normalized greenhouse trapping is cal-
culated to increase with surface temperature at the rate
4.0 3 1023 K21. The gradient is identical to the HadAM3
annual mean regression but larger than the correspond-
ing regression applied to CLERA annual means. This
is consistent with the gradient between clear-sky OLR
and surface temperature of 2.13 W m22 K21 being less
than the value calculated using CLERA annual means.
The significance of these correlations adds weight to the
regression analysis performed on the CLERA annual
means. The broad agreement between the CLERA and
climate model representations of the water vapor feed-
back strengthens the confidence in the model’s ability
to represent this mechanism. Nevertheless, this conclu-
sion must be tempered by the scatter that is readily
apparent in the figures and by a number of other un-
certainties that are investigated in the following section.

4. Analysis of uncertainties

In this section we investigate some of the reasons for
the differing estimates of the strength of the water vapor
feedback obtained from the regression analysis of
CLERA data and the various climate model experi-
ments.

a. Radiative effect of increasing greenhouse gas
concentrations

The CLERA simulations were performed by running
a radiative transfer code (Edwards and Slingo 1996)
using atmospheric temperature and specific humidity,
surface temperature, and surface pressure data from
ERA (Slingo et al. 1998). The effects of zonally meaned
ozone varying on an annual cycle were also represented.
Other radiatively important gases (CO2, CH4, N2O,
CFC11, and CFC12) were included; these were assumed
to be well mixed in the atmosphere and their concen-
trations were allowed to increase linearly with time. The
increase in the well-mixed greenhouse gases occurs in
addition to the interannual variation of CWV and there-
fore acts to influence the variability of the normalized
greenhouse effect. To determine whether this signifi-
cantly affects the apparent strength of the water vapor
feedback, the CLERA simulations were repeated using
monthly mean ERA analyses for 1979–93. Two parallel
sets of simulations were performed: one in which the
well-mixed greenhouse gas concentrations were in-
creased according to the original scenario and another
in which the concentrations remained constant. Regres-
sions were calculated on annual means formed from the
two sets of results (Fig. 8, Table 5). The small differ-
ences between the gradients obtained with increasing
trace gases in Table 5 and the values in Table 2 are due
to the different temporal sampling of the ERA data; the
original CLERA simulations were calculated from
6-hourly analyses, rather than monthly means. The in-
crease in the gas concentrations leads to no change in
the relationship between CWV and T* (Table 5), since
these two quantities are determined solely by the ERA
data. However, the slope of g versus CWV is slightly
larger and the slope of g versus T* is slightly smaller
than when the gas concentrations are fixed. In absolute
terms, the changes in gradient are 3 3 1024 W m22 kg21

and 2 3 1024 W m22 K21, respectively. The increase
in greenhouse gases steepens the slope of the regression
between the clear-sky OLR and surface temperature by
about 0.06 W m22 K21. These results indicate that the
small increases in the well-mixed greenhouse gases dur-
ing the ERA period (1979–93) have only a modest im-
pact on the diagnosed strength of the water vapor feed-
back in CLERA. The difference between the two ex-
periments is well within the estimated uncertainties in
the gradients, shown as 95% confidence intervals in
Table 5.

In contrast to the CLERA simulations, the much larg-
er changes in the well-mixed greenhouse gases in the
coupled model experiment GHG have a profound im-
pact on the regressions (Table 2, Fig. 6). The scenarios
used to define the changes in the concentrations in the
HadCM3 GHG run and in CLERA are compared in Fig.
9. In GHG, carbon dioxide increases linearly between
1950 and 2020 and then increases by a compound factor
of 0.65% per year until 2050. The concentrations of
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FIG. 8. Scatterplots and regression lines from CLERA illustrating the radiative effects of increasing well-mixed greenhouse gases. Solid
lines show the regression fits to annual mean data with increasing greenhouse gases (data points indicated by plus symbols). Dashed lines
show fits to data with greenhouse gas concentrations fixed at 1979 levels in the radiation code (data points indicated by open squares).

TABLE 5. Regression gradients for annual means with and without
the radiative effects of varying concentrations of well-mixed green-
house gases. The ranges of uncertainty define the 95% confidence
intervals.

Source
Regression
variables

Increasing
greenhouse gases

Fixed greenhouse
gases

CLERA CWV, T*
g, CWV
g, T*
OLRc, T*

3.23 6 1.91
0.0013 6 0.0010
0.0033 6 0.0055

2.25 6 2.34

3.23 6 1.91
0.0010 6 0.0011
0.0035 6 0.0052

2.19 6 2.24
HadCM3 (GHG) CWV, T*

g, CWV
g, T*
OLRc, T*

1.78 6 0.05
0.0048 6 0.0002
0.0088 6 0.0002

0.18 6 0.09

1.78 6 0.05
0.0028 6 0.0001
0.0051 6 0.0001

1.67 6 0.03

CFC11 and CFC12 are smaller than in CLERA between
1979 and 1993, and from 2005 onward they decrease.
Overall, the concentrations of the well-mixed green-
house gases change by a far greater amount during the
hundred years of GHG, compared with the changes oc-
curring over the comparatively short period of CLERA.
To quantify the impact of these changes on the regres-
sions and to establish whether it is still possible to di-

agnose the strength of the water vapor feedback in this
integration, we performed a set of radiation simulations
in which the annual mean temperature and humidity data
at each grid point from GHG were processed using the
Edwards–Slingo code, but with the concentrations of
the well-mixed gases fixed at their 1950 levels. Figure
10 shows the results from these simulations, compared
with the data from GHG, previously shown in Fig. 6.
Fixing the concentrations makes no difference to the
relationship between CWV and T*, as in Fig. 8, but for
the other panels the relationships largely revert to those
found from the control experiment, in which the gas
concentrations were also constant. The regression gra-
dients (Table 5) are now much closer to those from the
HadCM3 control run (Table 2). The differences between
the slopes for GHG with the radiative effects of varying
well-mixed gases removed and those for HadCM3 are
9 3 1024 for g versus CWV, 7 3 1024 for g versus T*,
and 0.266 for the clear-sky OLR versus T*. These dif-
ferences place the revised GHG regression lines only
slightly outside the uncertainty ranges for HadCM3. The
remaining discrepancies may be due in part to differ-
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FIG. 9. The scenarios of changing greenhouse gas concentrations
used in CLERA (symbols) and the HadCM3 GHG integration (lines).
The IPCC IS95a scenario was used in the GHG integration.

FIG. 10. Scatterplots and regression lines from the HadCM3 GHG integration, illustrating the radiative effects of increasing well-mixed
greenhouse gases. Solid lines show the regression fits to annual mean data with increasing greenhouse gases (data points indicated by plus
symbols), as shown previously in Fig. 6. Dashed lines show the fits to the data with the concentrations fixed at 1950 levels in the radiation
code (data points indicated by open squares).

ences in the temporal sampling of the data. The results
in Table 2 were obtained using annual means calculated
during the model integrations from 3-hourly calls to the
model’s radiation code. The fluxes in Table 5 were cal-
culated outside the model from annual means of tem-
perature and humidity and therefore have a sampling
period of one year. Taking such uncertainties into ac-
count, these experiments suggest that the magnitude of
the water vapor feedback in HadCM3 during global
warming is very similar to that arising from the inter-
annual variability in a fixed greenhouse gas simulation.

b. Effects of sampling over different surface types

Slingo et al. (1998) found that the land surface tem-
peratures in ERA in regions such as Antarctica and the
Northern Hemisphere continents do not agree well with
in situ observations. The SSTs in ERA were taken from
observations, but over land the surface temperatures
were calculated by the numerical model. Similarly, in
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TABLE 6. Annual mean statistics for the global ice-free oceans. The
ranges of uncertainty in the regression gradients define the 95 percent
confidence intervals. The correlation coefficients (r) are given to-
gether with their level of significance.

Data source/model
Regression
variables

Linear least
squares gradient

(y on x) r

Signifi-
cance
(%)

CLERA CWV, T*
g, CWV
g, T*
OLRc, T*

6.12 6 4.33
0.0010 6 0.0011
0.0053 6 0.0115

1.27 6 4.94

0.65
0.47
0.27
0.15

99
90
60
40

HadAM3 CWV, T*
g, CWV
g, T*
OLRc, T*

1.69 6 0.81
0.0015 6 0.0011
0.0038 6 0.0011

2.03 6 0.52

0.86
0.74
0.94
0.95

99
98
99
99

HadCM3 (control) CWV, T*
g, CWV
g, T*
OLRc, T*

2.65 6 0.39
0.0011 6 0.0003
0.0047 6 0.0006

1.74 6 0.23

0.82
0.68
0.86
0.83

99
99
99
99

HadCM3 (GHG) CWV, T*
g, CWV
g, T*
OLRc, T*

3.39 6 0.12
0.0033 6 0.0002
0.0117 6 0.0004
21.32 6 0.18

0.99
0.96
0.98

20.82

99
99
99
99

the AMIP run of HadAM3, SSTs were imposed as
boundary conditions but land surface temperatures were
calculated. The global mean surface temperatures in
CLERA and HadAM3 therefore differ, so to determine
whether this affects the estimated strength of the water
vapor feedback, regressions were calculated using an-
nual means for the ice-free oceans only (Table 6).

A comparison of the results in Tables 2 and 6 shows
the effects of restricting the spatial sampling to the
oceans. First, the gradient of the regression between
CWV and T* increases in all cases. This is to be ex-
pected because limiting the area to the ice-free oceans
excludes the polar regions, where the dependence of
CWV on T* is weaker than in the Tropics. In addition,
surface temperature variations are much smaller over
the oceans than over the land. The response of CWV
to increasing surface temperature may be limited in
some land regions by the availability of soil moisture
for evaporation and this may also contribute to the weak-
er gradients in Table 2. When ocean-only means are
used, the gradients of g versus CWV are generally weak-
er than for the global means. This can be explained by
the higher values of CWV over the oceans that cause
g to be less sensitive to any further increases in water
vapor. In all cases the variation of OLRc with T* is
weaker using the ocean only means and, with the ex-
ception of HadAM3, the variation of g with T* becomes
stronger. This behavior is consistent with the higher
values of dCWV/dT*. The weaker increase of g with
CWV over the oceans is overcome by the far stronger
increase in the amount of CWV.

It is clear from Tables 2 and 6 that the water vapor
feedback in both the control and GHG runs of HadCM3
is stronger when only ocean points are considered. For
CLERA and HadAM3 the 95% confidence intervals in
Table 6 encompass the slopes obtained using global

data. The converse is also true, with the exception that
the confidence interval on dCWV/dT* for CLERA in
Table 2 does not contain the slope in Table 6. Thus, the
complete removal of sea ice and land points from the
global means does not lead conclusively to a different
estimate of the magnitude of the water vapor feedback,
despite the physical reasons for expecting it to be stron-
ger over the oceans. This suggests that possible errors
of a few degrees in the modeled temperatures of some
land points are unlikely to cause significant errors in the
estimates of the global water vapor feedback strength.

c. Height-dependent humidity response

Regression analysis of the various climate model ex-
periments and ERA has shown broad consistency in the
strength of the water vapor feedback. While it is nec-
essary to average over geographic detail in diagnosing
such a feedback, it is important to examine the similarity
between the height-dependent nature of water vapor re-
sponse to surface temperature between the model ex-
periments and ERA. To address this issue, vertical pro-
files of water vapor sensitivity to changes in surface
temperature were calculated for global annual mean val-
ues using linear regression fits. Figure 11a shows such
profiles for the absolute water vapor sensitivities. For
positive changes in surface temperature, there is moist-
ening throughout the troposphere for all the model ex-
periments and ERA with the largest response generally
apparent at lower altitudes. While there appear to be
differences between the models and ERA, the range of
values are within the calculated statistical uncertainty
as denoted by horizontal error bars. The significant er-
rors attached to HadAM3 and ERA are the result of the
small quantity of data used to determine the sensitivities;
the statistical uncertainty for HadCM3 and HadCM3
GHG are an order of magnitude less and are thus not
shown.

It was previously argued, for example by Shine and
Sinha (1991), that fractional (or relative) variations in
water vapor mass mixing ratio are of greater relevence
in diagnosing water vapor feedback than absolute
changes (see also the following section). Thus, in Fig.
11b the sensitivity of fractional changes in specific hu-
midity (qf ) to surface temperature, where qf is the water
vapor anomaly normalized by the time-mean specific
humidity (qm), are plotted for global annual mean val-
ues. All the models and data show a positive relation
in the troposphere and are consistent within the range
of uncertainty. The climate models exhibit remarkable
similarity considering the various forcings involved, the
greatest sensitivity being in the upper troposphere in
agreement with previous studies (e.g., Watterson et al.
1999; Del Genio et al. 1991). A similar response be-
tween the model experiments and ERA is apparent in
the upper troposphere (250–500 hPa) and near to the
surface (900–1000 hPa). However, ERA shows several
notable differences, an unequivocal explanation of
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FIG. 11. Height-dependent humidity response for global annual means for (a) absolute changes in humidity and (b) relative changes. See
section 4c for discussion.

which is beyond the scope of this paper. Several hy-
potheses are possible. The differences in the upper tro-
posphere above about 250 hPa may be partly due to the
tropopause height being lower in ERA than in the cli-
mate model. It is also known that the Hadley and Walker
circulations are too intense in the climate model, and
this may contribute to the stronger response in the upper
troposphere to changes in surface temperature (Pope et
al. 1999). The greater water vapor sensitivity calculated
for ERA in the 500–850 hPa region is consistent with
the observed similarity of dOLR/dT* and dOLR/dCWV
between CLERA and the climate model in Table 2, since
the greater dCWV/dT* observed for ERA must be re-
alized in a radiatively less significant region. The greater
water vapor sensitivity of ERA in the 500–850 hPa
region also has a high level of statistical uncertainty.
When calculated using monthly mean values with the
seasonal cycle removed, the sensitivity is reduced by
about a quarter, which suggests that the midtropospheric
peak in dqf /dT* for ERA is an overestimate. This is
consistent with the value of dCWV/dT* calculated for
interannual monthly anomalies being lower than the cor-
responding value calculated for annual means for ERA
(Tables 2 and 4). Nevertheless, the variability of CWV
in ERA is significantly larger than the climate model
fluctuations for a given change in surface temperature
and the reliability of such variations should be addressed

in future studies. Preliminary comparisons with the
NVAP data (section 3) hint at an overestimate in ERA
moisture fluctuations, although the confidence in the
NVAP data, which is limited by the spatial and temporal
coverage of observations, must also be questioned. In
conclusion, an important finding of this section is that
for the model experiments and ERA, the sign and mag-
nitude of the water vapor response to surface temper-
ature throughout the troposphere agrees to within the,
albeit large, statistical uncertainty.

d. Temperature lapse rate changes

Raval and Ramanathan (1989) argued that increases
in normalized greenhouse trapping with CWV indicate
a positive water vapor feedback, because changes in g
are independent of surface temperature. As noted pre-
viously, g also depends on the temperature lapse rate.
Raval and Ramanathan (1989) estimated changes in
lapse rate to incur a 10% uncertainty in the value of
dg/dT*. This estimate was based on spatial changes in
lapse rate that are small compared to the spatial vari-
ability of surface temperature. Over the interannual
timescale there is no evidence to suggest that changes
in temperature lapse rate incur a negligible contribution
to dg/dT*. To address this uncertainty, a further exper-
iment was carried out using ERA monthly mean profiles
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FIG. 12. Interannual anomalies of g and surface temperature for
experiment CONQ. Dots represent interannual monthly anomalies
and numbered symbols denote annual average anomalies with year
number. The solid line is the regression between annual average
anomalies.

but prescribing the specific humidity at the 15-yr mean
value for each grid point and vertical level for the given
month (experiment CONQ). For example, all Julys con-
tain identical specific humidity values (q) that are cal-
culated as

151
q (u, f, h) 5 exp ln[q(u, f, h) ] , (4)Om j i, j5 615 i51

where i denotes year, j is month, u is latitude, f is
longitude, and h is the hybrid-vertical coordinate used
in ERA. Geometric averaging was chosen due to the
nonlinear effects of humidity on clear-sky OLR (e.g.,
Udelhofen and Hartmann 1995). Using monthly mean
atmospheric profiles, Allan et al. (1999) showed that the
interannual variability of the clear-sky OLR was within
3% of the variability calculated from the version of
CLERA used in section 3 (experiment CTR), by con-
sidering the standard deviation of the global mean clear-
sky OLR.

Using all 180 monthly mean values from CONQ, the
correlation between the clear-sky OLR and surface tem-
perature is significant at the 99% confidence level, as-
suming 14 degrees of freedom due to substantial au-
tocorrelation of the data. A gradient of 4.0 W m22 K21

is similar to the estimated blackbody clear-sky OLR
response of 3.7 W m22 K21 calculated using Eq. (1).
This suggests that changes in lapse rate contribute only
slightly to the clear-sky feedback. Indeed, there is no
significant correlation between g and surface tempera-
ture for experiment CONQ using interannual monthly
anomalies (Fig. 12). However, there remains a signifi-
cant variability of g (more than 62 3 1023). This il-
lustrates that while changes in temperature lapse rate do
exert a significant influence on g, this variability is un-
correlated with surface temperature. Therefore the in-
ferred water vapor feedback calculated in section 3 ap-

pears to be unaffected by lapse rate changes when con-
sidering interannual monthly anomalies.

When the regression is repeated using annual average
values, a negative dependence of g on surface temper-
ature is calculated for experiment CONQ, which is sig-
nificant at the 95% confidence level (Fig. 12). An in-
crease in clear-sky OLR with surface temperature of 5.3
W m22 K21 is calculated for CONQ, which is signifi-
cantly greater than the sensitivity calculated using in-
terannual monthly anomalies. For the control experi-
ment, the sensitivity is similar for both the monthly and
annual analysis. This suggests that changes in lapse rate
may be significant when considering annual averages
and the implied feedback is negative, with changes in
atmospheric temperature acting to amplify the clear-sky
OLR response to changes in surface temperature. More-
over, the magnitude of the positive water vapor feedback
may be understated using the analysis of CLERA annual
means in section 3. This is highly dependent on the
quality of atmospheric and surface temperature and their
interannual variability in ERA as well as the limited
number of annual means.

e. A new moisture parameter

It is common to use CWV to infer water vapor var-
iability (e.g., Raval and Ramanathan 1989). However,
the parameter is strongly biased to lower altitudes and
latitudes. For example, changes in water vapor amount
in the upper troposphere, important in determining the
clear-sky greenhouse effect (e.g., Soden and Fu 1995),
are not captured by considering CWV variations.

To establish a meaningful relationship among atmo-
spheric water vapor, surface temperature, and the clear-
sky greenhouse effect it is necessary to employ a mois-
ture parameter that samples regions of the atmosphere
where water vapor fluctuations exert a significant ra-
diative effect. Thompson and Warren (1982) demon-
strated the strong dependence of clear-sky OLR on ver-
tically averaged relative humidity. However, in high-
lighting water vapor feedback, the use of this parameter
in the present study is limited. This is because the strong
coupling between the water vapor concentration and at-
mospheric temperature, dictated by the Clausius–Cla-
peyron equation, means that the bulk of the positive
water vapor feedback is acompanied by only small
changes in relative humidity (e.g., Slingo and Webb
1997). Although it is important to establish that changes
in relative humidity throughout the troposphere do not
exert a significant effect on the water vapor feedback
(e.g., Allan et al. 1999), a parameter that samples chang-
es in water vapor concentration independent of tem-
perature is required to present evidence of a water vapor
feedback.

Using a radiative–convective model, Shine and Sinha
(1991) showed that surface temperature is sensitive to
10% changes in water vapor mass mixing ratio, irre-
spective of the level in the troposphere at which the
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FIG. 13. Interannual monthly anomalies of (a) column water vapor anomalies (CWA) with surface temperature (T
*

), (b) normalized
greenhouse trapping with column water vapor anomalies (CWA), (c) the normalized greenhouse trapping difference (CTR 2 CONQ) with
T

*
, and (d) clear-sky OLR difference (CTR 2 CONQ) with T

*
. Solid lines show the least squares fit regression line. Bold symbols in (c)

and (d) denote annual averages; the bold lines represent the regression between annual average values.

moisture perturbation is applied. They further argued
that observed moisture variations are consistent with
percentage (or relative) changes in water vapor concen-
tration that are uniform with altitude. It is therefore
logical to use a moisture parameter that captures such
relative changes in water vapor concentrations through-
out the troposphere. Column mean relative changes in
water vapor amount were calculated by vertically av-
eraging the fraction, ^q(h)&/^qm(h)&, where ^q(h)& is the
global mean profile of specific humidity for a given
month. The quantity ^qm(h)& is the global mean profile
of the 15-yr monthly mean specific humidity given in
(4). Global horizontal averaging was computed geo-
metrically due to the nonlinear dependence of clear-sky
OLR on q. This reduces the bias of global mean q to
tropical moisture. The global average column mean wa-
ter vapor anomalies were computed as

p0 ^q(u, f, h)&1 i, j
CWA 5 dp(h), (5)i, j Ep 2 p ^q (u, f, h)&0 t m jpt

where i denotes year, j denotes month, with pt and p0

denoting the top and bottom pressure level over which
vertical averaging is calculated. Vertical averaging of
the relative water vapor anomalies weighted with the
slab pressure-thickness dp(h) ensures that the moisture
parameter is not biased toward low-level moisture
anomalies.

Using pt 5 100 hPa and p0 5 950 hPa, the regressions
shown in Figs. 7a,b are reproduced using the CWA pa-
rameter (Figs. 13a,b). Positive correlation between
CWA and surface temperature is significant at the 95%
confidence level, assuming 16 degrees of freedom using
Eq. (3). The proposal of Lindzen (1990) that free-tro-
pospheric humidity will diminish in response to surface
warming is not apparent. Averaged globally throughout
the troposphere, relative changes in specific humidity
appear to be positively coupled with surface tempera-
ture, at least for the ERA climate (Fig. 13a). The value
of CWA in explaining variations in atmospheric green-
house trapping is highlighted by the strong, positive
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TABLE 7. Regression gradient, correlation coefficient, and significance levels for global mean column water vapor anomalies (CWA),
surface temperature (T*), normalized greenhouse trapping differences, CTR 2 CONQ (Dg), and OLRc differences, CTR 2 CONQ (DOLRc).
Values are calculated for interannual monthly anomalies and for annual averages (within parentheses).

Least squares linear regression r
Significance

level %

dCWA/dT*
dg/dCWA

dDg/dT*
dDOLRc/dT*

5
5
5
5

0.097 6 0.025 (0.137 6 0.102) K21

0.038 6 0.005 (0.040 6 0.015)
0.0044 6 0.001 (0.0069 6 0.0052) K21

21.9 6 0.53 (22.9 6 2.17) W m22 K21

0.51 (0.59)
0.73 (0.83)
0.46 (0.62)

20.47 (20.63)

95 (95)
99.9 (99.9)

90 (95)
90 (95)

correlation (significant at the 99.9% confidence level
assuming 26 degrees of freedom) between g9 and CWA
displayed in Fig. 13b.

To ascribe further the changes in g to a positive water
vapor feedback, the difference between interannual
monthly anomalies of g between experiments CTR and
CONQ are plotted with surface temperature anomalies
in Fig. 13c. The differences in g between experiments
CONQ and CTR are entirely due to interannual moisture
fluctuations, thereby highlighting the positive water va-
por feedback with the additional lapse rate signal re-
moved. Similarly the differences in clear-sky OLR
anomalies between CTR and CONQ show a negative
dependence on surface temperature, also illustrating a
positive water vapor feedback. However, strong auto-
correlation within the samples render these relationships
insignificant at the 95% confidence level. By annual
averaging of the data (bold symbols) correlation is sig-
nificant at the 95% confidence level assuming 13 de-
grees of freedom, albeit with steeper gradients than the
monthly analysis. The regression gradients and corre-
lation coefficients are displayed in Table 7 (annual av-
erage values are within parentheses).

5. Discussion

The purpose of this study was to investigate the pos-
sibility that useful information on the water vapor feed-
back could be obtained from the interannual variability
of global mean quantities. We argued that such infor-
mation should give a more reliable indication of the
feedback operating on timescales relevant to global
warming than that derived from geographical distribu-
tions or seasonal variations of the same quantities. In
the absence of sufficiently reliable global satellite da-
tasets, we used our previous CLERA simulations of the
clear-sky greenhouse effect from the ECMWF reanal-
yses project (Slingo et al. 1998) to provide estimates of
the feedbacks operating in the real world. We compared
these with results from the latest version of the Hadley
Centre Climate Model, including an AMIP integration
of the atmosphere-only version forced by the observed
SSTs (HadAM3) and also the coupled ocean–atmo-
sphere version employed in climate prediction experi-
ments (HadCM3). The ability to compare these two ver-
sions of the climate model with each other and with
CLERA was particularly valuable.

Despite the considerable scatter in the data, we found
evidence for a positive water vapor feedback in both
the CLERA simulations (and hence the reanalysis data)
and the climate model, consistent with earlier studies.
There was no evidence for any significant difference
between the magnitude of the feedback in the CLERA
simulations and in the two versions of the climate mod-
el. Nevertheless, the results from the coupled model
demonstrate that increases in the concentrations of
greenhouse gases can significantly distort the relation-
ships between the key variables if long time series are
used, because trends in surface temperatures can take
place despite no significant change in the top of at-
mosphere radiation budget. Over the 15-yr timescale of
the ECMWF reanalysis, this effect produces only a
small error in the diagnosed water vapor feedback, but
over the century timescale of the greenhouse gas inte-
gration with the coupled model the impact is substantial.
This effect must therefore be taken into account in the
analysis of future satellite and synthetic radiation budget
data that are obtained over periods longer than a decade
or so.

Bearing in mind the arguments advanced in this paper
in favor of using global means to infer the water vapor
feedback, as opposed to the geographical distributions,
it is nevertheless noteworthy that the two methods give
similar estimates for the magnitude of the feedback. The
implication is that the global variability examined here,
including the systematic warming in the GHG climate
prediction experiment, corresponds to all the points on
plots such as Figs. 1 and 2 moving in the direction
shown by the regression lines. However, changes in the
atmospheric circulation and hence in the moisture dis-
tribution should perturb this simple picture, particularly
in the Tropics. This merits further study.

The ECMWF reanalysis project made as much use
of satellite data as was possible at that time, which is
obviously crucial for studies that are strongly dependent
on the quality of humidity information in the upper
troposphere. Nevertheless, not all the available sources
of humidity data were used and there were inevitably
errors and deficiencies in the assimilation model that
affected the CLERA simulations. These limitations will
be addressed by a new reanalysis project (‘‘ERA-40’’),
which will also extend the period to cover 1958–99.
Further studies of the clear-sky greenhouse effect and
water vapor feedback are planned with these data. It
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would be extremely interesting to apply the techniques
employed here to the data from other reanalyses and
indeed to other climate models. Additional satellite mea-
surements of the earth’s radiation budget with global
coverage are also needed in order to provide indepen-
dent confirmation from observations of the results of
such studies.
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