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[1] The consistency of precipitation variability estimated from the multiple satellite-based
observing systems is assessed. There is generally good agreement between TRMM TMI,
SSM/I, GPCP and AMSRE data sets for the inter-annual variability of precipitation
since 1997 but the HOAPS data set appears to overestimate the magnitude of variability.
Over the tropical ocean the TRMM 3B42 data set produces unrealistic variability.
Based upon deseasonalized GPCP data for the period 1998–2008, the sensitivity of global
mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although
a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer
period 1989–2008. Over the tropical oceans dP/dT ranges from 10 to 30%/K depending
upon time period and data set while over tropical land dP/dT is �8 to �11%/K for the
1998–2008 period. Analyzing the response of the tropical ocean precipitation intensity
distribution to changes in T we find the wetter area P shows a strong positive response to
T of around 20%/K. The response over the drier tropical regimes is less coherent and
varies with data sets, but responses over the tropical land show significant negative
relationships over an interannual time-scale. The spatial and temporal resolutions of the
data sets strongly influence the precipitation responses over the tropical oceans and help
explain some of the discrepancy between different data sets. Consistency between data sets
is found to increase on averaging from daily to 5-day time-scales and considering a
1° (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the
60th percentile of P intensity, the 5-day average, 1° TMI data exhibits a coherent drying of
the dry regime at the rate of �20%/K and the wet regime becomes wetter at a similar
rate with warming.

Citation: Liu, C., and R. P. Allan (2012), Multisatellite observed responses of precipitation and its extremes to interannual
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1. Introduction

[2] Climate change is anticipated to exert profound effects
on the hydrological cycle and therefore society [Meehl et al.,
2007]. Anticipated changes, based upon physical theory and
global modeling have long indicated increases in global mean
precipitation, intensification of extreme precipitation and a
decline in mean precipitation over the dry, sub-tropical regions
of net moisture export [Mitchell et al., 1987; Trenberth, 2011].
While enhanced radiative cooling of a warming atmosphere is
thought to control global mean changes [Mitchell et al., 1987;
Lambert and Webb, 2008; Stephens and Ellis, 2008; Allan,
2009], regional changes in mean and extreme precipitation
are strongly linked to the rises in atmospheric moisture with
warming due to the Clausius Clapeyron equation [Emori and
Brown, 2005; Bengtsson et al., 2009] which explains enhanced
transport of moisture into regions of net moisture conver-
gence [Held and Soden, 2006], and also changes in dry static
energy transport [Muller and O’Gorman, 2011].

[3] Appreciating the robust aspects of changes in global to
regional precipitation changes are vital for informing adap-
tation and mitigation policy choices and therefore there is a
powerful motivation for confirming physically based models
by careful use of high quality, homogenous observations.
Observed signals of increased global mean and extreme
precipitation and an enhanced contrast between the wet and
dry regions of the tropics have been detected [Zhang et al.,
2007; Chou et al., 2007; Adler et al., 2008; Allan et al.,
2010; Min et al., 2011] yet obtaining consistent and robust
results from a variety of observing systems remains a consid-
erable challenge [John et al., 2009;Haerter et al., 2010;Wang
et al., 2008].
[4] The aim of the present study is to evaluate the observed

global response of precipitation and its extremes utilizing a
variety of satellite-based global data sets over a range of spatial
and temporal scales. The reason for doing so is to seek clear
observational signals of precipitation response to natural cycles
of warming and cooling in the present-day climate system that
may be of relevance for evaluating the physical responses
simulated in a variety of climate model simulations and iden-
tifying reasons for inconsistencies among data sets. We con-
sider global data from 1987 to 2010 but concentrate upon the
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period since 1997 over the tropical region (30°N-30°S), since it
not only has the main ascending branch of the Hadley and
Walker circulations which affect the climate globally, but it is
also covered by a variety of satellite observations. The two
primary questions we aim to address in the following sections
are: (i) are there robust responses of global and tropical pre-
cipitation and its percentile distribution to interannual changes
in surface temperature and (ii) how do the spatial and temporal
scales sampled influence these relationships.

2. Data Sets and Methods

[5] Ideally, observed precipitation data over the whole
globe will be helpful in studying the spatial distribution of
precipitation and its response to changing climate, but few
data sets covering both the global land and ocean are avail-
able. Most satellites sensors may only reliably retrieve pre-
cipitation over the ice-free oceans.
[6] The SSM/I (Special Sensor Microwave Imager) is a

seven-channel, four-frequency, orthogonally polarized, passive
microwave radiometric sensor system [Wentz and Spencer,
1998; Vila et al., 2010] covering the global ice-free ocean and
it has been operated on different DMSP (Defense Meteoro-
logical Satellite Program satellites) platforms (F08, F10, F11,
F12, F13 and F15) since 1987. It has a spatial sampling res-
olution from 12.5 to 25 km. The precipitation rate is one of the
retrieved parameters. The next generation SSM/I instrument,
the Special Sensor Microwave Imager/Sounder (SSMIS)
[Wentz and Spencer, 1998] on aboard DMSP satellites F16
and F17 has been operating since 2003 and 2007 respectively.
The precipitation rates are retrieved using new algorithms and
the SSMIS data have been carefully intercalibrated on the
brightness temperature level with the previous SSM/I (see
http://www.ssmi.com/ssmi/ssmi_description.html for details).
It is noted that both F16 and F17 data sets have some cali-
bration problems and are under reprocessing (Smith, personal
communication, 2011); we include them here for comparison
purposes only.
[7] HOAPS (Hamburg Ocean Atmosphere Parameters and

Fluxes from Satellite Data) data set [Andersson et al., 2010]
contains a completely reprocessed time series of global ocean
freshwater flux related parameters using variables derived
from SSM/I data over the ice free global ocean ranging from
1987 to 2005.
[8] The AMSRE (Advanced Microwave Scanning Radi-

ometer - Earth Observing System) [Lobl, 2001] instrument
measures geophysical fields related to the earth’s water cycle
including precipitation rate over the global ice-free ocean.
The AMSRE data set is retrieved from a twelve-channel, six-
frequency, passive microwave radiometer which has a spatial
sampling interval from 5 km to 10 km. The spatial resolution
of AMSRE data is double that of SSM/I data.
[9] The TRMM 3B42 (Tropical Rainfall Measuring Mis-

sion) [Huffman et al., 2007] data set is a TRMM adjusted
merged-infrared (IR) precipitation data set using multisatellite
data sets including TMI (TRMM Microwave Imager), SSM/I,
AMSR and AMSU (Advanced Microwave Sounding Unit).
It covers both the tropical ocean and the tropical land (50°N–
50°S). The TMI is a nine-channel passive microwave radiom-
eter based on SSM/I and has spatial sampling resolution about
14 km. The TMI data set is well-calibrated and contains
precipitation rate over the tropical ocean only (40°N–40°S)

(http://www.ssmi.com/tmi/tmi_description.html). The global
ocean and land are only covered by the merged GPCP (Global
Precipitation Climatology Project) data set containing data
from land-based rain gauges, sounding observations, micro-
wave radiometers (such as SSM/I) and infrared radiances
from the Global Precipitation Climatology Centre [Adler
et al., 2003].
[10] The data period available for this study and their

properties are listed in Table 1. Not all of these data sets
listed in Table 1 are independent. For example, the SSM/I
data set is used by the GPCP, HOAPS and TRMM 3B42
data sets and the TMI data set is also used by the TRMM
3B42 data set. On the other hand, the TRMM satellite is not
sun-synchronous and is on a low inclination orbit, the SSM/I
and SSMIS satellite are on sun-synchronous and near-polar
orbits. The AMSRE satellite is also on a sun-synchronous
orbit. The sun-synchronous orbiter only data set can simply
miss some parts of the diurnal cycle, which can be signifi-
cant even over the ocean. All data sets used in this study
provide daily data including zero precipitation rates. How-
ever, the satellite measurements do not provide daily aver-
aged quantities and rather sample instantaneous rainfall rates
over 2 overpasses per day and therefore may be considered
as instant snap-shots of the precipitation fields averaged over
the satellite footprints, averaged up to the regular grids.
[11] All products considered have a spatial resolution of

0.25° except for GPCP and HOAPS data sets which have a
resolution of 1°. The low resolution (2.5°) monthly GPCP
data set is also listed for comparison purpose because it is
available over a longer time period (1979–2008). We only
consider the period containing microwave measurements
since 1987. The SSM/I data set used in this study consists of
joint data from three satellite platforms, F08, F11 and F13,
and they are treated as one time series without any adjust-
ment. Since the time when F13 satellite passes the equator
drifts least, so all F13 data from 1995 to 2009 are used,
together with all F08 data from 1987 to 1991 [Gastineau and
Soden, 2011]. The gap between F08 and F13 (1992–1994) is
filled by F11 data. The surface temperature considered is air
temperature at 2 m from the European Centre for Medium-
range Weather Forecasts (ECMWF) INTERIM reanalysis
[Dee et al., 2011] which is accumulated from six hourly data
having resolution of 0.25° interpolated from the original
N128 reduced Gaussian grid (�0.7°).
[12] In order to study the precipitation (P) variation and

its relationship with the surface temperature (T), P is also
divided into percentile bins in ascending order calculated
from all valid data points in a month, and the anomaly time
series of P averaged over the percentile bin is calculated for
each percentile bin. The anomaly time series of the global
or tropical area average T is also calculated and the linear
least squares fit gradient, dP/dT, is computed using a similar
approach to that of Allan et al. [2010]. The precipitation
percentile bin intervals used for this study are 10% from 0 to
60% (6 bins), then 5% from 60 to 80% (4 bins) and then
every 1% from 80 to 100% (20 bins). This choice was made
to account for the substantial number of dry grid points that
dominate the lowest percentiles and also to contain a suffi-
cient number of bins to capture the long tail in the distribution
at high rain rates.
[13] To study the effect of temporal resolution on the

observed P-T relationships, the daily data is also integrated
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to 3 days, 5 days, 10 days and monthly data respectively.
Then the integrated precipitations over a month are used for
the percentile bin calculation. dP/dT is then obtained from
the gradient of the P and T anomaly regression. For the
spatial integration, the 0.25° data are integrated to 1°, 2° and
4° resolutions respectively. In both temporal and spatial
integrations, the total mean precipitation rates are kept same.

3. Seasonal and Interannual Variability in Global
and Tropical Precipitation

[14] To check the consistence of the precipitation rate in
the observed data sets from different satellite platforms, the
mean precipitation over the whole globe, the tropical ocean
and the tropical land, are calculated from each data set based
on the reference period of 2003–2008, except for the
HOAPS data set (based on 2000–2005), SSMIS F16 data set
(based on 2004–2009) and the SSMIS F17 data set (based on
2007–2010), due to data period limitations. Zero precipita-
tions are all included in our calculations.
[15] Only the GPCP data set covers both the global ocean

and land. In order to test the sensitivity of global precipitation
variability to data set, we also generated some hybrid global
data sets using global ice-free ocean data from the AMSRE,
SSM/I, HOAPS and SSMIS F16 data sets. The high resolu-
tion (0.25°) ocean data are integrated to 1° resolution and
all missing values (including those over the land and the
ice-covered oceans) are simply filled with daily GPCP data.
The mean precipitation and the corresponding anomalies are
calculated at 1° resolution for hybrid data sets and at original
resolutions for other data sets listed in Table 1. It is not our
aim here to construct new data sets but merely to assess the
sensitivity of global precipitation and its variability to the
choice of satellite data set applied over the oceans.
[16] Mean surface temperature from ERA INTERIM and

mean precipitation from all data sets listed in Table 1 are
plotted in Figure 1. Both global and land temperatures
(Figure 1a) show strong seasonal variations.
[17] The global mean precipitation calculated from GPCP

and the four hybrid global data sets (Figure 1b) show little
coherent seasonal variation. There is good agreement
between GPCP and the hybrid GPCP + SSMIS F16 data set
and to a lesser extent the GPCP + HOAPS data set; their

mean values are between 2.6 to 2.8 mm/day. Mean precipi-
tation from GPCP + SSM/I and GPCP + AMSRE hybrid
data sets are systematically lower than the previous three,
and their mean values are around 2.5 and 2.3 mm/day
respectively. Because data over the land are the same, so the
difference is from the global ice-free ocean. Mean precipi-
tation over the tropical ocean (30°N–30°S) vary with data
sets from 2.5 to 3.4 mm/day (Figure 1c). There is good
agreement between SSM/I and SSMIS, and they are close to
the mean values of all data set mean precipitation. The sea-
sonal variation for each data set is small compared with the
variation among the data sets. The SSM/I mean precipitation
(solid green line) over the tropical ocean is close to that of
SSMIS F16, but over the global, it is systematically lower,
implying that the difference is from the measurement over
the ocean at higher latitude.
[18] There are only two data sets (GPCP and TRMM 3B42)

that cover both the tropical ocean and the tropical land. The
seasonal variability over the tropical land (30°N–30°S) in
Figure 1d is much larger than that over the tropical ocean. Both
data sets show similar variability with maximum precipitation
around March and minimum precipitation between October
and November, though the TRMM 3B42 data set produces
precipitation that is systematically lower by between 0.2 to
0.4 mm/day.
[19] The deseasonalized anomaly time series for both

temperature and precipitation are plotted in Figure 2. All
anomalies are plotted as three month running means.
Figure 2a shows the temperature anomalies for the global,
tropical ocean and tropical land mean relative to the reference
period described in Figure 1. There are strong correlations
among them (about 0.7). It clearly shows the decrease after
the Pinatubo eruption in June 1991, and the peaks coinciding
with El Niño around 1998 and 2005. The temperature
increases from 2000 to 2002 and then remains more or less
the same for the rest of the period, except during El Niño
around 2005 and La Niña around 2008. This covers the most
important period of satellite precipitation observations.
[20] The deseasonalized precipitation anomalies (relative

to mean precipitations in Figure 1) from different data sets
are plotted in Figures 2b–2d. Figure 2b shows the anomalies
over the globe. Global mean anomalies from GPCP daily

Table 1. Precipitation Data Sets and Their Properties

Data Set Period Description

GPCP 1DD v1.1 1996–2009 Combined observed precipitation from satellite and rain gauges.
Daily data, global ocean and land, 1° resolution. (SSM/I) (http://www.gewex.org/gpcpdata.htm)

AMSRE v5 2002–present Twice a day, global ice-free ocean, 0.25° resolution. (http://nsidc.org/data/amsre/)
SSM/I v6
F08 1987–1991 Twice a day, global ice-free ocean, 0.25° resolution.

(http://www.remss.com/ssmi/ssmi_description.html)F11 1992–2000
F13 1995–2009
SSMIS v7
F16 2003–present Twice a day, global ice-free ocean, 0.25° resolution.

(http://www.remss.com/ssmi/ssmi_description.html)F17 2006–present
TMI v4 1997–present 1 to 2 times per day, tropical ocean only (40°N �40°S), 0.25° resolution.

(http://www.remss.com/tmi/tmi_description.html)
HOAPS v3 1987–2005 Twice a day, global ice-free ocean, 1° resolution. (SSM/I) (http://www.hoaps.zmaw.de/)
TRMM 3B42 v6 1998–present Tropical ocean and land (50°N �50°S), 0.25° resolution. (TMI, SSM/I, AMSR, AMSU, IR),

daily and 3 hourly. (http://trmm.gsfc.nasa.gov/3b42.html)
GPCP v2.2 monthly 1979–2008 As GPCP v1.1, but it is monthly, 2.5° resolution.
ERA INTERIM 1989–present 6 hourly, global, 0.25° resolution.
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Figure 1. Mean seasonal cycle of (a) temperatures over the globe, the tropical ocean and the tropical land
based on the reference period of 2003–2008 (10 °C is added to the global temperature to improve the clar-
ity of the plot) and precipitation for different data sets based on the reference period of 2003–2008 except
for HOASPS (based on 2000–2005), SSMIS F16 data set (based on 2004–2009) and the SSMIS F17 data
set (based on 2007–2010) over (b) the globe, (c) the tropical ocean, and (d) the tropical land.
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Figure 2. Deseasonalized anomalies of temperature and precipitation relative to the mean values of
Figure 1: (a) temperature anomalies at 2 m from ERA INTERIM data set over the globe, the tropical ocean
and the tropical land. Precipitation anomalies (b) over the globe, (c) over the tropical ocean, and (d) over
the tropical land for all data sets. All curves are plotted with three month running mean. The amplitude of
HOAPS precipitation anomalies are scaled down by a factor of 3 to improve the clarity of the plot.
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and GPCP monthly data sets are plotted in Figure 2b with
the additional four hybrid data sets. Only the GPCP monthly
data set samples prior to 1996. All data sets agree well for
the period after 1996, except for the HOAPS data set which
shows a higher amplitude variation and is scaled down by a
factor of 3 in the plot. The reasons for this larger variability
are currently not clear. The global precipitation anomaly
variations have strong correlation with the temperature
anomalies in Figure 2a associated with El Niño Southern
Oscillation (ENSO).
[21] Over the tropical ocean, there are only three data sets

available before 1996, the SSM/I and the HOAPS daily data
sets and the GPCP monthly data set, all of which use the
SSM/I data [Andersson et al., 2010; Adler et al., 2008].
There are large differences among data sets before 1992,
even between SSM/I and HOAPS data sets. This may
because we only used F08, F11 and F13 data sets and
HOAPS used all available SSM/I data. All data sets show
consistent variability (after the HOAPS anomalies are
reduced by a factor of 3) after 1997 except for the TRMM
3B42 data set which is at odd with the other data sets. This
has been reported by Huffman et al. [2007, Figure 8] and it is
mainly due to the AMSU-B rain estimates because the
existing AMSU-B algorithm failed to detect light rain over
oceans, particularly in the subtropical highs. This bias will
be corrected in the future data set version 7 which is
expected to be available at the end of 2011 (personal com-
munications, Huffman). Both ENSO events in 1998 and
2005 can be clearly seen from the tropical mean anomalies.
Again, the HOAPS anomaly shows higher variability com-
pared to the other data sets and is scaled down by a factor of
3 in the plot.
[22] Over the tropical land shown in Figure 2d, both

anomalies from GPCP and TRMM 3B42 data sets follow

each other and generally have opposite sign to those over the
tropical ocean. The opposite changes in tropical land and
ocean precipitation appears to correspond with ENSO,
which increases precipitation over the central Pacific and
decreases precipitation over South East Asia and Central
America, and so may not be simply related to relationships
relevant for global warming of climate. The correlation
coefficients for GPCP precipitation and ERA INTERIM
surface temperature are 0.68 over the tropical ocean and
�0.43 over the tropical land. Comparing Figures 2c and 2d
implies that the precipitation oscillates between the tropical
ocean and the tropical land due to ENSO oscillation. The
variations of the anomalies over both the tropical ocean and
the tropical land have similar amplitudes.
[23] In order to illustrate the relations between the total P

and T anomalies, the scatterplot is shown in Figure 3. The
data sets and the period used for this plot are listed in
Table 2, together with the gradient dP%/dT (dP/dT divided
by the mean precipitation from Figure 1) and the correlation
coefficient (r) which is in bold when significant after
applying the two tailed test using Pearson critical values at
the level of 5%. For global means (Figure 3a), GPCP and
other three hybrid data sets all show positive correlations
and the correlations are all significant. The dP%/dT of these
four data sets are between 3.3 and 8.8%/K. This is consistent
with the sensitivity estimated by Wentz et al. [2007] who
combined SSM/I and GPCP data for the period 1987–2004.
The value from our calculations using the monthly mean
GPCP data set over the longer period 1989–2008 is 3.6%/K,
similar to values found by Adler et al. [2008] who consid-
ered GPCP data for 1988–2006. The value is reduced from
6.0%/K to 3.6%/K using the longer GPCP record; this may
relate to the data quality before 1998 but also highlights
the limitations of considering short records. Our detailed

Figure 3. Scatterplot showing correlations between precipitation and temperature anomalies (a) over the
global, (b) the tropical ocean and (c) the tropical land.
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analysis (not shown here) shows the correlation between P
and T is strong after 1998 for the monthly GPCP data, but it
is very weak before 1998. So the correlation for the longer
data set is reduced. The dP%/dT values also depend on the
corresponding mean precipitation defined in Figure 1 which
shows large discrepancies among different data sets.
[24] Over the tropical ocean, the correlations from all five

data sets are significant. The values are higher than those for
global means. The dP%/dT values are all above 10%/K and
as much as 30%/K for SSMIS F16, similar to but a little
higher than the sensitivities calculated by Allan et al. [2010]
for the 1988–2008 period. John et al. [2009] also found a
strong dependence of these relationships to data set and time
period considered. Over the tropical land, the correlations
are also significant and very close, but they are negative and
slightly lower in magnitude than that over the tropical ocean
(dP%/dT is around �8 to �11%/K) although do not show
significant coupling over the 1989–2008 period using
monthly GPCP data due to very weak correlation before
1998.

4. Mean Precipitation Over the Percentile Bins

[25] The influence of atmospheric warming upon precipi-
tation extremes is of importance for climate impacts and this
motivates the detailed assessment of how the observed pre-
cipitation distributions (dry up to the most intense rainfall)
respond to temperature [O’Gorman and Schneider, 2009;
Allan et al., 2010; Sugiyama et al., 2010; Lenderink and van
Meijgaard, 2010; Haerter et al., 2010]. In order to quantify
changes in the precipitation rate distribution, the mean pre-
cipitation for each percentile bin over the tropical ocean is
calculated based on the reference period defined for
Figure 1. The results are shown in Figure 4. The top row is
the mean precipitation from different data sets and integra-
tion periods (1 day, 5 day and monthly). All high resolution
(0.25°) data sets are spatially integrated to 1° resolution in
order to compare them consistently. The SSMIS F17 data set
is not used here due to its short observational period. Since

zero precipitation is included in all our calculations, for most
of the observational data sets, the first few percentile bins
contain all zero precipitation. The mean precipitation is not
calculated for those bins having zero precipitation at both
sides of the bin boundaries. The starting point of each curve
in the top row shows where nonzero boundary is reached.
The population of zero precipitation points is data set
dependent due to different retrieving algorithms. The dif-
ference also becomes smaller as the integration period
increases but is particularly prominent for the daily time-
scale where the data actually consists of satellite swaths,
more comparable to 30-min sampling [Wilcox and Donner,
2007].
[26] The difference in precipitation intensity distributions

among data sets becomes smaller as the temporal integration
period increases, but they are separated into two groups. The
purely microwave-based retrievals from AMSRE, TMI and
SSM/I produce systematically lower daily precipitation than
the blended data sets from GPCP, HOAPS and TRMM
3B42. This discrepancy does not rely on the satellite orbits
as discussed in section 2. A possible explanation is that the
blended products contain a certain degree of implicit aver-
aging in time and space, thereby increasing the frequency of
light rainfall and decreasing the intensity of heavy rainfall.
Indeed the differences diminish with greater temporal aver-
aging. There is a near linear increase in logarithmic scale at
high percentile bins, but drops quickly at the smaller per-
centile bins. Of course, this will depend on the definition of
bin width. On the other hand, the passive microwave algo-
rithm cannot detect rainfall less than 0.1 mm/hr which is
why the cut-off values for AMSRE, SSM/I and SSMIS in
Figure 4a are much higher than those for blended data sets
(GPCP and TRMM 3B42). The small precipitation values in
the plot are generated artificially from the average process.
[27] The spatial integration effect on the mean precipita-

tion from the TMI data set is plotted in Figures 4d–4f, and it
shows that for high resolution (0.25°) the precipitation is
zero for most of the light precipitation bins; nonzero pre-
cipitation only occurs at very high percentile bins (from the
92nd percentile bin for TMI). Both temporal and spatial
integrations reduce the percentage of zero precipitation
points. The spatial resolution effect on mean precipitation is
also tested for AMSRE and SSM/I data sets (not shown
here); they all show similar results to those of TMI. The
influence of spatial averaging on the TMI data is to narrow
the precipitation distribution, as discussed by Field and
Shutts [2009]. The mean precipitation values selected from
Figure 4, for different precipitation percentile bins of 88–89,
95–96 and 99–100 and integration periods of one day, five
days and one month, are listed in Table 3 for the seven data
sets in Figure 4. The value for the spatial integration effect of
TMI data set is also listed. For daily data, the mean precip-
itation varies substantially over different bins and for dif-
ferent data sets. The heaviest precipitation of SSM/I and
HOAPS at bin 99–100 are twice that of GPCP. When the
time integration period increases, the difference is reduced
due to the averaging process. For TMI, the spatial integra-
tion greatly reduces the heavy precipitation rate as shown in
Table 3: for daily data over the percentile bin of 99–100, the
precipitation is reduced from 142 mm/day to 44 mm/day.
Figure 4 and Table 3 show that both the temporal and spatial
integrations of the data set have a profound effect on the

Table 2. Data Sets for the Scatterplot and the Relations Between
Temperature and Precipitation Anomaliesa

Data Set Period dP%/dT (%/K) r

Global
GPCP 1998–2008 6.0 0.56
GPCP + AMSRE 2003–2008 4.3 0.56
GPCP + SSM/I F13 1998–2008 8.8 0.71
GPCP + SSMIS F16 2004–2008 3.3 0.30
GPCP monthly 1989–2008 3.6 0.38

Tropical Ocean
GPCP 1998–2008 14.9 0.68
AMSRE 2003–2010 12.1 0.62
SSM/I F13 1998–2008 25.6 0.75
SSMIS F16 2004–2010 30.9 0.47
TMI 1998–2008 14.9 0.61
GPCP monthly 1989–2008 10.2 0.48

Tropical Land
GPCP 1998–2008 �8.2 �0.43
TRMM 3B42 1998–2008 �10.6 �0.46
GPCP monthly 1989–2008 �1.1 �0.07

aThe correlation coefficient (r) is in bold when significant after applying
the two tailed test using Pearson critical values at the level of 5%
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precipitation rate distributions as anticipated [Field and
Shutts, 2009]. Therefore care must be taken in comparing
satellite-based estimates of the changes in precipitation per-
centile distributions with general circulation models. Using
an integration period of 5-days produces a more consistent
precipitation distribution between data sets with only a small
sensitivity to spatial averaging for resolutions of 1 degree
and coarser.

5. Response of Precipitation Intensity Distribution
to Surface Temperature

[28] The response of the intensity distribution of precipi-
tation to climate variability is analyzed in this section. We
use the linear least squares sensitivity (dP/dT) of P and T
anomalies across percentile bins of P to quantify the
response. The relative dP/dT is named dP%/dT defined as:

dP% binð Þ=dT ¼ 1=P binð Þð Þ dP binð Þ=dTð Þ ð1Þ

where the mean precipitation intensity distribution, P(bin) is
displayed in Figure 4 and T is the mean temperature (global

or tropical, land or ocean). The GPCP data is used to study
the dP%/dT variations globally and over the tropics, over
ocean and land. The dP%/dT response over the tropical
ocean is fully investigated in the next section.
[29] The dP%/dT is calculated using the daily 1° resolution

data and the results are shown in Figure 5. Figure 5a is for
the whole globe, the global ocean and the global land
respectively. The solid dots represent the significant corre-
lations after applying a two-tailed test using Pearson critical
values at the significance level of 5%. All three areas show a
positive precipitation response to warming over the higher
percentile bins and negative responses over the lower bins.
However, only the global and global ocean responses for the
heavier precipitation bins are statistically significant. There
is no significant response over the global land at all and the
response over the highest percentile bins is close to zero, due
to complicated response mechanisms over different land
areas [Trenberth and Shea, 2005; Haerter et al., 2010].
Specifically, cause and effect is ambiguous: for some
regions, less cloud and rainfall with lower soil moisture is
associated with enhanced surface heating by solar radiation

Table 3. Mean Precipitation (mm/day) in Percentile Bins for 1 Day, 5 Days and 1 Month Integration

Percentile Bins

1 Day 5 Days 1 Month

88–89 95–96 99–100 88–89 95–96 99–100 88–89 95–96 99–100

GPCP (1o) 8.0 20.5 52.5 8.8 15.0 31.0 7.6 10.6 16.4
AMSRE (1o) 2.5 12.2 88.6 6.7 14.8 42.1 7.0 10.6 19.9
SSM/I (1o) 0.7 14.2 110.8 3.9 9.5 27.7 4.2 6.6 12.3
TMI (1o) 2.0 13.0 93.1 4.7 10.2 27.3 4.8 7.1 12.4
HOAPS (1o) 5.6 14.1 127.5 7.1 15.6 56.6 8.1 12.8 24.4
TRMM 3B42 (1o) 6.1 18.1 61.9 8.1 14.6 33.2 7.4 10.6 17.5
SSMIS f16 (1o) 2.0 12.5 75.5 4.9 11.5 31.6 5.1 7.8 14.3
TMI (0.25o) 2.0 8.8 142.2 4.5 12.5 34.5 5.2 8.0 14.6
TMI (1o) 2.9 13.0 93.1 4.7 10.2 27.3 4.8 7.1 12.4
TMI (2o) 3.2 12.0 67.6 4.7 9.2 23.0 4.5 6.6 11.0
TMI (4o) 10.4 44.2 4.5 8.0 18.2 4.2 5.9 9.4

Figure 5. dP%/dT over precipitation percentile bins (a) over the global, the global ocean and the global
land and (b) over the Tropics, the tropical ocean and the tropical land. They are calculated using the daily
data at the 1° resolution of GPCP data set from 1998 to 2008.
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while over other regions, with ample moisture availability,
warmer temperatures may be associated with more low level
water vapor and higher precipitation intensity. The response
over the global ocean is thus higher than that over the whole
globe.
[30] The tropics show a similar behavior to the global

response although the threshold separating the positive and
negative responses is over higher percentile bins (approxi-
mately 88%) than that for the global (around 75%). The land
response is predominantly negative (warmer tropical land
temperature is associated with less rainfall) and statistically
significant; similar results are given by the TRMM 3B42
data set (not shown here).

6. Influence of Temporal and Spatial Averaging
on Observed Precipitation Responses Over
the Tropical Ocean

[31] Over the tropical oceans, there are many satellite-
based observational precipitation data sets available which
display contrasting precipitation responses [John et al.,
2009]. Therefore it is important to understand the reasons
for discrepancies and, if possible, identify the most physi-
cally robust data set. Based upon the analysis of the pre-
cipitation percentile distributions, one hypothesis is that
varying temporal and spatial resolutions may affect the
analysis results, since this fundamentally impacts the pre-
cipitation intensity distribution. In order to investigate these
resolution effects on the precipitation response to the surface
temperature change, the dP%/dT values over the tropical
ocean are calculated for different data sets at different tem-
poral and spatial resolutions, where P is the precipitation for
each percentile bin and T is tropical ocean mean tempera-
ture. For comparison purpose, the data period used for the
calculation in this section is from 1998 to 2008, except for
AMSRE which is from 2003 to 2010.

6.1. Temporal Resolution Effect

[32] To investigate the temporal resolution effect on the
dP%/dT calculation, only four data sets (GPCP, AMSRE,
SSM/I and TMI) are considered since the observational
period of SSMIS data sets (F16 and F17) are too short and
the TRMM 3B42 and HOAPS data sets displays inconsistent
variability (Figure 2c).
[33] They are all integrated to 1° resolution and also to

1 day, 5 days and a month, respectively. The dP%/dT is
calculated and the results are plotted in Figure 6. The solid
dots are significant points as stated before. For daily data,
three out of four data sets lines show negative response at
lower percentile bins though the negative response from
GPCP data set is not significant due to weak correlations. All
data sets show positive response at high percentile bins. This
is consistent with the dry region becoming drier and the wet
region is becoming wetter with warming [John et al., 2009;
Allan et al., 2010; Zhou et al., 2011] due to enhanced
moisture transports [Held and Soden, 2006]. The dP%/dT
from SSM/I is always positive because the SSM/I data are
less sensitive to light precipitation and have large percentage
of zero precipitation grid points (see Figure 4a).
[34] For both AMSRE and TMI data sets, there are sig-

nificant negative correlations and the threshold points

separating the positive and negative correlations for those
two data sets are very close, but in general the threshold
point position depends on the data sets and the integrations.
[35] Averaging from 1 to 5-days increases the consistency

precipitation distribution response to tropical warming
between data sets. The threshold bin position separating the
positive and negative correlations shifts from high percentile
bins to low percentile bins due to the averaging effect. For
the one month integration, the results are similar to the five
day integration, but it becomes noisier over the low per-
centile bins, presumably due to averaging over contrasting
dynamical situations.

6.2. Spatial Resolution Effect

[36] The spatial integration effect on dP%/dT is also
investigated using the daily data and plotted in Figure 7. For
TMI, AMSRE and SSM/I data sets, there are four resolu-
tions of 0.25°, 1°, 2° and 4°, but there are only three reso-
lutions of 1°, 2° and 4° for GPCP. For the TMI data
(Figure 7a), the spatial integration effect on the precipitation
response to the temperature is obvious, the threshold bin
position shifts to the smaller percentile bins and the negative
correlation over the dry regions becomes significant. The
results for AMSRE (Figure 7b) are similar to that of TMI.
Spatial averaging has a similar effect to the temporal aver-
aging shown in Figure 6. The spatial integration effect on
SSM/I data (Figure 7c) is also profound, particularly between
the 0.25° and 1° resolutions, but the effect on GPCP data is
relatively small (Figure 7d). This may be because the GPCP
data set combines multisatellite products and some spatio-
temporal integration may have been implicitly applied during
processing. Based on this analysis, it appears that the GPCP,
TMI and AMSRE data sets are reasonably consistent in their
characteristics.

6.3. Threshold

[37] Both temporal and spatial integrations have profound
effects on the study of precipitation response to temperature.
The threshold precipitation percentile bins separating the
negative and positive responses are plotted in Figure 8.
Figure 8a is the threshold variation with time integration
period for three data sets (GPCP, AMSRE and TMI) over
the tropical ocean at 1° resolution. Both AMSRE and TMI
agree well, but the GPCP has a lower threshold, again
thought to relate to the more complex methodology applied
to this data set. The spread of the threshold value due to time
integration is comparable with that of using different data
sets. Figure 8b is from TMI for different spatial integrations.
The spatial integration effect is smaller than that of time
integration. The influence of resolution on the precipitation
percentile threshold below which negative dP/dT occurs is
strong for the daily data (Figure 8b, inset). As expected, both
temporal and spatial integrations reduce the frequency of
high and zero precipitation rates, therefore shifting the
threshold bin to the lower end of the precipitation
distribution.

6.4. Dry and Wet Regions

[38] Previous studies have highlighted the contrasting
responses of the tropical wet and dry regions [Chou et al.,
2007; Allan et al., 2010] although the precise threshold in
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the distribution below which negative dP/dT occur appears
to be sensitive to time-averaging (previous sections and Pall
et al. [2007]). Here, we extend the analysis of the previous
section to analyze in more detail the influence of time-
integration upon the precipitation percentile threshold and
the results are plotted in Figure 9. The calculations are carried
out using daily, 5-day and monthly data at 1° spatial resolu-
tion from the TMI data set. The integration on Figure 9a is
from the first precipitation percentile bin (0%) to a variable
percentile bin used as the x axis (hereafter 0-bin integration).
The integration on Figure 9b is from a variable percentile
bin to percentile100 (hereafter bin-100 integration). For the
0-bin integration, the first few data points represent the
relationship between precipitation and temperature over
the dry regime. It is clear that the correlation is negative until
percentile 96% for the daily integration, slightly higher than
the value found by Pall et al. [2007] for climate model data.
The temporal integration greatly reduces the negative corre-
lation and shifts the threshold location to the much lower
percentile bins, as suggested by Allan et al. [2010]. For daily
integration there is big jump over the first few valid data
points where the nonzero precipitation begins. The variation
of this location causes the big jump due to lower value of
mean precipitation and big standard deviation over these
percentile bins (75–82%).
[39] For the bin-100 integration, the first data points are

identical to the last data points of 0-bin integration (both are
tropical ocean mean). They are the relations for total pre-
cipitation and temperature. Over the big percentile bins on
the right end, the relations are for the heaviest precipitation
and they are significantly positive as shown in Figures 6 and
7. As explained, the jumps happen when nonzero precipita-
tion rate starts for daily integrated data. It is clearly seen that
time-integration of the data explains the reduction of this
critical threshold from around the 96th percentile for daily
data down to around the 60th percentile for monthly data
(Figure 9a). Again, the “daily” satellite data may behave

more like hourly snap-shots; using model daily data, Pall
et al. [2007] found the threshold to be closer to the 90th
percentile of precipitation intensity.

7. Summary

[40] Climate model projections of substantial future
changes in intense precipitation and drought are of imme-
diate concern to society [Meehl et al., 2007]. Though the
variations and responses of precipitation on the interannual
time scale might be quite different from those on the decadal
and long-term time scales given likely different physical
mechanisms, it is still important to be able to verify and
understand the physical processes responsible for these
anticipated changes through careful use of well-calibrated
and well-characterized observing systems. While rain gauge
data provides “ground truth” [Zhang et al., 2007; Min et al.,
2011] their global coverage is somewhat limited and
increasingly the use of satellite measurements in detecting
rainfall changes is becoming an essential component of the
verification process [Huffman et al., 2009; Maidment et al.,
2012]. However, substantial discrepancies exist between
satellite data sets [Quartly et al., 2007; John et al., 2009] and
this motivates detailed analysis of the reasons for uncertain
rainfall responses to current climate variability [Wentz et al.,
2007; Liepert and Previdi, 2009; Arkin et al., 2010]. In the
present study, interannual variability of precipitation from
multiple satellite data sets and blended satellite data products
are compared to attempt to understand the causes of dis-
crepancies and to detect robust, physically reasonable
responses. Our main focus is on interannual co-variability of
precipitation and surface temperature over the globe and
tropical land and oceans.
[41] Over the period 1998–2008, global P is found to

increase at around 6%/K from SSM/I-based products (e.g.,
GPCP), of similar magnitude to that found by Wentz et al.
[2007] but larger than estimated by Adler et al. [2008].

Figure 8. Threshold separating the negative and positive precipitation response to the temperature
(a) from three daily data sets at 1° resolution and (b) from TMI daily data at different resolutions.
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The time period is too short to reliably detect responses
relevant for climate change [Liepert and Previdi, 2009] yet
is a useful and physically based metric to consider [Held and
Soden, 2006]. Much of the response is determined by strong
co-variability in tropical ocean P and T (dP/dT ranges from
10 to 30%/K depending upon time period and data set)
which is offset by anti-correlation over land of around
�10%/K, consistent with previous analysis [Wang et al.,
2008]. In agreement with previous studies, warming during
El Nino is associated with greater precipitation over the
tropical oceans and less rainfall over land [Adler et al., 2008;
Gu et al., 2007; Wang et al., 2008]; cause and effect over
land is ambiguous since over some regions, less cloud and
rain is conducive to enhanced surface heating while over
moist tropical regimes, warmer temperatures may be asso-
ciated with more convective rainfall [Trenberth and Shea,
2005].
[42] Variability between TRMM TMI, SSM/I, GPCP and

AMSRE data sets is generally consistent over the tropical
ocean over the period 1997–2008 but the HOAPS data set
appears to overestimate the magnitude and the TRMM 3B42
data set produces unrealistic variability. It will be useful to
include TRMM radar precipitation data in future studies as
both TRMM TMI and TRMM PR have good agreement
[Lau and Wu, 2011]. Over the land, GPCP and TRMM
3B42 are in reasonable agreement. However, it is noted that
many of the data sets are not independent of one another.
[43] Comparing the intensity distribution of P and its

response to interannual changes in surface temperature
between data sets reveals large differences. The heaviest
percentiles of P over the tropical ocean become more intense
with warming in all data sets at the rate of about 15–20%/K,
consistent with some land-based estimates [Lenderink and
van Meijgaard, 2010] and with modeling studies [Sugiyama
et al., 2010]. At lower P percentiles there are large differ-
ences between data sets although below the 80th percentile
of daily P intensity the AMSR-E and TMI estimates exhibit a
significant decline in P intensity with warming. The GPCP,
TMI and AMSRE data sets appear reasonably consistent in
the characteristics of rainfall intensity responses to surface
temperature changes.
[44] To understand the reasons for the differing responses

among data sets, the time and space averaging is analyzed,
motivated by the sizable differences in mean precipitation
intensity distributions among data sets and its dependence
upon spatial and temporal resolution. Time-averaging of the
data, and to a lesser extent, spatial integration of the data
leads to (i) greater agreement between data sets and (ii) a
reduction of the critical precipitation percentile threshold,
below which precipitation intensity generally declines with
warming. Based upon this analysis, there is some indication
that blended products such as GPCP have introduced an
implicit spatial and temporal averaging effect upon the data,
such that the 1 degree daily data may in reality represent a
larger spatial and temporal average. It should also be noted
that although we term the 0.25 degree satellite estimates as
daily data, in fact these are snap-shots coinciding with sat-
ellite overpasses and are therefore closer to hourly estimates
[Field and Shutts, 2009; Wilcox and Donner, 2007].
[45] We find that choosing a spatial resolution of 1 degree

and time-averaging of 5-days increases consistency between
data sets, compared to 0.25 degree daily data, and may be

the most useful scales to consider in comparing with the
climate model outputs. For this configuration, the precipi-
tation intensity bin threshold, separating the contrasting wet
and dry regime responses to warming/cooling cycles is
around the 80th percentile for AMSR-E and TMI but is less
coherent and lower (30%) for GPCP data. Considering the
wet and dry regimes separately, separated by the 60th P
percentile, the 5-day average, 1 degree TMI data exhibits a
coherent drying of the dry regime at the rate of �20%/K and
the wet regime becomes wetter at a similar rate (just below
20%/K). In future work we hope to apply these techniques to
assess the responses of climate model simulations of daily
precipitation using the GPCP and microwave-based data sets
(e.g., TMI, AMSR-E) described in the current paper. It will
also be important to consider the physical basis for such
changes, for example, relating to moisture transport [Held and
Soden, 2006; Sohn and Park, 2010; Zahn and Allan, 2011]
and energetic considerations [Muller and O’Gorman, 2011]
including the influence of aerosol [Andrews et al., 2010;Ming
et al., 2010].
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