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ABSTRACT

Tropical eastern Pacific sea surface temperature plays a pivotal role in mechanisms that determine global

mean surface temperature variability. In this study, the surface flux contribution to recent cooling of the

tropical eastern Pacific is investigated using data from three atmospheric reanalyses with full assimilation of

observations, an observation-based net surface energy flux reconstruction, and 15 atmosphere-only climate

model simulations. For ERA-Interim, 78% of the decrease in net surface flux (20.65Wm22 yr21 over 1988–

2008) is explained by the latent heat flux variability. Latent heat flux variability differs between datasets, and

this is investigated using a bulk formula. It is found that discrepancies in wind speed change explain con-

trasting latent heat flux trends across datasets. The significant increase in wind speed of 0.26m s21 decade21

over the tropical eastern Pacific in ERA-Interim is not reproduced by satellite or buoy observations or

atmosphere-only climate model simulations, casting questions on the reliability of reanalysis-based surface

fluxes over the tropical eastern Pacific.

1. Introduction

Cooling over the tropical Eastern Pacific (TEP) has

been identified as an important factor in explaining the

mechanisms leading to suppressed global warming at the

beginning of the twenty-first century (Easterling and

Wehner 2009; Knight et al. 2009; Trenberth and Fasullo

2013; Huber and Knutti 2014; Watanabe et al. 2014;

Kosaka and Xie 2013; Meehl et al. 2014; England et al.

2014).Using both theNationalOceanic andAtmospheric

Administration (NOAA) Twentieth Century Reanalysis

(Compo et al. 2011) and the European Centre for

Medium-Range Weather Forecasts (ECMWF) interim

reanalysis (ERA-Interim) (Dee et al. 2011) as well as

model simulations, England et al. (2014) found that the

cooling is due to the observed pronounced strengthening

in Pacific trade winds, which enhance the ocean heat

uptake and the upwelling of the subsurface cold water

over the TEP area. Zhou et al. (2016) found that the sea

surface temperature (SST) pattern–induced low cloud

increase (Norris and Evan 2015) over the TEP region

can enhance the shortwave reflection and modify

Earth’s energy budget. This has been linked to changes

in atmospheric stability and can explain increases in

climate sensitivity relating to the evolution of SST

patterns in response to radiative forcing (Ceppi and

Gregory 2017; Andrews and Webb 2018). The cloud

feedback on SST changes over the decadal time scale

can amplify cooling in the TEP region where air de-

scends. Brown et al. (2014) also showed that cooling

may be enhanced in both duration and magnitude by

increasing the shortwave reflection (RSW) over the

TEP region, where the reduced outgoing longwave

radiation (OLR) cannot fully compensate the short-

wave reflection, due to the relatively cool marine

stratiform clouds present (Klein and Hartmann 1993),

reducing the net downward surface energy flux Fs and

cooling the surface.

On one hand, the cooling TEP will suppress the

longwave radiation and the turbulent energy transfer

from ocean to the atmosphere, so the net downward

energy fluxwill be increased over this region, as depicted
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by the Atmospheric Model Intercomparison Project

(AMIP) model simulations (Liu et al. 2015). On the

other hand, increased winds (England et al. 2014) will

cause more evaporation, so more latent heat may be

lost to the atmosphere and decrease the net downward

energy flux. To further understand the mechanisms and

driving factors of the TEP cooling, different surface

flux data from atmospheric reanalyses, observational

reconstructions (Liu et al. 2017), and AMIP phase 5

(AMIP5) simulations are used to study the surface

energy flux contributions to the TEP cooling in this

study. Considering the imperfect temporal homoge-

neities in parameterized reanalysis fluxes (Berrisford

et al. 2011; Balmaseda et al. 2013; von Schuckmann

et al. 2016), the detailed analysis of the reasons causing

the spurious changes is conducted in this study using

a bulk formula, so as to investigate the role of mete-

orological variables in determining latent heat flux

changes.

2. Data and method

The three atmospheric reanalyses used in this study

are ERA-Interim (hereinafter ERAINT; Dee et al.

2011; Berrisford et al. 2011), the Japanese 55-year Re-

analysis (JRA-55) (Kobayashi et al. 2015), and the

Modern Era-Retrospective Analysis for Research and

Applications (MERRA2) (Gelaro et al. 2017). Surface

fluxes, including the surface shortwave (SW) and long-

wave (LW) radiation fluxes and the latent heat (LH) and

sensible heat (SH) turbulent fluxes, forecasted directly

by the reanalyses, are used. Themonthly fluxes available

for this study are averaged from the forecast every 12h

for ERAINT, every 6 h for JRA-55, and every hour for

MERRA2. A four-dimensional variational analysis is

used in ERAINT and JRA-55, and a three-dimensional

variational data assimilation in MERRA2, where data

from the full observing system are assimilated. The de-

rived net surface heat fluxes based on the atmospheric

energy tendencies and transports of ERAINT and top-

of-the-atmosphere (TOA) satellite radiation budget

data (Allan et al. 2014; Liu et al. 2015, 2017) are also

exploited based on results from the Diagnosing Earth’s

Energy Pathways in the Climate System (DEEP-C)

project. DEEP-C takes advantage of the assimilation of

full observations in ERAINT and the observed energy

budget of the Earth system (Liu et al. 2015), the atmo-

spheric energy transports are mass corrected (Trenberth

et al. 1995; Chiodo and Haimberger 2010; Mayer and

Haimberger 2012), and the land surface fluxes are ad-

justed based on the energy budget conservation (Liu

et al. 2017) and has applications in a number of pre-

vious studies (Williams et al. 2015; Valdivieso et al.

2015; Senior et al. 2016; Roberts et al. 2017). The Clouds

and the Earth’s Radiant Energy System (CERES)

(Loeb et al. 2012) surface radiation fluxes are used to

infer the surface turbulent fluxes from DEEP-C net

surface flux.

The bulk formula used to calculate the latent heat

fluxes at surface is from Singh et al. (2005):

LH5 rLC
E
U(Q

s
2Q

a
) , (1)

where r is the air density, L is the latent heat of evap-

oration, CE is bulk transfer coefficient for water vapor

(also called the Dalton number) and can be estimated

using near-surface wind speed (Bentamy et al. 2003), U

is the wind speed at a typical height of 10m, Qs is the

saturation specific humidity at the surface and can be

estimated using SST and sea level pressure, andQa is the

near-surface specific humidity at the atmospheric mea-

surement level and can be empirically estimated from

SST and the total column water vapor content [please

see Singh et al. (2005) for the detailed descriptions]. The

LH estimation is specially designed to use satellite ob-

servations. The four input fields are the total column

water vapor content (WV), near-surface wind speed,

SST, and mean sea level pressure (MSLP), which are all

available as analysis time variables from the reanalyses.

Considering the good temporal homogeneity of the Spe-

cial Sensor Microwave Imager (SSM/I) data (Fig. S1 in

the supplemental material), the observed WV and U

from SSM/I are employed and the time series is con-

structed using DMSP F8, F11, and F13 datasets. The

wind speed has a general increasing trend before 2009,

but decreases after 2012 (Fig. S1a). The data from 15

AMIP5model simulations are also used, with prescribed

observed SST and sea ice and realistic radiation forcings

(Taylor et al. 2012). The wind speed data from the

Tropical Atmosphere Ocean (TAO)moored buoy array

(TAO Project Office 2000) are also used for compari-

son. All datasets are listed in Table 1 with some brief

descriptions.

3. Results

a. Trends in surface heat flux

The net surface heat flux trends from ERAINT,

DEEP-C, and AMIP5 ensemble mean over 1988–2008

are shown in Fig. 1, together with the ERAINT SST

trend. The corresponding area mean anomaly time se-

ries over the TEP are also plotted Figs. 1e–h. The trends

of ERAINT SST (20.06K decade21) and net surface

flux from DEEP-C (20.32Wm22 yr21) and ERAINT

(20.65Wm22 yr21) show a consistent negative trend

over the TEP (Figs. 1a–c). The DEEP-C Fs is based on a
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combination of satellite data and ERAINT atmospheric

energy transports but does not use the simulated surface

fluxes. While both datasets display a negative trend in

downward net heat flux over the TEP, the DEEP-C

trend is smaller in magnitude than that of ERAINT

(Figs. 1f,g). The strong negative trend can also be seen

from JRA-55 data (Fig. S2a in the supplemental mate-

rial), but is weak in MERRA2 data (Fig. S2b) and not

present in AMIP5 ensemble mean simulations (Fig. 1d).

Both trends from ERAINT and JRA-55 (Figs. 1c and

S2a) show similar spatial patterns, with negative trends

over the central Indian Ocean and western and eastern

Pacific but positive trends in the northeastern Pacific. A

contrasting pattern is produced by MERRA2: the trend

over the northeastern Pacific is negative but positive

over most of the TEP area. Trend patterns in SST

(Fig. 1a) and AMIP5 ensemble mean simulated Fs

(Fig. 1d) are anticorrelated, indicating that reducing

SST leads to reduced heat loss to the atmosphere and

thus more surface flux into the ocean (increased Fs).

In contrast, this is not seen in DEEP-C (Fig. 1b) and

ERAINT (Fig. 1c). Although the input data used to

generate the DEEP-C product are not fully coupled,

these data are considered the best representation of the

coupled system available to us. The errors can be

introduced from incomplete coverage, biases, and model

inadequacies during observational input toERAINT, but

it is representative of the coupled system, in which heat

fluxes can drive changes in SST (e.g., reduced Fs can cool

the ocean and reduce SST).

The deseasonalized anomaly time series of Fs and its

four components (SW, LW, SH, and LH) over the TEP

are plotted in Figs. 1g,h and S2c,d; the reference period

for the anomaly calculation is from 2001 to 2008. It is

clear that the LH variation dominates the Fs variability

in three atmospheric reanalyses and the AMIP5 en-

semble mean. The LH trend follows the corresponding

Fs trend, and the correlation coefficients r between

LH and Fs over 1988–2008 for ERAINT, JRA-55,

MERRA2, and the AMIP5 ensemble mean are 0.97,

0.94, 0.90, and 0.96, respectively; the LH trend magni-

tudes are 78%, 98%, 169%, and 44% of the Fs trends for

ERAINT, JRA-55, MERRA2, and the AMIP5 ensem-

ble mean, respectively. The turbulent fluxes (SH and

LH) are also derived from the difference of theDEEP-C

net surface energy fluxes and the CERES surface radi-

ation fluxes, and the anomaly time series is plotted in

Fig. 1f. The corresponding correlation coefficient be-

tween turbulent flux and Fs over 2002–15 is 0.98. It is

apparent that SW radiation and Fs variability are also

TABLE 1. List of datasets. (Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Dataset Period (in this study) Resolution References

Reconstruct (DEEP-C)

Surface net flux Fs 1985–2015 0.78 3 0.78 Liu et al. (2015, 2017)

CERES 2001–16 1.08 3 1.08 Loeb et al. (2012)

SSM/I

F8 1987–2016 0.258 3 0.258 Wentz and Spencer (1998)

F11 Vila et al. (2010)

F13

Atmospheric reanalyses

ERAINT 1985–2015 0.78 3 0.78 Dee et al. (2011)

JRA-55 1985–2014 0.568 3 0.568 Kobayashi et al. (2015)

MERRA2 1985–2016 0.58 3 0.6258 Gelaro et al. (2017)

TAO buoy 1990–2017 — TAO Project Office (2000)

AMIP5 models 1985–2008

ACCESS1.0 1.258 3 1.8758 Bi et al. (2013)

CanAM4 2.798 3 2.818 Arora et al. (2011)

CCSM4 0.948 3 1.258 Gent et al. (2011)

CMCC-CM 0.758 3 0.758 Scoccimarro et al. (2011)

CNRM-CM5 1.408 3 1.418 Voldoire et al. (2013)

FGOALS-g2 3.08 3 2.818 Li et al. (2013)

GFDL CM3 2.08 3 2.58 Delworth et al. (2006)

GISS-E2-R 2.08 3 2.58 Schmidt et al. (2014)

HadGEM2-A 1.258 3 1.8758 Collins et al. (2011)

INM-CM4.0 1.58 3 2.08 Volodin et al. (2010)

IPSL-CM5A-LR 1.898 3 3.758 Dufresne et al. (2013)

MIROC5 1.398 31.418 Watanabe et al. (2011)

MPI-ESM-LR 1.858 3 1.8758 Raddatz et al. (2007)

MRI-CGCM3 1.118 31.138 Yukimoto et al. (2012)

NorESM1-M 1.898 32.58 Zhang et al. (2012)
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well correlated (r 5 0.69, 0.72, 0.73, and 0.56 for

ERAINT, JRA-55, MERRA2, and AMIP5 ensemble

mean, respectively), but the SW radiation trend is

generally smaller than the Fs trend. The corresponding

SW radiation trend contribution to the Fs trend is 22%

for ERAINT and 11% for JRA-55, and the contribu-

tion of 31% in AMIP5 ensemble mean is relatively

strong. The SW radiation trend in MERRA2 is of op-

posite sign to the Fs trend. All these correlation co-

efficients are significant based on the two-tailed test

using Pearson critical values at the level of 5%, and the

trends (except for the LH trend of AMIP5) are also

significant using the Mann–Kendall test at a signifi-

cance level of 0.05 (Hipel and McLeod 1994), which

emphasizes that the evaporation dominates variability

and trends in surface fluxes in the equatorial eastern

Pacific.

Both ERAINT and JRA-55 show strong downward Fs

trends of 0.65 and 0.50Wm22 yr21 over 1988–2008, re-

spectively. MERRA2 also shows a weak negative trend

in Fs (20.13Wm22 yr21) and LH (20.22Wm22 yr21).

Considering the global changes may include spurious

jumps, as a very crude adjustment, the global mean Fs

trend over the same period shown in Fig. S2e is
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FIG. 1. The trend of (a) SST and (b)–(d) net surface flux over 1988–2008. (e)–(h) The corresponding area mean

anomaly time series over the TEP [marked area in (a)–(d) from 208N–208S, 1508W to the west coast of Central

America]. (g),(h) Four components of Fs are also plotted, and (f) the SW and LW fluxes from CERES are plotted,

together with the turbulent flux derived from the difference between DEEP-C net surface flux and CERES radi-

ation fluxes. The reference period is 2001–08. The datasets are from ERAINT, DEEP-C, and AMIP5 15-member

ensemble. All fluxes are downward positive. All lines are 6-month running means and some linear trends are also

displayed.
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removed, and the corresponding Fs trends over the TEP

are 20.53, 20.29, and 20.35Wm22 yr21 for ERAINT,

JRA-55, and DEEP-C, respectively. They are all sig-

nificant using the Mann–Kendall test at a significance

level of 0.05. Considering the ocean heat capacity of

4.2 3 106 JK21m22m21, the mean mixing depth of

100m over the eastern Pacific (Roberts et al. 2017) and

Fs is 3Wm22 lower in the 2000s versus the 1990s; the

estimated temperature change DT’22.3K is too large

considering the observed ocean temperature change

over the TEP area (Fig. 1e). This suggests that either the

trends are unrealistic or changes in ocean heat transport

convergence offset these surface heat flux changes. It is

noticed that there are discontinuities in global area

mean Fs time series of MERRA2 (Fig. S2e): it has a step

change near 1992, a large negative trend between 1992 and

2008, and an anomalous positive trend after 2009. Since the

DEEP-C global mean net surface flux is well constrained

by the TOA satellite observations (Allan et al. 2014) and

the zero global atmospheric energy convergence (Liu et al.

2015, 2017), the global mean Fs from theDEEP-C product

can be regarded as realistic. It is also noticed both Fs and

LH trends from MERRA2 over the TEP differ with the

other two atmospheric reanalyses.

The contributions of SW fluxes to the net surface flux

trends over the TEP are significant for the later periods

(20.50Wm22 yr21 for 1995–2015 in ERAINT and

20.42Wm22 yr21 over 2000–15 for JRA-55), consistent

with evidence of increased low cloud cover (LCC)

(Norris and Evan 2015; Zhou et al. 2016). However, for

the longer 1988–2008 period, LH is found to dominate

the changes in Fs.

b. Sensitivity of latent heat flux to atmospheric
variables

Since the LH change dominates the Fs variability over

the TEP in three atmospheric reanalyses, observation

andAMIP5 simulation ensemblemean, it is necessary to

investigate the driver for the LH change. To do this, the

bulk formula developed by Singh et al. (2005) is em-

ployed to compute LH. This bulk formula is designed for

the application of satellite observations so only four

meteorological variables are required for input: SST,

MSLP, WV, and U (near-surface wind speed, generally

at 10m). For the sensitivity test, climatologies of four

fields are applied, and each time-varying individual field

is subsequently substituted into the bulk formula to

isolate the contribution of the determinant variables.

Effects on LH trend from the different SST and MSLP

datasets are similar, so are not shown and discussed

here. An unrealistic decline in global area mean

ERAINT WV around 1991–93 compared with SSM/I

observations (Allan et al. 2014; Allan 2017) was

removed by adjusting values prior to 1993 to force

agreement with the global mean SSM/I WV anomalies

over the 1988–92 period. The influence of water vapor

and wind speed changes on LH variability (downward

defined as positive) is estimated for ERAINT, SSM/I,

and AMIP5 in Fig. 2. For ERAINT the generally posi-

tive global net downward LH trend in Fig. 2a is due to

the increasingWV (Fig. 3a), which decreases the surface

evaporation, but the effect on the LH trend over the

TEP region is weak. The estimated influence of changes

in U on surface evaporation is substantial (Fig. 2b). The

strong negative trend in downward LH over the central

and eastern Pacific is driven by the wind speed vari-

ability. After combining U and WV, the trend pattern

of LH is similar to that usingU alone (Fig. 2c).When all

four actual fields of ERAINT are used, the trend pat-

tern is still dominated by that using the wind speed

alone (Fig. 2d) and the LH trend of 20.20Wm22 yr21

over the TEP is still significant (the corresponding

global trend of 20.02Wm22 yr21 is small and in-

significant), indicating that the wind speed is the driver

of negative LH trend over the TEP in ERAINT.

Compared with the LH trend from direct model out-

put (Fig. 2e), it can be seen that the model-generated

LH trend has more extensive negative trend areas

over the whole tropical region, and the LH trend over the

TEP is also stronger (20.51Wm22 yr21; see Fig. 1g).

After removing the global LH trend, the corresponding

LH trend of 20.39Wm22 yr21 over the TEP area is

roughly consistent with 20.18Wm22 yr21 from the bulk

formula, and their correlation coefficient is 0.81 over

1988–2008 (Fig. S3a in the supplemental material).

To check the effect of the data type used in this study

on the LH estimation, the results fromboth the daily and

monthly data; from the analysis and forecast fields of

SST, MSLP, WV, and U; and from the estimated and

model output specific humidity were all tested. The es-

timated LH trends over the TEP area from 1988 to 2008

are 20.23, 20.22, and 20.20Wm22 yr21 using the daily

forecast, monthly forecast, andmonthly analysis fields of

ERAINT, respectively. Since there is no direct specific

humidity output available for us from ERAINT, the

JRA-55 data are used for the sensitivity test. The esti-

mated LH trends are20.35 and20.46Wm22 yr21 using

the estimated specific humidity fromWVandSST and the

reanalysis specific humidity, respectively. Therefore, the

impact of these factors on theLH trend over theTEParea

is small, so it is assumed that the discrepancies in spatial

structure and values between LH estimates from bulk

formula and direct model output are mainly due to dif-

ferent bulk formula used in the LH calculation. The bulk

formula of Singh et al. (2005) is applied to the monthly

data in this study.
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Since onlyWV andU are available from SSM/I data,

the climatologies of four fields from ERAINT are

used at first, and then the corresponding climatologies

are replaced by SSM/I WV (Fig. 2f) and SSM/I U

(Fig. 2g), respectively. The spatial pattern of the SSM/I

WV effect on LH trend is similar to that of ERAINT

WV. The SSM/I wind speed variability also gener-

ates negative downward LH trend over the TEP re-

gion, but it is relatively weak compared with that from

ERAINT wind speed (Figs. 2b,g). When combining

SSM/I WV and U together, the negative trend over the

TEP area is greatly reduced (Fig. 2h), and it is further

smoothed out after the actual fields of WV and U from

SSM/I and SST and MSLP from ERAINT are used.

This indicates that the SSM/I wind speed variability is

not large enough to produce the strong negative LH

trend, and this will be further investigated in next

section.

FIG. 2. Sensitivity test of LH trend using bulk formula over 1988–2008. The climatologies of SST, MSLP, WV, and wind speed from

ERAINT are used at first, then the corresponding climatologies are replaced by (a) ERAINTWV, (b) ERAINT wind speed, (c) ERAINT

WVandwind speed, (d) all four fields fromERAINT, (f) SSM/IWV, (g) SSM/I wind speed, (h) SSM/IWVand wind speed, and (i)WV and

wind speed fromSSM/I andSST andMSLP fromERAINT. (e) TheLH trend directly fromERAINT.The samemethod is applied to each of

the 15 AMIP5 models, and (j)–(m) the ensemble means are plotted. (n) The mean LH trend from 15 AMIP5 model simulations.
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For the AMIP5 data, the above method is applied to

each member and the trends are interpolated into a

common grid of 38 3 38; the ensemble mean results are

shown in Figs. 2j–m. The spatial pattern of the mean

effect of WV on LH trend (Fig. 2j) is similar to those in

Figs. 2a,f, implying similar WV trend in three datasets.

The wind speed effect is strong in the central Pacific, but

weak over the TEP area where the LH trend is overall

positive (reduced evaporative flux). The combined WV

and U effect enhances the positive trend over the TEP

region, although the spatial patterns over other regions

are similar between these three datasets. After all four

fields are used (Fig. 2m), the trend over the TEP is very

weak (;20.02Wm22 yr21) and insignificant (Fig. S3b).

The mean LH trend from the ensemble mean of 15

AMIP5 model simulations is shown in Fig. 2n, which

FIG. 3. Trends of (a)–(c) WV and (d)–(f) wind speed over 1988–2008 from ERAINT, SSM/I,

and the AMIP5 ensemble mean. Corresponding deseasonalized time series of area mean

(g) WV and (h) wind speed over the TEP. The shaded areas of AMIP5 are 15-member en-

semble mean (solid black line) plus or minus one standard deviation. The reference period is

2001–08 for anomaly calculation. The wind speed trends over 1988–2008 are also displayed in (h).
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shows similar but stronger spatial pattern compared to

that from bulk formula (Fig. 2m) (spatial correlation r5
0.61); in particular, the LH trend of 0.11Wm22 yr21

over the TEP area (Fig. 1h) is stronger, but still in-

significant (Fig. S3b). This implies that the application

of the bulk formula to the monthly data may smooth

the LH calculation, even though the global spatial

patterns are still consistent (Figs. 2m,n). Therefore,

according to the sensitivity test using bulk formula and

direct model output, it is clear that the bulk formula

used in this study can reasonably capture aspects of the

main features of the corresponding data. Furthermore,

these sensitivity tests highlight discrepancies in LH

trends between datasets over the TEP area, and the

overall sign of the LH trend depends primarily on the

wind speed variability.

c. Evaluation of water vapor and wind speed trends

To understand the influence of WV and U variability

on LH and surface heat flux trend patterns, the trends of

WV and U from ERAINT, SSM/I, and the AMIP5 en-

semble mean over 1988–2008 are investigated (Fig. 3).

ForWV trends (Figs. 3a–c), the spatial patterns from the

three datasets are similar; the trend pattern from

ERAINTWV is in close agreement with SSM/I, which is

unsurprising since this is assimilated by ERAINT over

the ice-free oceans. Both JRA-55 and MERRA2 show

strong positive trends in the central and eastern tropical

Pacific (Figs. S4a,b in the supplemental material). The

similarity of the WV trend across datasets can also be

clearly seen from the area mean anomaly time series

over the TEP (Figs. 3g and S4e). The WV trends from

the AMIP5 ensemble mean (Fig. 3c) and 15 members

(Fig. S5 in the supplemental material) are also similar.

The LH trend spatial pattern in Figs. 2a,f,j and the WV

trend spatial pattern in Figs. 3a–c are similar, confirming

that the higher WV in the atmosphere column will

suppress local evaporation.

The wind speed trends contrast across datasets. Both

ERAINT (Fig. 3d) and JRA-55 (Fig. S4c) show strong

positive wind speed trends over the central and eastern

Pacific, but positive trends from both SSM/I and

MERRA2 are much weaker (Figs. 3e and S4d). This can

also be clearly seen from the area mean wind speed

anomaly time series over the TEP as shown in Figs. 3h

and S4f (good agreement between 1995 and 2008 is due

to the selection of the reference period of 2001–08). The

trends over 1988–2008 are both 0.26m s21 decade21 for

ERAINT and JRA-55, larger than those from SSM/I

(0.10m s21 decade21; Fig. 3e) and the AMIP5 ensemble

mean (0.07m s21 decade21; Fig. 3f). Although the trends

are different, variability is similar (Figs. 3h and S4f). All

AMIP5 members show strong wind speed trends in the

central Pacific, but weak trends over the TEP (Fig. S6 in

the supplemental material).

To see if the MSLP drives the wind changes, the

MSLP trend over 1988–2008 and the multiannual mean

were compared (Fig. S7 in the supplemental material).

The similarity of the trend structure in ERAINT

(Fig. S7a) and JRA-55 (Fig. S7b) in the meridional di-

rection indicates similar gradient changes of MSLP be-

tween subtropics and equator, which may explain the

agreement of wind speed trend structure between them.

The relatively weak trend of the subtropical high south

of the TEP in MERRA2 (Fig. S7c) and AMIP5

(Fig. S7d) indicates weak gradient changes of MSLP

between the south subtropics and equator, which may

explain the weak wind speed trend over the TEP area.

Therefore, although the MSLP change over the TEP

area has a very small direct effect on the LH trend

estimation, the MSLP spatial structure difference can

affect the pressure gradient and further change the

wind speed. In addition, de Boisséson et al. (2014)

found good agreement for zonal wind speed trends

over the tropical Pacific between ERAINT and ob-

servations but noted that the discontinuities between

different satellite products are not taken into account,

such as the big jumps between the European Remote

Sensing Satellite-2 (ERS-2) and the Quick Scatter-

ometer (QuikSCAT) near 2000 in their Fig. 2a and

between ERS-2 and Envisat near 2003 in their Fig. 2b.

Different conclusions may be obtained if these dis-

continuities are considered.

d. Comparison with buoy observations

The large discrepancies in wind speed changes over

the TEP cast doubt on the reliability of the wind speed in

these datasets. To further check the wind speed quality,

data from TAO moored buoy array (98N–88S, 1408–
1058W) are used in this study for comparison (TAO

Project Office 2000). There are 27 buoys working in this

area; they are all calibrated before deployment and

there is no postdeployment calibration involved. (Data

quality control information can be found at http://

tao.ndbc.noaa.gov/proj_overview/qc_ndbc.shtml.) The

locations of the buoys are plotted in Fig. 4a (colored dots

represents the wind speed trend from the buoy), which is

an enlargement of Fig. 3d showing the ERAINT wind

speed trend. From January 1990 to December 2015,

there are 312 months; the minimum coverage period

from start to endmonth over all stations is 202months at

station 88N, 1108W (Fig. S8a in the supplemental mate-

rial), so all buoy records span at least 65% of the record

length. However, there are considerable gaps in the

buoy time series: the minimum fraction of the data

coverage over 1990–2015 is about 30% at the station
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58N, 1258W (Fig. S8b) and the mean fraction is 50%. At

each station, the anomaly is calculated by removing the

monthly mean (over 2001–08), which is calculated if the

total number of months is $2. The wind speed anomaly

time series is plotted in Fig. S9 of the supplemental

material, but the actual number of valid buoy data points

is not well reflected due to the smoothing of six month

running mean. The wind speed trends from individual

buoy records (Table S1 in the supplemental material)

are generally insignificant: only 9 out of 27 display sig-

nificant trends and 8 of these are positive (see also

Fig. S9) while the composite trend of 20.05m s21 dec-

ade21 is small and insignificant; 21 out of 27 wind speed

trends calculated from ERAINT grid points nearest to

the corresponding buoy stations (bottom right of the

matrixed Table S1) are positive and significant, and the

composite trend of 0.28ms21 decade21 is also significant.

When the ERAINT gridbox time series are sampled to

mimic the intermittent buoy time series (bottom center

of the matrixed Table S1), 16 out of 27 of the trends

remain positive and significant and the composite trend

of 0.25m s21 decade21 is significant. Therefore, al-

though intermittent data coverage reduces the signifi-

cance of trends, there are more robust positive trends in

the ERAINT data when sampled to mimic the buoy

spatial and temporal coverage.
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FIG. 4. (a) Wind speed trend from ERAINT (enlargement of the marked area in Fig. 3d).

Colored dots indicate 27 TAO buoy locations and wind speed trends. (b) Deseasonalized

wind speed anomaly (relative to 2001–08 period) time series from buoy stations (composite,

thick black line), ERAINT area-weighted mean over the TEP (thick red line), ERAINT

mean from grid points nearest to buoy stations including all data points (thick cyan line, no

area weighting), and the ERAINTmean including data points where the buoy station has the

valid data (magenta line, no area weighting). All lines are 12 month running mean. (c) The

time series of mean wind speed bias between ERAINT and buoy data using consistent spa-

tiotemporal sampling. The trend of 0.14m s21 decade21 over 1990–2015 is also displayed.
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Mean wind speed variability in the TEP for 1990–2008

is displayed in Fig. 4b for ERAINT using a variety of

spatial and temporal sampling strategies and the com-

posite of the buoy measurements. The fraction of valid

buoy data in each month increases steadily from about

1990 to 2000 and then becomes stable afterward while

there is a drop between 2011 and 2015 (Fig. S8c). Vari-

ability in mean ERAINT wind speed over the TEP

(Fig. 4b, thick red line) is similar to when only grid boxes

corresponding to the buoy locations are sampled (cyan

line). This indicates that the area mean from the buoy

spatial coverage is representative of the wider, com-

pletely sampled region; trends over the 1990–2015 pe-

riod are significant (based on theMann–Kendall test at a

significance level of 0.05) and positive for both, although

the trend is larger for theTEP region (0.34ms21 decade21)

than for the buoy grid points (0.28ms21 decade21). The

composite wind speed time series from buoys (Fig. 4b,

thick black line) displays an insignificant negative trend

of 20.05m s21 decade21 for 1990–2008. Sampling

ERAINT to also match the temporal coverage of the

buoys (magenta line) alters the time series substantially

demonstrating the substantial effect of incomplete ob-

servational coverage. Agreement between ERAINT

buoy spatial and temporal sampling (magenta line) and

the buoy time series variability is markedly improved

(r 5 0.92), indicating successful assimilation of the ob-

servational variability by ERAINT. However, the

ERAINT composite (magenta line) trend remains pos-

itive (0.25m s21 decade21) and substantially larger than

the corresponding trend from the buoy data. The cor-

responding plot for LH, similar to Fig. 4b, is shown in

Fig. S8d for reference.

The ERAINT minus buoy wind speed difference us-

ing consistent spatiotemporal sampling (Fig. 4c) depicts

an increasing trend (0.14m s21 decade21 over 1990–

2015), which contributes about 50% to the overall trend

of ERAINT wind speed over the TEP. Thus, the dis-

crepancy between the buoy and ERAINT wind speed

trends cannot easily be explained by the variable buoy

coverage. It is not currently clear how the assimilation of

data from an evolving observing system simply explains

this discrepancy and further investigation is merited.

The remaining difference is apparently associated with

the fact the influence of the assimilation declines rapidly

with distance from the buoy as pointed out by Josey

et al. (2014). Based on the comparison and analysis, the

area mean from the limited buoy spatial coverage (cyan

line in Fig. 4b) is representative of that over the wider,

completely sampled TEP area (red line in Fig. 4b), and

the intermittent buoy wind speed variability is well as-

similated into the ERAINT model. However, in-

creases in the ERAINT minus buoy wind speed, when

consistently sampled in space and time, indicate that

increases in wind speed and therefore also surface latent

heat flux are unrealistic and so the large decreases in net

downward energy flux into the tropical eastern Pacific

are questionable.

4. Conclusions

Cooling of the surface ocean over the tropical eastern

Pacific influences the global mean rate of surface tem-

perature change (Kosaka and Xie 2013; Trenberth and

Fasullo 2013; England et al. 2014). To understand the

mechanism of the cooling, numerous studies have been

conducted (Meehl et al. 2011; Hansen et al. 2011;

Guemas et al. 2013; Katsman and van Oldenborgh 2011;

Solomon et al. 2010; Kaufmann et al. 2011; Norris and

Evan 2015; Brown et al. 2014; Zhou et al. 2016). Moti-

vated by a discrepancy between observation-based es-

timates of surface heat flux changes and simulations

from atmosphere-only models over the TEP (Liu et al.

2015), an investigation of the causes of the surface en-

ergy flux is conducted using data from three atmo-

spheric reanalyses, 15 AMIP5 model simulations, and

the DEEP-C observation-based reconstruction. It is

found that the net downward surface flux change over

the TEP is dominated by the LH variability, and the

trend is significantly negative in ERAINT, JRA-55, and

the DEEP-C data. The negative trend over the TEP

from DEEP-C is not as strong as that from ERAINT

(Figs. 1f,g) as a result of the contrasting methodologies.

In contrast, the Fs and LH trends in the AMIP5 en-

semble mean show positive trend over the TEP region,

and the spatial pattern is closely related to the SST

pattern, indicating that SST changes are driving heat

flux changes in the AMIP5 model simulations. Since the

atmosphere simulations do not permit a coupled re-

sponse to the surface fluxes, it is possible that they are

missing an important mechanism yet the negative trends

depicted by the reanalysis-based estimates appear

unrealistically large.

To investigate the realism and cause of the implied

changes in surface heat flux, sensitivity tests using tur-

bulent heat flux bulk formula are applied. These indicate

that the LH changes depicted by ERAINT are domi-

nated by wind speed changes, which show increasing

trends over the eastern Pacific. This wind speed trend is

very weak in SSM/I satellite observations and is absent

in AMIP5 ensemble mean simulations. After further

comparison with buoy observations, it is found that few

buoy stations show significant positive wind speed

trends, although the corresponding composite trends

from ERAINT grid points nearest to the stations are

significantly positive. The variable spatial coverage of
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the buoy wind speed is assimilated by ERAINT and the

buoy coverage is shown to reasonably represent the

TEP area mean wind speed (cyan line in Fig. 4b).

However, an increase in ERAINT minus buoy wind

speed, when consistently sampled in space and time,

suggest that the increases in wind speed depicted by

ERAINT are overestimated. This further implies that

increased evaporative fluxes and reduced downward

heat flux trends depicted by ERAINT and other data-

sets may be unrealistic. The discrepancies between

different datasets cast questions on the reliability of the

reanalyzed surface fluxes over the tropical eastern Pa-

cific area. In AMIP5 simulations, models are forced by

SST, so the SST decrease over the TEP suppresses the

evaporation and reduce the upward LH flux, enhancing

the downward net surface flux. In the atmospheric re-

analysis, such as ERAINT the dominant contribution

of strong wind speed trend to the LH flux changes is

evident. The strong ERAINT LH trend is unrealistic

considering the observed temperature changes over the

TEP region (based upon energy budget arguments) and

comparison with buoy data when accounting for sam-

pling. This will indirectly affect the budget-based

DEEP-C product since erroneous wind speeds will in-

fluence the energy transports used in the calculation of

surface fluxes; the precise influence is uncertain but has

implications for budget-based indirect estimates of

surface energy fluxes (Liu et al. 2017; Trenberth et al.

1995; Chiodo and Haimberger 2010; Mayer and

Haimberger 2012; Trenberth and Fasullo 2017). Josey

et al. (2014) found that assimilation of TAO mooring

contributed to unrealistic near surface humidity and

wind speed anomalies in ERAINT. The impact of these

unrealistic anomalies on the latent heat flux in the

tropical Pacific may play a role in the unrealistic LH

trend. However, these results do not appear to con-

tradict the mechanisms invoked to explain TEP cooling

discussed by England et al. (2014) since this key region

of wind enhancement centers on the central Pacific

where satellite data and simulations broadly agree on

recent changes. Nevertheless, the TEP is a key region

in determining global climate variability and time-

varying climate sensitivity (Ceppi and Gregory 2017;

Andrews and Webb 2018) so understanding the role of

surface fluxes in this region is crucial. While AMIP5

simulations are temporally homogeneous, they do not

represent the key atmospheric feedbacks on ocean

temperature so additional in-depth investigation is

necessary to elucidate the mechanisms of decadal vari-

ability in ocean temperature, including using data from the

ocean reanalysis and the fifth-generation ECMWF re-

analysis (ERA5) for further comparisons and coupled re-

analysis for feedback mechanism studies.
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